Farey Sets in \mathbb{R}^{n}

Aaron Fenyes

September 25, 2013

The Farey numbers of order Q are the fractions between zero and one whose denominators are less than or equal to Q. You can think of these numbers as the intersection of the interval $[0,1]$ with the set

$$
\mathscr{F}_{Q}=\bigcup_{q=1}^{Q} \frac{1}{q} \mathbb{Z}
$$

where $\frac{1}{q} \mathbb{Z}$ is shorthand for $\left\{\left.\frac{p}{q} \right\rvert\, p \in \mathbb{Z}\right\}$.
An obvious analogue of \mathscr{F}_{Q} in \mathbb{R}^{n} is

$$
{ }^{n} \mathscr{F}_{Q}=\bigcup_{q=1}^{Q} \frac{1}{q} \mathbb{Z}^{n} .
$$

Look at the plots of ${ }^{1} \mathscr{F}_{Q}$ and ${ }^{2} \mathscr{F}_{Q}$ in Figures 1 and 2. What's up with those empty regions? It turns out that in ${ }^{n} \mathscr{F}_{Q}$, if you pick a lattice point $a \in \mathbb{Z}^{n}$ and a fraction r / s in lowest terms, the hyperplane

$$
a \cdot x=r / s
$$

is sandwiched between empty regions of width slightly greater than

$$
\frac{\operatorname{gcf}(a)}{Q s\|a\|}
$$

with "slightly greater than" going to zero as Q goes to infinity. Here, • is the standard inner product on $\mathbb{R}^{n}, \operatorname{gcf}(a)$ is shorthand for $\operatorname{gcf}\left(a_{1}, \ldots, a_{n}\right)$, and $\|a\|=\sqrt{a \cdot a}$.

The observation above is a fairly straightforward consequence of the following two facts.

Fact 1. If you project $n^{n} \mathscr{F}_{Q}$ onto the line generated by $a \in \mathbb{Z}^{n}$, which is isometric to \mathbb{R}, you end up with

$$
\frac{\operatorname{gcf}(a)}{\|a\|}^{1} \mathscr{F}_{Q}
$$

Figure 1: A plot of ${ }^{1} \mathscr{F}_{16}$ on the interval $[-1,1]$.

Figure 2: A plot of ${ }^{2} \mathscr{F}_{40}$ in the box $[-1,1]^{2}$.

Fact 2. If the fraction r / s is in lowest terms, the distances between r / s and its neighbors in ${ }^{1} \mathscr{F}_{Q}$ are equal to or slightly greater than $1 / Q s$, with "slightly greater than" going to zero as Q goes to infinity.

Proof of Fact 1. Since

$$
n_{\mathscr{F}_{Q}}=\bigcup_{q=1}^{Q} \frac{1}{q} \mathbb{Z}^{n}
$$

the projection of ${ }^{n} \mathscr{F}_{Q}$ onto the line generated by $a \in \mathbb{Z}^{n}$ is

$$
\bigcup_{q=1}^{Q} \frac{1}{q} \frac{a}{\|a\|} \cdot \mathbb{Z}^{n}
$$

where $a \cdot \mathbb{Z}^{n}$ is shorthand for

$$
\left\{a \cdot z \mid z \in \mathbb{Z}^{n}\right\}=\left\{a_{1} z_{1}+\ldots+a_{n} z_{n} \mid z_{1}, \ldots, z_{n} \in \mathbb{Z}\right\}
$$

By Bézout's identity,

$$
\left\{a_{1} z_{1}+\ldots+a_{n} z_{n} \mid z_{1}, \ldots, z_{n} \in \mathbb{Z}\right\}=\left\{\operatorname{gcf}\left(a_{1}, \ldots, a_{n}\right) z \mid z \in \mathbb{Z}\right\} ;
$$

in shorthand,

$$
a \cdot \mathbb{Z}^{n}=\operatorname{gcf}(a) \mathbb{Z}
$$

Therefore, the projection of ${ }^{n} \mathscr{F}_{Q}$ onto the line generated by $a \in \mathbb{Z}^{n}$ is

$$
\bigcup_{q=1}^{Q} \frac{1}{q} \frac{\operatorname{gcf}(a)}{\|a\|} \mathbb{Z}=\frac{\operatorname{gcf}(a)}{\|a\|} \bigcup_{q=1}^{Q} \frac{1}{q} \mathbb{Z}=\frac{\operatorname{gcf}(a)}{\|a\|}{ }^{1} \mathscr{F}_{Q}
$$

Proof of Fact 2. Since the elements of ${ }^{1} \mathscr{F}_{Q}$ are rational numbers, we can put them in increasing order, and we can also write them as fractions in lowest terms. In this proof, I'll think of the ${ }^{1} \mathscr{F}_{Q}$ not as sets of rational numbers, but as increasing sequences of fractions in lowest terms.

We know from the work of Charles Haros, and many others who followed him, ${ }^{1}$ that you can turn ${ }^{1} \mathscr{F}_{Q-1}$ into ${ }^{1} \mathscr{F}_{Q}$ by following a simple rule:

If you see two adjacent fractions $\frac{a}{b}$ and $\frac{c}{d}$ whose denominators add up to Q, insert their mediant $\frac{a+c}{b+d}$ between them.

Starting with ${ }^{1} \mathscr{F}_{1}$, you can generate ${ }^{1} \mathscr{F}_{2},{ }^{1} \mathscr{F}_{3},{ }^{1} \mathscr{F}_{4} \ldots$ by using this rule over and over. If the fraction r / s is in lowest terms, it first appears in ${ }^{1} \mathscr{F}_{s}$ as the mediant of two fractions a / b and c / d, with

$$
\frac{a}{b}<\frac{r}{s}<\frac{c}{d}
$$

[^0]The fraction a / b is the lower neighbor of r / s until you reach ${ }^{1} \mathscr{F}_{b+s}$, where a new fraction appears between a / b and r / s :

$$
\frac{a+r}{b+s} .
$$

This fraction remains the lower neighbor of r / s until it is displaced, in ${ }^{1} \mathscr{F}_{b+2 s}$, by

$$
\frac{a+2 r}{b+2 s}
$$

In general, the lower neighbor of r / s in ${ }^{1} \mathscr{F}_{b+m s}$ is

$$
\frac{a+m r}{b+m s}
$$

Similarly, the upper neighbor of r / s in $^{1} \mathscr{F}_{n s+d}$ is

$$
\frac{n r+c}{n s+d}
$$

Because a / b is the lower neighbor of r / s in one of the ${ }^{1} \mathscr{F}_{Q}$, we have the identity $r b-s a=1$, which you can easily prove by induction. Hence, the distance between r / s and its lower neighbor in ${ }^{1} \mathscr{F}_{b+m s}$ is

$$
\frac{r}{s}-\frac{a+m r}{b+m s}=\frac{r b-s a}{s(b+m s)}=\frac{1}{s(b+m s)} .
$$

Similarly, from the identity $c s-d r$, we find that the distance between r / s and its upper neighbor in ${ }^{1} \mathscr{F}_{n s+d}$ is

$$
\frac{n r+c}{n s+d}-\frac{r}{s}=\frac{1}{(n s+d) s}
$$

Now, for any $Q \geq s$, pick the largest m so that $b+m s \leq Q$, and the largest n so that $n s+d \leq Q$. The distances between r / s and its neighbors in ${ }^{1} \mathscr{F}_{Q}$ are

$$
\frac{1}{s(b+m s)} \text { and } \frac{1}{(n s+d) s},
$$

respectively. Both distances are equal to or slightly greater than $1 / Q s$, and as Q goes to infinity, $b+m s$ and $n s+d$ approach Q.

[^0]: ${ }^{1}$ For details, I recommend the excellent book A Motif of Mathematics, by Scott Guthery.

