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General recipe

Say you want to solve the vector differential equation

~y′(t) = P (t) ~y(t) + ~f(t),

with a chosen initial value ~y(0).

Step 1: Rescale the unknown function

Switch to a new unknown ~Y defined by the equation

~y(t) = Λ(t) ~Y (t).

We’ll choose the matrix Λ later.

Step 2: See which choices of Λ are good

Substitute into the original equation to rewrite it in terms of ~Y .

Λ′~Y + Λ~Y ′ = PΛ~Y + ~f

Rearranging, we get the equation

(Λ′ − PΛ)~Y + Λ~Y ′ = ~f.

If we choose a matrix Λ so that Λ′−PΛ = 0, the equation we’re trying to solve
simplifies to

Λ~Y ′ = ~f.

This equation is easy to solve, as long as Λ is invertible.

Step 3: Find a good Λ

To get an invertible matrix Λ with Λ′ − PΛ, find two linearly independent
solutions ~a and ~b of the homogeneous equation

~u′ = P~u.
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Then the matrix

Λ =

[
~a ~b

]
satisfies the equation

Λ′ = PΛ.

Step 4: Solve for ~Y

Now that we have Λ, we can treat the simplified differential equation

Λ~Y ′ = ~f

as a system of linear equations for the coordinates Y ′1 , Y
′
2 , Y

′
3 . . . . Solve it to

express Y ′1 , Y
′
2 , Y

′
3 . . . in terms of Λ and ~f . Integrate from the initial values

Y1(0), Y2(0), Y3(0) . . . to get Y1, Y2, Y3, . . ., and then use the definition ~y = Λ~Y
to recover the original unknown.

Example

Let’s try to find a solution of the second-order inhomogeneous equation

x′′ + 3x′ + 2x =
2

et + e−t
,

which we used as an example in class. Instead of fixing the initial conditions,
we’ll just accept any solution.

Rewrite as a vector differential equation

We can rewrite our second-order number-valued equation as the first-order
vector-valued differential equation[

x
x′

]′
=

[
0 1

−2 −3

]
︸ ︷︷ ︸

M

[
x
x′

]
︸ ︷︷ ︸

~y

+

[
0

2/(et + e−t)

]
︸ ︷︷ ︸

~f

.

Step 1: Rescale the unknown function

Switch to a new unknown ~Y defined by the equation

~y(t) = Λ(t) ~Y (t).

We’ll choose the matrix Λ later.
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Step 2: See which choices of Λ are good

If we choose a matrix Λ so that Λ′−MΛ = 0, the equation we’re trying to solve
simplifies to

Λ~Y ′ =

[
0

2/(et + e−t)

]
.

Step 3: Find a good Λ

To get an invertible matrix Λ with Λ′ − MΛ, we need to find two linearly
independent solutions of the homogeneous equation

~u′ = M~u.

Since the coefficient matrix M is constant, we can build solutions from its eigen-
vectors and eigenvalues in the usual way.

eigenvector eigenvalue solution

[
1

−1

]
-1 e−t

[
1

−1

]

[
1

−2

]
-2 e−2t

[
1

−2

]
Then we know the matrix

Λ =

[
e−t e−2t

−e−t −2e−2t

]
satisfies the equation

Λ′ = MΛ.

Step 4: Solve for ~Y

Now we can plug our Λ into the simplified equation

Λ~Y ′ =

[
0

2/(et + e−t)

]
.

Expressing ~Y in coordinates, we get[
e−t e−2t

−e−t −2e−2t

] [
Y ′1
Y ′2

]
=

[
0

2/(et + e−t)

]
.

We can treat this as a system of linear equations for Y ′1 and Y ′2 . Solve it to see
that

e−t Y ′1 = 2/(et + e−t)

−e−2t Y ′2 = 2/(et + e−t).
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Rearrange to isolate Y ′1 and Y ′2 .

Y ′1 =
2et

et + e−t

Y ′2 = − 2e2t

et + e−t

Let’s choose the antiderivatives

Y1 = ln(1 + e2t)

Y2 = 2[arctan(et) − et].

Plugging our Λ and our solution for ~Y into the definition

~y = Λ~Y ,

we see that

~y =

[
e−t e−2t

−e−t −2e−2t

] [
ln(1 + e2t)
2[arctan(et) − et]

]
.

We could get other solutions by adding constants to Y1 and Y2.
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