Lecture 3: Structured surfaces

September 9, 2014

The goal for today is to define what a Riemann surface is. We will also start to give some
examples.

For future applications, as well as to isolate some structural features, we'll actually give a more
broad definition, namely that of a G-structured surface. The first thing to say is what kind of thing
G is.

Definition 0.1. An admissible collection of gluing maps is a set G of bijections U &V between
open subsets U and V' of the plane R?, satisfying the following requirements:

1. If ¢ and v are two composable bijections both of which lie in G, then their composition also
lies in G.

2. If ¢ lies in G, then so does its inverse.

3. IfU &V liesin G and U’ C U is an open subset of U, then V' = o(U’) is open in V., and
the induced bijection U’ & V! also lies in G.

4. IfUSVisa bijection between open subsets of R?, and if, for every point p € U there is an
open subset U' C U containing p such that V' = o(U") is open in V and U’ & V' lies in G,
then U & V itself also lies in G.

The idea is that we will think of building surface by gluing together open subsets of R2. These
elements of G are then the things we will allow ourselves to glue along. By the way, you should feel
free to ignore the last two axioms at first blush. They're there to ensure “locality”.

Here are some examples:

1. We can take G to be the collection of all homeomorphisms between open subsets of R%. Recall
that these are the continuous bijections having a continuous inverse: equivalently, they are
the bijections U <> V such that a subset U’ C U is open if and only if its image V' under
@ is open in V. This is the maximal possible collection: every collection satisfying the above
axiomatics is contained in this one.

2. We can take G to be the collection of all diffeomorphisms between open subsets of R?. Recall
that these are the differentiable bijections with differentiable inverse.

3. We can take G to be the collection of all biholomorphisms between open subsets of R? = C.
Recall that these are the holomorphic bijections with holomorphic inverse.

Note that class 3 is contained in class 2 is contained in class 1. But the next three classes,
while all contained in class 3 (though this is not necessarily obvious), will not be in any way pairwise
contained in one another. They are also much much smaller classes than the previous ones. Grossly
speaking, the previous classes are infinite dimensional, but the next ones will be finite dimensional.



e We can take G to be the collection of Euclidean isometries between open subsets of R2. These
are those bijections U & V which can be obtained by composing translations and rotations.
(Thus they preserve all distances, areas, oriented angles, etc.: the entire "metric geometry”
of the plane.)

e We can take G to be the collection of Hyperbolic isometries between open subsets of D :=
D(0,1) € R%. We will be more precise about what this means later. Suffice it to say that,
while D certainly does inherit the Euclidean geometry from R2, it can also be equipped with a
different geometry, the Hyperbolic one; and the hyperbolic isometries are those bijections be-
tween open subsets of ID which preserve all the “metric geometry” derived from this hyperbolic
geometry.

In this geometry, the geodesics (paths of least resistance) are those segments of circles or lines
in D which meet the boundary dDD at right angles. Furthermore, compared to the Euclidean
distance, the hyperbolic distance stretches greatly as you approach the boundary, which is in
fact infinitely far away. Actually, in a precise sense there's more room in hyperbolic geometry
than in Euclidean geometry, even though in our model the unit disk sits inside the plane.

e We can take G to be the collection of Spherical isometries between open subsets of S? =
{v € R3: || = 1}. These are those bijections which are given by rotation around some axis
in R3. Truth be told, as stated this does not fit our precise framework, because it's based on
S? instead of open subsets of R?. We could make it fit our chosen framework by transporting
between the two using the operations of stereographic projection away from a point on S2.

Now we can make the main definition.

Definition 0.2. Let G be an admissible collection of gluing maps. A G-surface is a set X together
with a collection of so-called defining charts, which are bijections U <> V with U a subset of X and
V' an open subset of R?, subject to the following conditions:

1. For every point x € X, there is a defining chart U LV withzeU. [Covering condition.]

2. 1FU &V and U' & V' are two defining charts, then the sets (U NU’) and (U NU’) are
open in V and V' respectively, and the induced bijection o(U NU') +» (U NU") (given by
Yo !) liesin G. [Compatibility condition.]

The idea is this: we imagine the G-surface X as being obtained by gluing the various sets
V C R? along the maps v o = !, which are called the transition maps. Generally speaking, if
there is some notion or structure which makes sense for open subsets of R2, and if that notion or
structure is preserved by the bijections in G, then this notion or structure makes sense for G-surfaces.
For example, when G is the collection of Euclidean isometries, we obtain the notion of a Euclidean
surface. On a Euclidean surface, notions such as straight lines and angles make sense. We check
them on any chart; the result is independent of the chart because the transition maps are Euclidean
isometries.

The next order of business is to define the notion of G-isomorphism between G-surfaces. The
motivation is the following. Consider a G-surface X, meaning the set X together with its defining
charts. We could modify the system of defining charts in an innocuous manner: for example, given
one chart U <& V, we can add another by simply restricting ¢! to any open subset of V. This
shouldn’t “really” change the surface, but it doesn't give us literally the same surface according to
the definition. Or, in a slightly different direction, we could change the set X by a bijection, i.e.
we could just relabel its elements. This also shouldn't really change the surface. The most natural
notion of isomorphism which accommodates these two examples is the following.



Definition 0.3. Let X and X' be two G-structured surfaces. (The defining charts are implicit.) An
isomorphism between X and X' is a bijection X l) X' satisfying the following condition:

o IfU & V is a defining chart for X and U’ &V isa defining chart for X', then o(UN f~1(U")
and ' (f(U)NU") are open inV and V' respectively, and the induced bijection

p(UN 1 U") < ¢ (fU)NT")
lies in G.

If f were to be the identity map, this condition would be the same one as used in the compatibility
condition in the definition of a G-surface. Thus, a G-isomorphism can be thought of as a combination
of a relabeling of the set X, together with a new set of choice of charts which is compatible with the
previous one, in that the transition maps lies in G. Here are some basic properties of isomorphisms:

1. The identity map from any X to itself is always a G-isomorphism.
2. The composition of two composable G-isomorphisms is also a G-isomorphism.

3. The inverse of a G-isomorphism is also a G-isomorphism.

The proof follows easily from the corresponding properties of the class G. These properties are
reminiscent of the identity, transitivity, and symmetry properties of equality; in total, they ensure
that it is formally reasonable to think of two G-isomorphic surfaces as being “the same”. In general,
we will only be interested in properties of G-surfaces which are invariant under isomorphism. For
example, the number of defining charts is not an invariant, but for Euclidean surfaces (and hyperbolic
surfaces and spherical surfaces), the notions of angle and distance are invariant.

While the set of defining charts is not invariant, we can define a new notion of chart which
is invariant. Namely, we can define a chart on X to be a bijection U &V, with U a subset of
X and V an open subset of R?, which is compatible with the defining charts in the same sense
as always (c.f. condition 2 in the definition of G-structured surface). The identity map gives a
G-isomorphism between X equipped with this abstract notion of chart to X equipped with the old
defining charts; furthermore the collection of these abstract charts is in a precise sense the “biggest
possible” collection which defines the same structure on X.

Besides being invariant, this definition is useful for the following reason: while we may want to
specify our surface X in some “minimal” way — using only a few charts, say — nonetheless for
many purposes it's convenient to have a lot of freedom in choosing the chart, e.g. for the purposes of
making calculations or investigating structure. Choosing charts is somewhat like picking coordinates
in physics.

There's only one more bit of abstraction to discuss before we get to examples.

Definition 0.4. Let X be a G-surface. We say X is Hausdorff if for any two distinct points x # x’
on X, there are charts U <&V and U’ & V' on X withax € U and ' € U’ and U NU’ = .

Thus, in the Hausdorff case, any two distinct points can be separated by charts. This is a
reasonable and useful condition to impose. Note that the above definition refers not to the defining
charts, but only to the invariant notion of chart introduced above. For example, we need to have
very small charts to make this hold for nearby points.

Now we can define what a Riemann surface is and start to give examples.

Definition 0.5. A Riemann surface is a Hausdorff G-surface, where G is the set of biholomorphisms
between open subsets of C.



The first example is essentially tautological. If we equip C with the single defining chart given by
the identity map C <+ C, then we get a Riemann surface structure on C. In this case the abstract
notion of chart unravels to the following: a chart on X = C is a biholomorphism U < V where
UcXandV CC.

More generally, any open subset of C becomes a Riemann surface in essentially the same way. In
fact, if X is any Riemann surface, we can define the notion of open subset of X (it should be open
in every chart); and any open subset of a Riemann surface is also a Riemann surface, by restricting
the charts to the open subset. A particular example is the following: removing finitely many points
from a Riemann surface always results in an open subset, hence another Riemann surface.

We only have time for one more example: the Riemann sphere, denoted P!. This is defined as
follows. As a set, we take P = CU{oo}, the set of complex numbers together with a formally-added
point labeled “o0”. On this set we take two defining charts:

1. The identity map from P!\ {oo} to C. (This is the “chart around 0".)

2. The map z ~ 1/z from P!\ {0} to C, where we set 1/oo = 0. (This is the “chart around
o0".)

The transition map between these charts is the map z — 1/z from C \ {0} to itself; this is
a biholomorphism (it is holomorphic, and it is its own inverse), so we indeed have a G-structured
surface, for G the collection of biholomorphisms. The Hausdorff condition is also satisfied, since any
two distinct points are either 0 and oo, in which case they are separated by the defining charts, or
they lie in one or the other of the charts, where they can be separated by ordinary open disks in C.
Thus P! is a Riemann surface.

The motivation behind P! is the following. Say for example that we're studying a holomorphic
function f defined on all of C. For many purposes, it's convenient to study not just the behavior
of f near specific points of C, but also its behavior “at oo”, meaning what happens to f(z) when
|z| = 0o. The above charts capture the idea that the behavior of f “at 00" should be equivalent to
the behavior of the new holomorphic function g(z) = f(1/z) at 0. By this definition, we can reduce
the nebulous-sounding study of holomorphic functions at (or perhaps “near”) oo to the much more
tangible study of holomorphic functions at or near 0. For example, a polynomial of degree n can be
said to have a pole of order n at co. (Please feel free to plug 1/z into your favorite polynomial to
verify this.)



