
Lecture 13: Fundamental groups and universal covers

September 22, 2015

Well, we clearly ran out of time in this course, and we won’t be proving either the geometrization
theorem or the algebrization theorem. But we can still see how these theorems work in the special case
of elliptic curves, the Riemann surfaces we studied in the past two lectures. The arguments we give in
this case are explicit prototypes for the general arguments.

One of the keys to geometrization is the general topological notion of a universal cover, so we start
by reviewing this. We’ll stick to the context of Riemann surfaces, but the ideas are valid much more
generally. This theory discussed here was invented by Poincare, who was also the first to notice the
geometrization theorem. Probably not a coincidence.

Definition 0.1. Let X be a Riemann surface, and x, y two points on X. A path from x to y is a
piecewise continuously differentiable map

γ : [0, 1]→ X

such that γ(0) = x and γ(1) = y. If γ and γ′ are two such paths from x to y, then a homotopy between
γ and γ′ is a “path of paths” connecting γ to γ′, i.e. a piecewise continuously differentiable map

h : [0, 1]× [0, 1]→ X

such that for all s ∈ [0, 1] the map hs(t) = h(s, t) is a path from x to y, with h0 = γ and h1 = γ′.
If there exists a homotopy from γ to γ′, then we say that γ and γ′ are homotopic, and write γ ∼ γ′.

This defines an equivalence relation on paths from x to y; we denote the set of equivalence classes by

πX(x, y).

Thus, πX(x, y) is the set of homotopy classes of paths on X from x to y.

The magic of this definition is the following. If, say, X is connected, then there is an unfathomably
large number of paths from x to y. But on the other hand, there is also an unfathomable number
of homotopies possibly connecting these paths. However, these unfathomable infinities cancel each
other out, and the resulting set πX(x, y) ends up being fathomable, even if infinite. This is a general
phenomenon in homotopy theory.

Here are some simple examples:

1. Let X be the unit disk D or the complex plane C, or, more generally, any convex open subset of C.
Then for any x, y ∈ X, the set πX(x, y) has exactly one element, represented by the straight-line
path from x to y.

Indeed, given any two paths γ, γ′ from x to y, we can make a homotopy between them by defining
h(s, t) = s · γ′(t) + (1− s) · γ(t). This linearly interpolates between γ and γ′; it lies in X because
X is convex.

1



2. Let X = P1. Also in this case, for any x, y ∈ X we have that πX(x, y) has exactly one element.
Indeed, every path from x to y must miss at least one point of P1; but P1 with a point removed
identifies with C, and we know there from the previous example that any two paths are homotopic.

3. Let X = C \ {0}. At last, something interesting: for any two points x, y ∈ X, the set πX(x, y)
can be identified with the set of integers Z. Namely, to an integer n ∈ Z corresponds any path
which wraps n times around the origin counterclockwise (say) while going from x to y. It’s less
trivial to verify this example, but we will have the tools for it by the end of the next lecture.

If πX(x, y) has exactly one element for any two points x, y ∈ X, then we say that X is simply
connected. (Note that simply connected implies connected.) Thus, D,C, and P1 are simply connected,
but C \ {0} is not.

Intuitively, X being simply connected means that there are no “holes” in X. If you have a hole, you
can make paths around it in different (non-homotopic) ways.

Now we turn to the main business of this lecture. If X is an arbitrary Riemann surface and x is
a point on X, then there is a canonical way to “grow” this point x into a simply-connected Riemann
surface X̃, which maps by a “covering map” to X. Furthermore, if X is connected, then we can recover
X from X̃ in the following way: the set Γ = πX(x, x) has a natural group structure, this group naturally
acts on X̃ properly and freely, and the quotient Riemann surface X̃/Γ canonically identifies with X via
the covering map. Thus, the study of connected Riemann surfaces reduces to that of simply connected
Riemann surfaces, and the actions of groups on the latter. Moreover, the relevant group is recovered
“topologically” from the original Riemann surface.

The picture you can have is that X̃ serves to unravel the loops around the holes of X. For ex-
ample, if you take X = C \ {0} and x = 1 ∈ X, then it turns out that X̃ can be identified with
C, mapping to C \ {0} via the exponential map. If you consider the pre-image of a loop going once
around 0 in C \ {0}, you will see an infinite spiral staircase mapping down to the loop. This is the
“unraveling” of that non-trivial loop. Note that we’ve already seen that the exponential map identi-
fies C\{0} with the quotient of C by translation by 2πi·Z; this matches with the fact that πX(1, 1) = Z.

Before defining X̃, we need to introduce some important structure which exists on the collection of
sets πX(x, y) as x and y vary in X. This is the collection of composition laws: for any three points
x, y, z ∈ X, there is a natural map

πX(x, y)× πX(y, z)→ πX(x, z)

denoted by (f, g) 7→ f · g and defined as follows: if f, g are respectively represented by paths γ, γ′ :
[0, 1]→ X, then since γ(1) = γ′(0) we can stick γ and γ′ side-by-side to get a piecewise smooth map
[0, 2] → X; then we can reparametrize the interval [0, 2] to identify it with [0, 1]. The homotopy class
of the resulting path from x to z is, by definition, f · g.

This is independent of the choice of paths γ, γ′ representing f, g, as well as of the choice of
reparametrization. (Exercise: the homotopy class of a path is not changed by reparametrizing the
unit interval.) Intuitively, the composition of two paths is obtained by first going around the first path,
then going around the second path. This is what gives us the maps

πX(x, y)× πX(y, z)→ πX(x, z).
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These maps satisfy some axioms, which express that the set of points of X, together with the maps
πX(−,−) and these composition laws, form what’s called a groupoid :

1. The composition law is associative: (f · g) · h = f · (g · h);

2. For every x ∈ X, there is an identity element idx ∈ πX(x, x), such that composing on either side
with idx doesn’t change anything. (idx is represented by the constant path with value x.)

3. For every element f ∈ πX(x, y), there is an element f−1 ∈ πX(y, x) such that f−1 · f = idx,
f · f−1 = idy. (This f−1 can be gotten by flipping the interval [0, 1] on any path representing f ,
i.e. do the same path, but backwards.)

Exercise: write down the homotopies which prove that these axioms are satisfied.
This structure πX is known as the fundamental groupoid of X. Note that if we fix a point x ∈ X,

then it follows from the above that the set Γx := πX(x, x) has a natural group structure. Exercise: if x
and y are in the same path component of X, then the groups Γx and Γy are isomorphic. An isomorphism
can be gotten by choosing a path from x to y. If you choose a different path, the isomorphism changes
by a inner automorphism of Γx (or Γy).

Now we can define the universal cover, X̃, associated to a Riemann surface X with basepoint x. As
you read about this unversal cover and its basic properties, you should recall something similar we’ve
seen before, namely the Riemann surface of an analytic function. This is basically that, but without the
function.

Definition 0.2. Let X be a Riemann surface, and x ∈ X a point. Let X̃ denote the set consisting of
all homotopy classes of paths f : [0, 1]→ X such that f(0) = x, where the homotopies are required to
fix the endpoints (as in Definition 0.1). Sending f to f(1) defines a map

p : X̃ → X.

Thus, for y ∈ X, the fiber p−1(y) identifies with the set πX(x, y). The niceness of p : X̃ → X
stems from the fact that its fibers over nearby points can be canonically identified. More precisely:

Lemma 0.3. Let U be a simply connected open subset of X (e.g., U could be isomorphic to a disk).
Define an equivalence relation on p−1(U) as follows: say that f1, f2 ∈ p−1(U) are horizontally situated
if f2 · f−11 ∈ πX(y1, y2) can be represented by a path in U . Denote the set of equivalence classes by
SU . Then the map

p−1(U)→ SU × U
which is the natural quotient on the first factor and the projection p on the second factor, is a bijection.

Thus, via this bijection, the map p : p−1(U) → U looks exactly like the projection SU × U → U .
In other words, above U , there are SU -many “sheets” of p−1(U). Each “sheet” maps down to U
bijectively, and consists of points which are horizontally situated with respect to each other.

Proof. That being horizontally situated is an equivalence relation follows from the facts that the identity
path from a point in U to itself lies in U , that if a path lies in U then so does its reverse, and that
a composition of paths in U lies in U . To see that the map is a bijection, we need to check that for
every y ∈ U and every f1 ∈ p−1(U), there is a unique f2 ∈ p−1(y) such that f1 and f2 are horizontally
situated. And indeed, f2 is uniquely determined as f1 · g, where g ∈ πX(y1, y) is represented by a path
in U . Such a g exists and is unique since U is simply connected.
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Note that if we shrink U to a smaller simply connected open subset V , then we get two different
bijections identifying p−1(V ): namely the one for U restricted over V :

p−1(V ) ' SU × V,

and the one for V :
p−1(V ) ' SV × V.

However, it is easy to see that the natural map SV → SU is a bijection which renders these compatible.
It follows that we can use these bijections to equip X̃ with the structure of a Riemann surface.

Namely, each SU × U is a Riemann surface in the obvious way (disjoint union of SU copies of U),
and we define charts on on X̃ by requiring each of the bijections of the lemma be an isomorphism of
Riemann surfaces. By the above discussion, if you vary U these bijections can only change by bijections
S × U ' S′ × U coming from bijections of sets S ' S′; such bijections S × U ' S′ × U are certainly
holomorphic, so the resulting charts on X̃ are indeed compatible.

Proposition 0.4. With these charts, X̃ becomes a simply connected Riemann surface. There is a
canonical proper free action of Γ = πX(x, x) on X̃, and the quotient X̃/Γ is canonically isomorphic to
the connected component of X containing x.

Proof. We won’t need the simple connectedness, so we leave that as an exercise. The action of Γ is
defined as follows: for γ ∈ Γ, set

γ(f) = γ · f.

In terms of the defining charts SU ×U , it’s easy to see from the groupoid axioms that Γ acts by simply
transitively permuting the sets SU , leaving the U factor alone. This gives the conclusion locally, hence
globally.

Corollary 0.5. The geometrization theorem is equivalent to the following claim: every simply connected
Riemann surface M is isomorphic to either D, C, or P1. Moreover, given a connected Riemann surface
X, the group Γ acting on the model space M for which M/Γ ' X can be abstractly identified with the
fundamental group πX(x, x) at any chosen point x ∈ X.

This classification of simply connected Riemann surfaces is called the Riemann mapping theorem.
Again, we won’t have time to prove it. What we’ll do instead is answer the following question: what
structure on a connected X with basepoint x will allow us to recognize that X̃ identifies with C, and
hence that X is uniformized by C? The answer will be introduced in the next lecture.

There is something worth noting in this discussion: while the group Γ is recovered purely from the
topology of X (it is the fundamental group), the manner of Γ’s acting on the model M depends not
just on the topology of X, but truly on its Riemann surface structure. We’ll see this explicitly for elliptic
curves.
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