
Lecture 14: Homolomorphic one-forms and vector fields

June 24, 2015

Let X be a connected Riemann surface with basepoint x. In the previous lecture, we introduced the
universal cover of X: this is a Riemann surface X̃ mapping down to X, such that X identifies with the
quotient of X̃ by a certain action of the fundamental group πX(x, x). In this lecture we will address
the question of what structure on X would be needed to identify X̃ with the complex numbers C, and
hence to uniformize X by C. The answer will be a nowhere-vanishing holomorphic one-form, satisfying
a certain technical condition which is irrelevant when X is compact (our case of interest).

In the end, we will get the following theorem:

Theorem 0.1. Let X be a compact connected Riemann surface, and suppose that there exists a nowhere
vanishing holomorphic one-form on X. Then:

1. X is isomorphic to C/Γ for some full lattice Γ ⊂ C;

2. The fundamental group πX(x, x) at any basepoint x ∈ X is isomorphic to Z⊕ Z.

First we have to say what a holomoprhic one-form is. Essentially, it is something which holomorphi-
cally measures first-order change on a Riemann surface. For example, a holomorphic function f defines
a holomorphic one-form df , its differential, which measures the first-order change as seen by f . But
globally, there can be more one-forms than these, essentially because to glue df to dg we don’t need to
have f = g exactly: they can differ by an overall constant.

From another perspective, these df ’s are things which make rigorous Leibniz’s notation

df

dz
= f ′(z).

Thus, the derivative f ′ is the quotient of the first-order change of f by the first order change of z.
Using one forms we can also make more sense of the integral notation∫

γ
f(z)dz,

since now the expression f(z)dz itself has invariant meaning — it is a one-form.
But we’re getting ahead of ourselves. First, recall the notion of tangent space: to every Riemann

surface X and point p ∈ X, we can attach a one-dimensional complex vector space

Tp(X)

of “tangent vectors to X at p”. We never gave a precise definition of this space, but here are two
possibilities:
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Definition 0.2. The space Tp(X) is defined as either:

1. The set of equivalence classes of smooth paths γ : (−ε, ε)→ X such that γ(0) = p, modulo the
equivalence relation which identifies two paths which agree to first order at 0. (More precisely,
this means that the derivatives of the paths, calculated in a chart for X around x, should agree
at 0).

2. The set of associations f 7→ ∂(f) ∈ C, where f is a holomorphic function defined in a neighbor-
hood of p normalized so that f(p) = 0, satisfying the following conditions:

• ∂(f + g) = ∂(f) + ∂(g) and ∂(c · f) = c · ∂(f) for c ∈ C, i.e. ∂ is a linear map;

• ∂(f) = 0 if f vanishes to order ≥ 2 at p.

The intuitive content of the first definition is hopefully clear: a tangent vector is the first-order
information of a path. As for the second definition, it thinks of a tangent vector as a direction along
which one can differentiate functions; thus the tangent vector is encoded as the differentiation operator
∂, whose properties are axiomatized.

To see that the definitions agree and give a one-dimensional complex vector space, one notes that
both are invariant under isomorphisms and under shrinking X to a neighborhood of p, so it suffices to
do just the calculation of Tp(C). There one sees that every element of Tp(C) is of the form

λ · ∂
∂z

for some unique λ ∈ C. Here ∂
∂z is notation for the standard unit vector 1 based at p in C. Thus,

λ · ∂∂z ∈ Tp(C) is the vector from p to p+ λ. More explicitly, in the first definition, λ · ∂∂z is represented

by the path γ(t) = p + λ · t, and in the second definition, λ · ∂∂z is represented by the differentiation
operator

∂(f) = λ · f ′(p).

(To connect the two representations, note that we can also write ∂(f) = d
dt(f ◦ γ) |t=0.)

Thus, if we choose a local isomorphism of (X, p) with (C, 0), then a tangent vector is just represented
by a complex number, thought of as a vector in C. If you change the local isomorphism by a local
biholomorphism ϕ of (C, 0), then the complex number changes according to the rule λ 7→ λ · ϕ′(0).

From either of the above definitions it should be clear that a holomorphic map f : X → Y gives a
linear map

dfx : Tx(X)→ Ty(Y )

for any x ∈ X with image y = f(x) in Y . In local coordinates, this becomes a linear map from C→ C,
i.e.a one-by-one matrix; the entry of this matrix is just the usual derivative of f at x. Also, the chain
rule d(f ◦ g) = df ◦ dg holds.

Now on to business.

Definition 0.3. Let X be a Riemann surface. A vector field on X is an assignment of, to every point
x ∈ X, an element vx ∈ Tx(X). A one form on X is an assignment of, to every point x ∈ X, a C-linear
map ωx : Tx(X)→ C.

A vector field is called holomorphic if, in local charts, it can be written as vz = f(z) · ∂∂z , where f

is a holomorphic function. A one form is called holomorphic if, in local charts, ωx( ∂∂z ) is a holomorphic
function of x.
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The set of holomorphic vector fields on X is denoted T (X); the set of holomorphic one forms is
denoted Ω(X).

Thus, a vector field attaches a first-order change to every point of X; and a one-form assigns numbers
to every possible first-order change at every possible point of X. It may seem from this description
that specifying a one-form involves specifying more information than a vector field, but this is not so:
because Tx(X) is one-dimensional as a complex vector space, to specify ωx one needs only specify the
value of ωx at any nonzero vector of Tx(X). It follows that, locally, both vector fields and one forms
amount to just functions f . Namely, on an open subset U of C, every vector field is of the form

vx = f(x) · ∂
∂z

for a unique function f , and every holomorphic one-form is of the form

ωx(c · ∂
∂z

) = c · f(x)

for a unique function f . Furthermore, the vector field (resp. the one-form) is holomorphic if and only
if the function f is. Note, however, that since the standard unit vector field ∂

∂z is not fixed by most
coordinate changes, this identification of vector fields and one-forms with functions does not generally
hold globally.

We will focus more on one-forms than vector fields, because they are easier to manipulate alge-
braically when it comes to elliptic curves. But we gave the definition of vector field to illustrate the
duality between the two concepts, and since a vector field is more geometrically accessible (it’s just a
bunch of vectors combing your space). A manifestation of this duality is the difference in functoriality:
for a holomorphic map f : X → Y , we get natural maps

f∗ : T (X)→ T (Y )

and
f∗ : Ω(Y )→ Ω(X)

in different directions.
The most basic examples of holomorphic one forms are df , where f is a holomorphic function. This

is defined as follows: since f : X → C is holomorphic, there is an induced map

dfx : Tx(X)→ Tf(x)C = C

for all x ∈ X, thus a one-form. It is holomorphic, since in local charts we have dfx( ∂∂z ) = f ′(x), and f ′

is holomorphic when f is.
The very simplest case of this occurs when X = C and f is the identity map. This map is sometimes

also just denoted “z”, so the one-form in this case is denoted dz. It is uniquely characterized by the
fact that, at every point,

dz(
∂

∂z
) = 1.

In particular, dz is an example of a nowhere vanishing one-form: at every point, the linear map dz is
not the zero map.

Starting from this dz we can produce other examples. Exercise: if f : X → C is holomorphic, then
the pullback f∗dz equals df . Exercise: the zeroes of df are exactly the points where f has multiplicity
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≥ 2. Exercise: dz doesn’t change under pullback by translations of C; thus it descends to a well-defined
holomorphic one-form on C/Γ for any group Γ acting properly freely on C, meaning there is a unique
ω ∈ Ω(C/Γ) such that p∗ω = dz, where p : C → C/Γ is the natural projection. So non-vanishing
holomoprhic one-forms exist on any Riemann surface uniformized by C; we’re aiming for the converse.

Finally, one last exercise: both holomorphic vector fields and holomorphic one-forms can be multiplied
by arbitrary holomorphic functions. E.g., if ω ∈ Ω(X) and f is holomorphic, define

(f · ω)x(ξ) = f(x) · ω(ξ).

Furthermore, the product rule d(f · g) = f · dg + g · df holds.
Now, note that, by definition, holomorphic one-forms are local objects: to specify ω ∈ Ω(X), it

suffices to specify ω on some open cover of X, provided there is agreement on overlaps. Thus, to
understand the possibilities for arbitrary holomorphic one-forms, it suffices to understand holomorphic
one forms on the open unit disk D. As remarked after the definition of one-form, these can all be put
in the form f(z) · dz for a unique holomorphic function f . In the following lemma we give another,
different description of all holomorphic one-forms on D:

Lemma 0.4. Every holomorphic one form ω on D can be written as

ω = dg

for some holomorphic function g, which is unique up to adding constants.

Proof. Write ω = f(z) · dz. Then ω = dg if and only if g′(z) = f(z), as follows straight from the
definitions. Thus we need to show that every holomorphic function on D has an antiderivative, unique
up to constants. This is standard complex function theory; it can be done either by integration or by
finding the correct power series expansion for the antiderivative.

Now we can turn to the main point. By definition, one-forms assign numbers to tangent vectors,
which are first-order germs of paths. We want to show that they actually assign numbers to paths, by
integrating the assignments at all the tangent vectors along the path. Instead of explicitly defining the
integral, however, we will cheat by using the previous lemma in the construction.

Proposition 0.5. Let X be a Riemann surface and ω a holomorphic one-form on X. There is a unique
way to assign a number

∫
γ ω ∈ C to every path γ : [0, 1] → X, in such a way that the following

properties are satisfied:

1. If ω = df in an open neighborhood of the path, then
∫
γ ω = f(γ(1))−f(γ(0)) (first-order change

of f integrates to global change of f).

2. The value
∫
γ ω only depends on the homotopy class [γ] of γ, so it can be written

∫
[γ] ω.

3. The integral is additive under composition of paths:∫
[γ1]·[γ2]

ω =

∫
[γ1]

ω +

∫
[γ2]

ω.

4



Proof. First we prove the proposition when X is isomorphic to the unit disk D. There, by the lemma,
we can write ω = df , where f is unique up to adding a constant. Then we define∫

γ
ω = f(γ(1))− f(γ(0)).

This is independent of f , because the constants will cancel. The verification of the three properties is
obvious, as is the uniqueness.

It follows that, returning to case of general X, we get a well-defined integral
∫
γ ω whenever γ lies

entirely in some open subset isomorphic to a disk. It doesn’t matter which open subset we choose,
because the two potentially different f ’s as above will have to differ by an overall constant all along the
path, by analytic continuation.

Now we treat a general path γ : [0, 1] → X. We can break γ up into finitely many pieces, each of
which lives in some open subset of X isomorphic to a disk. Then we can define

∫
γ ω by additivity: it is

the sum of the integrals over the various pieces. Since any two ways of breaking up an interval admit a
common refinement, and the additivity property 3 is valid locally, this definition is independent of the
way we break up the interval. Thus it is well-defined.

To prove the first property, note that if ω = df , then we can use this same f locally all along the
path in the above definition, which gives the result by a telescoping sum.

To prove the second property, note that, just as an path can be broken up into pieces each of which
lives in a disk, so can a homotopy. But in a disk we know the homotopy invariance, so we deduce it in
general.

The third property follows immediately from the definition: if we have a way of breaking up two
paths, we have a way of breaking up their composite which makes the claim obvious.

Exercise: let f be a nonzero meromorphic function on a Riemann surface X, and x ∈ X. Then
f is nonzero and holomorphic in a small punctured neighborhood of x, so that df/f is a well-defined
holomorphic one-form in a small punctured neighborhood of x, and∫

γ

df

f
= 2πi · vx(f),

where γ is a small loop running once counterclockwise around x, and vx(f) is the valuation of f at x.

Corollary 0.6. Let X be a Riemann surface and ω ∈ Ω(X). Let x be a point of X, with corresponding
universal cover p : X̃ → X and its basepoint x̃, given by the identity path at x. There is a unique
holomorphic function f : X̃ → C such that f(x̃) = 0 and p∗ω = df .

This function f is defined by

f(γ) =

∫
γ
ω.

Proof. Exericse.

This corollary is very useful, since it shows how to produce explicit functions on the universal cover,
which itself was defined rather abstractly. For example, if X = C \ {0}, x = 1, and ω = dz

z , then we

get a well-defined holomorphic function f : X̃ → C, which truly deserves to be called log. In fact, X̃ is
the Riemann surface associated to any choice of logarithm function defined locally on X, in the sense
we discussed at the beginning of this course. It is where log naturally lives. The fact that the fibers of
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p : X̃ → X are labelled by the integers corresonds to the fact that log is only well-defined up to adding
elements of 2πi · Z.

So we have found a way to map out of the universal cover. But if we want to identify the universal
cover, we also need to find a way to map in to it, which means we need to produce paths instead of
function on paths. This is the dual problem, so we should look at the dual to the notion of one form,
which is vector field.

This turns out to be a very natural idea. If v is a smooth vector field on a Riemann surface X, then
a solution to v is a path

γ : (a, b)→ X

for some open interval (a, b) ⊂ R, such that γ′(t) = v(γ(t)) for all t ∈ (a, b). Thus, a solution is a path
which “follows the vectors” in the vector field.

It should be intuitively clear that there exists a solution passing through any point. Namely, just
start out at that point, then drive your car on the surface by taking your velocity at a given point to be
the vector sticking out at that point. The mathematical justification for this comes from the theory of
ordinary differential equations, which gives:

Theorem 0.7. Let X be a Riemann surface, v a smooth vector field on X, and x ∈ X a point. Then
there is an interval (a, b) containing 0 and a solution

γ : (a, b)→ X

to v such that γ(0) = x. This solution is unique in the sense that any two such agree on their common
domain of definition.

If we take the union over all possible (a, b) as in the statement, we get a maximal interval of definition
for the solution γ with γ(0) = x. When this maximal interval of definition equals all of R, we say the
solution exists for all time. Not every solution exists for all time: if the vectors grow large enough, they
can shuffle a solution out to ∞ in finite time. But this problem doesn’t exist when X is compact, and
so:

Theorem 0.8. Let X be a compact Riemann surface, v a smooth vector field on X, and x ∈ X. Then
there is a unique smooth map

γ : R→ X

such that γ(0) = x and γ′(t) = v(γ(t)) for all t ∈ R.

When the vector field is holomorphic, such a solution can be extended to “complex time” as well,
giving a holomorphic map γ : C → X. This can be proved by following the proof in the real case,
and noting that it works just fine with C replacing R. Alternately, we can reduce the complex case
to the real one by the following trick: for λ ∈ C, consider the scaled vector field λ · v, and write its
real-time solution γλ : R → X. Then the value of our desired solution γ at complex time λ will be
γλ(1) (Exercise).

Corollary 0.9. Let X be a compact Riemann surface, v a holomorphic vector field on X, and x ∈ X
with associated universal cover p : X̃ → X. Then there is a unique holomorphic map

g : C→ X̃

such that g(0) = x̃ and (p ◦ g)∗
d
dt = v.
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Proof. If γ : C → X is the complex-time solution to v, we can define g(λ) to be the path [0, 1] → X
defined by

t 7→ γ(t · λ).

We leave the verification of the required properties as an exercise.

Let us give an example of such a map g. Take X = C \ {0}, and the vector field v ∈ T (X) defined
by

vz = z · ∂
∂z
.

Although X is not compact, this actually won’t matter, since (as we’ll soon see explicitly) all solutions
to this vector field exist for all time anyway. This is due to a very careful balance between the vector
field and the non-compactness of X: for example it would fail if we used either ∂

∂z or z2 · ∂∂z (why?).
Explicitly, a solution γ to v is a function γ : C→ C \ {0} such that

γ′(t) = γ(t).

We all know how to produce solutions to this differential equation: the unique solution with γ(0) = 1
is given by

γ(t) = exp(t).

Exercise: sketch the vector field v and convince yourself graphically that this is the solution, based on
properties of the complex exponential function.

Thus, in this case, the map g : C→ X̃ is given by

g(λ) = the path t 7→ exp(λ · t) for t ∈ [0, 1].

Note that the composition p ◦ g : C→ X \ {0} is the exponential map λ 7→ exp(λ).

Alright, we’re almost done. We have both a way to map in to X̃, and a way to map out of it.
Putting things together, we get the following:

Proposition 0.10. Let X be a compact Riemann surface and x ∈ X a point, with corresponding
universal cover (X̃, x̃). To every nowhere-vanishing holomorphic one-form ω on X there corresponds a
unique isomorphism f : X̃ ' C sending x̃ to 0 and satisfying f∗(dz) = p∗ω.

This proposition implies the theorem stated at the beginning of this lecture, for the following reason:
the proposition implies that such an X is uniformized by C. But we studied all Riemann surfaces
uniformized by C, and the only compact ones were of the form described in part 1 of that theorem. As
for part 2, it follows because in the previous lecture we saw that the uniformizing group Γ identifies with
the fundamental group of X. On the other hand, a full lattice in C is isomorphic to Z⊕Z by choosing
generators.

Now let’s prove the proposition.

Proof. By one of our results above, integrating the one-form ω gives a unique map

f : X̃ → C.
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sending x̃ to 0 and satisfying f∗dz = p∗ω. We need to see that f is an isomorphism. However, we can
use ω to produce a dual holomorphic vector field v, defined by

vx = the unique tangent vector satisfying ωx(vx) = 1.

Such a vx exists and is unique because ωx is a nonzero map from a one-dimensional vector space to the
complex numbers, hence is an isomorphism. In local coordinates, if ω = f(z) · dz, then v = 1

f(z) ·
∂
∂z ,

which proves holomorphicity.
Thus we also get a map

g : C→ X̃,

by solving the differential equation corresponding to the vector field v as described above. By construc-
tion, the composition f ◦ g : C → C sends 0 to 0 and has derivative equal to 1 everywhere. Thus
it is the identity map z 7→ z. We conclude that the map f has a section, meaning there is a map g
backwards with f ◦ g = id. Then to finish, we need only apply the following lemma.

Lemma 0.11. Let f : X → Y be a map of connected Riemann surfaces. If f has a section, then f is
an isomorphism.

Proof. Let g be a section. Then g is certainly injective, since f ◦ g = id. If we prove surjectivity, then
g, and hence f , will be an isomorphism, as desired.

Since g is injective, it is non-constant; thus from the local structure theorem for holomorphic maps
it follows that g(Y ) is an open subset of X. On the other hand, I claim g(Y ) is also closed. Indeed,
suppose g(yi) is a sequence of points in g(Y ) tending to a point x ∈ X. Applying f , we find that the
yi tend to some point y = f(x). Applying g again, we find that the g(yi) tend to g(y). But they also
tend to x. Thus, since X is Hausdorff, we must have x = g(y), so x ∈ g(Y ), proving closedness.

Hence g(Y ) is both open and closed. But X is connected and Y is nonempty, so this implies
g(Y ) = X, meaning g is surjective, as desired.

We will investigate this theorem more explicitly in the next lecture. But for now let us briefly
illustrate it in the simpler analogous case of X = C \ {0} with the non-vanishing holomorphic one-form

ω =
dz

z

and the basepoint 1 ∈ X.
Here the function f : X̃ → C is the logarithm; we are claiming it is an isomorphism. The dual

vector field is

v = z · ∂
∂z
,

which gives the above-discussed map g : C → X̃, essentially the exponential map. We indeed have
f ◦ g = id, and hence both are isomorphisms. The conclusion is that C \ {0} ' C/2πi · Z via the
exponential map, and that the fundamental group πX(1, 1) is Z.
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