
Lecture 15: Uniformization of elliptic curves, and moduli

June 24, 2015

In the last lecture we proved the following:

Theorem 0.1. Let (X,x, ω) be a triple consisting of a compact connected Riemann surface X, a point
x ∈ X, and a nowhere vanishing holomorphic one-form ω ∈ Ω(X). Then there is a unique full lattice
Γ ⊂ C and isomorphism

f : C/Γ ' X

such that f(0) = x and f∗(ω) = dz.

We also saw how to produce Γ and f explicitly. Namely, Γ consists of the so-called periods of ω:

Γ = {
∫
γ
ω ∈ C | γ ∈ πX(x, x)},

and f is given by the solution to the vector field v dual to ω (so ω(v) = 1 at every point).
In this lecture, we’ll give an explicit example of this, taking X to be an elliptic curve. The result is

the following.

Theorem 0.2. Let p(x) ∈ C[x] be a cubic polynomial with distinct roots, and consider the Riemann
surface

U = {(x, y) ∈ C2 | y2 = p(x)}.

There is a natural Riemann surface structure on the one-point compactification X = U∪{∞}. Moreover,
the holomorphic one-form dx

y , a priori defined on an open subset of X, actually uniquely extends to a
nowhere-vanishing holomorphic one form ω on X.

Thus, by the above theorem, we get a unique lattice Γ ⊂ C and isomorphism

C/Γ ' X

which sends 0 to ∞ and pulls back ω to dz. This explicitly means that solutions to the equation
y2 = p(x) can be naturally parametrized by complex numbers.

We will for simplicity of notation assume that p(x) has leading term 4 · x3. This doesn’t really
matter, but that’s the leading term that came out of the Weierstrass p-function in lecture REF, and
we’ll want to match up with that discussion at some point.

The first thing to recall is why U is a Riemann surface. In lecture REF we showed that U acquires a
Riemann surface such that the x and y projections are holomorphic functions provided that the partial
derivatives of

P (x, y) = y2 − p(x)
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don’t both vanish at any point x, y ∈ U . But ∂yP = 2y and ∂xP = p′(x), so any common point of
vanishing will have y = 0 and p′(x) = 0; if it’s on U , then we also have y2 = p(x), so this means
p′(x) = 0 = p(x). But by hypothesis p has distinct roots, so this never happens. Thus U is a Riemann
surface as indicated. Explicitly, the x-projection is a local isomorphism away from the three points (0, x)
where p(x) = 0, and the y-projection is a local isomorphism away from the four points (y, x) where
p′(x) = 0.

Now let us compactify U . To do this, we should identify an “open neighborhood of ∞” in U
which is isomorphic to a punctured neighborhood of the origin in C. Then we can glue on an actual
neighborhood of the origin in order to get X. The key is that for large x and y, the leading term 4 · x3

of p(x) dominates, so the relation y2 = p(x) behaves in the same way as y2 = 4 · x3. This in turn can
be explicitly parametrized by x = t2, y = 2 · t3, with inverse t = y

2x . A more precise analysis gives:

Lemma 0.3. Let U be the Riemann surface of y2 = p(x) as above. There exists a compact subset
K ⊂ U , an open neighborhood V of the origin in C, and a holomorphic function ϕ : V → C with
ϕ(0) = 1 such that

u 7→ (
1

u2
,

1

2 · u3
· ϕ(u))

defines an isomoprhism from V \ 0 to U \K.

Proof. We will arrive at this isomorphism in two steps. First, together with U we consider the simpler
Riemann surface U ′ of the equation y2 = 4x3. This is a Riemann surface away from (0, 0). On both U
and U ′ we have the projections to the x-axis, which are of degree two. Call them π and π′.

Choose R > 0 large enough so that both

| p(x)

4 · x3
− 1| < 1

and

|4 · x
3

p(x)
− 1| < 1

whenever |x| > R. Now, let D be the closed disk of radius R around the origin in C, and set K = π−1(D)
and K ′ = π′−1(D). Then if we use

√
z to denote the holomorphic square root function in the open

disk |z − 1| < 1 which takes 1 to 1, the functions

(x, y) 7→ (x, y ·

√
4 · x3

p(x)
)

and

(x, y) 7→ (x, y ·
√
p(x)

4 · x3
)

clearly define mutually inverse isomorphisms U \ K ' U ′ \ K ′. On the other hand, if V denotes the
open disk of radius R−1/2 around 0 in C, it’s also simple to check that

(x, y) 7→ y

2x

and
u 7→ (u−2, 2 · u−3)

define mutually inverse isomorphisms V \ {0} ' U ′ \ K ′. Composing, we obtain an isomorphism
U \K ' V \ {0} of the desired form.
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It follows that this u-parametrization gives charts on a “neighborhood of ∞” in U , so we can glue
on the whole of V along the u-parametrization to compactify U to X = U ∪ {∞}, as we wanted.

The next business is to consider the one-form

ω =
dx

y
.

As it stands, this ω is defined and holomorphic on X \{∞, p, q, r}, where p, q, r are the points of U with
y = 0. There are three of these, because p(x) is a cubic polynomial with distinct roots. Furthermore,
ω is nonzero at every point of X \ {∞, p, q, r}: indeed, on these points x is a local isomorphism, so
dx 6= 0.

What we need to see is that ω extends to a nowhere vanishing holomorphic one-form on all of X.
Note that such an extension is necessarily unique, by the removable singularities theorem.

First let’s analyze the points p, q, r. Applying d to the defining equation

y2 = p(x)

and using the product rule, we get
2 · y · dy = p′(x) · dx.

Thus, away from the locus where p′(x) = 0 we can write

ω =
2 · dy
p′(x)

.

Since p has distinct roots, this locus doesn’t meet {p, q, r}, this shows that ω extends to a holomorphic
one-form in a neighborhood of p, q, r. It is also nonzero there, because at those points y gives a local
isomorphism, so dy 6= 0.

Finally we treat ∞. By the lemma and some calculation with the Leibniz rule, we find

dx

y
= − du

ϕ(u)
.

Since u at 0 gives local charts of X at ∞, and ϕ(0) = 1, this gives the desired extension over ∞.

Thus X carries the nowhere vanishing holomorphic one-form ω = dx/y. Hence, by the theorem,
there is a unique full lattice Γ ⊂ C and isomorphism

C/Γ ' X

carrying 0 to ∞ and ω to dz.

On the other hand, in lecture REF we saw something of a converse: if Γ ⊂ C is any full lattice,
then if we take the cubic polynomial

p(x) = 4 · x3 − g2 · x− g3,

where

g2 = 60 ·
∑
z∈Γ\0

1

z4
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and

g3 = 140 ·
∑
z∈Γ\0

1

z6
,

then p(x) has distinct roots and we get an isomorphism

C/Γ ' {y2 = p(x)} ∪ {∞},

defined by taking x(z) to be the Weierstrass p-function and y(z) to be its derivative. This isomorphism
does send 0 to ∞, and because y(z) is the z-derivative of x(z), we have

dz =
dx

y
.

Thus, by the uniqueness claim of the theorem we just proved, if you start with a full lattice Γ, then
produce the polynomial p(x) as above, then uniformize the corresponding Riemann surface, you get the
same Γ back again. What about in the other direction, if you start with a polynomial, uniformize to
get a lattice, then get another polynomial back again?

Proposition 0.4. Suppose p(x) = 4x3 + bx + a is a cubic polynomial with leading coefficient 4 and
vanishing x2 coefficient, such that p(x) has distinct roots. Let Γ be the lattice gotten by uniformizing
X = U ∪ {∞} as above. Then in terms of the uniformization isomorphism

C/Γ ' X,

the function x identifies with the Weierstrass p-function for the lattice Γ, and y identifies with its
derivative. Thus a = −g3(Γ) and b = −g2(Γ).

Proof. By the relation dz = dx/y, the y-claim follows from the x-claim. And for that, by the char-
acterization of the Weierstrass p-function we need to see that the Laurent expansion of x(z) is of the
form

x(z) =
1

z2
+ terms of degree ≥ 1.

However, the z parameter is gotten by integrating the form ω away from ∞, or u = 0. Since

ω = − du

ϕ(u)
,

this means that z is given in terms of u as the unique antiderivative of −1/ϕ(u) with value 0 at u = 0,
and u is given in terms of z as

u(z) = G(z),

where G(z) = −z + . . . is the functional inverse to that antiderivative.
Remembering the definition of ϕ and tracing this through, one can calculate that since the x2 term

of p(x) vanishes, the expression

x =
1

u2
=

1

G(z)2

does have the required form, so that x is the Weierstrass p-function.

If you collect everything together, you’ll find that we’ve proved the following remarkable result:
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Theorem 0.5. Define three sets A,B and C as follows.

• A is the set of isomorphism class of triples (X,x, ω) where X is a compact connected Riemann
surface, x is a point of X, and ω is a nowhere vanishing holomorphic one-form on X.

• B is the set of full lattices Γ ⊂ C.

• C is the set of cubic polynomials of the form p(x) = 4 · x3 + bx+ a having distinct roots.

Then the following maps give mutually inverse bijections between A, B, and C:

• From A→ B: associate to (X,x, ω) the set of periods

{
∫
γ
ω ∈ C | γ ∈ πX(x, x)}.

• From B → C: associate to Γ the cubic polynomial

4 · x3 − g2(Γ) · x− g3(Γ).

• From C → A: associate to p(x) the compactification of the Riemann surface

{y2 = p(x)},

with basepoint ∞ and one-form dx/y.

These sets A,B,C are thus three ways of talking about the moduli space of elliptic curves with
non-vanishing one-form. Actually, implicit in C is two other descriptions: we can either parametrize
such p(x)’s by their coefficients, in which case they amount to two complex numbers (a, b) such that

∆ := b3 − 27a2 6= 0,

or else we can parametrize them by their roots, in which case they amount to a three-element subset
S ⊂ C with center of gravity 0.

I said moduli space, because in fact these sets all have natural topologies (even more, they are
complex manifolds), and the bijections above are homeomorphisms (even analytic isomorphisms). This
can be fun to think about. For example, take the description in terms of 3-element subsets of C. A
path in this space is known as a braid, because if you plot the location of the three element subset as
a function of time you’ll see a braid on three strands. Therefore, to every such braid there corresponds
some path in the space of full lattices Γ ⊂ C, as well as a natural one-parameter family of Riemann
surfaces. And in the (a, b) terms, you get a path in the complement of a (3, 2)-torus knot, which is in
fact a trefoil knot. You can try to think about this overwhelming multiplicity of interpretations next
time you’re braiding your friend’s hair.
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