
Classification of two-dimensional Frobenius and

H∗-algebras

Aaron Fenyes

February 1, 2015

Abstract

After a quick review of Frobenius and H∗-algebras, I produce explicit
constructions of all the two-dimensional algebras of these kinds. With an
eye toward higher dimensions, I favor general techniques over elementary
ones. Impatient readers can skip straight to the finished constructions in
Propositions 1, 2, and 3.

1 Algebra review

1.1 Frobenius algebras

1.1.1 Definition

Let k be a field. A Frobenius algebra is a k-vector space A equipped with linear
maps
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that satisfy the following conditions.

• µ is an associative multiplication with unit η:
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• δ is a coassociative comultiplication with counit ε:
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• µ and δ are related by the Frobenius identity:
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For convenience, define e := η(1).

1.1.2 Frobenius form

Composing ε with µ yields a bilinear form
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called the Frobenius form. Because µ is associative,

σ(µ(x⊗ y), z) = σ(x, µ(y ⊗ z))

for all x, y, z ∈ A. The identity
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implies that the linear functional σ(x, ) is nonzero for every nonzero x ∈ A,
because any x for which σ(x, ) = 0 would be in the kernel of the map shown
above. Combining this argument with its mirror image, we see that σ is non-
degenerate.

1.1.3 Commutativity and cocommutativity

The twist operator

A A

A A

is the map that sends v ⊗ w to w ⊗ v for all v, w ∈ A.
A Frobenius algebra is said to be commutative if

µ

=

µ
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and cocommutative if

δ

=

δ

Because of the way the Frobenius identity relates multiplication and comultipli-
cation, you might suspect that a Frobenius algebra is commutative if and only
if it is cocommutative. This turns out to be true. See Appendix A for a proof,
based on the one in [2].

1.2 H∗-algebras

1.2.1 Definition

Suppose k is a subfield of C, so a vector space over k can be an inner product
space. In this case, an H∗-algebra is a Frobenius algebra equipped with an inner
product that makes δ = µ† and ε = η†.1

2 Classification

2.1 Assumptions about the base field

Our classification splits into two cases, which rely on different assumptions about
the field k. When σ(e, e) = 0, we assume that k does not have characteristic
two. When σ(e, e) 6= 0, we assume that every element of k has a square root.

2.2 Frobenius algebras

Say A is a two-dimensional Frobenius algebra. Pick any v ∈ A outside the span
of e. The condition that e is a unit for µ is satisfied if and only if

µ(e⊗ e) = e µ(e⊗ v) = v µ(v ⊗ e) = v.

Since e⊗ e, e⊗ v, v ⊗ e, and v ⊗ v form a basis for A⊗ A, it follows that A is
commutative.

Because σ is non-degenerate, the kernel of σ(e, ) is one-dimensional. Here,
our classificaiton splits into two parts: the case where e is in the kernel of σ(e, )
and the case where it isn’t.

1To make sense of this definition, remember that the tensor product of two inner product
spaces V and W has a canonical inner product, defined by the equation 〈v ⊗ w, ṽ ⊗ w̃〉 =
〈v, ṽ〉〈w, w̃〉.
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2.2.1 Null unit

Suppose σ(e, e) = 0, and k does not have characteristic two. Since A is commu-
tative, σ is symmetric. The subspace spanned by e is Lagrangian, and k does
not have characteristic two, so we can find an element x with σ(x, x) = 0 whose
span is complementary to the span of e (see Appendix B for details). We can
assume without loss of generality that σ(e, x) = 1. The elements e and x form
a basis for A.

Observe that

ε(e) = εµ(e⊗ e) = σ(e, e) = 0

ε(x) = εµ(e⊗ x) = σ(e, x) = 1.

Once µ(x⊗x) is fixed, the action of µ is uniquely determined by the condition
that e is a unit for µ. Write µ(x⊗ x) as a linear combination pe+ qx. Observe
that

σ(x, x) = εµ(x⊗ x)

= pε(e) + qε(x)

= q.

By construction, σ(x, x) = 0, so q = 0. Thus, the only degree of freedom for µ
is the value of p in the equation

µ(x⊗ x) = pe.

Write δ(e) and δ(x) as linear combinations

δ(e) = a e⊗ e+ b(e⊗ x+ x⊗ e) + c x⊗ x
δ(x) = ã e⊗ e+ b̃(e⊗ x+ x⊗ e) + c̃ x⊗ x.

Since

[ε⊗ id]δ(e) = be+ cx

[ε⊗ id]δ(x) = b̃e+ c̃x,

the condition that ε is a counit for δ is satisfied if and only if

b = 1 c = 0

b̃ = 0 c̃ = 1.

To see when the Frobenius identity is satisfied, let’s make tables of values
for [id⊗µ][δ ⊗ id] and δµ. Because e is a unit for µ, the Frobenius identity is
guaranteed to hold for the inputs e ⊗ e and x ⊗ e, so we can omit these from
our tables.

v [δ ⊗ id](v) [id⊗µ][δ ⊗ id](v)

e⊗ x a e⊗ e⊗ x+ e⊗ x⊗ x+ x⊗ e⊗ x a e⊗ x+ e⊗ pe+ x⊗ x

x⊗ x ã e⊗ e⊗ x+ x⊗ x⊗ x ã e⊗ x+ x⊗ pe
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v δµ(v)

e⊗ x ã e⊗ e+ x⊗ x

x⊗ x p(a e⊗ e+ e⊗ x+ x⊗ e)

Comparing the tables, we see that the Frobenius identity is satisfied if and only
if a = 0 and ã = p.

It is straightforward to verify that µ and δ are associative and coassociative,
respectively, for any value of p. Once that is done, we have proven the following
classification result.

Proposition 1. Let k be a field that does not have characteristic two. Let A
be a two-dimensional k-vector space with basis {e, x}, and let η : k → A be the
map 1 7→ e.

For any p ∈ k, the linear maps defined by the equations

ε(e) = 0 ε(x) = 1

µ(e⊗ e) = e µ(x⊗ e) = x

µ(e⊗ x) = x µ(x⊗ x) = pe

δ(e) = e⊗ x+ x⊗ e δ(x) = p e⊗ e+ x⊗ x

make A into a Frobenius algebra. In fact, every two-dimensional Frobenius
algebra over k with σ(e, e) = 0 is of this form.

2.2.2 Non-null unit

Suppose σ(e, e) 6= 0, and every element of k has a square root. For convenience,
define m := σ(e, e). Pick an element x that spans the kernel of σ(e, ). Since
every element of k has a square root, we can assume without loss of generality
that σ(x, x) = m. The elements e and x form a basis for A.

Since

ε(e) = εµ(e⊗ e) = σ(e, e) = m

ε(x) = εµ(e⊗ x) = σ(e, x) = 0,

the action of ε depends only on m.
Once µ(x⊗x) is fixed, the action of µ is uniquely determined by the condition

that e is a unit for µ. Write µ(x⊗ x) as a linear combination pe+ qx. Observe
that

σ(x, x) = εµ(x⊗ x)

= pε(e) + qε(x)

= pm.
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By construction, σ(x, x) = m, so p = 1. Thus, the only degree of freedom for µ
is the value of q in the equation

µ(x⊗ x) = e+ qx.

Write δ(e) and δ(x) as linear combinations

δ(e) = a e⊗ e+ b(e⊗ x+ x⊗ e) + c x⊗ x
δ(x) = ã e⊗ e+ b̃(e⊗ x+ x⊗ e) + c̃ x⊗ x.

Since

[ε⊗ id]δ(e) = ame+ bmx

[ε⊗ id]δ(x) = ãme+ b̃mx,

the condition that ε is a counit for δ is satisfied if and only if

a = 1
m b = 0

ã = 0 b̃ = 1
m .

To see when the Frobenius identity is satisfied, let’s make tables of values
for [id⊗µ][δ ⊗ id] and δµ. Because e is a unit for µ, the Frobenius identity is
guaranteed to hold for the inputs e ⊗ e and x ⊗ e, so we can omit these from
our tables.

v [δ ⊗ id](v) [id⊗µ][δ ⊗ id](v)

e⊗ x 1
m e⊗ e⊗ x+ c x⊗ x⊗ x 1

m e⊗ x+ c x⊗ (e+ qx)

x⊗ x 1
m (e⊗ x+ x⊗ e)⊗ x+ c̃ x⊗ x⊗ x 1

m e⊗ (e+ qx) + 1
m x⊗ x+ c̃ x⊗ (e+ qx)

v δµ(v)

e⊗ x 1
m (e⊗ x+ x⊗ e) + c̃ x⊗ x

x⊗ x 1
m e⊗ e+ q

m (e⊗ x+ x⊗ e) + (c+ qc̃)x⊗ x

Comparing the tables, we see that the Frobenius identity is satisfied if and only
if c = 1

m and c̃ = q
m .

It is straightforward to verify that µ and δ are associative and coassociative,
respectively, for any values of m and q. Once that is done, we have proven the
following classification result.

Proposition 2. Let k be a field in which every element has a square root. Let
A be a two-dimensional k-vector space with basis {e, x}, and let η : k → A be
the map 1 7→ e.
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For any q ∈ k and any nonzero m ∈ k, the linear maps defined by the
equations

ε(e) = m ε(x) = 0

µ(e⊗ e) = e µ(x⊗ e) = x

µ(e⊗ x) = x µ(x⊗ x) = e+ qx

δ(e) = 1
m (e⊗ e+ x⊗ x) δ(x) = 1

m (e⊗ x+ x⊗ e+ q x⊗ x)

make A into a Frobenius algebra. In fact, every two-dimensional Frobenius
algebra over k with σ(e, e) 6= 0 is of this form.

2.3 H∗-algebras

Say A is a two-dimensional H∗-algebra. Since

〈e, e〉 = 〈η(1), e〉
= 〈1, ε(e)〉
= ε(e)

= σ(e, e),

the positive definiteness of the inner product guarantees that σ(e, e) 6= 0, so A
can be presented in the form described by Proposition 2.

We immediately see that 〈e, e〉 = m, implying that m is real and positive.
In addition,

〈e, x〉 = 〈η(1), x〉
= 〈1, ε(x)〉
= 0.

Furthermore,

〈µ(x⊗ x), e〉 = 〈x⊗ x, δ(e)〉
〈e+ qx, e〉 = 〈x⊗ x, 1

m (e⊗ e+ x⊗ x)〉
m = 1

m 〈x, x〉
2

m2 = 〈x, x〉2,

so 〈x, x〉 = m by positive definiteness.
On the other hand, suppose A is a two-dimensional Frobenius algebra in

the form described by Proposition 2, equipped with the conjugate-symmetric
bilinear form defined by

〈e, e〉 = m 〈e, x〉 = 0 〈x, x〉 = m.
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Which values of m and q make A into an H∗-algebra?
For 〈 , 〉 to be an inner product, m must be real and positive. The condition

that ε = η† is always satisfied, and it is straightforward to verify that δ =
µ† if and only if q is real.2 Once that is done, we have proven the following
classification result.

Proposition 3. Let A be a two-dimensional Frobenius algebra in the form de-
scribed by Proposition 2. If m is real and positive, and q is real, the inner
product defined by

〈e, e〉 = m 〈e, x〉 = 0 〈x, x〉 = m

makes A into an H∗-algebra. In fact, every two-dimensional H∗-algebra over k
is of this form.

A Commutativity and cocommutativity

I will show that every commutative Frobenius algebra is cocommutative, follow-
ing the proof in [2]. To get the converse, turn the argument upside down.

I will assume several identities involving the twist operator. Some of them
are rather subtle, so be careful to think about why they are true.

Suppose A is commutative. We get our foot in the door by showing that the
“twisted coproduct” satisfies part of the Frobenius identity (Figure 1). Then
we observe that

ε

δ

=

ε

δ

=

Applying these identities in just the right way, we can untwist the twisted co-
product (Figure 2).

B Lagrangian complements

Assume k does not have characteristic two.
Say V is a 2n-dimensional vector space equipped with a t-symmetric,3 non-

degenerate bilinear form σ, and L ⊂ V is a Lagrangian subspace—an n-dimensional

2The restriction on q comes from the equation 〈µ(x⊗ x), x〉 = 〈x⊗ x, δ(x)〉.
3Symmetric if t = 1, skew-symmetric if t = −1.
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Figure 1: The twisted coproduct satisfies part of the Frobenius identity.
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Figure 2: Untwisting the twisted coproduct.
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subspace with σ(`, `) = 0 for all ` ∈ L. Following [1, Proposition 8.2], I will
give a procedure for turning any subspace W ⊂ V complementary to L into a
Lagrangian subspace of V complementary to L.

Let S : V → V ′ be the map v 7→ σ(v, ). Since σ is non-degenerate, S is an
isomorphism.

Let π : V ′ →W ′ be the dual of the inclusion W ↪→ V . Observe that

ker(π) = {ξ ∈ V ′ : ξ(W ) = 0},

so
ker(πS) = {v ∈ V : S(v)(W ) = 0}.

Being the dual of an injection, π is surjective, so

dim ker(π) = dimV ′ − dimW ′ = n.

Since S is an isomorphism, ker(πS) has dimension n as well.
Any vector ` in the intersection of ker(πS) and L must have S(`)(W ) = 0

and S(`)(L) = 0. Since W and L are complements, it follows that S(`) = 0,
which means ` = 0. Therefore, ker(πS) intersects L only at zero.

Think of V as W ⊕L. Since ker(πS) intersects L only at zero, it is the graph
of a linear map F : W → L. Notice that for any w, w̃ ∈W ,

S(w + Fw)(w̃) = 0,

because w + Fw ∈ ker(πS). Therefore,

σ(Fw, w̃) = −σ(w, w̃)

for all w, w̃ ∈W .
I claim that the graph of 1

2F is a Lagrangian subspace of V complementary
to L. To see why, pick any w, w̃ ∈W , and observe that

σ(w + 1
2Fw, w̃ + 1

2Fw̃) = σ(w, w̃) + 1
2σ(w,Fw̃) + 1

2σ(Fw, w̃) + 1
4σ(Fw,F w̃)

= σ(w, w̃) + 1
2 tσ(Fw̃, w) + 1

2σ(Fw, w̃) + 0

= σ(w, w̃)− 1
2 tσ(w̃, w)− 1

2σ(w, w̃)

= σ(w, w̃)− 1
2σ(w, w̃)− 1

2σ(w, w̃)

= 0.

The graph of F has dimension n, so the graph of 1
2F also has dimension n.

Therefore, the graph of 1
2F is a Lagrangian subspace of V . Since 1

2F is a map
to L, its graph is complementary to L.
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