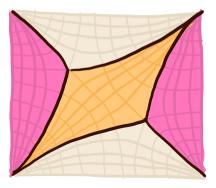
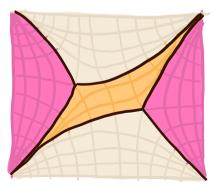
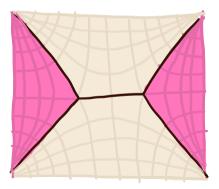
A bumpy ride through the space of holomorphic quadratic differentials

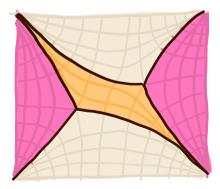
Aaron Fenyes (University of Toronto)

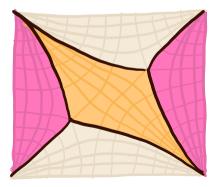
Holomorphic Differentials in Mathematics and Physics Simons Center, February 2019



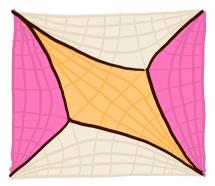


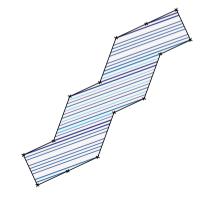




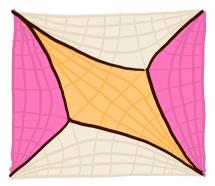


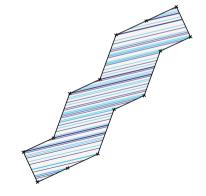
When you deform a holomorphic quadratic differential on a punctured surface, its large-scale features stay constant, except for occasional jumps.



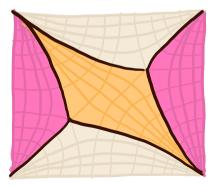


When you deform a holomorphic quadratic differential on a punctured surface, its large-scale features stay constant, except for occasional jumps.

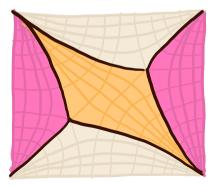


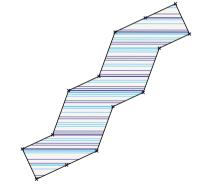


When you deform a holomorphic quadratic differential on a punctured surface, its large-scale features stay constant, except for occasional jumps.

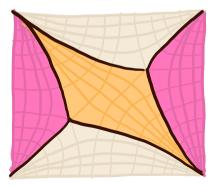


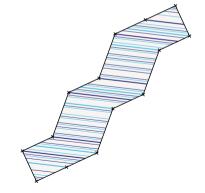
When you deform a holomorphic quadratic differential on a punctured surface, its large-scale features stay constant, except for occasional jumps.



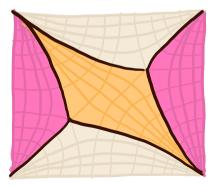


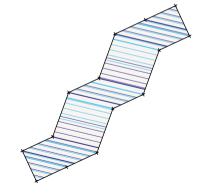
When you deform a holomorphic quadratic differential on a punctured surface, its large-scale features stay constant, except for occasional jumps.



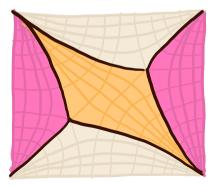


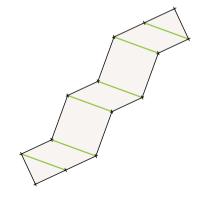
When you deform a holomorphic quadratic differential on a punctured surface, its large-scale features stay constant, except for occasional jumps.



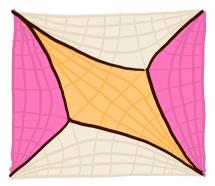


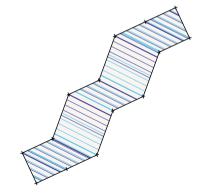
When you deform a holomorphic quadratic differential on a punctured surface, its large-scale features stay constant, except for occasional jumps.



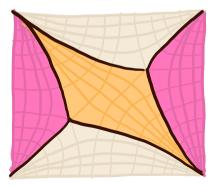


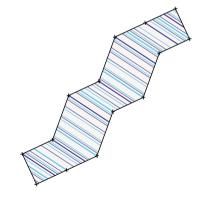
When you deform a holomorphic quadratic differential on a punctured surface, its large-scale features stay constant, except for occasional jumps.



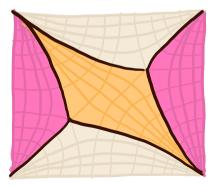


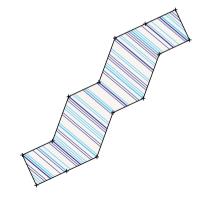
When you deform a holomorphic quadratic differential on a punctured surface, its large-scale features stay constant, except for occasional jumps.



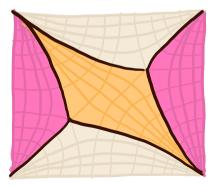


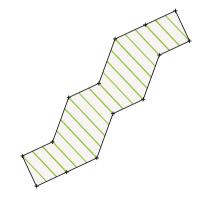
When you deform a holomorphic quadratic differential on a punctured surface, its large-scale features stay constant, except for occasional jumps.



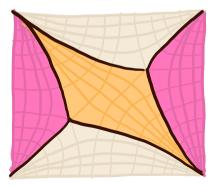


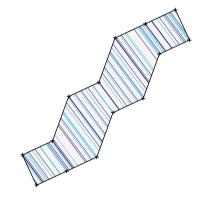
When you deform a holomorphic quadratic differential on a punctured surface, its large-scale features stay constant, except for occasional jumps.



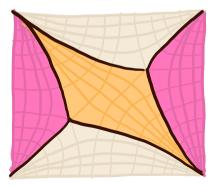


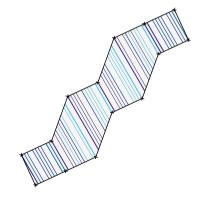
When you deform a holomorphic quadratic differential on a punctured surface, its large-scale features stay constant, except for occasional jumps.





When you deform a holomorphic quadratic differential on a punctured surface, its large-scale features stay constant, except for occasional jumps.

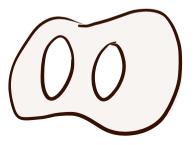




Take a topological surface, with a number ≥ 2 at each puncture.

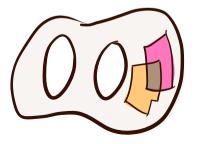
A *half-translation structure* on the surface consists of:

- A complex structure.
- A holomorphic quadratic differential φ with a pole of the given order at each puncture.



Holomorphic coordinates *s* with $ds^2 = \phi$ form an atlas encoding the half-translation structure.

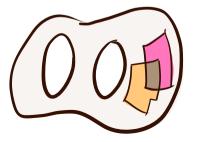
The transition maps are translations and 180° flips.

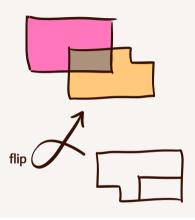


complex plane

Holomorphic coordinates *s* with $ds^2 = \phi$ form an atlas encoding the half-translation structure.

The transition maps are translations and 180° flips.

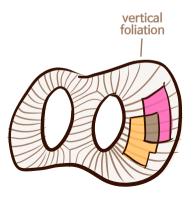


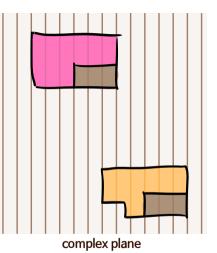


complex plane

The foliations of the charts by vertical lines fit together into a foliation of the surface.

Horizontal distance gives a local measure on swaths of leaves.

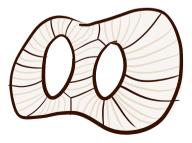


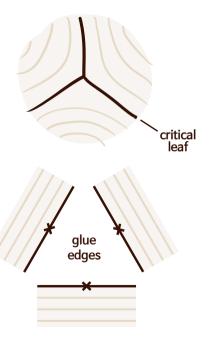


Each zero of ϕ becomes a *singularity* of the atlas.

The vertical leaves that hit the singularity are called *critical*.

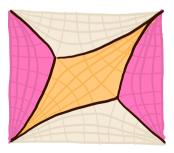
Cutting along them splits a neighborhood of the singularity into half-planes.



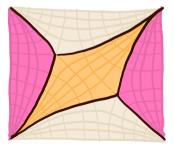


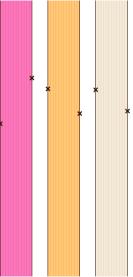
Let's keep cutting along the critical leaves.

For a generic half-translation structure, each end of each vertical leaf falls into a puncture or hits a singularity.



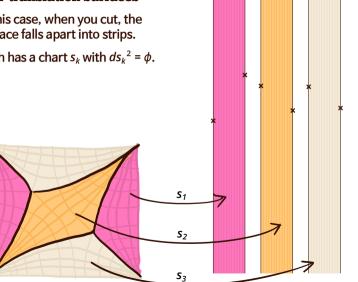
In this case, when you cut, the surface falls apart into strips.





In this case, when you cut, the surface falls apart into strips.

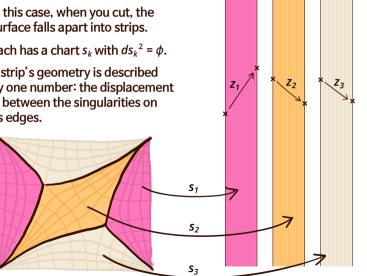
Each has a chart s_k with $ds_k^2 = \phi$.



In this case, when you cut, the surface falls apart into strips.

Each has a chart s_{μ} with $ds_{\mu}^2 = \phi$.

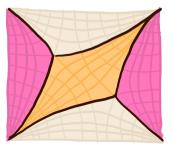
A strip's geometry is described by one number: the displacement z_k between the singularities on its edges.

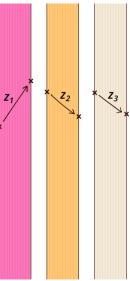


We can reconstruct the halftranslation structure from:

The displacements

 $z_1, \ldots, z_n \in (H_{right})^n$.



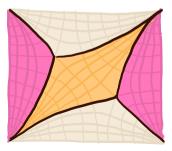


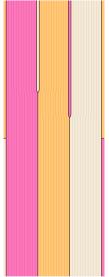
We can reconstruct the halftranslation structure from:

The displacements

 $z_1, \, ..., \, z_n \in (H_{right})^n.$

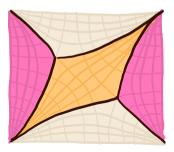
• The combinatorial data of how the strips are glued along their edges.

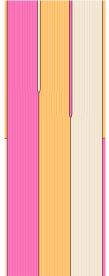




So, the space of half-translation structures is made of cells shaped like $(H_{right})^n$.

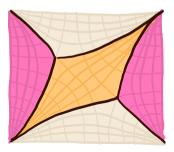
They meet along their facets, where strips shrink to zero width.

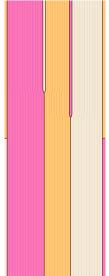




So, the space of half-translation structures is made of cells shaped like $(H_{right})^n$.

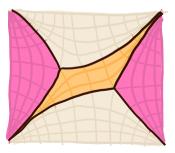
They meet along their facets, where strips shrink to zero width.

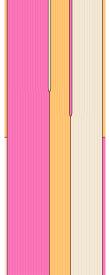




So, the space of half-translation structures is made of cells shaped like $(H_{right})^n$.

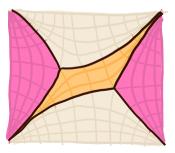
They meet along their facets, where strips shrink to zero width.

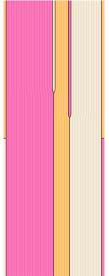




So, the space of half-translation structures is made of cells shaped like $(H_{right})^n$.

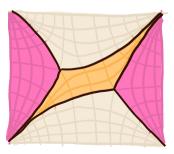
They meet along their facets, where strips shrink to zero width.

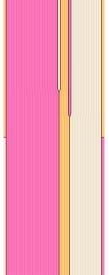




So, the space of half-translation structures is made of cells shaped like $(H_{right})^n$.

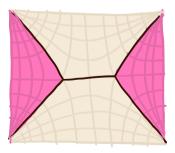
They meet along their facets, where strips shrink to zero width.

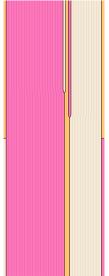




So, the space of half-translation structures is made of cells shaped like $(H_{right})^n$.

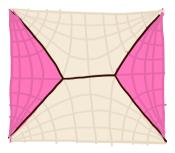
They meet along their facets, where strips shrink to zero width.

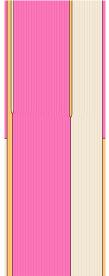




So, the space of half-translation structures is made of cells shaped like $(H_{right})^n$.

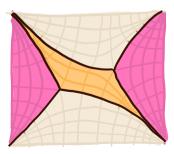
They meet along their facets, where strips shrink to zero width.

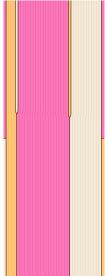




So, the space of half-translation structures is made of cells shaped like $(H_{right})^n$.

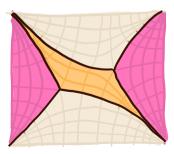
They meet along their facets, where strips shrink to zero width.

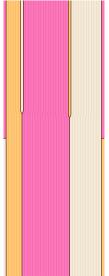




So, the space of half-translation structures is made of cells shaped like $(H_{right})^n$.

They meet along their facets, where strips shrink to zero width.

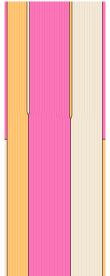




So, the space of half-translation structures is made of cells shaped like $(H_{right})^n$.

They meet along their facets, where strips shrink to zero width.

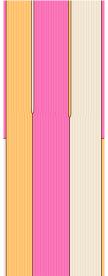




So, the space of half-translation structures is made of cells shaped like $(H_{right})^n$.

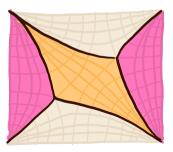
They meet along their facets, where strips shrink to zero width.

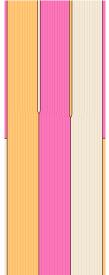




So, the space of half-translation structures is made of cells shaped like $(H_{right})^n$.

They meet along their facets, where strips shrink to zero width.



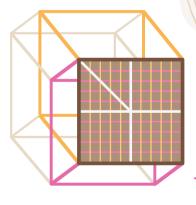


The space of punctured half-translation structures

Example: two 4d cells meeting at a 3d face.

The space of punctured half-translation structures

Example: two 4d cells meeting at a 3d face. Gluing is piecewise linear.



The space of punctured half-translation structures

Example: two 4d cells meeting at a 3d face. Gluing is piecewise linear.

