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Abstract

Alternating multilinear maps, as the pointwise constituents of differ-
ential forms, play a fundamental role in differential geometry, while other
kinds of multilinear maps—for example, symmetric ones—hardly show up
at all. [1] In these notes, I’ll try to illuminate the geometric nature of al-
ternating maps by linking them to our intuitive concepts of volume and
area.

1 What is volume?

A parallelepiped is one of the simplest kinds of shapes. You can specify a k-
dimensional parallelepiped by giving k vectors, like this:

Figure 1: 0-, 1-, 2-, and 3-dimensional parallelepipeds.

I’ll call these k vectors the legs of the parallelepiped.
Any engineer can tell you that in an n-dimensional vector space, every n-

dimensional parallelepiped is associated with a non-negative real number, called
its volume. I don’t know exactly what this “volume” is, but I do know it has
the following properties:

1. If you stretch a parallelepiped by multiplying one of its legs by a scalar λ,
its volume gets multiplied by |λ|.
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2. If you shear a parallelepiped by adding a multiple of one of its legs to
another leg, its volume stays the same.

More formally, in an n-dimensional vector space V over an absolute value field1

K, the function ε : V n → [0,∞) that sends the legs of an n-parallelepiped to its
volume has the following properties:

1. For any λ ∈ K,
ε(. . . λv

i
. . .) = |λ|ε(. . . v

i
. . .).

2. For any λ ∈ K and i 6= j,

ε(. . . v
i
. . . w

j
. . .) = ε(. . . v + λw

i
. . . w

j
. . .).

As we’ll see in the next section, these properties are surprisingly strong for
their size. They’re strong enough, in fact, to determine the volume function ε
uniquely, up to multiplication by a constant. Moreover, they imply that ε is
very nice algebraically: in Section 4, we’ll find that ε is the absolute value of a
multilinear function, which is also unique up to scaling.

2 What are volume functions like?

Let’s say a volume function is any function that fits the description of the
function ε above. If you start playing with the definition, you’ll soon discover
some general features of volume functions.

Proposition 1. If ε is a volume function,

ε(. . . v
i
. . . v

j
. . .) = 0

for all i 6= j. In other words, ε is alternating.

Proof. This follows from the shear property and a blindingly obvious conse-
quence of the stretch property, which I’ll let you find for yourself.

Proposition 2. If ε is a volume function,

ε(. . . v
i
. . . w

j
. . .) = ε(. . . w

i
. . . v

j
. . .)

for all i 6= j. In other words, ε is symmetric.

1That is, a field equipped with a map | · | : K → [0,∞) such that

1. |α| = 0 if and only if α = 0.

2. |αβ| = |α||β|.
3. |α+ β| ≤ |α|+ |β|.
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Proof. Just keep pounding away with the shear property. At the end, you’ll
need the fact that in an absolute value field, |α| = | − α|.

More complicated manipulations uncover features of deeper linear algebraic
significance.

Proposition 3. Say ε is a volume function. If v1, . . . , vn are linearly dependent,
ε(v1, . . . , vn) = 0.

Proof. Say α1v1 + . . .+αnvn = 0, with at least one of the αi nonzero. Since ε is
symmetric, we can assume without loss of generality that α1 is nonzero. Then,

ε(v1, . . . , vn) = 1
|α1|ε(α1v1, v2, . . . , vn)

= 1
|α1|ε(α1v1 + α2v2 + . . .+ αnvn, v2, . . . , vn)

= 1
|α1|ε(0, v2, . . . , vn)

= 0.

The next feature—a partial converse of Proposition 3—depends crucially on
the fact that volumes are only defined for parallelepipeds of the same dimension
as V .

Lemma 1. Say ε is a volume function. If there are linearly independent vectors
v1, . . . , vn for which ε(v1, . . . , vn) = 0, then ε = 0.

Proof. Suppose the proposition holds when n = m, for somem ≥ 1, and consider
the case n = m+ 1.

Suppose there are linearly independent vectors v1, . . . , vm+1 ∈ V for which
ε(v1, . . . , vm+1) = 0. Pick any vectors w1, . . . , wm+1 ∈ V . Our goal is to show
that ε(w1, . . . , wm+1) = 0. If w1, . . . , wm+1 are linearly dependent, this follows
immediately from Proposition 3, so we only need to consider the case where
w1, . . . , wm+1 are linearly independent.

Since n = m + 1 is the dimension of V , the vectors v1, . . . , vm+1 form a
basis for V . Linear independence guarantees that wm+1 6= 0, so at least one
component of wm+1 in this basis is nonzero. Since ε is symmetric, we can reorder
the vectors v1, . . . , vm+1 however we like and still have ε(v1, . . . , vm+1) = 0, so
we might as well choose an order for which the vm+1 component of wm+1 is
nonzero.

Let U be the subspace of V spanned by v1, . . . , vm. Since the vm+1 compo-
nent of wm+1 is nonzero, we can find α1, . . . , αm such that w̃i = wi+αiwm+1 lies
in U for all i ∈ {1 . . .m}. Since w1, . . . , wm+1 are linearly independent, so are
w̃1, . . . , w̃m. As a result, w̃1, . . . , w̃m span U . We can therefore find β1, . . . , βm
such that wm+1 + β1w̃1 + . . .+ βmw̃m = λvm+1.

By the shear property,

ε(w1, . . . , wm, wm+1) = ε(w̃1, . . . , w̃m, wm+1)

= ε(w̃1, . . . , w̃m, λvm+1)

= |λ|ε(w̃1, . . . , w̃m, vm+1).
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Define a function η : Um → K by η(x1, . . . , xm) = ε(x1, . . . , xm, vm+1). Because
m ≥ 1, it’s simple to verify that η is a volume function on U . Observe that
v1, . . . , vm are linearly independent vectors for which η(v1, . . . , vm) = 0. Since
we’re assuming the proposition holds in dimension m, it follows that η = 0,
which means

ε(w1, . . . , wm, wm+1) = |λ|η(w̃1, . . . , w̃m)

= 0,

which is what we wanted to show.
We have now proven that if the proposition holds when n = m, for some

m ≥ 1, it also holds when n = m + 1. When n = 1, the proposition follows
easily from the stretch property, so the proposition holds for all n ≥ 1.

Since an empty set of vectors is linearly independent, the proposition also
holds for n = 0. Its proof in this case is left as a somewhat mind-bending
exercise for the reader. (There’s actually no need to consider the n = 0 case
separately, but doing so allows a much clearer treatment of the other cases.)

With Lemma 1 in hand, the main result of this section follows by a clever
flick of the wrist.

Theorem 1. If ε and η are volume functions, one is a constant multiple of the
other.

Proof. The theorem is obviously true if ε = 0, so we only have to consider the
case ε 6= 0. Choose a basis v1, . . . , vn for V . Because ε 6= 0, Lemma 1 guarantees
that ε(v1, . . . , vn) 6= 0, so

C =
η(v1, . . . , vn)

ε(v1, . . . , vn)

is well-defined.
Let δ : V n → [0,∞) be the function

δ(w1, . . . , wn) = |η(w1, . . . , wn)− Cε(w1, . . . , wn)|R,

where | · |R is the standard absolute value on R. It’s not hard to show that δ is a
volume function. By construction, δ(v1, . . . , vn) = 0, so δ = 0 by Lemma 1.

3 Where does volume come from?

The notion of volume is an essential part of our everyday experience—what one
might call the real world. A volume function, however, can be defined on a
vector space over any absolute value field K. The absolute value serves as an
intermediary between the K world and the real world, converting the K scale
factor λ into the real scale factor |λ| in the statement of the stretch property.
Metaphorically, a volume function looks something like this:
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Figure 2: A volume function as a flower.

Like a flower, a volume function has part of its structure hidden underground,
in the K world. In the next section, we’ll explore volume’s K-valued roots.

4 Pre-volume functions

A volume function associates every n-parallelepiped in an n-dimensional vec-
tor space with a non-negative real number. Let’s try associating every n-
parallelepiped with a scalar instead. We’ll call our association a pre-volume
function if it has the following properties:

1. If you stretch a parallelepiped by multiplying one of its legs by a scalar λ,
its pre-volume gets multiplied by λ.

2. If you shear a parallelepiped by adding a multiple of one of its legs to
another leg, its pre-volume stays the same.

More formally, a pre-volume on an n-dimensional vector space V over a field K
is a function E : V n → K with the following properties:

1. For any λ ∈ K,
E(. . . λv

i
. . .) = λE(. . . v

i
. . .).

2. For any λ ∈ K and i 6= j,

E(. . . v
i
. . . w

j
. . .) = E(. . . v + λw

i
. . . w

j
. . .).

It’s immediately apparent that. . .

Proposition 4. If K is an absolute value field, the absolute value of a pre-
volume function is a volume function.
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We’ll soon learn that the converse is also true: every volume function is the
absolute value of a pre-volume function.

Pre-volume functions act a lot like volume functions. The following propo-
sitions, for example, are almost identical to our first three propositions about
volume functions, and they’re proven in essentially the same way.

Proposition 5. If E is a pre-volume function,

E(. . . v
i
. . . v

j
. . .) = 0

for all i 6= j. In other words, E is alternating.

Proposition 6. If E is a pre-volume function,

E(. . . v
i
. . . w

j
. . .) = −E(. . . w

i
. . . v

j
. . .)

for all i 6= j. In other words, E is skew-symmetric.

Proposition 7. Say E is a pre-volume function. If v1, . . . , vn are linearly
dependent, E(v1, . . . , vn) = 0.

For volume functions, our next step was to prove a partial converse of the
third proposition, using the fact that volumes are only defined for parallelepipeds
of the same dimension as V . For pre-volume functions, we can get a much
stronger result.

Lemma 2. Every pre-volume function is multilinear.

Proof. Say E : V n → K is a pre-volume. Our goal is to show that E has the
following properties:

1. E(. . . λv
i
. . .) = λE(. . . v

i
. . .)

2. E(. . . v + w
i

. . .) = E(. . . v
i
. . .) + E(. . . w

i
. . .)

The first property is just the stretch property, so it holds by definition. Since
E is skew-symmetric, we only have to prove the second property for i = 1.

Let

A = E(u, v2, . . . , vn)

B = E(ũ, v2, . . . , vn)

C = E(u+ ũ, v2, . . . , vn).

We want to show that A + B = C. If v2, . . . , vn are linearly dependent, this
follows immediately from Proposition 7, so we only need to consider the case
where v2, . . . , vn are linearly independent.

If u lies in the subspace spanned by v2, . . . , vn, the shear property can be
used to show that A = 0 and C = B, and the desired result follows. Hence, we
only need to consider the case where u, v2, . . . , vn are linearly independent.
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Since n is the dimension of V , the vectors u, v2, . . . , vn span V . That means
we can write ũ as λu + x, where x lies in the subspace spanned by v2, . . . , vn.
Notice that u+ ũ = (λ+ 1)u+ x. By the shear property,

B = E(λu, v2, . . . , vn)

C = E((λ+ 1)u, v2, . . . , vn),

so the stretch property gives B = λA and C = (λ + 1)A. The desired result
follows.

We now have an extremely useful characterization of pre-volume functions.

Theorem 2. A function V n → K is a pre-volume if and only if it’s multilinear
and alternating.

Proof. The “only if” direction is given by Proposition 5 and Lemma 2, and the
“if” direction is a straightforward exercise in definition-chasing.

This characterization makes it easy to prove that pre-volume functions al-
ways exist, and are unique up to scaling. In fact. . .

Corollary 1. The pre-volume functions on V form a one-dimensional vector
space.

Proof. The alternating multilinear functions V n → K form a vector space under
the usual addition and scalar multiplication of functions. If v1, . . . , vn is a basis
for V , an alternating multilinear function E : V n → K is completely determined
by the value E(v1, . . . , vn), and any choice of E(v1, . . . , vn) gives an alternating
multilinear function. Hence, the space of alternating multilinear functions V n →
K is one-dimensional.

Together, the existence of pre-volume functions and the uniqueness of volume
functions imply the converse of Proposition 4.

Theorem 3. Every volume function is the absolute value of a pre-volume func-
tion.

Proof. Say K is an absolute value field, and ε is a volume function on V . Corol-
lary 1 guarantees the existence of a nonzero pre-volume function H on V , and
Proposition 4 tells us that the absolute value η of H is a volume function. By
Theorem 1, one of the volume functions ε and η is a multiple of the other. Since
η is nonzero, it follows that ε is a multiple of η.

Using this result, we can turn Theorem 2 into a nice characterization of
volume functions.

Corollary 2. If K is an absolute value field, a function V n → [0,∞) is a
volume function if and only if it’s the absolute value of an alternating multilinear
function.
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5 What is area?

Imagine you wake up one morning to find a two-dimensional parallelepiped
floating in the air outside your window. Naturally, you’d like to know more
about it. Your first thought is to measure its volume using a volume function,
but of course that doesn’t make sense: in a three-dimensional space, volumes are
only defined for three-dimensional parallelepipeds. If you could somehow wrestle
the parallelepiped to the ground, you could pin it flat against a two-dimensional
board and measure its volume there. Unfortunately, the parallelepiped is far
out of reach.

A few minutes of furious pondering bring you no closer to satisfying your
curiosity, so you decide to forget about the apparition altogether. As you’re leav-
ing for work, however, you happen to glance up and notice that the morning
sun is casting a shadow of the parallelepiped against the wall of your building.
Now there’s an idea! The shadow is a two-dimensional parallelepiped in a two-
dimensional space, so you can measure its volume with a volume function. As
the sun moves across the sky, it’ll illuminate the parallelepiped from other di-
rections and cast its shadow against other surfaces. You can use these multiple
perspectives to build up a more complete picture of your mysterious visitor.

The story I’ve just told may not hold up under philosophical scrutiny, but
it suggests a reasonably natural way of generalizing the notion of volume to
lower-dimensional parallelepipeds. This generalization, which I’ll call area, will
be the subject of the next section.

6 Area functions

Let’s say a k-area function on a vector space V is a function α : V k → [0,∞) of
the form

α(v1, . . . , vk) = ε(Lv1, . . . , Lvk),

where L : V → W is a linear map, W is a k-dimensional vector space, and
ε : W k → [0,∞) is a volume function. (For this to make sense, the base field K
has to be an absolute value field.) Similarly, we’ll define a k-pre-area function
on V as a function A : V k → K of the form

A(v1, . . . , vk) = E(Lv1, . . . , Lvk),

where L and W are as before, and E : W k → K is a pre-volume function.
If n is the dimension of V , an n-area is the same thing as a volume, and an n-

pre-area is the same thing as a pre-volume. Hence, area really is a generalization
of volume.

In Section 4 (Theorem 2), we used the notion of pre-volume to characterize
the alternating multilinear functions V n → K. Now, more generally, we can
use the notion of pre-area to characterize the alternating multilinear functions
V k → K for any k.
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Theorem 4. A map V k → K is multilinear and alternating if and only if it
can be written as a linear combination of k-pre-areas.

Proof. The “if” direction is easy. We’ll start the “only if” direction by pick-
ing a basis v1, . . . , vn for V . For each function I : {1 . . . k} → {1 . . . n}, define
θI : V k → K as the unique multilinear function with the property that

θI(vJ(1), . . . , vJ(k)) =

{
1 J = I

0 J 6= I

for all J : {1 . . . k} → {1 . . . n}. For each strictly increasing function I : {1 . . . k} →
{1 . . . n}, define

χI(w1, . . . , wk) =
∑
σ

sgn(σ)θI(wσ(1), . . . , wσ(k)),

where σ runs over all the permutations of {1 . . . k}.
Any multilinear function can be written as a linear combination of the θI .

Since every alternating multilinear function is skew-symmetric, any alternating
multilinear function can be written as a linear combination of the χI .

It’s apparent from the definition that each χI is alternating and skew-
symmetric when its arguments are restricted to the set of basis vectors. A
short calculation then proves that χI is alternating for all arguments. It follows
that each χI is a k-pre-area, because χI is a pre-volume when its arguments are
restricted to the subspace spanned by vI(1), . . . , vI(k).

This result links alternating multilinear maps to the geometric concept of
area, using the notion of pre-area as an intermediary. In other words, it does
exactly what I set out to do in the abstract of these notes. Unfortunately, the
connection I’ve established is a lot more subtle than I’d hoped it would be.
The subtlety is that, although Proposition 4 and Theorem 3 let us pass from
pre-areas to areas and back in a straightforward way, they don’t tell us what
to make of a linear combination of pre-areas. In the case of n-pre-areas, the
point is moot, because a linear combination of n-pre-areas is itself an n-pre-
area (Corollary 1). This fact gives us a direct connection between n-linear maps
and n-areas, enshrined in Corollary 2. For general k-pre-areas, however, the
subtlety remains; until it can be resolved, the story told in these notes will be
incomplete.
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