
Lecture 10: The hyperbolic plane.

October 2, 2014

Let X be a Riemann surface. Recall from last time the notion of a compatible (Riemannian)
metric on X: it is a metric {〈−,−〉x}x∈X on the smooth surface underlying X, satisfying the
condition that the notion of angle provided by the metric agrees with the notion of angle coming
from the holomorphic charts of the Riemann surface.

In such a situation, every oriented isometry of the metrized smooth surface X is automatically
an automorphism of the Riemann surface X:

Isom+(X) ⊂ Aut(X).

This is because a biholomorphic map on open subsets of C is exactly a smooth map with smooth
inverse whose derivatives preserves oriented angles (see the first problem on your problem set).

Now, in general one would expect the inclusion to be strict, because a biholomorphism is only
expected to preserve angles, not distances. But we made the claim in the last lecture, that as
a consequence of uniformization, almost every Riemann surface X carries a canonical compatible
metric for which Aut(X) = Isom+(X).

The key to understanding this is to explore the canonical metrics on the three model spaces P1,
C, and D.

We talked about P1 in the last lecture. We defined its canonical metric to be the spherical metric,
coming from the identification of P1 with S2. We saw that the inclusion Isom+(P1) ⊂ Aut(P1)
was strict, and that the difference is accounted for by the automorphisms of the form

z 7→ λz + b

with λ ∈ R>0 and b ∈ C, in the sense that an aribitrary automorphism of P1 can be uniquely written
as the composition of one of these guys with an oriented isometry.

The case of C falls out from your problem set this week. You saw that the automorphisms of
C are the maps of the form z 7→ az + b with a 6= 0 and b complex numbers. This can uniquely be
written as the composition of a z 7→ λz (for λ ∈ R>0 again) with an oriented Euclidean isometry,
namely some z 7→ az + b with |a| = 1.

(Note: it actually follows that every oriented isometry of the plane is of this form, since oriented
isometries surely give automorphisms of the Riemann surface, and when |a| 6= 1 the map z 7→ az+b
is not an isometry!)

Thus, in this lecture we’ll finish things up by discussing D. Here the situation is different: it
turns out that every automorphism of D actually is an oriented isometry:

Isom+(D) = Aut(D).

But we’re getting ahead of ourselves, since we still need to say what the hyperbolic metric on D is.
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Recall that every metric compatible with the complex structure on an open subset U of C is
given by a formula of the type

〈−,−〉z = λ(z)2 · 〈−,−〉std,

where λ : U → R>0 is a smooth function, measuring the amount distances are scaled in going from
the standard Euclidean metric to the new metric. For example, the formula

λ(z) =
2

1 + |z|2

describes the spherical metric on C ⊂ P1.
The hyperbolic metric on D is gotten by just changing a sign: it’s given by

λ(z) =
2

1− |z|2
.

Before making a more detailed study, let us explore this in a vague way. At z = 0, the center
of the disk, the scale is 2, so hyperbolic distances are twice as big as euclidean ones. But as z
approaches the boundary of the disk, the scale tends to ∞. So, near the boundary, hyperbolic
distances are much bigger than they appear to our Euclidean eyes.

There is another model for this same geometry. Namely, in your problem set last week you found
that D and H are biholomorphic, via the biholomorphism

z 7→ f(z) = (−i) · z + i

z − i
.

Using this biholomorphism we can transport the hyperbolic metric on D over to H. There the
formula for it is simpler: the scale factor becomes

λ(z) =
1

Im(z)

instead.
(The claim is that the above f gives an isometry between D with the 2

1−|z|2 metric and H with

the 1
Im(z) metric. This follows from the formula

1

Im(f(z))
· |f ′(z)| = 2

1− |z|2
.

Indeed, since f is a holomorphism (with nonzero derivative), it stretches the Euclidean distances by
factor |f ′(z)|.)

So we have two models for hyperbolic geometry: one, the unit disk D with the λ(z) = 2
1−|z|2

scale, and another, the upper-half plane H with the λ(z) = 1
Im(z) scale. We can transport between

them using the biholomorphism f . It’s actually handy to consider both of them, because some
aspects of hyperbolic geometry are easier to see in the unit disk model, and some are easier to see
in the upper half plane model. (In other words, some aspects look nice to our Euclidean eyes on the
unit disk, and some look nice to our Euclidean eyes on the upper half plane.)

To illustrate this, let us describe three classes of oriented hyperbolic isometries. Two will look
nice on H, and one will look nice on D.

1. For every a ∈ R, the map z 7→ z + a is a hyperbolic isometry of H. [This example gets the
name “Parabolic”]
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2. For every λ ∈ R>0, the map z 7→ λz is a hyperbolic isometry of H. [This example gets the
name “Hyperbolic”, confusingly enough]

3. For every u ∈ C with |u| = 1, the map z 7→ u · z is a hyperbolic isometry of D. [This example
gets the name “Elliptic”.]

In all three cases, the verification that the given map is an isometry is trivial. By the way, if
you want to see what the first two kinds of isometries look like in the unit disk model, you can
see these YouTube videos, respectively: https://www.youtube.com/watch?v=P0s7wGkdEDM and
https://www.youtube.com/watch?v=p7HB2cfZ4mw. (Also tilt your head to the left if you want
to match our normalizations.) Of course, the third example is just a rotation around the origin.

Now we can state the main theorems. The first two theorems express, in two different ways,
that the above examples explain all the automorphisms of D.

Theorem 0.1. Every automorphism of the Riemann surface D is uniquely the composition of a map
as in 1. above, followed by a map as in 2. above, followed by a map as in 3. above.

Corollary 0.2. Every automorphism of D is an oriented isometry: Aut(D) = Isom+(D).

The corollary follows immediately, since all of the three types of maps above are oriented isome-
tries, and the composition of oriented isometries is an oriented isometry.

Theorem 0.3. Every automorphism of D is conjugate to one of the maps listed above in 1,2,3.

This means that for every γ in Aut(D), there is an A ∈ Aut(D) such that AγA−1 is equal to one
of those maps ϕ listed above. In other words, γ and the model ϕ are equivalent via the “coordinate
change” A. So from the perspective of hyperbolic geometry, γ looks like ϕ: the picture for γ is the
same as the picture for ϕ, if you “tilt your head” using the isometry A.

Theorem 0.4. The automorphisms of H are exactly the maps

z 7→ az + b

cz + d

with a, b, c, d ∈ R and ad− bc > 0. (In symbols, Aut(H) = PGL+
2 (R).)

Corollary 0.5. Every automorphism of H (or D) extends to an automorphism of P1.

In the case of H, the corollary follows immediately from the theorem, since our description of
the automorphism group of P1 showed that all the maps as in the theorem are automorphisms of
P1. As for D, it follows from the case of H since the map f and its inverse are also automorphisms
of P1 (they were originally produced as rotations of the sphere). The corollary also follows easily
from the first theorem, for essentially the same reason.

There are at least two approaches to proving the above theorems, both relying on results due to
Schwarz. One approach actually starts with the last corollary, which can be proved using Schwarz’s
reflection principle. We won’t follow that approach, but I encourage you to look up the reflection
principle, because it’s very fun.

Instead we’ll follow an approach based on Schwarz’s lemma, which is the following:

Lemma 0.6. Let h : D→ D be a holomorphic map with h(0) = 0. Then |h′(0)| ≤ 1, with equality
if and only if there is a c ∈ C of norm one such that h(z) = c · z.
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Before we give the proof I have to remind you of the maximal modulus principle. It says the
following. Let F : U → C be any non-constant holomorphic function on a connected open subset
of C, and suppose D ⊂ U is a closed disc contained in U . Since F is in particular continuous, it
follows that there is a point z0 ∈ D on which f has maximum modulus, i.e.

|F (z0)| ≥ |F (z)| for all z ∈ D.

(Recall the reason: |F | is continuous and D is compact, so |F (D)| is compact, hence closed and
bounded, hence attains a finite supremum.)

Then the maximum modulus principle says that any such z0 of maximum modulus necessarily
lies on the boundary ∂D. One proof uses the mean value property of holomorphic maps, but here is
another proof. Suppose z0 lies in the interior of D. By the local structure theorem for holomorphic
maps, we know that there is a small disk N around z0 such that F (N) contains a small disk around
F (z0). But a small disk around a point always contains points of larger modulus than that point,
so this is a contradiction to F (z0) having maximum modulus.

Okay, now let’s prove Schwarz’s lemma.

Proof. Let H(z) = h(z)/z. This H is holomorphic on D, since h(0) = 0 (so the power series
expansion of h starts with a z term). Now, the key claim is that |H(z)| ≤ 1 for all z ∈ D. Taking
z = 0 will give the desired |h′(0)| ≤ 1.

To prove the claim, note that on the circle of radius r < 1 centered at 0, we have the bound

|H(z)| = |h(z)|/r ≤ 1/r.

By the maximum modulus principle applied to H, it follows that |H(z)| ≤ 1/r for all z ∈ D(0, r).
Fixing z and letting r → 1, we deduce the claim.

Now suppose we have equality |h′(0)| = 1. Thus H(0) = h′(0) has modulus 1. But we just
proved that |H(z)| ≤ 1 for all z ∈ D. This is a contradiction to the maximum modulus principle,
unless H is constant with value h′(0), in which case h(z) = h′(0) · z, as claimed.

Corollary 0.7. Every automorphism of D fixing 0 is of the form z 7→ c · z for some c ∈ C of norm
1, i.e. it is an isometry of type 3 above.

Proof. The Schwarz lemma says |f ′(0)| ≤ 1. But the Schwarz lemma applied to f−1 gives the
opposite inequality. Thus we have equality, so the Schwarz lemma gives the claim.

Now we can prove Theorem 0.1.

Proof. First let us prove existence, i.e. that every holomorphic automorphism of D is the composition
of a map of type 1, followed by 2, followed by 3.

Let h : D → D be a holomorphic automorphism of D. Suppose that h sends z0 to 0. First, I
claim there is a unique composition h2 ◦ h1 of a map of type 1 followed by a map of type 2 which
also takes z0 to 0.

This is easiest to verify in the upper half plane model. The claim is that for any w ∈ H, there is
a unique such composition taking w to i. That is clear: we have to translate over to the imaginary
axis, then scale appropriately to get to i.

Now consider h3 := h ◦ (h2 ◦ h1)−1. This is an automorphism of D which takes 0 to 0. By the
corollary to the Schwarz lemma, it is of type 3, which proves the claim.

Now for uniqueness. If we have any such decomposition h = h3 ◦ h2 ◦ h1, then since h3 fixes 0
it must be that (h2 ◦ h1)(z0) = 0. Then the above argument actually shows that h1 and h2, and
hence h3, are uniquely determined.
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Let us skip Theorem 0.3 for now, and prove Theorem 0.4. This could be done by pure calculation,
granting Theorem 0.1. But instead let’s give a more abstract argument.

First, we claim that the class of transformations as in Theorem 0.4 is exactly the class of
automorphisms of P1 which send H to itself. Indeed, first suppose that φ ∈ Aut(P1) sends H
to itself. By continuity, it must also send the boundary circle R ∪ {∞} to itself. In particular,
applying this argument to h−1, we see that the values h−1(0), h−1(1), and h−1(∞) lie in R∪ {∞}.
Looking over the proof of the classifications of the automorphisms of P1, we only needed these three
numbers to write down the formula for h in terms of a, b, c and d. Thus it follows that the a, b, c and
d representing h can be chosen to be real. Then the only thing we need to see is that the condition
ad− bc > 0 holds. For this we can just note that h′(0) = ad−bc

d2
must be positive if h(iε) is to lie in

H for small ε.
Next suppose that h is given as stated in Theorem 0.4; we need to see that h sends H to itself.

Such an h must preserve the circle R ∪∞ again, this time for obvious reasons. But if we remove
this circle from the sphere P1 we get two connected components; hence our automorphism h must
either preserve the components or swap them. Then the same derivative argument as above shows
it must preserve them since ad− bc > 0. Hence h restricts to an automorphism of H, as claimed.

Now the proof of Theorem 0.4 is trivial. Indeed, all of the above listed three types of automor-
phisms are evidently restricted from automorphisms of P1 (recall that f : D ↔ H also came from
an automorphism of P1). Hence so are any of their compositions. Thus, by Theorem 0.1, the same
holds for any automorphism of H.

Now we can prove Theorem 0.3, to finish our work.
Suppose that h : H → H is an arbitrary automorphism. As we saw above, h extends to

an automorphism of P1 which preserves the boundary circle R ∪ {∞}. In fact, more generally
h(z) = h(z), since the a, b, c and d of Theorem 0.4 are real. Now, we analyze the fixed points of h
on P1. These correspond to complex eigenlines of a 2x2 real matrix, so there are four cases:

1. h has a unique fixed point r, lying in R ∪∞.

2. h has exactly two fixed points r1 6= r2, both of which lie in R ∪∞.

3. h has exactly two fixed points, one of which z lies in H and the other is z.

4. h fixes every point.

In the fourth case h = id. Then h actually lies in all three of our model classes, so the claim
is certainly true. But now we’ll see that the other three cases exactly match up with the 3 model
classes.

Suppose we are in the first case. The type 3 maps just rotate the boundary circle, so we can
find one of them, call it A, such that A(r) =∞. Then A ◦ h ◦ A−1 has the unique fixed point ∞.
In particular, just because it fixes ∞, it follows that A ◦ h ◦ A−1 must be of the form z 7→ az + b
with a 6= 0 and b complex numbers. But to avoid more fixed points we need a = 1. Then we need
b real to preserve H. It follows that A ◦ h ◦A−1 is of type 1. This proves the claim in the first case.

Now suppose we are in the second case. First suppose r1 < r2 and neither is ∞. By applying
the automorphism A(z) = z 7→ z−r1

z−r2 , we can move r1 to 0 and r2 to ∞. We can accomplish the
same thing with no condition on r1 and r2 if we throw in some rotations of the boundary circle as
well.

Then A◦h◦A−1 fixes both 0 and∞. It follows easily, either by algebraic or geometric arguments,
that A ◦ h ◦A−1 is of type 2.
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Now suppose we are in the third case. We already checked above that there is an automorphism
A (composition of type 1 and type 2) which sends z to i. Thus A ◦ h ◦ A−1 fixes i. If we move to
the unit disk model and apply Schwarz’s lemma, we see that A ◦ h ◦A−1 is of type 3. This finishes
the proof.

To summarize, we analyze the fixed points of our automorphism, not just inside the space D,
but also on its boundary. We apply automorphisms to move those fixed points into standard posi-
tion, after which point it becomes routine to identify the resulting conjugated automorphism with
one of the 3 types above. The nature of the fixed points determines which of the three cases we’re in.

Let me finish by giving a geometric reinterpretation of Schwarz’s lemma. Schwarz’s lemma says
that every holomorphic map D → D is distance non-increasing in the hyperbolic metric, and that
if the distances are preserved at any point then it must be an isometry. Indeed, Schwarz’s lemma
says that such a map, if it sends 0 to 0, must be distance non-increasing at 0, and if it preserves
distances there then it is an isometry. But by composing on both sides with a hyperbolic isometry
we can reduce the case of any arbitrary point of D with arbitrary image to this case.
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