
Lecture 9: ... continued

October 1, 2014

Today we’re going to continue the discussion from last time. I want to first recap the idea of
Riemannian geometry (with slightly more detail but still not complete detail), and compare Rieman-
nian surfaces with Riemann surfaces. Then we’ll turn again to the example of P1, and see how its
automorphisms differ from its isometries.

Let X be a smooth surface. This means a G-structured surface, where G is the class of smooth
bijections with smooth inverse between open subsets U ⊂ R2.

There is the notion of a tangent space Tx(X) of X at any point x ∈ X. This is a two-dimensional
vector space, whose elements are supposed to correspond to first-order movements away from x.
Let me not give a definition, but just tell you its characteristic properties:

1. To every smooth map f : X → Y of smooth surfaces and every point x ∈ X, there is
attached a linear map df |x : Tx(X) → Tf(x)(Y ), the derivative of f at x. This derivative is
an isomorphism if and only if f is a local isomorphism near x.

2. The derivative of the composition is the composition of derivatives: d(g◦f)|x = dg|f(x) ◦df |x.
(“Chain rule”.)

3. If U is an open subset of R2, then Tx(U) = R2 for all x ∈ U . For smooth maps between such
open subsets, the abstract derivative above identifies with the usual notion of derivative as a
linear map R2 → R2 (given by the matrix of partial derivatives).

Thus, every time you choose a chart around x ∈ X you get to identify Tx(X) with R2 (by a
linear isomorphism). If you change the chart by a transition function, this identification changes by
the linear automorphism of R2 given by the derivative of the transition function at the point corre-
sponding to x. More generally, you can calculate the derivatives of a smooth map f by choosing
charts around x and f(x). Then, via the linear isomorphisms Tx(X)↔ R2 and Tf(x)(Y )↔ R2 pro-
vided by these charts, df |x just turns into the usual derivative of the representative of f on the charts.

Using this notion of tangent space, we can say what is a Riemannian structure on a smooth
surface X: it is a collection of inner products on each tangent space Tx(X), satisfying the condition
that these inner products “vary smoothly” with x.

I won’t give the precise definition of what “varies smoothly” means, but you’ll see it in examples.
It means that, on charts, the formula for the inner product at x should somehow be a smooth
function of x.

Another name for a Riemannian structure is a metric. This alternate name is useful if we don’t
want to overdose on things named after Riemann.

Recall the idea: if you have an inner product 〈−,−〉 on a vector space, you can define all sorts
of geometric measurements on vectors in that vector space. For example you can define the length
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of a vector, the unoriented angle between two vectors, the area of the parallelogram spanned by two
vectors, etc. These definitions recover the usual notions from Euclidean geometry in the case of
Rn with the standard dot product, and satisfy basically the same properties as are satisfied in that
standard example.

Then, by various procedures (e.g. integration), you can use the geometry on vectors in each
tangent space to define actual geometric notions on the surface X. But I won’t dwell on this aspect
because it’s not so important for us right now.

Now, let us compare the notions of Riemannian surface (surface with metric) and Riemann
surface (surface specified by holomorphic charts). Both of these types of objects come with an
underlying smooth surface: the first by definition, and the second because a biholomorphism is in
particular a smooth bijection with smooth inverse. Thus both Riemannian surfaces and Riemann
surfaces can be thought of as smooth surfaces, equipped with some extra structure.

In the case of Riemannian surfaces, this structure is specified at the level of tangent spaces.
In the case of Riemann surfaces, this is not the case, as least not by definition. But nonetheless
a Riemann surface structure does determine some extra structure on the tangent spaces: as we’ve
said before, it determines a notion of oriented angle between two vectors in any tangent space.

So a metric determines an unoriented geometry, including angles but also distances, whereas
a Riemann surface structure determines an oriented notion of angle. Neither covers the other’s
territory exactly: the metric certainly gives you more geometry, but on the other hand it doesn’t
give you orientation. Nonetheless one can make the following definition:

Definition 0.1. Let X be a Riemann surface, and let 〈−,−〉x (for all x ∈ X) denote a Riemannian
metric on X, viewed just as a smooth surface. We say that the metric is compatible with the
Riemann surface structure if the notion of angle coming from the Riemann surface structure agrees
with the notion of angle coming from the metric.

One can also say what this means more explicitly: the metric and the Riemann surface structure
are compatible if, when we look on any holomorphic chart, the metric 〈−,−〉x is a positive constant
multiple of the standard metric (dot product) on the complex numbers:

〈−,−〉x = λ2 · 〈−,−〉std.

(Here the constant λ > 0, which may depend on x, represents the amount distances are scaled in
going from the standard metric to 〈−,−〉x.)

The reason this is an equivalent statement is that the notion of angle on a Riemann surface
is by definition inherited from the standard Euclidean geometry on C in the charts. On the other
hand two inner products on R2 determine the same notion of angle if and only if they are positive
scalar multiples of each other (this is a fact very similar to the first problem on your first problem set).

Let us now give an example illustrating this notion. Let X be our old friend C \ 0. This is
a Riemann surface defined by a single chart, the identity map. Thus we can parametrize all the
metrics compatible with the Riemann surface structure by all smooth functions λ : C \ 0 → R>0:
the corresponding metric is given by

〈−,−〉z = λ(z)2 · 〈−,−〉std.

Among these are of course the standard metric, corresponding to λ(z) = 1, and the cylindrical
metric, corresponding to λ(z) = 1

|z| . But there are of millions of other possibilities, where “millions”
means in particular an uncountable number.

Nonetheless, out of all of these possibilities, there is one metric compatible with the holomorphic
structure which is certainly the best: the cylindrical metric. This can be measured in a number of
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ways, but here is one: every automorphism of C \ 0 as a Riemann surface is an isometry for the
cylindrical metric.

(An isometry is a map which preserves the geometry: it is a smooth bijection f : X → X with
smooth inverse such that the induced map on tangent spaces df : V → W , at any point x ∈ X, is
a linear isometry, meaning it preserves the inner product, i.e. it satisfies 〈Dv1, Dv2〉 = 〈v1, v2〉.)

One way to argue for this is to classify the automorphisms of C \ 0, for example by following a
similar outline to the first problem on this week’s problem set. You will find that every automorphism
is either multiplication by a nonzero complex number, or it is the composition of z 7→ 1/z with
multiplication by a nonzero complex number. Thus one only needs to see that z 7→ 1/z and
multiplication by a nonzero complex number preserve the metric, and this is a simple calculation.

This is something that should be surprising a priori, because an automorphism of a Riemann
surfaces, by all rights, should only preserve angles, not distances. It’s somewhat of a miracle that
there is this compatible Riemannian structure in which every angle-preserving automorphism also
preserves distances. Nonetheless this is a completely general phenomenon: there is the following
theorem, which we’ll prove as a consequence of the uniformization theorem:

Theorem 0.2. Every connected Riemann surface X has a canonical compatible Riemannian metric
〈−,−〉canon.

Okay, that’s not a precise statement, because the important term “canonical” has not been
precisely defined. Furthermore, the statement is not quite correct when X is a Riemann surface
which is abstractly isomorphic to C \ {0} or C or P1, without a specific isomorphism having been
chosen. In those cases one needs to choose an isomorphism to get the canonical metric. But other
than in these three exceptional cases, the metric is independent of any choice of isomorphism.

Let me now try to elucidate the meaning of the word “canonical” further, by giving three
properties this canonical metric satisfies:

1. If we uniformize X, writing it as a quotient M/Γ of a model Riemann surface M (so M is
either P1, C, or D) by a group of automorphisms Γ acting freely, then the canonical metric is
the unique metric on X for which the quotient map M→ M/Γ is a local isometry, when we
equip the model M with its natural metric (spherical, Euclidean, or hyperbolic, in the three
cases).

2. The canonical metric on X is the unique compatible metric, up to a constant scalar factor, in
which X is complete and has constant scalar curvature. (This is not quite true for X = P1.)

3. Outside the two special cases X = C and X = P1, every automorphism of X is an isometry
for the canonical metric.

We already illustrated the third point in our example case X = C \ 0, so let’s see the other
points as well. The first point is saying that the exponential map

exp : C→ C \ {0}

is a local isometry when the source is equipped with the standard Euclidean metric and the target
is equipped with the cylindrical metric. We already know that exp preserves angles because it’s
holomorphic, so this just means that the scales are preserved as well. In general, a holomorphic
map f on open subsets of C scales the standard Euclidean metric by |f ′(z)| in going from z to
f(z). When f = exp we have f ′ = f , so scales are multiplied by |f(z)|. This means that scales are
preserved in our cylindrical metric, which was defined exactly by dividing by this number.

(By the way, this provides a better perspective on why the automorphisms of C \ {0} preserve
the metric: via exp, they correspond to compositions of z 7→ −z and z 7→ z + a on C, and these
evidently preserve the standard Euclidean metric.)
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As for the second point, let me again not give precise definitions (if you’re curious you can look
them up on the internet). But the completeness condition signifies that any missing points must be
infinitely far away, as measured by the metric. For example C in the Euclidean metric is complete,
because the only missing points are way out at∞. But C\0 in the standard Euclidean metric is not
complete because the missing point 0 is right there next to the other points. On the other hand,
with the cylindrical metric it is complete: the rescaling pushed the point 0 out infinitely far away.
(You can think of an infinitely long cylinder in 3-dimensional space: one end corresponds to 0, the
other to ∞.) And the constant scalar curvature condition is a kind of uniformity condition, which
sort of means that there are no irregular bumps in the geometry. (That’s a horrible explanation,
sorry.)

In order to be able to prove this theorem, and more generally in order to grasp some of the
geometric significance of the uniformization theorem, it’s important to discuss the canonical metrics
on the model spaces P1, C, and D, and to investigate the relationship between the Riemann surface
automorphisms and the isometries of these spaces. It is in this light that we now return to our
discussion of the geometry of P1.

In the previous lecture we saw that there is a conformal (i.e., oriented angle-preserving) isomor-
phism between the unit sphere S2 and P1, given by stereographic projection. We can transport
the standard Riemannian structure on S2 (inherited from the standard Euclidean geometry on the
ambient space R3) over to P1 via this stereographic projection; the result is then a Riemannian
metric on P1 which is compatible with the Riemann surface structure. This is the canonical metric
on P1, also called the round metric.

We can write a formula for it in coordinates: on C ⊂ P1, it is given by

λ(z)2 · 〈−,−〉std,

where λ(z) = 2
1+|z|2 . This follows from the formulas of the previous lecture. Indeed, in the previous

lecture we saw that the scaling factor going from S2 to C by stereographic projection from the north
pole is given by 1

1−h , where h stands for the height (i.e. third coordinate). Thus the round metric

is (1− h)2 times the canonical metric. Then one just inputs the formula for h in terms of z coming
from the formula for the inverse of stereographic projection.

You can probe the correctness of this formula in a number of ways. For example, as |z| → ∞,
we’re scaling the metric down a lot, which corresponds to the fact that the huge region near ∞
corresponds to just a small area on the sphere. Also, at z = 0 we’re scaling by 2: near the south
pole, the inverse to stereographic projection from the north pole looks just like multiplication by 2.
And when |z| = 1 we’re not scaling at all: that’s because there the stereographic projection looks
like just a 90 degree rotation. Here’s another way to probe it: the formula∫ ∞

−∞

2

1 + t2
dt = 2π

corresponds to the fact that a circle of radius one has length 2π. (The left hand side calculates the
length of the real axis in our spherical metric; but the real axis goes to a circle under the inverse to
stereographic projection.)

Now, again, our main concern in this lecture is isometries of P1 in this metric, and the relation
of them to arbitrary automorphisms of the Riemann surface. The main results are the following:

Theorem 0.3. The orientation-preserving isometries of S2 are exactly the rotations around some
axis.
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Part of this claim is that the composition of two rotations is necessarily another rotation, because
the composition of two isometries is an isometry. This fact is not geometrically obvious to me; in
fact the proof we give will be algebraic.

Theorem 0.4. Define subsets K,A,N ⊂ Aut(P1) as follows. The set K is the set of rotations of
S2. The set A is the set of automorphisms of P1 of the form z 7→ λ · z, where λ is a positive real
number. And the set N is the set of automorphisms of the form z 7→ z + a, where a is a complex
number. (Everything in A and N fixes the point ∞.) Then the map

K ×A×N → Aut(P1)

given by (k, a, n) 7→ k ◦ a ◦ n, is a bijection. (So, every automorphism of P1 is uniquely the
composition of a translation, a positive scaling, and a rotation.)

Thus, the difference between automorphisms of P1 and isometries of P1 in its round metric is
these two types of automorphisms A and N . By the way, I chose these funky letters K, A, and N
because the above result is a special case of the “Iwasawa decomposition of semisimple Lie groups”,
where those letters are customary. The K here is also a nice example of a “maximal compact
subgroup”. Although this is one of those exceptional cases where not every automorphism is an
isometry, the relationship between a Lie group and its maximal compact subgroup is still quite tight.

The plan of attack for proving these theorems is as follows. First we will show that the compo-
sition of two rotations is a rotation. Then we will prove the second theorem. Then we will deduce
the first theorem.

So let us start by proving that the composition of two rotations is a rotation. We’ll do this by
giving an alternate algebraic description of the set of all rotations, one which makes the desired fact
obvious.

This requires some set-up. Suppose that M : R3 → R3 is an invertible linear map. (So, M is
given by a 3x3 matrix with nonzero determinant.) We say that M is orientation preserving if its
determinant is positive, and we say that M is an isometry if it preserves the standard inner product
on R3. The collection of all M ’s satsifying both of these condititions (the oriented linear isometries
of R3) is denoted by

SO(3).

This is a group, because both of the defining conditions are clearly closed under passing to inverses
and taking compositions.

Then the algebraic description of rotations is as follows.

Proposition 0.5. The set of rotations of R3 around some axis through the origin in R3 is the same
as the set SO(3) of oriented linear isometries of R3.

Proof. There are two inclusions to verify. First, suppose R is a rotation around some axis; we need
to show that R lies in SO(3). But such an R preserves lengths of vectors, hence preserves the inner
product. It is also orientation preserving, hence has positive determinant.

Now suppose that M lies in SO(3). Let p denote the characteristic polynomial of M . Then p is a
degree-3 polynomial with real coefficients. It follows that p has three roots in C (with multiplicities),
and that the set of these roots (and their multiplicities) is preserved by complex conjugation. Thus
there are two possibilities: either

1. All three roots are real.

2. One of the roots is real and the other two form a pair of conjugate non-real complex numbers.
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I claim that in any case, p must have a positive real root. To prove this, we use the fact that det(M)
is positive. On the other hand det(M) is the product of the roots of the characteristic polynomial
p, so if all the roots were non-posititive we would get a contradiction in either case (recall z · z ≥ 0
for all z ∈ C).

Let λ then be a positive real root of p, i.e. a positive real eigenvalue of M . Say v0 is a
corresponding eigenvector, so

Mv0 = λv0.

By taking the length of both sides, we deduce that in fact λ = 1, so Mv0 = v0.
Now let V0 be the (one-dimensional) span of v0, and let V1 be the orthogonal complement of V0.

Since M sends V0 bijectively to itself (it’s the identity there) and V1 is defined in terms of V0 and
the inner product, which is preserved by M , it follows that M sends V1 bijectively to itself. Thus
M fixes the axis V0 and is determined by its behavior in the orthogonal direction V1.

Thus we’ve reduced the problem to one dimension lower: we need to see that an oriented
isometry of a two-dimensional inner product space is necessarily a rotation by some angle. But that
fact is much easier to prove, and I’ll leave it as an exercise.

Note that every M ∈ SO(3) restricts to an isometry S2 → S2. Indeed, S2 is defined as the set
of vectors in R3 of norm one; this condition is described purely in terms of the inner product, so M
preserves it and hence induces a map S2 → S2. The same argument applied to M−1 shows that
this induced map is a bijection. It is also smooth (with smooth inverse), because a linear map is
differentiable. Moreover, M is its own derivative at every point; so since M preserves the standard
inner product on R3, it restricts to a linear isometry Tp(S

2)→ TM(p)(S
2) for all p ∈M . Thus every

M ∈ SO(3) induces an isometry of S2. Moreover, M is uniquely determined by this isometry, by
the formula M(tx) = t ·M(x) for t ≥ 0 and x of norm 1.

Thus the proposition shows us that the set of rotations is a group of isometries of S2.
Now let us prove the second theorem, the KAN decomposition of Aut(P1).

Proof. Recall that Aut(P1) is in bijection with the set of triples of ordered distinct points of P1, via
sending ϕ to (ϕ(0), ϕ(1), ϕ(∞)). Thus to prove the theorem it suffices to show that for any three
distinct points (p, q, r) of P1, there is a unique k ∈ K, a ∈ A, and n ∈ N with

(k ◦ a ◦ n)(p, q, r) = (0, 1,∞).

First let us show existence. Start by letting R be any rotation of S2 which carries r to ∞. Then
consider z = R(p) and w = R(q). Since R is bijection we know these are two distinct points of C.
Thus we can find a unique n ∈ N and λ ∈ C \ {0} osuch that

(multλ ◦ n)(0, 1,∞) = (z, w,∞),

where multλ means multiplication by λ. Namely, n must be translation by z
w−z , and λ must be

w − z.
We can further uniquely decompose multλ as multc ◦ a where c has norm one and a ∈ A,

namely by taking c = λ
|λ| and a to be scaling by |λ|.

Then, let k = R−1 ◦ multc. Since multc is just a rotation around the north-south axis, this
k is a composition of rotations, hence itself a rotation by the proposition. Furthermore, we have
arranged it so that

(k ◦ a ◦ n)(p, q, r) = (0, 1,∞).

Now only uniqueness needs to be checked. The only source of non-uniqueness above was the initial
choice of R. So suppose R′ is a different choice, leading to the quantities z′, w′, n′, λ′, a′, and c′,
following the above outline. Then R′ ◦ R−1 is a rotation fixing ∞, hence is a rotation around the

6



north-south axis, hence is multiplication by some complex number of norm one. Thus z′, w′ are
obtained from z, w by multiplication by a complex number of norm one. It follows that n′ = n and
a′ = a. Then since k ◦ a ◦ n = k′ ◦ a′ ◦ n′ we deduce as well that k = k′, giving the uniqueness.

To finish we prove the first theorem, that every oriented isometry of S2 is a rotation.

Proof. Let f be an oriented isometry of S2. Then f an automorphism of P1, so it has a unique
decomposition as f = k ◦ a ◦ n as in the previous theorem. Now, by the proposition, f will be a
rotation if and only if k−1 ◦ f = a ◦ n is a rotation. But it’s plain to see that a composition a ◦ n
can only be an isometry if it is the identity. (E.g., rigorously, one can calculate using the formula(

2

1 + |z|2

)2

· 〈−,−〉std

for the spherical metric on on the complex plane.)
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