
Aaron Fenyes (IHÉS)
Young Data Scientist Seminar

Harvard, November 2020

The basics of homology



Building geometric spaces
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A Δ-complex is a space built from simplices,
which attach to each other by sharing faces.

(In a simplicial complex, no two simplices have
the same set of vertices.)
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It’s easy to decide.
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(Identify opposite edges)
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Can these loops be deformed
into each other?

Homology gives a systematic
way to decide.
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An embedded simplex is a map that sends the standard
n-simplex to one of the n-simplices of a Δ-complex.

Ordering the vertices of the standard n-simplex makes it
easy to see where the map sends each vertex.

Turning geometry into algebra
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An embedded simplex is a map that sends the standard
n-simplex to one of the n-simplices of a Δ-complex.

Ordering the vertices of the standard n-simplex makes it
easy to see where the map sends each vertex.

Turning geometry into algebra
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An embedded simplex is a map that sends the standard
n-simplex to one of the n-simplices of a Δ-complex.

Ordering the vertices of the standard n-simplex makes it
easy to see where the map sends each vertex.

Turning geometry into algebra
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An embedded simplex is a map that sends the standard
n-simplex to one of the n-simplices of a Δ-complex.

Ordering the vertices of the standard n-simplex makes it
easy to see where the map sends each vertex.

Turning geometry into algebra
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An n-chain is a “formal sum” of embedded n-simplices.

(Identify opposite edges)Turning geometry into algebra
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An n-chain is a “formal sum” of embedded n-simplices.

A simplex can appear more than once in the sum.

(Identify opposite edges)Turning geometry into algebra



++ =1 0

1

0

1 0 1 0

1

0

An n-chain is a “formal sum” of embedded n-simplices.

A simplex can appear more than once in the sum.
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An n-chain is a “formal sum” of embedded n-simplices.

A simplex can appear more than once in the sum.

For algebraic convenience, we allow negative simplices.
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An n-chain is a “formal sum” of embedded n-simplices.

A simplex can appear more than once in the sum.

For algebraic convenience, we allow negative simplices.

(Identify opposite edges)Turning geometry into algebra
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Sign rule: swapping two vertices of an embedded simplex
is equivalent to reversing its sign.
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Keeping track
of deformation substitutions
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The boundary operator sends each embedded (n+1)-simplex
to the n-chain that describes deformation across the simplex.

Keeping track
of deformation substitutions
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The boundary operator sends each embedded (n+1)-simplex
to the n-chain that describes deformation across the simplex.

Keeping track
of deformation substitutions
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The boundary operator, unexpectedly, characterizes closed
loops, and “closed-up shapes” in higher dimensions.

An n-chain C is called an n-cycle if ∂C = 0.

Deformation problems
as algebra problems

(Identify opposite edges)
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We can deform B into A.

We can turn B into A algebrically
using deformation substitutions.

A = B + ∂F for some (n+1)-chain F.

For n-cycles A, B, these are equivalent:
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We can turn B into A algebrically
using deformation substitutions.

A = B + ∂F for some (n+1)-chain F.

For n-cycles A, B, these are equivalent:
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