Lecture 6: Local structure of holomorphic maps.

September 23, 2014

Today we will talk about the local structure of holomorphic maps between Riemann surfaces.
There will be two theorems: one which holds for arbitrary maps, and another stronger one which
holds only for proper maps.

We can already state and prove the first one:

Theorem 0.1. Let f: X — Y be a holomorphic map between Riemann surfaces. Let also xz € X,
with imagey := f(x) in Y. Suppose that it is not the case that f is constant in some neighborhood
of x. Then there exist a natural number n € {1,2,...} and charts around x and y in which f is
represented by the holomorphic map

z 2"

from an open disk around 0 in C to an open disk around 0 in C, where the 0 in the source corresponds
to the point x and the 0 in the target corresponds to y.

Thus, every (non-constant) holomorphic map looks locally like z +— 2™ for some n.

Proof. We start by representing f by charts in an arbitrary manner, but making sure to translate
the charts so that = and y both correspond to 0 € C. Then f in the charts admits a power series
expansion:

f(z)=co+cr-z+....

Since f is not constant in any neighborhood of x, not all the coefficients ¢; are zero; therefore there
is some smallest nonzero coefficient, call it ¢,. It follows that we can write

f(z)=2"g(2),

where g(z) is a holomorphic function with g(0) # 0. Since g(0) # 0, we know exists is a holomorpic
n'" root function defined in a neighborhood of ¢(0). Since g is continuous, for small enough values
of z the value g(z) will lie in this neighborhood. It follows that on a neighborhood of 0 we can write

f(z) = 2" - h(2)",

where h(z) is a holomorphic function with h(0) # 0. Now, let ¢(z) = z - h(z). Then ¢'(0) # 0,
so by the inverse function theorem ¢ is a biholomorphism in a neighborhood of zero. If we use this
biholomorphism to change the chart on the source, then f gets represented by the function

flz) = 2",

as desired. O



Note that the proof showed how to find the number n: if ever you locally write f as 2™ - g(2)
with g(0) # 0, then n = m. But the proof doesn't exactly show that the number n depends only on
f and the point € X, since the power series expansion of f depends on the chart chosen. However,
it is true that n is uniquely determined by f and x. One could check this just by investigating the
effect of a change of coordinates, but there's also a slicker way: n can be characterized as the unique
natural number such that there exists a neighborhood U of x such that for any 2/ € U different
from z, the cardinality of f=1(f(2’)) N U is equal to n. (This follows from the above theorem,
together with the fact that there are exactly n n'" roots of any nonzero complex number.) In other
words, the map f is n-to-1 in a neighborhood of z.

Since the n only depends on f and x, we give it notation that reflects this: we call it v, (f). In
words, it is the valuation (or multiplicity) of f at x.

The above theorem has a number of corollaries. The first concerns the set of points which were
excluded from the statement, the ones where f is constant in a neighborhood.

Corollary 0.2. Let f : X — Y be a non-constant holomorphic map of Riemann surfaces, with X
connected. Then there are no points x € X such that f is constant in a neighborhood of x.

Thus, for most maps that we'll want to consider, the above theorem applies without qualification:
around every point f is represented by some z > 2",

Proof. Suppose for contradiction that f takes the constant value C' € Y in a neighborhood of x.
Let S denote the set of points x € X such that f = C' in a neighborhood of x. | claim S is both
open and closed (closed means, the complement is open). That S is open is clear: if z € S then
every point of the neighborhood of z on which we know f = C will also lie in S. As for closedness,
let S denote the closure of S (intersection of all closed subsets containing S), and let z € S. | claim
first that f is constant in a neighborhood of z. Indeed, otherwise we can apply the theorem and see
that f is represented by z + 2™ in a neighborhood of z. But that can't be: every neighborhood of
x intersects S, and hence f takes the same value at infinitely many points in any chart around z.
This is clearly not the case for the map z +— 2.

Thus f is constant in a neighborhood of x. But every neighborhood of x intersects S, so this
constant value must be C. And hence x € S. We conclude that S is closed in addition to being
open.

On the other hand, S is nonempty since xg € S. Thus, by definition of connectedness, we must
have S = X, and so f is globally constant, a contradiction. O

Note the similarity of this corollary to the identity principle for connected open subsets of C,
which we proved using paths. In fact, either style of proof works to prove either statement. | gave
this one here for variety.

Another corollary is a long-promised fact:

Corollary 0.3. Let f : X — Y be a holomorphic map between Riemann surfaces. If f is a bijection,
then it is a isomorphism (biholomoprhism).

Proof. We need to see that the inverse of f is holomorphic. Actually, it's enough to see that f is
a local isomoprhism: then the inverse will be locally holomorphic, hence holomorphic. For that, we
apply the theorem. Certainly f, being injective, is not constant in a neighborhood of any point.
Thus we can everywhere locally represent f by z +— 2" for some n. But in fact, again because of
injectivity, n must be equal to 1. Therefore f is locally represented by the identity, and hence is
certainly a local isomorphism. O



The same proof shows the following stronger fact: if we just assume f is holomorphic and
injective, then the image f(X) is open in Y, and f gives an isomorphism from X to f(X).

Note that the corollary is interesting even for open subsets of the complex plane; yet the proof
used Riemann surface ideas.

Now we work towards the second theorem. The difference between the two theorems will be
the following: in the first theorem, we had to work in a chart around a point of the source. But in
the second theorem, we will only work in a chart around a point of the target, and we'll get a full
description of the restriction of our map to the preimage of this chart. But this requires stronger
assumptions on f. The key concept is the following:

Definition 0.4. Let f : X — Y be a holomorphic map of Riemann surfaces. We say that f is
proper if for every compact subset K C Y, the inverse image f~'(K) is a compact subset of X .

Here are some “abstract” examples:

1. If X is compact, then every holomorphic map f : X — Y to an arbitrary Y is proper. Indeed,
this is essentially an exercise in point-set topology: if K C Y is compact, then since Y is
Hausdorff, K is closed. Then since f is continuous, f~!(K) is a closed subset of X. But a
closed subset of a compact space is compact.

2. If f: X — Y is proper and U C Y is an arbitrary open subset, then f~1(U) — U is also
proper. This is clear from the definitions.

The intuition is that a proper map “sends co to c0”. In other words, if you wander off towards
a point that isn't there in X, then your image under f should wander off to a point that isn't there
in Y. To get an example of a map which is not proper, you can take your favorite proper map and
just remove a point from the source. Also, the exponential map exp : C — C is not proper, since
if you let Im(z) — —oo the value exp(z) stays close to 0. (Formally, the inverse image of a closed
disk around 0 is not bounded, hence not compact.)

Here is a more concrete example: every non-constant polynomial map f : C — C is proper. It's
possible to prove this straight from the definition: since the compact subsets of C are exactly the
closed and bounded subsets, one needs only see that f~! sends closed and bounded sets to closed
and bounded sets. But we'll adopt another approach, which will eventually give more information.

The key is that we can extend f to a holomorphic map P! — P! by setting f(co) = co. This
will imply the claim, since the source P! is compact and we recover the original f by restricting to
the open subset C of the target P'.

So let us explain why this extended f is holomorphic. Certainly, it is holomorphic at every point
of C C P!, since there it's given by the original polynomial. Thus we need to check holomorphicity
at co. For this, we should look on the chart at co. On both the source and target P!'s this chart is
given by z +— 1/z (with co — 0). Thus we need to check that the function g(z) defined for z # 0
by

9(=) = 1/§(1/2)
and for z = 0 by
9(0) =0,

is holomorphic at 0. But since f is a nonconstant polynomial, we can write

f(z)=c2"+ ...+ co



with ¢, 20 and n > 1. Then

ZTL

Cn+ Cno1z+ ...+ coz™’

9(z) =

for z # 0 as well as for z = 0. But now this expression for g is clearly holomorphic (complex
differentiable) in a neighborhood of 0: it is the quotient of two holomorphic functions, such that
the denominator doesn't vanish at 0.

We remark at the same time that this expression for g shows that vo(f) = n = deg(f): the
multiplicity of a (nonconstant) polynomial at oo is equal to its degree.

Now, to work towards the second theorem, let's prove some lemmas about proper maps.

Lemma 0.5. Let f : X — Y be a non-constant proper map between Riemann surfaces, with X
connected. For every y €Y, the fiber f~1(y) is finite.

Proof. Since {y} is compact and f is proper, the fiber is compact. Thus, to show it is finite, it
is enough to show that it's discrete, i.e. every point € f~!(y) has an open neighborhood which
contains no other points of f~!(y). But by the local structure theorem, we can find a chart around
x in which f looks like z +— 2™ for some n. Note, however, that the fiber above 0 of that latter map
is just the single point 0. We deduce that such a chart gives an open neighborhood of z meeting
the specifications. O

Lemma 0.6. Let f : X — Y be a proper map between Riemann surfaces, and lety € Y. IfU is any
open neighborhood of f~'(y), then there is an open neighborhood V' of y such that f~1(V) C U.

Pictorally speaking, the fibers above all nearby points “fall into” the fiber above y.

Proof. Fix a chart around g, and use this to define the notion of “closed disk in Y centered at y".
Let D be one such closed disk. Then D is compact; and since f is proper, f~1(D) is then also
compact. Now consider the collection {D;};cr of all closed disks centered at y and contained in
D. The intersection of all of these disks is {y}: we can check this on the chart. It follows that U
together with all of the f~1(Y \ D;) form an open cover of Y, hence of f~1(D). But this latter is
compact, so we have a finite subcover, say by U together with f~1(Y \ D;) for i in a finite set Ij.
Now, let V' be any open disk centered at y and contained in all of the D; for i € Iy. It follows that
f~Y(V) c U, since certainly no point of f~1(V) can lie in any f~1(Y \ D;). O

Now we can state the theorem.

Theorem 0.7. Let f : X — Y be a proper map of Riemann surfaces which is not constant on any
connected component of X. Let alsoy € Y, and denote by {z1,...,x}} the fiber f~1(y) (it is a
finite set, by the first lemma).

Then there exists a chart around y (making y correspond to 0 € C) and charts around each x;
(making x; correspond to 0 € C) with the following property: the inverse image of the chart around
y is equal to the disjoint union of all the charts around the x;’s, and moreover in each chart around
x; the function f is represented by some z — z" (so, n = v, (f)).

So we have a complete picture of what happens “above” our given chart around y, if we think
of f as mapping from upstairs to downwards.

Proof. We start by selecting charts around each x; as in the (first) local structure theorem. Note,
e.g. from the proof of the local structure theorem, that we can use the same chart around y for all
these different x;. By shrinking the charts, we can also use the Hausdorff property of X to guarantee
that these charts around the x; are disjoint.



Now, by the second lemma we can, after shrinking the chart around y, assume that the inverse
image of the chart around y is contained in the disjoint union of the charts around the x;. To
guarantee equality instead of just containment, we simply further shrink the charts around the x;,
replacing them with their intersection with the inverse image of the chart around y. O

There is a fun corollary of this theorem.

Corollary 0.8. f : X — Y be a non-constant proper map between connected Riemann surfaces.
For every y € Y, define a natural number

degy(f) = 3 valf).

z€f~1(y)
Then degy(f) is independent of y. (It can thus be denoted deg(f) and called the degree of f.)

Proof. We will show that the function Y — N given by y — deg,(f) is continuous, i.e. the inverse
image of every singleton {d} is open in Y. Since Y is connected, the claim will follow from this.
Thus, suppose that we have a y with deg,(f) = d. We want to show that every y' near y also
satisfies deg,/(f) = d. By the above structure theorem, we can assume that Y is a disk and X is
a disjoint union of disks, indexed by the 2 € f~!(y), where on the z*" disk the map f is given by
2+ z%=(F) But then every point 3/ # y has exactly vz (f) preimages in the 2! disk for all z, since
there are exactly n n'” roots of any nonzero complex number. Summing over all z, we find that
there are exactly degy(f) preimages of ¥/ under the map f. On the other hand the multiplicity at
each of these preimage points is equal to 1, since z +— 2" is a local isomoprhism away from 0. This
implies the claim, deg,/ (f) = degy(f), and finishes the proof. O

There is another fun corollary of the corollary. Consider again our non-constant polynomial,
viewed as a map f : P! — P!. Then dego.(f) is the degree of the polynomial f, since the only
point in the preimage of oo is oo and the multiplicity of f there is the degree of f, as we saw earlier.
But on the other hand dego(f) is, by definition, the number of zeros of the polynomial f, counted
with multiplicity. Thus we deduce the fundamental theorem of algebra: a nonzero polynomial has
exactly as many roots as its degree, if we count these roots with multiplicity.



