
Lecture 12: Elliptic curves from lattices

October 9, 2014

Today we pick up where we left off last time. Thus, let Γ be a full lattice in C: that is, a
subgroup of C which can be generated by two R-linearly independent vectors v1, v2 ∈ C. We proved
the following:

Proposition 0.1. There exists a unique meromorphic function ℘ ∈M(C/Γ) such that:

1. The only pole of ℘ is at 0 ∈ C/Γ;

2. The Laurent series expansion of ℘ at 0 ∈ C looks like

℘(z) =
1

z2
+ (terms of degree ≥ 1).

Note that this ℘ is necessarily even, namely ℘(−z) = ℘(z). This follows from uniqueness.

Today we want to use this one function ℘ to understand the whole field M(C/Γ). Namely, we
will prove:

Theorem 0.2. 1. For every f ∈M(C/Γ) there are unique rational functions A,B ∈ C(z) such
that

f = A(℘) +B(℘) · ℘′,

where ℘′ is the derivative of ℘.

2. We have an equation of the form

(℘′)2 = 4 ·
∏
e∈S

(℘− e),

where S is a three-element subset of C satisfying
∑

e∈S e = 0. (This set S is determined by
the lattice Γ.)

Combined, the two results of this theorem exactly determine M(C/Γ). In field theory notation,
they show

M(C/Γ) = C(z)

√
4 ·

∏
e∈S

(z − e)

 .

In words, the fieldM(C/Γ) is obtained from the field C(z) by adjoining a square root of 4·
∏
e∈S(z−

e).

Let us start with something purely formal, which really has nothing to do with Riemann surfaces:
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Lemma 0.3. Every function f ∈M(C/Γ) can be uniquely written in the form

f = f1 + f2,

where f1 is even and f2 is odd. (That is, f1(−z) = f1(z) and f2(−z) = −f2(z).)

Proof. Define maps f 7→ f+ and f 7→ f− from M(C/Γ) to itself as follows:

f+(z) =
f(z) + f(−z)

2
, f−(z) =

f(z)− f(−z)
2

.

Then the following claims are obvious:

1. f = f+ + f−.

2. f+ is even and f− is odd.

3. f is even if and only if f+ = f if and only if f− = 0, and f is odd if and only if f+ = 0 if and
only if f− = f .

4. The maps f 7→ f+, f− are C-linear.

The first two points already establish existence. As for uniqueness, suppose f = f1 + f2 with
f1 even and f2 odd. Then applying (−)+ to both sides shows f+ = f1, and applying (−)− shows
f− = f2. Thus we have uniqueness.

The relevant general context for this result is that of isotypic decomposition in representation
theory. Above was just the special case of the cyclic group of order two ± acting on the vector
space M(C/Γ).

Given the lemma, to prove the first part of the theorem it suffices to show that every even
f ∈ M(C/Γ) can be written as A(℘) for some unique A ∈ C(z), and every odd f ∈ M(C/Γ) can
be written as B(℘) · ℘′ for some unique B ∈ C(z). But actually it suffices to just show the first
claim, for the following reason: ℘′ is a nonzero odd function, so multiplication and division by ℘′

gives a bijection between even functions and odd functions.

So we should prove that every even meromophic function is uniquely a rational function of ℘.
For this we study the geometry of ℘, viewed as a holomorphic map C/Γ→ P1.

Lemma 0.4. The map ℘ is surjective. Moreover, for z, w ∈ C/Γ, we have ℘(z) = ℘(w) if and only
if z = ±w.

Thus, at least set-theoretically, what ℘ does is it realizes P1 as being obtained from C/Γ by
gluing two points together if they differ by ±. You should try to picture this topologically.

Proof. Since ℘ has exactly one pole of multiplicity two, the degree of ℘ is two. So each fiber of ℘
has either one or two points, and in the first case the point has multiplicity two, and in the second
case both points have multiplicity one. In particular each fiber is nonempty, so ℘ is surjective.

Now, certainly if z = ±w then ℘(z) = ℘(w), since ℘ is even. For the converse, suppose
℘(z) = ℘(w). Consider the set {z,−z, w}. This has three elements, and they all map to the same
point under the degree two map ℘. Thus we either have z = w, −z = w, or z = −z. In the first
two cases we’re done. So suppose z = −z.

Then, consider a small ε ∈ C, and let z0 = z+ ε. Then −z0 = z− ε, so z0 and −z0 are distinct
points arbitrarily close to z which both map to the same point under ℘. It follows that ℘ is not a
local isomorphism near z, so that the multiplicity of ℘ at z is bigger than one. Hence it must be
two, and the fiber above ℘(z) only has one element, so w = z, as desired.
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As a byproduct of the proof, we’ve understood the multiplicity of ℘ at every point z ∈ C/Γ:
if z 6= −z, the multiplicity is one, and if z = −z, the multiplicity is two. Moreover, the points
of multiplicity two must map to distinct points in P1, since otherwise the degree of ℘ above the
coincidence point would be too large.

Note that there are exactly four points on C/Γ satisfying z = −z: indeed, z = −z means that
z is represented by a complex number with 2z ∈ Γ. Thus we need only look for the points of Γ/2
in the fundamental domain. In terms of the basis vectors, these are 0, v12 ,

v2
2 , and v1+v2

2 . This is the
so-called 2-torsion of C/Γ.

We know 0 maps to ∞ ∈ P1. Thus the other three points must map to three distinct complex
numbers. We take this three-element set to be our S ⊂ C. Explicitly,

S = {℘(
v1

2
), ℘(

v2

2
), ℘(

v1 + v2

2
)},

though the set itself is independent of the chosen basis v1, v2 for Γ.

One says that ℘ realizes C/Γ as a degree-two branched cover of P1, branched at the four points
in S ∪ {∞}. Actually, there’s only one such branched cover, up to isomorphism (we may see this
argument later), so we could say that it realizes C/Γ as the degree-two branched cover of P1,
branched at the four points in S ∪ {∞}.

Now, let’s prove that every even function f ∈M(C/Γ) can be written as A(℘) for some unique
A ∈ C(z). In other words, thinking about meromorphic functions as maps to P1, we need to show
that every even map f : C/Γ→ P1 is of the form f = A ◦ ℘ for some unique A : P1 → P1.

However, by the previous lemma, f being even is exactly the same as f being constant on the
fibers of ℘. Thus the claim will follow from the following general lemma:

Lemma 0.5. Let p : X → Y be a surjective map of connected Riemann surfaces. Then for every
Riemann surface Z, composition with p gives a bijection between holomorphic maps Y → Z and
holomorphic maps X → Z which are constant on each fiber of p.

We already saw this in the special case when Y is the quotient of X by some free action; the
general case is slightly more complicated because p could have points of multiplicity > 1. But it’s
still not so bad:

Proof. Certainly if g : Y → Z is holomorphic, then g ◦ p is holomorphic and constant on each fiber
of p. Let us go the other way. Suppose f : X → Z is holomorphic and constant on each fiber
of p. Define a function g : Y → Z by g(y) = f(x), where x is any point in the fiber p−1(y).
This is well-defined, since f is constant on fibers and p is surjective. Furthermore it’s clear that g
is the unique set-theoretic function which satisfies g ◦ p = f . Thus we need only show that g is
holomorphic.

Thus, let y ∈ Y , and choose an x ∈ X with p(x) = y. By the local structure theorem, we can
represent p in local charts around x and y by some nth power map. Thus the claim is that if ϕ is a
function from a neighborhood of 0 to C such that ψ(z) = ϕ(zn) is holomorphic in a neighborhood
of 0, then so is ϕ. Certainly ϕ is holomorphic at every point except possibly 0, since z 7→ zn is a
local isomorphism away from 0. But also ϕ(z) is bounded at 0, since ψ is. So we can conclude
holomorphicity at 0 as well, by the removable singularities theorem.

Thus we’ve proven that every even function is uniquely a rational function of ℘, and hence we’ve
proved the first part of the theorem, describing the additive structure of M(C/Γ). For the second
part of the theorem, giving the multiplicative structure, we will need to make the above proof more
effective in the case of f = (℘′)2.
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Indeed, (℘′)2 is certainly an even function, being the square of an odd function. So we just have
to see that the explicit rational function of ℘ which (℘′)2 is equal to, is given by that funky product.

This can be accomplished by figuring out the zeros and poles of ℘′. These follow from our
knowledge of the multiplicities of ℘, by considering power series expansions in (z − z0) for a given
z0 ∈ C. The result is that the zeros and poles of ℘′ are confined to the four points where ℘ has
multiplicity > 1, i.e. the points z0 ∈ C/Γ where z0 = −z0. More specifically, ℘′ has a unique pole
at 0 ∈ C/Γ of multiplicity 3, has a zero of order one at the three other points z0 ∈ C/Γ satisfying
z0 6= −z0, and has no zeros or poles elsewhere. Thus (℘′)2 has a pole of order 6 at 0 and a zero
of order 2 at those three points z0, and no other zeros or poles. Now, we can easily find a rational
function A such that A ◦ ℘ has these same zeros and poles, namely by taking

A(z) =
∏
e∈S

(z − e).

This A ∈M(P1) has a pole of order 3 at∞, and a zero of order 1 at each e ∈ S. Since multiplicities
multiply under holomorphic maps (because (zn)m = znm), it follows that A◦℘ has the same zeroes
and poles as (℘′)2. Thus there is a nonzero constant λ such that

(℘′)2 = λ ·
∏
e∈S

(℘− e).

To calculate λ, we can just consider Laurent expansions at 0. The lowest-order term on the left-hand
side is (−2

z3
)2 = 4

z6
, whereas the lowest order term on the right is λ · ( 1

z2
)3 = λ

z6
. Thus λ = 4, which

gives the desired equation.

The last claim was that
∑

e∈S e = 0. This can be seen by expanding out the product, so writing

(℘′)2 = 4 · ℘3 + a℘2 + b℘+ c.

One finds, using the Laurent series expansions of ℘ and ℘′, that a = 0, which translates exactly to
the desired

∑
e∈S e = 0. Going a bit further, one also sees that

b = −60 ·
∑

γ∈Γ\{0}

1

γ4

and

c = −140 ·
∑

γ∈Γ\{0}

1

γ6
.

Thus our equation can be rewritten

(℘′)2 = 4℘3 − g2℘− g3,

where, as is traditional, g2 and g3 denote −b and −c respectively. Thus g2 and g3 are explicit
constants determined by the lattice Γ via the above formula.

Now, there was one last theorem we said we would prove today:

Theorem 0.6. The map z 7→ (℘(z), ℘′(z)) gives an isomorphism

(C/Γ) \ {0} ↔ {y2 = f(x)} ⊂ C2,

where f(x) = 4 ·
∏
e∈S(x− e) = 4x3 − g2x− g3.
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Here on the right we mean the Riemann surface associated to the polynomial P (x, y) = y2−f(x).
Note that this equation is smooth, because the y-derivative of P is 2y, so is zero only when y = 0;
but on the other hand the x-derivative is p′(x), so is zero only when p′(x) = 0. But p has distinct
roots, so p and p′ are never simultaneously zero. Thus at every point (x, y) with P (x, y) = 0, one
or the other of the partial derivatives of P is nonzero. That’s why we can call the set {y2 = f(x)}
a Riemann surface: we proved in such a situation that there is a unique Riemann surface structure
on this set for which both the x-projection and the y-projection give holomorphic maps to C.

Now we prove the theorem.

Proof. Since we’ve removed the unique pole of both ℘ and ℘′, the map f defined by z 7→
(℘(z), ℘′(z)) lands inside C2. Because of the identity

(℘′)2 = 4 ·
∏
e∈S

(℘− e),

it actually lands inside {y2 = f(x)}. Furthermore, this resulting map f : (C/Γ)\{0} → {y2 = f(x)}
is holomorphic, since its projection to the x-axis is the holomorphic map ℘, and its projection to the
y-axis is the holomorphic map ℘′, and at every point on {y2 = f(x)} either the x-projection or the
y-projection is a local isomorphism.

Next, we argue that f is proper. This is because f is obtained by restricting the continuous map
(℘, ℘′) : C/Γ→ P1×P1 to the subset C×C of the target. But on the other hand C/Γ is compact
and P1 × P1 is Hausdorff, so any such map is proper.

So f is proper. On the other hand, ℘ : C/Γ \ {0} → C has degree two, and it factors as
the composition of f with projection onto the x-axis, which also has degree two (since there are
generically two choices for the square root giving y in terms of x). Thus, by multiplicity of degrees
under composition, f must have degree 1. Thus it is an isomorphism.

The one-sentence version of the above proof is that (C/Γ) \ {0} and {y2 = f(x)} are branched
over C in the same way (via, respectively, ℘ and projection to the x-axis), so they must be isomorphic.

Now we’re done, but let’s step back for second and inspect the terrain. Consider the following
three sets:

1. Unif : The set of all full lattices Γ ⊂ C.

2. Branch: The set of all 3-element subsets S ⊂ C satisfying
∑

e∈S e = 0.

3. Eqn: The set of all pairs (g2, g3) of complex numbers satisfying g3
2 − 27 · g2

3 6= 0.

Then we have seen how to map Unif → Branch→ Eqn. Namely, Unif → Branch sends Γ
to the image under ℘ of the non-zero 2-torsion of C/Γ. And Branch→ Eqn sends S to

(g2, g3) = (−4 ·
∑

{e,e′}⊂S,e6=e′
e · e′, 4 ·

∏
e∈S

e)

(so that 4x3 − g2x − g3 = 4 ·
∏
e∈S(x − e).) The reason the equation g3

2 − 27 · g2
3 6= 0 holds is

because of the discriminant identity∏
e 6=e′∈S

(e− e′) = −16 · (g3
2 − 27g2

3).
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We also saw another description of the composite Latt→ Eqn, namely

(g2, g3) = (60 ·
∑

γ∈Γ\{0}

γ−4, 140 ·
∑

γ∈Γ\{0}

γ−6).

Of course, these formulas look totally wild. But the three sets Latt, Branch, and Eqn nonethe-
less just reflect three different ways of looking at the same class of Riemann surfaces, and the for-
mulas fell out from this. Namely, in Latt we think of X as C/Γ, in Branch we think of X as the
degree-two branched cover of P1 branched at S ∪ {∞}, and in Eqn we think of X as the one-point
compactification of the Riemann surface of the equation {y2 = 4x3 − g2x− g3}.

In fact, using this geometric perspective, we will see in the following lectures that all of the
above maps are bijections, so that the three sets Latt, Branch, and Eqn can be identified. This
will be done by introducing the fourth geometric set which will be in bijection with all of the above
sets:

4. The set of triples (X,x, ω) consisting of a compact connected Riemann surface X, a point x ∈
X, and a non-vanishing holomorphic one-form ω, these triples being taken up to isomorphism.

Such a triple (X,x, ω) is known as an elliptic curve with non-vanishing holomoprhic one-form,
the underlying pair (X,x) is known just as an elliptic curve, and the underlying Riemann surface X
is known as a curve of genus 1. The curves of genus 1 can also be characterized topologically: they
are the Riemann surfaces isomorphic to a torus.

The crucial thing is that we will see how to uniformize such an X by C. This is what will let us
invert the maps described above, hence showing they’re bijections. The argument we use will also
be a simple prototype for the general uniformization theorem.

But what if we’re interested, not in triples as above, but just the underlying Riemann surfaces
X, taken up to isomorphism? Fortunately, it’s pretty easy to describe what happens when you forget
the structure. For example, suppose one wants to forget about the one-form ω, and just understand
when two elliptic curves (X,x) are isomorphic. The uniformization picture is the most useful for
this: we represent X as C/Γ, with x corresponding to 0. Then the set of isomorphisms between X
and X ′ = C/Γ′ sending 0 to 0 is in bijection with the set of automorphisms of C which fix 0 and
send Γ to Γ′. These are just the non-zero complex numbers λ ∈ C∗ such that λΓ = Γ′.

So isomorphisms of elliptic curves (C/Γ, 0) correspond exactly to scalings of the lattice Γ, i.e.
Γ 7→ λ · Γ. One can then push this description through to Branch and Eqn: for example, given
S, S′ ∈ Branch, isomorphisms between the corresponding elliptic curves correspond exactly to
λ ∈ C∗ such that λ2 · S = S′; and given (g2, g3), (g′2, g

′
3) ∈ Eqn, isomorphisms between the

corresponding elliptic curves correspond exactly to λ ∈ C∗ such that λ4 · g2 = g′2 and λ6 · g3 = g′3.
(Note the exponents on λ: these are numbers known as weights. For example, g3 is what’s

known as a modular form of weight 6.)
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