Variation of parameters for vector differential equations

Aaron Fenyes (afenyes@math.toronto.edu)

November 16, 2018

General recipe

Say you want to solve the vector differential equation

$$
\vec{y}^{\prime}(t)=P(t) \vec{y}(t)+\vec{f}(t),
$$

with a chosen initial value $\vec{y}(0)$.

Step 1: Rescale the unknown function

Switch to a new unknown \vec{Y} defined by the equation

$$
\vec{y}(t)=\Lambda(t) \vec{Y}(t) .
$$

We'll choose the matrix Λ later.

Step 2: See which choices of Λ are good

Substitute into the original equation to rewrite it in terms of \vec{Y}.

$$
\Lambda^{\prime} \vec{Y}+\Lambda \vec{Y}^{\prime}=P \Lambda \vec{Y}+\vec{f}
$$

Rearranging, we get the equation

$$
\left(\Lambda^{\prime}-P \Lambda\right) \vec{Y}+\Lambda \vec{Y}^{\prime}=\vec{f}
$$

If we choose a matrix Λ so that $\Lambda^{\prime}-P \Lambda=0$, the equation we're trying to solve simplifies to

$$
\Lambda \vec{Y}^{\prime}=\vec{f} .
$$

This equation is easy to solve, as long as Λ is invertible.

Step 3: Find a good Λ

To get an invertible matrix Λ with $\Lambda^{\prime}-P \Lambda$, find two linearly independent solutions \vec{a} and \vec{b} of the homogeneous equation

$$
\vec{u}^{\prime}=P \vec{u} .
$$

Then the matrix

$$
\Lambda=\left[\begin{array}{ll}
\vec{a} & \vec{b}
\end{array}\right]
$$

satisfies the equation

$$
\Lambda^{\prime}=P \Lambda
$$

Step 4: Solve for \vec{Y}

Now that we have Λ, we can treat the simplified differential equation

$$
\Lambda \vec{Y}^{\prime}=\vec{f}
$$

as a system of linear equations for the coordinates $Y_{1}^{\prime}, Y_{2}^{\prime}, Y_{3}^{\prime} \ldots$ Solve it to express $Y_{1}^{\prime}, Y_{2}^{\prime}, Y_{3}^{\prime} \ldots$ in terms of Λ and \vec{f}. Integrate from the initial values $Y_{1}(0), Y_{2}(0), Y_{3}(0) \ldots$ to get $Y_{1}, Y_{2}, Y_{3}, \ldots$, and then use the definition $\vec{y}=\Lambda \vec{Y}$ to recover the original unknown.

Example

Let's try to find a solution of the second-order inhomogeneous equation

$$
x^{\prime \prime}+3 x^{\prime}+2 x=\frac{2}{e^{t}+e^{-t}},
$$

which we used as an example in class. Instead of fixing the initial conditions, we'll just accept any solution.

Rewrite as a vector differential equation

We can rewrite our second-order number-valued equation as the first-order vector-valued differential equation

$$
\left[\begin{array}{l}
x \\
x^{\prime}
\end{array}\right]^{\prime}=\underbrace{\left[\begin{array}{rr}
0 & 1 \\
-2 & -3
\end{array}\right]}_{M} \underbrace{\left[\begin{array}{l}
x \\
x^{\prime}
\end{array}\right]}_{\vec{y}}+\underbrace{\left[\begin{array}{c}
0 \\
2 /\left(e^{t}+e^{-t}\right)
\end{array}\right]}_{\vec{f}}
$$

Step 1: Rescale the unknown function

Switch to a new unknown \vec{Y} defined by the equation

$$
\vec{y}(t)=\Lambda(t) \vec{Y}(t)
$$

We'll choose the matrix Λ later.

Step 2: See which choices of Λ are good

If we choose a matrix Λ so that $\Lambda^{\prime}-M \Lambda=0$, the equation we're trying to solve simplifies to

$$
\Lambda \vec{Y}^{\prime}=\left[\begin{array}{c}
0 \\
2 /\left(e^{t}+e^{-t}\right)
\end{array}\right]
$$

Step 3: Find a good Λ

To get an invertible matrix Λ with $\Lambda^{\prime}-M \Lambda$, we need to find two linearly independent solutions of the homogeneous equation

$$
\vec{u}^{\prime}=M \vec{u} .
$$

Since the coefficient matrix M is constant, we can build solutions from its eigenvectors and eigenvalues in the usual way.

$$
\begin{array}{lll}
\text { eigenvector } & \text { eigenvalue } & \text { solution } \\
\hline\left[\begin{array}{r}
1 \\
-1
\end{array}\right] & -1 & e^{-t}\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \\
\hline\left[\begin{array}{r}
1 \\
-2
\end{array}\right] & -2 & e^{-2 t}\left[\begin{array}{r}
1 \\
-2
\end{array}\right]
\end{array}
$$

Then we know the matrix

$$
\Lambda=\left[\begin{array}{rr}
e^{-t} & e^{-2 t} \\
-e^{-t} & -2 e^{-2 t}
\end{array}\right]
$$

satisfies the equation

$$
\Lambda^{\prime}=M \Lambda
$$

Step 4: Solve for \vec{Y}

Now we can plug our Λ into the simplified equation

$$
\Lambda \vec{Y}^{\prime}=\left[\begin{array}{c}
0 \\
2 /\left(e^{t}+e^{-t}\right)
\end{array}\right]
$$

Expressing \vec{Y} in coordinates, we get

$$
\left[\begin{array}{rr}
e^{-t} & e^{-2 t} \\
-e^{-t} & -2 e^{-2 t}
\end{array}\right]\left[\begin{array}{c}
Y_{1}^{\prime} \\
Y_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
0 \\
2 /\left(e^{t}+e^{-t}\right)
\end{array}\right]
$$

We can treat this as a system of linear equations for Y_{1}^{\prime} and Y_{2}^{\prime}. Solve it to see that

$$
\begin{aligned}
e^{-t} Y_{1}^{\prime} & =2 /\left(e^{t}+e^{-t}\right) \\
-e^{-2 t} Y_{2}^{\prime} & =2 /\left(e^{t}+e^{-t}\right)
\end{aligned}
$$

Rearrange to isolate Y_{1}^{\prime} and Y_{2}^{\prime}.

$$
\begin{aligned}
Y_{1}^{\prime} & =\frac{2 e^{t}}{e^{t}+e^{-t}} \\
Y_{2}^{\prime} & =-\frac{2 e^{2 t}}{e^{t}+e^{-t}}
\end{aligned}
$$

Let's choose the antiderivatives

$$
\begin{aligned}
& Y_{1}=\ln \left(1+e^{2 t}\right) \\
& Y_{2}=2\left[\arctan \left(e^{t}\right)-e^{t}\right]
\end{aligned}
$$

Plugging our Λ and our solution for \vec{Y} into the definition

$$
\vec{y}=\Lambda \vec{Y}
$$

we see that

$$
\vec{y}=\left[\begin{array}{rr}
e^{-t} & e^{-2 t} \\
-e^{-t} & -2 e^{-2 t}
\end{array}\right]\left[\begin{array}{l}
\ln \left(1+e^{2 t}\right) \\
2\left[\arctan \left(e^{t}\right)-e^{t}\right]
\end{array}\right]
$$

We could get other solutions by adding constants to Y_{1} and Y_{2}.

