
Lecture 11: Riemann surfaces uniformized by P1 and C

October 14, 2014

Today we’ll start to explore some consequences of the uniformization theorem.
Recall that the uniformization theorem says that every connected Riemann surface is isomorphic

to some M/Γ, where M is either P1,C, or D, and Γ is a subgroup of Aut(M) acting properly freelyon
M.

Recall also that “properly freely” means the following:

1. For every point z0 ∈ M, there is an open neighborhood U of z0 such that the open sets
{γ(U)}γ∈Γ are disjoint from one another.

Note that a special case is that no γ 6= id in Γ can have a fixed point. However, in our analysis
of the automorphisms of these three Riemann surfaces M, we’ve seen (by case-by-case analysis)
that every γ which has no fixed point must actually be an oriented isometry of M in its canonical
geometry. So, in the statement of the uniformization theorem, we could just as well say that Γ
needs to be a subgroup of Isom+(M) acting freely and properly on M. Then we can also rephrase
the above condition in metrical terms:

1. For every point z0 ∈M, the minimal distance infγ 6=id d(z0, γ(z0)) is attained by some γ 6= id.

Now, our goal this week is to understand all the possible Γ’s and M/Γ’s in the two cases M = P1

and M = C. We’ll see that the list of possibilities is fairly small, so that actually, most Riemann
surfaces must arise from the case M = D.

We start with M = P1. We’ve already seen that every automorphism of P1 must have a
fixed point. Thus, because of the freeness condition, the only possibility is Γ = {id}, which gives
M/Γ = P1. So the only Riemann surface uniformized by P1 is P1 itself. We’ve already made a
detailed study of P1, so we can consider this “case closed”.

So we move on to M = C. Thus, let Γ be a group of oriented isometries acting properly and
freely on C (in the Euclidean metric). Because every non-translation isometry of C has a fixed point,
Γ must consist entirely of translations. Then we will see that there are three general possibilities for
such a Γ, acting properly freely on C:

1. Γ = {id};

2. Γ consists of translations by integer multiples of some nonzero v ∈ C;

3. Γ consists of translations by Z-linear combinations of two R-linearly independent v1, v2 ∈ C.

To prove this, we identify C with R2, and we identify Γ with an additive subgroup of R2

by identifying a translation map with the vector which it is a translation by. Then the freeness
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condition translates into Γ ⊂ R2 being discrete, i.e. every point of Γ is isolated, meaning has an
open neighborhood which contains no other points of Γ.

In fact a nice remark is that it’s equivalent to say that just the point 0 ∈ Γ should be isolated.
Indeed, if U isolates 0, then γ + U isolates γ.

Anyway, in this context we have:

Proposition 0.1. Let Γ be a discrete subgroup of Rn. Then there is an R-linearly independent
subset S ⊂ Rn such that Γ is equal to the Z-span of S.

In the case n = 2, this proposition implies our desired classification. Indeed, a linearly inde-
pendent subset of a two dimensional vector space must have either 0, 1, or 2 elements, and these
correspond to the three possibilities listed above. So let us prove the proposition.

Proof. We induct on n, the case n = 0 being trivial.
Now take an n, and suppose the claim known for n− 1. If Γ = {0}, then the claim is obvious.

Otherwise, we can choose a nonzero γ ∈ Γ of minimal distance to the origin. (Proof: first choose
an arbitrary nonzero element of Γ, and say it has norm R. Then there are only finitely many points
of Γ in D(0;R), since this D(0;R) is compact and Γ is discrete. Thus we can minimize the distance
to the origin among these finitely many points, and hence among all points, since all the others have
distance > R.)

Now consider the orthogonal projection Γ→ (R · γ)⊥ to the orthogonal complement of γ in Rn
(with the standard inner product). Certainly γ maps to zero in this orthogonal projection, so there
is an induced map of quotients

Γ/(Z · γ)→ (R · γ)⊥.

I claim this map is injective, and that it exhibits Γ/(Z · γ) as a discrete subgroup of (R · γ)⊥.
We will get both claims at once if we show that there is a neighborhood U of 0 in (R ·γ)⊥ which

meets the projection of no point of Γ/(Z · γ) besides 0. In other words, we need an ε > 0 such that
the tube of radius ε around R · γ contains no points of Γ besides the integer multiples of γ.

But because γ was assumed minimal, the ball of radius R = |γ| around 0 contains no points
of Γ besides 0. Thus for all integers k, the ball of radius R around k · γ contains no points of
Γ besides k · γ. Thus the union of all these balls contains no points of Γ besides those in Z · γ.
However, a simple matter of Euclidean geometry shows that this union of balls contains a tube of

radius ε =
√

3
2 ·R around R · γ. That proves the claim.

Thus Γ/(Z · γ)→ (R · γ)⊥ gives a discrete subgroup of the n− 1 dimensional (R · γ)⊥. By the
inductive hypothesis, then, there is a set S of R-linearly independent vectors of R · γ)⊥ such that
Γ/(Z · γ) consists of the Z-span of the elements of S.

Now, define S ⊂ Γ consist of an arbitrarily chosen lift of every element of S, together with the
single element γ. Then all our desired conditions are satisfied, as an easy check shows. This finishes
the proof.

Now we can analyze the possibilities for the quotient Riemann surface C/Γ. In the first case,
Γ = {id}, so we get C back again. That’s not so interesting.

Now consider the second case, C/Z ·w with w 6= 0. I claim that the answer is independent of w,
in the sense that the resulting Riemann surfaces are all isomorphic. Indeed, suppose given another
w′ 6= 0. Let λ = w′/w, and consider the map

C ·λ−→ C.

This is obviously an isomorphism of Riemann surfaces. But moreover it converts translation by w
into translation by w′. Thus it induces an isomorphism

C/(Z · w)
·λ−→ C/(Z · w′),
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whence the claim.
On the other hand, we know already that when w = 2πi, the exponential map identifies this

quotient with C\{0}. Thus the only Riemann surface we get from C/Γ in the second case is C\{0}.

So far it’s been pretty boring: after all this work, we’ve only recovered three Riemann surfaces:
P1, C, and C \ {0}. But it’s about to get more interesting, when we turn to the third case, where
Γ is generated by two linearly independent vectors v0, v1 ∈ C. It turns out that in this case:

1. There are many different possible quotients, even up to isomorphism;

2. The quotients are all compact Riemann surfaces;

3. We can identify the quotients (after removing a point) with the Riemann surface associated
to a cubic equation of the form y2 = f(x) where f(x) is a complex cubic polynomial with
distinct roots.

First let us see what C/Γ “looks like” in this case. Let

P = {λ1 · v1 + λ2 · v2 | −
1

2
≤ λ1, λ2 ≤

1

2
},

a fundamental parallelogram cenetered at 0.
Then the restriction of the projection C→ C/Γ to P is surjective:

P � C/Γ.

Moreover it’s almost injective: if z, w ∈ P have the same image in the quotient, then either z = w
or z and w lie on opposite sides of the boundary of the parallelogram, and differ by translation by
v1 or v2.

Thus we can picture C/Γ as being obtained by taking this parallelogram P and gluing opposite
sides together by translation. This is, topologically speaking, a torus.

A corollary is that C/Γ is compact. Indeed, P is closed and bounded, hence compact; and the
continuous image of a compact space is compact.

Given this compactness, and recalling our discussion of the algebraization theorem, it’s reasonable
to ask what the field of meromorphic functions on C/Γ is. The answer is surprisingly simple:

Theorem 0.2. There exist two meromorphic functions ℘, ℘′ ∈M(C/Γ) with the following proper-
ties:

1. Every element ofM(C/Γ) can be written uniquely in the form

A(℘) +B(℘) · ℘′,

where A and B are rational functions (quotients of polynomials).

2. There is an equation of the form

(℘′)2 = 4 · (℘− e1)(℘− e2)(℘− e3)

for some distinct e1, e2, e3 ∈ C.

3



Note that this theorem tells you exactly what the field M(C/Γ) is: it’s in bijection with pairs
(A,B) of rational functions in C(z)×C(z); the addition is component-wise; and the multiplication
is

(A,B) · (A′, B′) = (AA′ +BB′ · 4 · (z − e1)(z − e2)(z − e3), AB′ +A′B).

In particular the structure of the field M(C/Γ) is determined by these three constants e1, e2, and
e3, which in turn depend on the lattice Γ (we’ll see exactly how). By the way, a related theorem,
which we’ll also prove in the next lecture, is the following:

Theorem 0.3. The functions ℘ and ℘′ induce an isomorphism of Riemann surfaces

(C/Γ) \ {0} ∼−→ {y2 = 4(x− e1)(x− e2)(x− e3)} ⊂ C× C.

One way of reading this is that these functions ℘ and ℘′ parametrize all solutions to this partic-
ular cubic equation. Actually it turns out that, perhaps after some coordinate change, all equations
of the form y2 = f(x), for any cubic polynomial f with distinct roots, arise in this way. This is
a very useful fact with some nice classical consequences, since such equations y2 = f(x) tend to
arise in various places. For example they arise when calculating the arc length of an ellipse. So
from the above theorem one learns that the arc length of an ellipse can be expressed in terms of
these functions ℘ and ℘′ (which we’ll write down explicitly). A perhaps more interesting example is
that they arise from the differential equations describe the motion of a simple pendulum. Thus the
trajectory of a pendulum is also controlled by these same functions.

Without further ado, let’s get to work on the first theorem, describing M(C/Γ). First, some
general nonsense. Let Γ be any group acting freely and properly on a Riemann surface X, and
consider the quotient X/Γ. Then giving a holomorphic map from X/Γ to another Riemann surface
Y is the same as giving a Γ-invariant holomorphic map from X to Y , i.e. a holomorphic map
f : X → Y with f ◦ γ = f for all γ ∈ Γ.

Indeed, on the level of set theory this is clear, since the quotient p : X → X/Γ has the property
that p(x) = p(y) if and only if x and y are related by the action of some γ. Thus we need only
see that a map X/Γ→ Y is holomorphic if and only if its composition with p is holomorphic. That
follows because p is (by definition) a local isomoprhism.

Thus, taking Y = P1, we find that our exotic-looking field M(C/Γ) can be identified with
something one could study in classical complex analysis: it is the field of meromorphic functions on
C which are invariant under translation by Γ.

Using this description, we can produce our functions ℘ and ℘′. Actually, as the notation suggests,
℘′ will be the derivative of ℘ (which is called the Weierstrass p-function, by the way). Here is the
proposition:

Proposition 0.4. There exists a unique Γ-invariant meromophic function ℘ on C with the following
two properties:

1. The set of poles of ℘ is exactly Γ ⊂ C;

2. The Laurent series expansion of ℘ takes the form

℘(z) =
1

z2
+ (terms of degree ≥ 1).

Note that if we consider ℘ as a meromorphic function on C/Γ, then properties 1 and 2 in
particular say that ℘ has a single pole at 0, of multiplicity 2.
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In the proof we will construct an explicit such function ℘; for example we will see how to calculate
its entire Laurent series expansion at 0. However, for the proof of the theorems stated above we will
only need to invoke the above two properties of ℘. So in some sense one can forget the formula for
℘.

Proof. First we show uniqueness. Suppose ℘ and p are two such functions, and consider

℘− p.

This is a meromorphic function on C/Γ with no poles outside 0, since both ℘ and p are. But it also
has no pole at 0, since the 1

z2
’s in the Laurent series expansions cancel. Thus ℘−p is a holomorphic

map C/Γ → P1 between compact connected Riemann surfaces, such that its fiber at ∞ is empty.
Thus, by invariance of degree, if ℘ − p is nonconstant then the fiber above every point must be
empty. But this is absurd, so ℘ − p must be constant. Then since ℘ − p has constant term 0 at
z = 0, this constant must be 0. So ℘ = p, as claimed.

Now we show existence. The idea is the following. A first naive guess would be to take the basic
function 1

z2
and then translate it by all the elements of Γ, and sum up, that is:

℘(z) =
∑
γ∈Γ

1

(z − γ)2
.

Unfortunately, this sum does not converge, so that won’t be our definition. However, we have better
luck with what would be the derivative ℘′(z), and we can take this as a definition: let

℘′(z) :=
∑
γ∈Γ

−2

(z − γ)3
.

One can see that this converges uniformly on closed disks, and hence limits to a meromorphic
function on C, by comparison with the integral∫

v∈R2

1

|v|3
|dv|,

which can be evaluated by switching to polar coordinates.
Noe that the poles of ℘′ are exactly the points of Γ, and that its Laurent series at 0 is of the

form

℘′(z) =
−2

z3
+ (terms of degree ≥ 1),

where the terms of degree ≥ 1 occur only in odd degrees. (The coefficients can be calculated by
successively differentiating and plugging in z = 0; the even terms must vanish because ℘′ is an odd
function: ℘′(−z) = −℘′(z).)

In the interior of the fundamental parallelogram P ⊂ P, the only pole of ℘′ is z = 0. Thus there
is a unique antiderivative ℘ of ℘′ in this region whose constant term at 0 is 0. This antiderivative
being determined by integrating the Laurent series expansion term-by-term, and so it has the proper
expansion at z = 0 to satisfy condition 2.

To finish the proof, we need to see that ℘ extends to a Γ-invariant function on all of C.
It suffices to see that ℘(z+ v1) = ℘(z) and ℘(z+ v2) = ℘(z) when all of the points in question

lie in P, because granting this we can inductively extend ℘ to all of C by using translation to move
to neighboring parallelograms.

But, consider ℘(z+ v1)−℘(z). This function is constant = C, since its derivative vanishes and
the region where it’s defined is connected. On the other hand ℘ is even, since ℘′ is odd. Thus

C = ℘(z + v1)− ℘(z) = ℘(−z − v1)− ℘(−z) = ℘(w)− ℘(w + v1) = −C,

where w = −z − v1. Hence C = 0, as claimed. The same argument for v2 gives the claim.
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We don’t have time today to prove the main theorems, so instead let me indicate the overall
strategy. We view our function ℘ as a holomorphic map

℘ : C/Γ→ P1.

Then ℘ has degree two, since it has only one pole of order 2. Thus, generically ℘ is two-to-one. In
fact we can be more precise: ℘(z) = ℘(w) if and only if z = ±w. There are four “branch points”
of ℘ (points of multiplicity > 1) of multiplicity 2, corresponding to the four points on C/Γ which
satisfy z = −z. One of these is z = 0, which maps to ∞ ∈ P1; the other three will map to the
points we call e1, e2, and e3 in C ⊂ P1.

This fact that C/Γ is degree two over P1 is the key to the first claim above, that M(C/Γ) is
built out of two copies of M(P1) = C(z). The idea behind the second claim is that this map ℘
makes C/Γ look a lot like the Riemann surface of y2 = p(x) with p(x) a polynomial of degree 3
with roots e1, e2, e3. Indeed, that Riemann surface is also a degree two cover of C, via projection
to the x-axis (given x, there are two choices for y, corresponding to the two square roots of p(x)).
And the branch points are the same too, since the square root is branched exactly when p(x) = 0.

In total, we can say that once we have this one meromorphic function ℘, we can use it to
understand completely the structure of meromorphic functions on C/Γ. This is also the prototype
for algebraization: we first show that there is a non-constant meromorphic function on any com-
pact Riemann surface X, then we use the geometry of the resulting map X → P1 to completely
understand M(X) in terms of C(z).
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