The basics of homology

Aaron Fenyes (IHÉS)

Young Data Scientist Seminar
Harvard, November 2020

Building geometric spaces

standard 0-simplex

standard 1-simplex

A Δ-complex is a space built from simplices, which attach to each other by sharing faces.
(In a simplicial complex, no two simplices have the same set of vertices.)

standard 2-simplex

Investigating deformations of points

Can these points be deformed into each other?

Investigating deformations of points

Can these points be deformed into each other?

Investigating deformations of points

Can these points be deformed into each other?

Investigating deformations of points

Can these points be deformed into each other?

Investigating deformations of points

Can these points be deformed into each other?

Investigating deformations of points

Can these points be deformed into each other?

It's easy to decide.

Investigating deformations of loops

Can these loops be deformed into each other?

Investigating deformations of loops

Can these loops be deformed into each other?

Investigating deformations of loops

Can these loops be deformed into each other?

Investigating deformations of loops

Can these loops be deformed into each other?

Investigating deformations of loops

Can these loops be deformed into each other?

Investigating deformations of loops

Can these loops be deformed into each other?

Investigating deformations of loops

Can these loops be deformed into each other?

Investigating deformations of loops

Can these loops be deformed into each other?

Investigating deformations of loops

Can these loops be deformed into each other?

Investigating deformations of loops

Can these loops be deformed into each other?

Investigating deformations of loops

Can these loops be deformed into each other?

Investigating deformations of loops

Can these loops be deformed into each other?

Investigating deformations of loops

Can these loops be deformed into each other?

Investigating deformations of loops

Can these loops be deformed into each other?

Investigating deformations of loops

Can these loops be deformed into each other?

Investigating deformations of loops

Can these loops be deformed into each other?

Investigating deformations of loops

Can these loops be deformed into each other?

Homology gives a systematic way to decide.

Turning geometry into algebra

An embedded simplex is a map that sends the standard n-simplex to one of the n-simplices of a Δ-complex.

Ordering the vertices of the standard n-simplex makes it easy to see where the map sends each vertex.

Turning geometry into algebra

An embedded simplex is a map that sends the standard n-simplex to one of the n-simplices of a Δ-complex.

Ordering the vertices of the standard n-simplex makes it easy to see where the map sends each vertex.

Turning geometry into algebra

An embedded simplex is a map that sends the standard n-simplex to one of the n-simplices of a Δ-complex.

Ordering the vertices of the standard n-simplex makes it easy to see where the map sends each vertex.

Turning geometry into algebra

An embedded simplex is a map that sends the standard n-simplex to one of the n-simplices of a Δ-complex.

Ordering the vertices of the standard n-simplex makes it easy to see where the map sends each vertex.

Turning geometry into algebra

An n-chain is a "formal sum" of embedded n-simplices.

Turning geometry into algebra

(Identify opposite edges)

An n-chain is a "formal sum" of embedded n-simplices.

Turning geometry into algebra

An n-chain is a "formal sum" of embedded n-simplices.
A simplex can appear more than once in the sum.

Turning geometry into algebra

An n-chain is a "formal sum" of embedded n-simplices.
A simplex can appear more than once in the sum.

Turning geometry into algebra

An n-chain is a "formal sum" of embedded n-simplices.
A simplex can appear more than once in the sum.
For algebraic convenience, we allow negative simplices.

Turning geometry into algebra

An n-chain is a "formal sum" of embedded n-simplices.
A simplex can appear more than once in the sum.
For algebraic convenience, we allow negative simplices.

Turning geometry into algebra

Sign rule: swapping two vertices of an embedded simplex is equivalent to reversing its sign.

Turning geometry into algebra

Sign rule: swapping two vertices of an embedded simplex is equivalent to reversing its sign.

Turning geometry into algebra

Sign rule: swapping two vertices of an embedded simplex is equivalent to reversing its sign.

Turning geometry into algebra

Sign rule: swapping two vertices of an embedded simplex is equivalent to reversing its sign.

Turning geometry into algebra

Describing deformations
 as substitution rules

You can deform a 0 -simplex by pushing it across a 1 -simplex.

Describing deformations
 as substitution rules

You can deform a 0 -simplex by pushing it across a 1 -simplex.

Describing deformations
 as substitution rules

You can deform a 0 -simplex by pushing it across a 1 -simplex.

Describing deformations
 as substitution rules

You can deform a 0 -simplex by pushing it across a 1 -simplex.

Describing deformations
 as substitution rules

You can deform a 0 -simplex by pushing it across a 1 -simplex.

Describing deformations
 as substitution rules

You can deform a 0 -simplex by pushing it across a 1 -simplex.

Describing deformations
 as substitution rules

You can deform a 1-simplex by pushing it across a 2 -simplex.

Describing deformations
 as substitution rules

You can deform a 1 -simplex by pushing it across a 2 -simplex.

Describing deformations
 as substitution rules

You can deform a 1 -simplex by pushing it across a 2 -simplex.

Describing deformations

as substitution rules

You can deform a 1 -simplex by pushing it across a 2 -simplex.

Describing deformations
 as substitution rules

You can deform a 1-simplex by pushing it across a 2 -simplex.

Describing deformations
 as substitution rules

You can deform a 1 -simplex by pushing it across a 2 -simplex.

Describing deformations
 as substitution rules

You can deform a 1 -simplex by pushing it across a 2 -simplex.

Describing deformations
 as substitution rules

You can deform a 1-simplex by pushing it across a 2 -simplex.

Describing deformations
 as substitution rules

You can deform a 1-simplex by pushing it across a 2 -simplex.

Describing deformations
 as substitution rules

You can deform a 1 -simplex by pushing it across a 2 -simplex.

Describing deformations

as substitution rules

Describing deformations

as substitution rules

Keeping track
 of deformation substitutions

Keeping track
 of deformation substitutions

The boundary operator sends each embedded ($n+1$)-simplex to the n-chain that describes deformation across the simplex.

Keeping track
 of deformation substitutions

The boundary operator sends each embedded ($n+1$)-simplex to the n-chain that describes deformation across the simplex.

Deformation problems as algebra problems

The boundary operator, unexpectedly, characterizes closed loops, and "closed-up shapes" in higher dimensions.

An n-chain C is called an n-cycle if $\partial C=0$.

Deformation problems as algebra problems

The boundary operator, unexpectedly, characterizes closed loops, and "closed-up shapes" in higher dimensions.

An n-chain C is called an n-cycle if $\partial C=0$.

Deformation problems as algebra problems

For n-cycles A, B, these are equivalent:

- We can deform B into A.
- We can turn B into A algebrically using deformation substitutions.
- $A=B+\partial F$ for some $(n+1)$-chain F.

Deformation problems as algebra problems

For n-cycles A, B, these are equivalent:

- We can deform B into A.
- We can turn B into A algebrically using deformation substitutions.
- $A=B+\partial F$ for some $(n+1)$-chain F.

Deformation problems as algebra problems

For n-cycles A, B, these are equivalent:

- We can deform B into A.
- We can turn B into A algebrically using deformation substitutions.
- $A=B+\partial F$ for some $(n+1)$-chain F.

Deformation problems as algebra problems

For n-cycles A, B, these are equivalent:

- We can deform B into A.
- We can turn B into A algebrically using deformation substitutions.

- $A=B+\partial F$ for some $(n+1)$-chain F.

Deformation problems as algebra problems

For n-cycles A, B, these are equivalent:

- We can deform B into A.
- We can turn B into A algebrically using deformation substitutions.

- $A=B+\partial F$ for some $(n+1)$-chain F.

Deformation problems as algebra problems

For n-cycles A, B, these are equivalent:

- We can deform B into A.
- We can turn B into A algebrically using deformation substitutions.

- $A=B+\partial F$ for some $(n+1)$-chain F.

Deformation problems as algebra problems

For n-cycles A, B, these are equivalent:

- We can deform B into A.
- We can turn B into A algebrically using deformation substitutions.

- $A=B+\partial F$ for some $(n+1)$-chain F.

Deformation problems as algebra problems

For n-cycles A, B, these are equivalent:

- We can deform B into A.
- We can turn B into A algebrically using deformation substitutions.
- $A=B+\partial F$ for some $(n+1)$-chain F.

