
Lecture 1: Review of holomorhic functions

September 3, 2014

The subject of this course is Riemann surfaces. A one sentence “definition” of a Riemann sur-
face is that it is a geometric object obtained by patching together pieces of the complex plane along
biholomorphic maps. Before studying Riemann surfaces, it’s a good idea to understand the notion
of a biholomorphic map, or more generally, just a holomorphic map. In this lecture we’ll review the
basic definitions and results on holomorphic maps, giving some intuitive explanations but no proofs.
For the proofs you can see any basic text on complex analysis.

First, some notations. The set of complex numbers is

C = {a+ b · i | a, b ∈ R}.

For a complex number z ∈ C and a positive real number r, the open disk of radius r centered at z
is

D(z, r) = {w ∈ C | |w − z| < r},

and the analogous closed disk is

D(z, r) = {w ∈ C | |w − z| ≤ r}.

Its boundary is the circle
∂D(z, r) = {w ∈ C | |w − z| = r}.

Here is the first definition.

Definition 0.1. A subset U ⊂ C is called open if for every z ∈ U , there exists a positive real
number r such that D(z, r) ⊂ U .

It is equivalent to ask that U be a union of open disks.
The reason we want to consider open subsets is that we want to differentiate. To differentiate,

you need to know not just the values of your function at a point, but its values at all points sufficiently
close to your point. An open subset is exactly a subset which, if it contains a point, contains all
sufficiently close points as well.

Now we can say what is a holomorphic function.

Definition 0.2. Let U ⊂ C be an open subset, and f : U → C a function. We say that f is
holomorphic if it is complex differentiable at z0 for every z0 ∈ U , i.e. for every z0 ∈ U the limit (of
complex numbers)

lim
z→z0

f(z)− f(z0)
z − z0

exists. (The limit value is denoted f ′(z0), as usual.)
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There are two ways of thinking about this definition. One is that it is the complex analog of the
usual notion of a differentiable function of one real variable. So insofar as the complex numbers, with
its algebraic operations and its notion of absolute value, is like the real numbers with its operations
and absolute value, the notion of a holomorphic function is like the notion of a real differentiable
function.

But this perspective hides the magic of holomorphic functions, which in many ways are very
different from real differentiable functions. To bring out the magic, its helpful to think geometrically,
viewing the complex numbers as the plane R2 and thus thinking of f as a function of two real
variables.

Then we can ask, what is it that distinguishes a holomorphic function from an arbitrary real
differentiable function of two variables? The answer can be phrased as follows. Suppose given a
real differentiable function f : U → R2 and a point p ∈ U . The derivative of f at p is by definition
a certain linear map

df |p : R2 → R2,

where we think of the source (resp. target) as the vectors emanating from p (resp. f(p)). Then an
immediate comparison of the definitions shows that f is holomorphic if and only if df |p is given by
multiplication by some complex number (which will be f ′(p)).

Now, it is only certain linear maps which are of that form. Multiplication by a complex number
is either the zero map, or it is the composition of a rotation and a scaling. A particularly vivid
consequence is that when f is holomorphic, df |p is either zero or it preserves oriented angles. An-
other consequence is a certain rigidity: the whole linear map df |p is determined by its value on any
nonzero vector, since already that fixes the amount of rotation and scaling undergone by the whole
map.

To bring this to life, recall the geometric interpretation of df |p: if you leave the point p travelling
with instantaneous velocity v, then your image under f will leave f(p) travelling with instantaneous
velocity df |p(v). Thus when f is holomorphic, it will preserve (oriented) angles to first order, since
df |p preserves angles. In fact this is almost an equivalent condition: a real-differentiable function
with nonvanishing derivative is holomorphic if and only if it is conformal, i.e. preserves angles, or
even just if and only if it preserves right angles. That’s because the only linear maps which do
that are compositions of rotations and scaling, hence given by multiplication by a complex number.
Furthermore there is the rigidity: the first-order movement under f in any one direction determines
its first-order movement in every direction. E.g. df |p(i) is the 90-degree counterclockwise rotation
of df |p(1). In coordinates, this is known as the Cauchy-Riemann equation.

Moreover, if you imagine fixing the length of v but sweeping out all possible directions evenly,
your image under f will also have fixed length and sweep out all possible directions evenly. Thus a
holomorphic map is balanced (the technical term is harmonic).

This first-order balance has a large scale manifestation, the mean value property :

Theorem 0.3. Let f : U → C be a holomorphic function on an open subset of C, and let D(z, r)
be a closed disc contained in U . Then the average value of f on the boundary ∂D(z, r) is equal to
the value of f at the center, i.e.

f(z) =
1

2πr

∫
∂D(z,r)

f(w) · |dw|.

Here we should be imagining w tracing around the circle ∂D(z, r), and |dw| as picking up the
infinitesimal arc length. The 2πr corresponds to the length of the circle, i.e.

∫
∂D(z,r) |dw|.
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There is a way to make this formula nicer. Namely, if we send w around at uniform speed
counterclockwise, then we see the following formula:

dw

w − z
=
i · |dw|
r

.

The i comes from the fact that dw is perpendicular to w−z: the tangent to a circle is perpendicular
to the line emanating from the center of the circle. Substituting this in to the integral, we find

f(z) =
1

2πi

∫
∂D(z,r)

f(w)

w − z
dw.

Here it should be implicit that we’re supposed to move around ∂D(z, r) in a counterclockwise
direction.

This formula is nicer: one reason is that in fact it is valid with z replaced by any point inside
the disk D(z; r). That’s the Cauchy integral formula:

Theorem 0.4. Let f : U → C be holomorphic, with U open. If D is any closed disk inside U and
z is any point in the interior D, then

f(z) =
1

2πi

∫
∂D

f(w)

w − z
dw,

if we go around the boundary once counterclockwise in performing the integration.

This formula is something of a key to the notion of holomorphic function. For example, it
explains why holomorphic functions are so regular: the dependence on z in the right-hand side of
the equation is easy to control; e.g. we can easily differentiate, or even expand into a power series.
Here are some corollaries:

Theorem 0.5. If f is holomorhpic, so is its derivative f ′.

Theorem 0.6. If f : U → C is holomorphic and D(z, r) is any open disk contained in U , then the
power series expansion for f cenetered at z converges in all of D(z, r).

Let me pause to give a cute example application of this theorem. Consider the power series

F (z) =
∑
n≥0

Fn · zn,

where Fn is the nth Fibonacci number. Then the recurrence relation Fn+2 = Fn+1 + Fn and
normalization F0 = F1 = 1 translate into the relation

F (z) = zF (z) + z2F (z) + 1.

Using this, we find that F (z) is the power series expansion of

F (z) =
1

1− z − z2

around 0. This function F is holomorphic everywhere except when 1 − z − z2 = 0, i.e. when

z = 1±
√
5

2 . From this we can conclude that the radius of convergence of our series is 1−
√
5

2 . Indeed,

F is holomorphic in the disc with radius
√
5−1
2 , so the above theorem tells us that the radius of

convergence is at least
√
5−1
2 ; but on the other hand, the function F tends to ∞ as z approaches

1−
√
5

2 , and a power series can’t tend to ∞ inside a region where it is defined since a power series is

continuous; thus the radius of convergence is also at most
√
5−1
2 , whence the claim. This tells you

something about the order of growth of the Fn.

Another application of the Cauchy integral formula is the removable singularities theorem:

3



Theorem 0.7. Let U ⊂ C be open, and z ∈ U . Suppose f : U \ {z} → C is holomorphic, and is
bounded in some disk around z. Then f extends uniquely to a holomorphic function on all of U .

So merely the fact of f being bounded around z implies something much stronger.

Now we have reviewed the basics of holomoprhic functions. But there’s one important question
we should still discuss: where do holomorphic functions come from? Why do they exist?

The answer is that they come from a variety of sources. We’ll talk about two of the more
important ones in the next lecture: they come from solutions of polynomial (or more generally
holomorphic) equations, and also from solutions of holomorphic differential equations.

But for now we’ll give a different kind of answer. First of all, the identity function z : C→ C is
holomorphic, as is any constant function. Second, the class of holomoprhic functions is closed under
addition and multiplication. Thus every polynomial is holomorphic. (The proof of these claims is
formally just like the real variable case.) Then, we can access more holomorphic functions by taking
limits of polynomials, thanks to the following theorem (also a consequence of the Cauchy formula!):

Theorem 0.8. Suppose f1, f2, . . . is a sequence of holomorphic functions U → C with pointwise
limit f : U → C. Suppose also the following stronger property: for every closed ball D ⊂ U , the
value

supz∈D|f(z)− fi(z)|

tends to zero as i tends to ∞ ( uniform convergence on closed balls.) Then f is holomorphic.

So other examples of holomorphic functions come as uniform limits of polynomial functions. In
fact, essentially all examples are of this form, since a power series is a uniform limit of its Taylor
truncations.

Yet, there are many other ways to construct holomorphic functions than via the above path. One
is particuarly vivid; it involves going back to the geometric understanding of holomorphic functions,
and making it precise will be one of the goals of this course. Before stating a version of it, however,
we should define the following important term:

Definition 0.9. Let U and V be open subsets of C. A biholomorphism between U and V is a
holomorphic map f : U → V which is bijective and has holomorphic inverse.

(The last condition in fact follows from the others, but we’ll talk about that later.)
Now we can state Riemann’s mapping theorem, which produces many interesting biholomor-

phisms:

Theorem 0.10. Let U ⊂ C be an open subset which is simply-connected and not equal to C. Then
there exists a biholomorphism between U and the unit disk D = D(0, 1).

We will explain the term “simply-connected” later.
There is something of a physical “proof” of this theorem, which also gives some intuition for

the notion of a biholomorphism. The idea is this: we can decorate the unit disk by imagining the
radial lines joining the center 0 to the boundary, and also imagining all the circles of radius < 1
centered at 0. We want to find the corresponding decorations of U ; then the biholomorphism will
be constructed to match these up.

For this, we start by fixing a point p ∈ U which will correspond to 0 ∈ D. Then we place an
electric charge at p, and consider the magnetic field it generates. But we do this subject to the
boundary condition that the potential should be zero on the boundary of U . Then we can decorate U
by the field lines on the one hand, and by the equipotential lines on the other. These will correspond
to the radial lines and the circles in D.
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The reason this all works, heuristically, is that field lines are always perpendicular to equipotential
lines. That is why the resulting map U ↔ D will be biholomorphic: right angles are preserved.

That was of course a non-rigorous argument, but one can make it rigorous. At the very least,
there is a moral to the story: since nature decides what to do by solving real differential equations, we
should try to construct holomorphic functions using solutions to (certain) real differential equations
as well.

Two finish off this lecture, we’ll review the geometry of some of the more basic holomorphic
maps, namely the exponential function and the nth power map for n a positive integer.

The exponential function z 7→ ez is a holomorphic map C→ C. To picture it it’s easiest to use
Cartesian real coordinates on the source C. Namely,

ea+bi = ea · (cos(b) + i · sin(b)).

In other words, ea+bi maps to the complex number with polar coordinates (ea, b) where the angle
b is given in radians. What does this look like? Well, let’s first imagine the field of vertical lines in
the source C. Each of these wraps around a circle centered at the origin, with periodicity of 2πi.
If our line is far to the left this circle is of small radius, and if our line is far to the right it is of
large radius. On the other hand the horizonal lines simply map to rays emanating from the origin.
Note, however, that the origin itself is not in the image of the map. As you move far to the left
your values approach the origin, but they never get there.

All in all there is a periodicity in this map: adding a multiple of 2πi does not change the value
under the exponential map. Thus it’s convenient to imagine taking the horizontal strip ranging be-
tween the lines b = 0 and b = 2π, and making an infinite cylinder out of it by gluing these boundary
lines together. Then we could say that the exponential map is giving a biholomorphism between
this cylinder and the open subset C \ {0}. Thus the exponential map “straightens out” C \ {0}
into a more manifestly symmetric geometric model having the same conformal geometry (angles are
preserved by the exponential function). E.g., now the operation of scaling by a non-zero complex
number on C \ {0} turns into just translating along the cylinder.

What about the nth power map? Since it’s a question of multiplication, polar coordinates are
the more useful: it sends 0 to 0, and it sends (r, θ) to (rn, nθ). The picture is that on the unit circle,
the nth power map wraps around n times evenly. That is, if you travel around the unit circle once
at constant speed s, then your image under the nth power map will travel around the unit circle n
times at constant speed ns. If you move away from the unit circle along a radial line, the argument
of your image doesn’t change, but your radius will change according to the real-valued nth power
map applied to your original radius. We’ll have occasion to point out some features of this example
later.
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