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The next thing we were going to do was to analyze the Dedekind zeta function ζF (s) as s → 1+.
But that’s kind of a long story, and I don’t think it makes sense to start it in a small lecture right before
the break. So instead let’s do something fun, and use the Dirichlet L-series we’ve been studying to
prove Dirichlet’s theorem (1837):

Theorem 0.1. Let m ∈ N, and a ∈ (Z/mZ)×. Then there are infinitely many primes p such that p is
congruent to a (mod m).

The argument is based on Euler’s analytic argument for the infinitude of primes, so let me start by
recalling that. The rough idea is that there is an implication:∑

n≤N

1

n
∼ log(N)⇒

∑
p≤N

1

p
∼ log(log(N)),

as a consequence of the Euler product expansion of ζ(s) =
∑∞

n=1 1/n
s, or in other words as a conse-

quence of unique prime factorization. Here n runs over natural numbers, but p runs over primes. And
of course, if

∑
p≤N

1
p grows like log(log(N)), then the set of primes is certainly infinite (even though

log(log(N)) grows reeeallly slowly, it does tend to ∞!).
Now let’s give the argument. We won’t exactly establish that

∑
p≤N

1
p ∼ log(log(N)), though that

could be done if we were to take a little more care. Instead we’ll just show that, as s→ 1+, the sum∑
p

1

ps

tends to ∞. This also clearly implies that there are infinitely many primes.

Here is the argument. Start with the Euler product expansion

ζ(s) =
∏
p

1

1− p−s
,

for real s > 1. Now take log. This gives

log(ζ(s)) =
∑
p

(p−s +
1

2
p−2s +

1

3
p−3s + . . .).

Now consider what happens when s → 1+. On the left, since ζ(s) =
∑

n 1/n
s, we get something

comparable to log of the harmonic series
∑∞

n=1 1/n. This diverges, so we get that the left-hand side
tends to ∞. (To make a rigorous argument, compare ζ(s) with the integral

∫∞
1 x−sdx.)
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On the right, we exactly want to see that just the sum of the first terms p−s tends to∞ as s→ 1+.
Given that we know this for the left-hand side, it suffices to see that the remaining terms stay bounded
as s→ 1+, i.e. that ∑

p

(
1

2
p−2s +

1

3
p−3s + . . .)

is bounded as s→ 1+. But in fact I claim it’s bounded by 2ζ(2). Indeed, we can certainly remove the
1
2 , 1

3 , etc., coefficients for the purposes of bounding the sum. Then consider the even terms. These give∑
p

(p−2s + p−4s + . . .).

But in totality all these terms are just a subset of the terms defining the sum of ζ(2): they are the
subset corresponding to the prime powers among all natural numbers. So this sum is bounded by ζ(2).
On the other hand, the odd terms are clearly less than the even terms. So in total we do get the claimed
bound, and that finishes Euler’s proof.

Now let’s give Dirichlet’s proof. Similarly, we will show that∑
p≡a(m)

1

ps

tends to ∞ as s → 1+. To prove this, let’s make a similar study of log(L(s, χ)) as s → 1+, where
χ : (Z/mZ)× → C× is an arbitrary character (i.e. homomorphism). Again from the Euler expansion,
we see

log(L(s, χ)) =
∑
p

(χ(p)p−s +
1

2
χ(p2)p−2s + . . .+

1

3
χ(p3)p−3s + . . .).

Now let us use the symbol “'” to mean that the difference between the quantities is bounded in absolute
value as s→ 1+. Then just as above, we can neglect the degree ≥ 2 terms on the right hand side, and
we find

log(L(s, χ)) '
∑
p

χ(p)p−s.

This is the basic estimate, which will let us use knowledge of the L-series to conclude information about
primes.

To go further with it, we note that the characters χ provide a basis for the set of functions
(Z/mZ)× → C, just as in the previous lecture the pth roots of unity (= characters of Z/pZ) formed a
basis of the set of functions Z/pZ→ C. Thus, if f : (Z/mZ)× → C is any function, we can write

f(k) =
∑
χ

fχ · χ(k)

for some complex numbers fχ. Thus we deduce∑
p-m

f(p)

ps
'

∑
χ

fχ · log(L(s, χ)).
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Now let’s look at the right-hand side, and input our knowledge of L(s, χ). When χ = 1, then
L(s, χ) is just ζ(s) again, except that it’s missing the (finitely many) Euler factors at primes dividing
m. It follows that log(L(s, 1)) ' log(ζ(s)). On the other hand, when χ 6= 1, we know that L(s, χ)
converges to a continuous function in a neighborhood of s = 1, and we’ve asserted that

L(1, χ) 6= 0.

Thus log(L(s, χ)) is bounded as s → 1+, i.e. log(L(s, χ)) ' 0. Putting this back in to the above
formula, we deduce that only the trivial character contributes, and so∑

p-m

f(p)

ps
' f1 · log(ζ(s)).

We’ve already analyzed log(ζ(s)) as s → 1+: it goes to ∞. So we deduce the following: if the co-

efficient f1 is nonzero, then
∑

p-m
f(p)
ps tends to ∞ as s → 1+; but if f1 = 0 then instead the sum is

bounded as s→ 1+.

Thus, to prove Dirichlet’s theorem, it suffices to see that when we write the “indicator function”
for a (i.e. the function k 7→ ca(k) which outputs 1 when k ≡ a (mod m) and 0 otherwise) as a linear
combination of the characters χ : (Z/mZ)× → C×, then the coefficient of the trivial character is
nontrivial. But there’s the explicit formula

ca(k) =
1

ϕ(m)

∑
χ

χ(a) · χ(k),

which again follows from the fact that the sum of the f th roots of unity is 0 when f > 1. So the

coefficient of the trivial character is χtriv(1)
ϕ(m) = 1

ϕ(m) , and the proof is complete.

We remark that more analytic input (a “Tauberian theorem”, plus the fact that L(s, χ) 6= 0 even
for Re(s) = 1) can be used to show the stronger claim that the “natural density” of the set of primes
≡ a (mod m) is this coefficient 1

ϕ(m) . In other words, in the limit, the primes are equally distributed

among all the possible residue classes (mod m). By “natural density” we mean the limit, as N → ∞,
of the ratio of the number of primes ≡ a (mod m) which are ≤ N to the total number of all primes ≤ N .

Now, a crucial input to the above proof was the fact that L(1, χ) 6= 0 for χ 6= 1. This was how we
knew that log(L(s, χ)) stays bounded as s → 1+. If it had gone to infinity, then by a fluke of signs
it could have canceled the infinity coming from log(ζ(s)), and we might not know anything about the
sum we cared about.

In the last lecture I mentioned that this fact L(1, χ) 6= 0 can be deduced from our product formula

ζQ(ζp) = ζ(s) ·
∏
χ 6=1

L(s, χ).

(Provided we generalize from primes p to arbitrary natural numbers m; but this requires no new ideas,
only more complicated notation. So we’ll stick with the prime case.) Namely, it follows from the fact
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(which we’ll prove later) that ζF (s) for any number field F has a meromorphic continuation to a neigh-
borhood of s = 1, with its only pole being a simple pole at s = 1. Recall the argument: if any of
the L(1, χ) were equal to 0, then that zero would cancel the pole of ζ(s) = ζQ(s), leaving no pole for
ζQ(ζp)(s), which is a contradiction.

But I learned from Serre’s book A Course in Arithmetic that one can actually show that L(1, χ) 6= 0
without such a detailed study of ζF (s), if one is willing to input the following analytic theorem:

Theorem 0.2. Let

F (s) =

∞∑
n=1

an · n−s

be a Dirichlet series with nonnegative real coefficients an ≥ 0. Suppose that F (s) converges in some
right half-plane Re(s) > α. Let α′ < α. Then if F (s) extends to a holomorphic function in Re(s) > α′,
the defining series must also converge for Re(s) > α′.

In other words, convergence of the series “further to the left” can only be obstructed by a singularity
of the function (and actually, there’s also a further statement to the effect that such a singularity must
be present on the real axis). This is similar to the usual story of convergence of power series in complex
analysis. But here we need the requirement an ≥ 0.

We can apply this to F (s) = ζQ(ζp)(s). We know this has non-negative coefficients, since the
coefficients just count the number of ideals of Z[ζp] of a given norm. We also know it converges for
Re(s) > 1, since it’s a product of Dirichlet series which we know converge for Re(s) > 1.

Now, I claim that ζ(s)− 1
s−1 extends to a holomorphic function in Re(s) > 0. You can prove this

by comparing the sum defining ζ(s) with the integral
∫
x−s. We also know that the L(s, χ) extend to

homolorphic functions in Re(s) > 0. Thus, if any L(1, χ) were to be zero, we’d cancel the 1
s−1 , and so

the product, i.e. ζQ(ζp)(s), would be holomorphic in Re(s) > 0. Thus, by the above theorem, the series
defining ζQ(ζp)(s) would converge for Re(s) > 0.

But it’s pretty easy to see that this can’t be the case. The series defining ζF (s), for a general
number field F , is ∑

I 6=0

1

N(I)s
.

But just look at the principal ideals. Heck, even just look at the principal ideals (n), where n is a natural
number. These have norm nd, where d = [F : Q] (since OF ' Zd.) Thus this sum is bigger than∑

n≥1

1

nds
= ζ(ds).

But we know this sum doesn’t converge when ds ≤ 1, by comparison with the integral. Thus we have
a contradiction when 0 < s ≤ 1/d.
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