
Lecture 7: The Riemann sphere, take one: algebra.

September 23, 2014

In this lecture, we’ll apply the results of the previous lecture (structure of holomorphic maps) to
the study of the Riemann sphere. Particularly, we will determine the field of meromorphic functions
M(P1) and the group of automorphisms Aut(P1).

But first, a correction from last time. Not a correction of mathematics per se, but a correction
of notation. Remember, for a map f : X → Y of Riemann surfaces and a point x ∈ X such
that f is not constant in a neighborhood of x (equivalently: f is not constant on the connected
component of X containing x), there is a uniquely determined natural number m such that f is
locally equivalent (via biholomorphisms) to

z 7→ zm.

Last time we denoted this integer m by vx(f) and called it the “valuation” of f at x. But that
was a mistake. We should have denoted it by mx(f) and called it the “multiplicity” of f at x. The
reason is, today we’ll introduce the concept which actually is called valuation, and it will be different
from (though closely related to) this multiplicity.

Without further ado, let’s discuss valuation. The general context is that of a non-zero mero-
morphic function

f : X → P1

on a connected Riemann surface X. Suppose given a point x ∈ X. Then we will define an integer

vx(f) ∈ Z

which is supposed to measure “the order of vanishing of f at x”, where it being negative means
that f has a pole at x.

The definition is as follows. Represent f locally in a chart around x by a meromorphic function
F : U → P1, where U is an open subset of C containing 0, with 0 corresponding to x. Then there
is exists an integer v such that we can write

F (z) = zv ·G(z)

with G(z) holomorphic and non-zero in a neighborhood of 0. (Proof: write F as a quotient of
holomorphic functions, and pull out as many z’s as possible from the power series expansions of the
numerator and denominator.) Then we set vx(f) = v.

We need to make sure that this is well-defined, i.e. any integer v as above only depends on f
and x. That will follow from the following result, which gives an alternate description of vx(f):

Lemma 0.1. Let f : X → P1 be a nonzero meromorphic function on a connected Riemann surface,
and let x ∈ X. Then:

1. If f(x) 6∈ {0,∞}, we have vx(f) = 0.
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2. If f(x) = 0, we have vx(f) = mx(f).

3. If f(x) =∞, we have vx(f) = −mx(f).

Proof. The first point is obvious: if f(x) 6= 0,∞, then we can’t locally represent f by zv · G(z)
with G(0) 6= 0 unless v = 0. For the second point, we need to recall that in the proof of the local
structure theorem, given such a decomposition F (z) = zv · G(z) with G(0) 6= 0, we were able to
make a change of charts so that F became z 7→ zv. Thus v = mx(f), as claimed. The third claim
is exactly the same, except that we need to work in the chart around ∞ ∈ P1, which means taking
the reciprocal of f . That’s what introduces the negative sign.

Here are the two basic properties of this association f 7→ vx(f), both easily verified from the
definition:

• vx(f · g) = vx(f) + vx(g);

• vx(f + g) ≥ min{vx(f), vx(g)}.

In the second property one should assume that f 6= −g so that f + g is also a nonzero mero-
morphic function. But actually, it’s slightly more convenient to formally declare that vx(0) = ∞:
then both of these identities are valid for arbitrary meromorphic f, g. Besides, it makes sense that
the zero function should vanish to order ∞ at all points.

Thus, to a meromorphic function f on a connected Riemann surface X, we’ve assigned a
collection of integers vx(f), one for each point x ∈ X. These integers record the location and
multiplicity of the zeros and poles of f . If we further assume that X is compact, then there are
some constraints on this system of numbers vx(f):

Proposition 0.2. Let f : X → P1 be a nonzero meromorphic function on a connected compact
Riemann surface X. Then for all but finitely many x ∈ X we have vx(f) = 0, and moreover∑

x∈X
vx(f) = 0.

(Note: the seemingly infinite sum is actually a finite sum, by the first claim.)

Proof. If f is constant, then by the lemma vx(f) = 0 for all x ∈ X, and therefore the claims are
trivial. Thus we assume f is non-constant. Then since X is compact, f is a non-constant proper
map between connected Riemann surfaces. Therefore it has finite fibers, so f−1(0) and f−1(∞) are
finite. This proves the first claim, since by the lemma again only the points in those two sets can
have valuation different from 0. For the second claim, we recall the invariance of degree for such a
map f , from the previous lecture:

deg0(f) = deg∞(f).

This means that
∑

x∈f−1(0)mx(f) =
∑

x∈f−1(∞)mx(f). By rearranging terms and using the lemma,
this gives us exactly the required identity.

Let us give an example. In the previous lecture we saw that a non-zero polynomial gives a
meromorphic function f on P1 with m∞(f) = deg(f). Thus we have

v∞(f) = −deg(f),

and for a ∈ C we have that va(f) is the multiplicity of a as a root of f (i.e., f(z) = (z−a)va(f) ·g(z)
with g(a) 6= 0). Thus, in this case, the above proposition is another restatement of the fact that a

2



non-zero polynomial has exactly as many roots (with multiplicity) as its degree.

Now, let X be a compact connected Riemann surface. We have just seen that a non-zero
meromorphic function on X gives rise to the following data:

• For every point x ∈ X, an integer vx, such that:

• All but finitely many vx are equal to 0, and the sum of all the vx is 0.

It is natural to ask about the converse, i.e. the following Question: Suppose we are given data
as in the two bullet points above. Is there always meromorphic function which gives rise to it?

This is the problem of specifying a meromorphic function by the location and multiplicity of its
zeros and poles. It turns out that the answer depends on the nature of X. In fact:

Proposition 0.3. The answer to the above question is “Yes” if and only if X is isomorphic to P1.

For arbitrary (compact connected) X, it turns out that the extent of the “no” answer is controlled
by a (higher dimensional) complex torus known as the Jacobian of X. (Thus the Jacobian is trivial
when X = P1.) But let’s not get into that, at least not right now.

Proof. First let us show that if the answer is “Yes”, then X must be isomorphic to P1. For that,
choose two arbitrary distinct points x0 and x∞ on X. Then consider the following instance of the
above data: we let vx = 0 for x 6= x0, x∞, and we set vx0 = 1 and vx∞ = −1. If we assume the
answer is “yes”, then there is a meromorphic function f : X → P1 with vx(f) = vx for all x ∈ P1.
We claim that f must in fact be an isomorphism of Riemann surfaces.

Indeed, since the only point in f−1(∞) is x∞, which has multiplicity 1, it follows that deg∞(f) =
1. Then by invariance of degree, we see that degy(f) = 1 for all y ∈ P1. The only way this can
happen is if f is bijective and has multiplicity 1 everywhere, i.e. f is an isomorphism, as claimed.

Now let us show that if X is isomorphic to P1, then the answer to the question is yes. Since we
can transport the initial data as well as the desired meromorphic function f along any isomorphism,
it suffices to assume that X = P1.

Thus suppose given such data on P1. Define f : P1 → P1 as follows:

f(z) =
∏
a∈C

(z − a)va .

Then f is a rational function in z, and hence is meromorphic. Furthermore, straight from the
definitions it follows that vx(f) = vx for all x ∈ P1 \{∞}. Thus we need only see that v∞(f) = v∞.
But we know both that ∑

x∈P1

vx(f) = 0

and that ∑
x∈P1

vx = 0,

so the case x =∞ follows from all the other cases. That finishes the proof.

The companion question of uniqueness is much less subtle:

Proposition 0.4. Let X be a compact connected Riemann surface, and let f, g be two nonzero
meromorphic functions on X. Then vx(f) = vx(g) for all x ∈ X if and only if there is a nonzero
constant λ such that f = λ · g.
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Proof. It’s clear that if f = λ · g then vx(f) = vx(g) for all x ∈ X. For the converse, consider
the meromorphic function h = f/g. Then vx(h) = 0 for all x ∈ X. Thus the map h : X → P1

misses the point ∞, say. But every nonconstant holomorphic map X → P1 has to be surjective:
this is a special case of the invariance of degree theorem (a point y is not in the image if and only if
degy(h) = 0). Thus h must be a constant λ (nonzero since f is nonzero), and the claim follows.

There is a corollary of the (proofs of) the previous two results:

Corollary 0.5. Every nonzero meromorphic function on P1 can be uniquely written in the form

f(z) = λ ·
∏
a∈C

(z − a)va ,

for some arbitrary function a 7→ va from C → Z which is zero for all but finitely many a ∈ C, and
some arbitrary nonzero constant λ.

In particular, the meromorphic functions on P1 are exactly the rational functions of z:

M(P1) = C(z).

This finishes our discussion of meromorphic functions on P1. Now we turn to automorphisms of
P1. Here the main claim is the following.

Theorem 0.6. Let a, b, c ∈ P1 be three distinct ordered points. Then there is a unique automorphism
h : P1 → P1 such that

h(0, 1,∞) = (a, b, c).

Thus, the automorphisms of P1 are in bijection with the triples of distinct ordered points on P1.
In particular, morally speaking, Aut(P1) has complex dimension 3 or real dimension 6.

Proof. Suppose given such a, b, c. It will be equivalent to show that there is a unique automorphism
H of P1 with

H(a, b, c) = (0, 1,∞);

indeed, the H’s and the h’s are in bijection by the prescription h = H−1.
Now, for x ∈ P1, let vx = 0 for x 6= a, c, and va = 1 and vc = −1. By the “yes” answer to the

above question for P1, there is a meromorphic function H : P1 → P1 with H(a) = 0 and H(c) =∞.
Moreover as we saw in the first part of the proof of Proposition 0.3, such an H is necessarily an
isomorphism, i.e. an automorphism of P1; and Proposition 0.4 tells us that H is unique up to a
nonzero scalar.

Now, we don’t know anything about H(b) except that it’s different from 0 and ∞ (since H is
a bijection). But then by fixing the non-zero scalar we can uniquely ensure that H(b) = 1. This
finishes the proof.

This is a nice abstract characterization of the automorphisms of P1, but for some purposes we
want to actually write down a formula. Such a formula falls out from the above proof, since we
saw how to produce the required H explicitly in the course of the proof of the “yes” answer for P1.
After some unwinding, the result is the following:

Corollary 0.7. Every automorphism of P1 is of the following form:

h(z) =
az + b

cz + d
,

where ad− bc 6= 0. Moreover, a, b, c and d (which have nothing to do with the previous a, b, c) are
uniquely determined up to an overall nonzero scalar factor.
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Here is a corollary of the corollary:

Corollary 0.8. Every automorphism of P1 has a fixed point. In particular, any group Γ ⊂ P1 acting
freely has to be the identity {id}.

To prove this, one just investigates the equation h(z) = z.
Let us return to the original corollary, and make some remarks. Note that the condition

ad − bc 6= 0 is equivalent to saying that the determinant of the 2 × 2 matrix formed by a, b, c
and d is nonzero. In fact, this matrix language is a good one to use, since, as you can verify, com-
position of such automorphisms h corresponds exactly to matrix multiplication on the coefficients
a, b, c, d.

We can explain this unexpected appearance of linear algebra by giving a new, more symmetric
description of the points of P1. You see, we defined P1 to be C ∪ {∞}. This is an asymmetric
description of P1, since it singles out the point ∞ as being special, whereas, as we have just seen,
any three distinct points of P1 can be carried to any other three distinct points by an automorphism
of P1, so there are no special points of P1, considered as an abstract Riemann surface. Note that
this fact also makes our explicit description of the automorphisms,

h(z) =
az + b

cz + d

somewhat of a nuisance to work with, since ∞ has to be treated separately, e.g. we need to specify
that h(∞) = a

c , and h(z) =∞ if cz + d = 0.
But now let us fix this by giving a symmetric description of P1, together with a resulting symmetric

description of the automorphisms.

Proposition 0.9. There is a canonical bijection between P1 and the set of one-dimensional complex
linear subspaces of the two-dimensional complex vector space V = C⊕ C.

Proof. The bijection φ is defined as follows: we set

φ(∞) = [1, 0],

meaning the one-dimensional vector space spanned by (1, 0) ∈ V ; and for z ∈ C we set

φ(z) = [z, 1].

The inverse to φ is defined by

[a, b] 7→ a

b
,

where we mean∞ if b = 0. Note that this makes sense: a
b only depends on the vector space spanned

by (a, b) 6= (0, 0). (A loose description of this inverse is that it sends a (complex) line through the
origin to its (complex) slope.) It’s easy to see that these maps are inverse to one another, and hence
define the required bijection.

The automorphisms of P1 are easy to see in terms of this new description. Indeed, an invertible
2× 2 complex matrix A acts by linear automorphisms of V , by matrix multiplication. Being a linear
automorphism, it sends one-dimensional subspaces to one-dimensional subspaces, and so does its
inverse; thus A induces a bijection from P1 to itself. If the entries of A are a, b, c, d, then it’s simple
to verify that this new symmetric description matches the previous

h(z) =
az + b

cz + d
:
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indeed, that follows from the fact that A acting on the column vector (z, 1) gives (az + b, cz + d).
This new description also turns some of our earlier claims into simple linear algebra facts: for

example it’s fairly clear that a 2 × 2 invertible matrix sends every one-dimensional subspace into
itself, and hence induces the identity map on P1, if and only if A is given by multiplication by a
nonzero constant; that’s why this was the discrepancy in representing an automorphism by a, b, c, d.
Furthermore, the fact that every automorphism of P1 has a fixed point becomes the fact that every
invertible complex matrix has a non-zero eigenvalue (with corresponding nonzero eigenvector).

To sum up, we have seen that the group of automorphisms of P1 is the same as the group

PGL2(C)

of invertible 2×2 complex matrices, modulo nonzero complex scalars. This also matches our previous
dimension count: there are four complex dimensions coming from the entries of the matrix; then one
gets subtracted because of the non-zero scalars, leaving 3 complex dimensions, or 6 real dimensions.
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