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Build a translation surface Σ by gluing polygons along parallel sides.



Toy 1D quasicrystals from flat surfaces
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Fix a direction. Let 𝜙 ∶ ℝ × Σ 99K Σ be the unit-speed flow along it.

Follow some 𝑥 ∈ Σ along 𝜙, recording the sides you pass through.

Continue the cutting sequence backward along 𝜙.
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Cutting sequences are quasiperiodic

A B A A B A B …ABABAAB… 𝑥

Every word you see in a cutting sequence has occurred before, and
will occur again.

The distance to the next occurrance is bounded above and below.

This is a kind of quasiperiodicity.



Family resemblance among cutting sequences
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Varying 𝑥 ∈ Σ gives a family of cutting sequences.

They all contain the same words.

Each word’s upper and lower periods are uniform over the family.
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Cutting sequences as quasicrystals

A B A A B A B …ABABAAB… 𝑥

Imagine A and B are types of atoms.

Then a cutting sequence is a quasiperiodic chain of atoms.

Physicists call this a one-dimensional quasicrystal.

Let’s investigate its physical properties.

We’ll model the motion of an electron hopping from atom to atom.
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Quasicrystals are interesting materials

When Σ is a flat torus, the electron is known to move strangely.

▶ Its allowed energies form a Cantor set of zero measure.
Bellissard, Iochum, Scoppola, Testard (1989).

▶ In some cases, it displays anomalous transport—it doesn’t move
steadily, or do a random walk, or sit still.
Damanik, Tcheremchantsev (2007); Marin (2010).

Quasicrystals from other translation surfaces might be just as weird.

Even the well-studied flat torus case has some mysteries left.

See Damanik, “Schrödinger operators with dynamically defined potentials,” §§7, 8.3.



Amodel for a hopping electron

A B A A B A B …ABABAAB… 𝑥
energy 𝛼energy 𝛽

In the tight-binding model, the electron’s state is a vector 𝜓 ∈ 𝐿2(ℤ).
Its motion is described by the difference operator

(𝐻𝑥𝜓)𝑛 = −(𝜓 𝑛+1 + 𝜓 𝑛−1) + 𝑢𝑛𝑥𝜓 𝑛,

where

𝑢𝑛𝑥 = {𝛼 atom 𝑛 is type A

𝛽 atom 𝑛 is type B

is its potential energy at site 𝑛.
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Flat bundles reveal the electron's energies

The spectrum of 𝐻𝑥

� 𝐿2(ℤ) gives the electron’s allowed energies.

Studying the 𝐸-eigenspace of 𝐻𝑥

� ℂℤ will lead us to a test for
whether 𝐸 ∈ ℂ is in the spectrum. To build eigenvectors, solve

𝐻𝑥𝜓 = 𝐸𝜓

𝜓 𝑛+1 = (𝑢𝑛𝑥 − 𝐸)𝜓 𝑛 − 𝜓 𝑛−1

[ 𝜓 𝑛+1
𝜓 𝑛 ]

𝑣𝑛+1
= [ 𝑢𝑛𝑥 − 𝐸 −1

1 ⋅ ] [ 𝜓 𝑛
𝜓 𝑛−1 ]
𝑣𝑛

The atom type at 𝑛 determines the transition from 𝑣𝑛 to 𝑣𝑛+1.
See Viana, Lectures on Lyapunov Exponents, §2.1.3.
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Flat bundles reveal the electron's energies

𝐴 = [ 𝛼 − 𝐸 −1
1 ⋅ ]

𝐵 = [ 𝛽 − 𝐸 −1
1 ⋅ ]

=Carrying 𝑣0𝐴𝑣0 𝑣1𝐵𝐴𝑣0 𝑣2𝐴𝐵𝐴𝑣0 𝑣3𝐴𝐴𝐵𝐴𝑣0 𝑣4𝐵𝐴𝐴𝐵𝐴𝑣0 𝑣5𝐴𝐵𝐴𝐴𝐵𝐴𝑣0 𝑣6𝐵𝐴𝐵𝐴𝐴𝐵𝐴𝑣0 𝑣7

The transition matrices define a flat SL2 ℂ vector bundle 𝒱 (𝐸) → Σ.
Its flat sections along the 𝜙-orbit of 𝑥 are the 𝐸-eigenvectors of 𝐻𝑥 .
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Flat bundles reveal the electron's energies

Theorem (special case of Johnson 1986)

If the orbit of 𝑥 ∈ Σ is dense, the spectrum of 𝐻𝑥 is the complement of

{𝐸 ∈ ℂ ∶ 𝒱 (𝐸) is uniformly hyperbolic with respect to 𝜙}.

Uniform hyperbolicity is a dynamical condition. It’s like being
Anosov, but only along 𝜙, instead of in all directions.



Uniform hyperbolicity: dynamical definition

A B A A B A B …ABABAAB… 𝑥

‖𝑣𝑛‖ for 𝑣0 ∈ 𝒱 +(𝐸)𝑥‖𝑣𝑛‖ for 𝑣0 ∈ 𝒱 −(𝐸)𝑥

Lift 𝜙 along the flat connection to a flow Φ on 𝒱 (𝐸).
We say 𝒱 (𝐸) is uniformly hyperbolic with respect to 𝜙 if it splits into
line sub-bundles 𝒱 ±(𝐸), preserved by Φ, with

‖Φ±𝑡𝑥 𝑣‖ ≲ 𝑒−𝐾𝑡 ‖𝑣‖

over all 𝑥 ∈ Σ, 𝑣 ∈ 𝒱 ±(𝐸)𝑥 , and 𝑡 ∈ [0, ∞).
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Uniform hyperbolicity: geometric picture

Our construction gives 𝒱 (𝐸)𝑥
≅⟶ ℂ2 over the fundamental polygon.

That makes 𝒱 +(𝐸)𝑥 and 𝒱 −(𝐸)𝑥 points in Pℂ2 ≅ 𝜕ℍ3, giving

orbit segments in polygon geodesics in ℍ3
equivariant
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Uniform hyperbolicity: geometric picture

=𝐸 −0.95+0.50+2.00−3.00

The resulting geodesics are bound together by some extra structure.

They should form the pleating locus of a pleated hyperbolic surface
with holonomy bundle 𝒱 (𝐸).
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Geometry encodes the electron's motion

A B A A B A B …ABABAAB… 𝑥

‖𝜓 𝑛+‖‖𝜓 𝑛−‖‖𝜓 𝑛⋆ ‖, up to scaling

𝜓+𝜓− 𝜓+𝜓− 𝜓 0±
Our 𝐸-dependent pleated surface encodes (𝐻𝑥 − 𝐸)−1 for all 𝑥 ∈ Σ.

Choose 𝐸-eigenvectors 𝜓± ∈ ℂℤ with 𝜓 0+ = 𝜓 0− and 𝑣0± ∈ 𝒱 ±(𝐸)𝑥 .
Splice and rescale to get unique 𝜓⋆ ∈ 𝐿2(ℤ) with (𝐻𝑥 − 𝐸)𝜓⋆ = 𝛿0.
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Shear-bend coordinates describe the geometry

Translation surface Σ
with chosen direction

Uniformly hyperbolic
flat SL2 ℂ bundles

Pleated surfaces
modeled on Σ

Flat ℂ× bundles

Should commute
See F.

Holonomy

Shear-bend
coordinates

BonahonAbelianization
Gaiotto, Hollands,

Moore, Neitzke



Shear-bend coordinates encode the electron's motion

−3 −2 −1 0 1 2Re E
−0.20.00.2Im E

−3 −2 −1 0 1 2Re E
−0.20.00.2Im E

The shear-bend coordinates depend holomorphically on 𝐸 away
from the spectrum.

Their singularities show us some part of the spectrum.



Shear-bend coordinates depend nicely on flow direction

A B A B A B A …ABABABA… B A B A B A B …BABABAB… 𝑥

−3 −2 −1 0 1 2Re E
−0.20.00.2Im E

−3 −2 −1 0 1 2Re E
−0.20.00.2Im E

Varying 𝜙 changes the quasiperiodicity of our material.

For pleated surfaces with finitely many pleats, the shear-bend
coordinates only change when 𝜙 connects vertices of Σ.
The same should be true in our infinitely pleated case.
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Questions

How do we rigorously construct a pleated surface from a uniformly
hyperbolic SL2 ℂ local system?

If we change the fundamental polygon of Σ, can we interpret the
new transition matrices physically?
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