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The Farey numbers of order Q are the fractions between zero and one whose
denominators are less than or equal to Q. You can think of these numbers as the
intersection of the interval [0, 1] with the set

Q
T = 1
JQ - U qZ’
q=1
where %Z is shorthand for {5 | p €.
An obvious analogue of % in R" is

n Q 1—n
T = 1
Fo= qL:JI qZ .

Look at the plots of 19@ and 2@@ in Figures 1 and 2. What’s up with those empty
regions? It turns out that in "%, if you pick a lattice point a € Z" and a fraction r/s
in lowest terms, the hyperplane

a-x=rls

is sandwiched between empty regions of width slightly greater than

gcf(a)
Qslal’

with “slightly greater than” going to zero as Q goes to infinity. Here, - is the standard
inner product on R”, gcf(a) is shorthand for gcf(ay, ..., an), and | all = va- a.

The observation above is a fairly straightforward consequence of the following
two facts.

Fact 1. Ifyou project "% onto the line generated by a € Z", which is isometric to R,
you end up with
cf(a
get(a) | Z,
lal

Figure 1: A plot of 12,6 on the interval [—1, 1].
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Figure 2: A plot of 2%, in the box [-1,1]2.




Fact 2. Ifthe fraction r/s is in lowest terms, the distances between r /s and its neigh-
bors in \Fq are equal o or slightly greater than 1/Qs, with “slightly greater than”
going to zero as Q goes to infinity.

Proof of Fact 1. Since

Q
n _ 1—n
Fo=U 572"
q=1

the projection of "% onto the line generated by a € Z" is

where a-Z" is shorthand for
{a-z|lzeZ"Y={a1z1 +...+anzn | 21,...,2n € Z}.
By Bézout’s identity,
{aiz1+...+anznlzy,...,2n € 2} ={gcf(ay,...,an)z | z € Z};

in shorthand,
a-7" = gcf(a)Z.

Therefore, the projection of "% onto the line generated by a € Z" is

Lcj Lgﬁi(ﬁt) 7= gcf(a) Lcj 1= gcf(a)
=17 lall = 7 lal

O

Proof of Fact 2. Since the elements of ' are rational numbers, we can put them
in increasing order, and we can also write them as fractions in lowest terms. In this
proof, I'll think of the ' not as sets of rational numbers, but as increasing se-
quences of fractions in lowest terms.

We know from the work of Charles Haros, and many others who followed him,!
that you can turn 1%_; into 1%, by following a simple rule:

If you see two adjacent fractions { and 5 whose denominators add up

to Q, insert their mediant ZTJr; between them.

Starting with 1%}, you can generate '.%,,1%3,1%, ... by using this rule over and over.
If the fraction r/s is in lowest terms, it first appears in .%; as the mediant of two
fractions a/b and c/d, with

a r ¢

—<—-<—.
b s d

1For details, I recommend the excellent book A Motif of Mathematics, by Scott Guthery.



The fraction a/b is the lower neighbor of r/s until you reach 1%, ;, where a new
fraction appears between a/b and r/s:

a+r
b+s’

This fraction remains the lower neighbor of /s until it is displaced, in *%},,,;, by

a+2r
b+2s’

In general, the lower neighbor of r/s in L s ms IS

a+mr
b+ms’

Similarly, the upper neighbor of r/sin %, 4 is

nr+c¢

ns+d’

Because a/b is the lower neighbor of r/s in one of the %, we have the identity
rb—sa =1, which you can easily prove by induction. Hence, the distance between
r/s and its lower neighbor in L s 1S

r a+mr rb—sa 1

s b+ms sb+ms) sb+ms)

Similarly, from the identity cs — dr, we find that the distance between r/s and its
upper neighbor in L% ,, 4 is

nr+c r _ 1
ns+d s (ns+d)s’

Now, for any Q = s, pick the largest m so that b+ ms < Q, and the largest n so
that ns + d < Q. The distances between r/s and its neighbors in 1% are

1 and 1
s(b+ ms) (ns+d)s’

respectively. Both distances are equal to or slightly greater than 1/Qs, and as Q goes
to infinity, b+ ms and ns+ d approach Q. O



