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Quadratic differentials
as geometric structures

Take a topological surface, with
a number ≥ 2 at each puncture.

•A complex structure.

•A holomorphic quadratic
    differential ϕ with a pole of the
    given order at each puncture.

A half-translation structure on
the surface consists of:
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complex plane

Holomorphic coordinates s with
ds2 = ϕ form an atlas encoding
the half-translation structure.

The transition maps are
translations and 180° flips.
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Quadratic differentials
as geometric structures

complex plane

vertical
foliation

The foliations of the charts by
vertical lines fit together into
a foliation of the surface.

Horizontal distance gives a local
measure on swaths of leaves.



Quadratic differentials
as geometric structures

glue
edges

critical
leaf

Each zero of ϕ becomes a
singularity of the atlas.

The vertical leaves that hit the
singularity are called critical.

Cutting along them splits a
neighborhood of the
singularity into half-planes.



Combinatorics of punctured
half-translation surfaces

Let’s keep cutting along the
critical leaves.

For a generic half-translation
structure, each end of each
vertical leaf falls into a
puncture or hits a singularity.
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Each has a chart sk with dsk2 = ϕ.

In this case, when you cut, the
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z1 z2 z3

s1

s2

s3

Each has a chart sk with dsk2 = ϕ.

A strip’s geometry is described
by one number: the displacement
zk between the singularities on
its edges.

In this case, when you cut, the
surface falls apart into strips.



Combinatorics of punctured
half-translation surfaces

z1 z2 z3

We can reconstruct the half-
translation structure from:

•The displacements

        z1, ..., zn ∈ (Hright)n.
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half-translation surfaces

•The combinatorial data of
    how the strips are glued
    along their edges.

We can reconstruct the half-
translation structure from:

•The displacements

        z1, ..., zn ∈ (Hright)n.



Combinatorics of punctured
half-translation surfaces

So, the space of half-translation
structures is made of cells
shaped like (Hright)n.

They meet along their facets,
where strips shrink to zero width.

Here's a path from one cell
to another.
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Example: two 4d cells
meeting at a 3d face.

The space of punctured
half-translation structures
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