Farey Sets in \mathbb{R}^n

Aaron Fenyes

September 25, 2013

The *Farey numbers* of order Q are the fractions between zero and one whose denominators are less than or equal to Q. You can think of these numbers as the intersection of the interval [0, 1] with the set

$$\mathscr{F}_Q = \bigcup_{q=1}^Q \frac{1}{q} \mathbb{Z},$$

where $\frac{1}{q}\mathbb{Z}$ is shorthand for $\{\frac{p}{q} \mid p \in \mathbb{Z}\}$. An obvious analogue of \mathcal{F}_Q in \mathbb{R}^n is

$${}^{n}\mathscr{F}_{Q} = \bigcup_{q=1}^{Q} \frac{1}{q} \mathbb{Z}^{n}.$$

Look at the plots of ${}^{1}\mathscr{F}_{Q}$ and ${}^{2}\mathscr{F}_{Q}$ in Figures 1 and 2. What's up with those empty regions? It turns out that in ${}^{n}\mathcal{F}_{O}$, if you pick a lattice point $a \in \mathbb{Z}^{n}$ and a fraction r/sin lowest terms, the hyperplane

$$a \cdot x = r/s$$

is sandwiched between empty regions of width slightly greater than

$$\frac{\operatorname{gcf}(a)}{\operatorname{Qs}\|a\|},$$

with "slightly greater than" going to zero as Q goes to infinity. Here, \cdot is the standard inner product on \mathbb{R}^n , gcf(*a*) is shorthand for gcf(a_1, \ldots, a_n), and $||a|| = \sqrt{a \cdot a}$.

The observation above is a fairly straightforward consequence of the following two facts.

Fact 1. If you project ${}^{n}\mathscr{F}_{Q}$ onto the line generated by $a \in \mathbb{Z}^{n}$, which is isometric to \mathbb{R} , you end up with

$$\frac{\operatorname{gcf}(a)}{\|a\|}\,{}^{1}\mathscr{F}_{Q}.$$

Figure 1: A plot of ${}^{1}\mathscr{F}_{16}$ on the interval [-1, 1].

Figure 2: A plot of ${}^2\mathcal{F}_{40}$ in the box $[-1,1]^2$.

Fact 2. If the fraction r/s is in lowest terms, the distances between r/s and its neighbors in ${}^{1}\mathscr{F}_{Q}$ are equal to or slightly greater than 1/Qs, with "slightly greater than" going to zero as Q goes to infinity.

Proof of Fact 1. Since

$${}^{n}\mathscr{F}_{Q} = \bigcup_{q=1}^{Q} \frac{1}{q} \mathbb{Z}^{n},$$

the projection of ${}^{n}\mathscr{F}_{O}$ onto the line generated by $a \in \mathbb{Z}^{n}$ is

$$\bigcup_{q=1}^{Q} \frac{1}{q} \frac{a}{\|a\|} \cdot \mathbb{Z}^{n},$$

where $a \cdot \mathbb{Z}^n$ is shorthand for

$$\{a \cdot z \mid z \in \mathbb{Z}^n\} = \{a_1 z_1 + \ldots + a_n z_n \mid z_1, \ldots, z_n \in \mathbb{Z}\}.$$

By Bézout's identity,

$$\{a_1z_1 + \ldots + a_nz_n \mid z_1, \ldots, z_n \in \mathbb{Z}\} = \{gcf(a_1, \ldots, a_n)z \mid z \in \mathbb{Z}\};$$

in shorthand,

$$a \cdot \mathbb{Z}^n = \operatorname{gcf}(a)\mathbb{Z}.$$

Therefore, the projection of ${}^{n}\mathscr{F}_{Q}$ onto the line generated by $a \in \mathbb{Z}^{n}$ is

$$\bigcup_{q=1}^{Q} \frac{1}{q} \frac{\operatorname{gcf}(a)}{\|a\|} \mathbb{Z} = \frac{\operatorname{gcf}(a)}{\|a\|} \bigcup_{q=1}^{Q} \frac{1}{q} \mathbb{Z} = \frac{\operatorname{gcf}(a)}{\|a\|} {}^{1} \mathscr{F}_{Q}.$$

Proof of Fact 2. Since the elements of ${}^{1}\mathscr{F}_{Q}$ are rational numbers, we can put them in increasing order, and we can also write them as fractions in lowest terms. In this proof, I'll think of the ${}^{1}\mathscr{F}_{Q}$ not as sets of rational numbers, but as increasing sequences of fractions in lowest terms.

We know from the work of Charles Haros, and many others who followed him,¹ that you can turn ${}^{1}\mathscr{F}_{O-1}$ into ${}^{1}\mathscr{F}_{O}$ by following a simple rule:

If you see two adjacent fractions $\frac{a}{b}$ and $\frac{c}{d}$ whose denominators add up to Q, insert their *mediant* $\frac{a+c}{b+d}$ between them.

Starting with ${}^{1}\mathscr{F}_{1}$, you can generate ${}^{1}\mathscr{F}_{2}$, ${}^{1}\mathscr{F}_{3}$, ${}^{1}\mathscr{F}_{4}$... by using this rule over and over. If the fraction r/s is in lowest terms, it first appears in ${}^{1}\mathscr{F}_{s}$ as the mediant of two fractions a/b and c/d, with

$$\frac{a}{b} < \frac{r}{s} < \frac{c}{d}.$$

¹For details, I recommend the excellent book A Motif of Mathematics, by Scott Guthery.

The fraction a/b is the lower neighbor of r/s until you reach ${}^{1}\mathscr{F}_{b+s}$, where a new fraction appears between a/b and r/s:

$$\frac{a+r}{b+s}.$$

This fraction remains the lower neighbor of r/s until it is displaced, in ${}^{1}\mathscr{F}_{b+2s}$, by

$$\frac{a+2r}{b+2s}$$

In general, the lower neighbor of r/s in ${}^{1}\mathcal{F}_{b+ms}$ is

$$\frac{a+mr}{b+ms}.$$

Similarly, the upper neighbor of r/s in ${}^{1}\mathcal{F}_{ns+d}$ is

$$\frac{nr+c}{ns+d}.$$

Because a/b is the lower neighbor of r/s in one of the ${}^{1}\mathscr{F}_{Q}$, we have the identity rb - sa = 1, which you can easily prove by induction. Hence, the distance between r/s and its lower neighbor in ${}^{1}\mathscr{F}_{b+ms}$ is

$$\frac{r}{s} - \frac{a+mr}{b+ms} = \frac{rb-sa}{s(b+ms)} = \frac{1}{s(b+ms)}.$$

Similarly, from the identity cs - dr, we find that the distance between r/s and its upper neighbor in ${}^{1}\mathscr{F}_{ns+d}$ is

$$\frac{nr+c}{ns+d} - \frac{r}{s} = \frac{1}{(ns+d)s}.$$

Now, for any $Q \ge s$, pick the largest *m* so that $b + ms \le Q$, and the largest *n* so that $ns + d \le Q$. The distances between r/s and its neighbors in ${}^{1}\mathcal{F}_{Q}$ are

$$\frac{1}{s(b+ms)}$$
 and $\frac{1}{(ns+d)s}$,

respectively. Both distances are equal to or slightly greater than 1/Qs, and as Q goes to infinity, b + ms and ns + d approach Q.