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The Farey numbers of order Q are the fractions between zero and one whose
denominators are less than or equal to Q. You can think of these numbers as the
intersection of the interval [0,1] with the set

FQ =
Q⋃

q=1

1
qZ,

where 1
qZ is shorthand for { p

q | p ∈Z}.

An obvious analogue of FQ in Rn is

nFQ =
Q⋃

q=1

1
qZ

n .

Look at the plots of 1FQ and 2FQ in Figures 1 and 2. What’s up with those empty
regions? It turns out that in nFQ , if you pick a lattice point a ∈Zn and a fraction r /s
in lowest terms, the hyperplane

a · x = r /s

is sandwiched between empty regions of width slightly greater than

gcf(a)

Qs‖a‖ ,

with “slightly greater than” going to zero as Q goes to infinity. Here, · is the standard
inner product on Rn , gcf(a) is shorthand for gcf(a1, . . . , an), and ‖a‖ =p

a ·a.
The observation above is a fairly straightforward consequence of the following

two facts.

Fact 1. If you project nFQ onto the line generated by a ∈Zn , which is isometric to R,
you end up with

gcf(a)

‖a‖
1FQ .

Figure 1: A plot of 1F16 on the interval [−1,1].
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Figure 2: A plot of 2F40 in the box [−1,1]2.
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Fact 2. If the fraction r /s is in lowest terms, the distances between r /s and its neigh-
bors in 1FQ are equal to or slightly greater than 1/Qs, with “slightly greater than”
going to zero as Q goes to infinity.

Proof of Fact 1. Since

nFQ =
Q⋃

q=1

1
qZ

n ,

the projection of nFQ onto the line generated by a ∈Zn is

Q⋃
q=1

1
q

a
‖a‖ ·Zn ,

where a ·Zn is shorthand for

{a · z | z ∈Zn} = {a1z1 + . . .+an zn | z1, . . . , zn ∈Z}.

By Bézout’s identity,

{a1z1 + . . .+an zn | z1, . . . , zn ∈Z} = {gcf(a1, . . . , an)z | z ∈Z};

in shorthand,
a ·Zn = gcf(a)Z.

Therefore, the projection of nFQ onto the line generated by a ∈Zn is

Q⋃
q=1

1
q

gcf(a)
‖a‖ Z= gcf(a)

‖a‖
Q⋃

q=1

1
qZ= gcf(a)

‖a‖
1FQ .

Proof of Fact 2. Since the elements of 1FQ are rational numbers, we can put them
in increasing order, and we can also write them as fractions in lowest terms. In this
proof, I’ll think of the 1FQ not as sets of rational numbers, but as increasing se-
quences of fractions in lowest terms.

We know from the work of Charles Haros, and many others who followed him,1

that you can turn 1FQ−1 into 1FQ by following a simple rule:

If you see two adjacent fractions a
b and c

d whose denominators add up
to Q, insert their mediant a+c

b+d between them.

Starting with 1F1, you can generate 1F2, 1F3, 1F4 . . . by using this rule over and over.
If the fraction r /s is in lowest terms, it first appears in 1Fs as the mediant of two
fractions a/b and c/d , with

a

b
< r

s
< c

d
.

1For details, I recommend the excellent book A Motif of Mathematics, by Scott Guthery.
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The fraction a/b is the lower neighbor of r /s until you reach 1Fb+s , where a new
fraction appears between a/b and r /s:

a + r

b + s
.

This fraction remains the lower neighbor of r /s until it is displaced, in 1Fb+2s , by

a +2r

b +2s
.

In general, the lower neighbor of r /s in 1Fb+ms is

a +mr

b +ms
.

Similarly, the upper neighbor of r /s in 1Fns+d is

nr + c

ns +d
.

Because a/b is the lower neighbor of r /s in one of the 1FQ , we have the identity
r b − sa = 1, which you can easily prove by induction. Hence, the distance between
r /s and its lower neighbor in 1Fb+ms is

r

s
− a +mr

b +ms
= r b − sa

s(b +ms)
= 1

s(b +ms)
.

Similarly, from the identity cs −dr , we find that the distance between r /s and its
upper neighbor in 1Fns+d is

nr + c

ns +d
− r

s
= 1

(ns +d)s
.

Now, for any Q ≥ s, pick the largest m so that b +ms ≤ Q, and the largest n so
that ns +d ≤Q. The distances between r /s and its neighbors in 1FQ are

1

s(b +ms)
and

1

(ns +d)s
,

respectively. Both distances are equal to or slightly greater than 1/Qs, and as Q goes
to infinity, b +ms and ns +d approach Q.
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