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Build a translation surface ¥ by gluing polygons along parallel sides.
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Cutting sequences are quasiperiodic
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Every word you see in a cutting sequence has occurred before, and
will occur again.

The distance to the next occurrance is bounded above and below.

This is a kind of quasiperiodicity.
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Quasicrystals are interesting materials

When ¥ is a flat torus, the electron is known to move strangely.

» Its allowed energies form a Cantor set of zero measure.
Bellissard, Iochum, Scoppola, Testard (1989).

» In some cases, it displays anomalous transport—it doesn’t move
steadily, or do a random walk, or sit still.
Damanik, Tcheremchantsev (2007); Marin (2010).

Quasicrystals from other translation surfaces might be just as weird.
Even the well-studied flat torus case has some mysteries left.

See Damanik, “Schrodinger operators with dynamically defined potentials,” §§7, 8.3.



A model for a hopping electron

In the tight-binding model, the electron’s state is a vector i € L?(Z).

Its motion is described by the difference operator

(Hp)* = ="+ 9" + g™,

where
i = o atomn is type A
B atomnistype B

is its potential energy at site n.
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Flat bundles reveal the electron's energies

The spectrum of H, C L%(Z) gives the electron’s allowed energies.

Studying the E-eigenspace of H, C'CZ will lead us to a test for
whether E € C is in the spectrum. To build eigenvectors, solve

H = Ey
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Flat bundles reveal the electron's energies

The spectrum of H, C L%(Z) gives the electron’s allowed energies.

Studying the E-eigenspace of H, C'CZ will lead us to a test for
whether E € C is in the spectrum. To build eigenvectors, solve

H = Ey
Y = g~ By -y
¢n+l B ug_E -1 lﬁn
LR
vn+l v”

The atom type at n determines the transition from v" to v**1,

See Viana, Lectures on Lyapunov Exponents, §2.1.3.
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The transition matrices define a flat SL, C vector bundle 7°(E) — 3.

Its flat sections along the ¢-orbit of x are the E-eigenvectors of H,.
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The transition matrices define a flat SL, C vector bundle 7°(E) — 3.

Its flat sections along the ¢-orbit of x are the E-eigenvectors of H,.



Flat bundles reveal the electron's energies

Theorem (special case of Johnson 1986)

If the orbit of x € ¥ is dense, the spectrum of H, is the complement of

{E € C : Z'(E) is uniformly hyperbolic with respect to ¢}.

Uniform hyperbolicity is a dynamical condition. It’s like being
Anosov, but only along ¢, instead of in all directions.



Uniform hyperbolicity: dynamical definition

Lift ¢ along the flat connection to a flow ® on 7 (E).

We say 7°(E) is uniformly hyperbolic with respect to ¢ if it splits into
line sub-bundles 7"*(E), preserved by ®, with

[0 v] < e ]

overall x € 3, v € Z*(E),, and t € [0, o).



Uniform hyperbolicity: dynamical definition

X
w | - — | | | o | - ...

Lift ¢ along the flat connection to a flow ® on 7 (E).

We say 7°(E) is uniformly hyperbolic with respect to ¢ if it splits into
line sub-bundles 7"*(E), preserved by ®, with

[0 v] < e ]

overall x € 3, v € Z*(E),, and t € [0, o).



Uniform hyperbolicity: dynamical definition

II [v"] for +° € 7 +(E),
III.. ..---__

-0 0O0O0O 0000000

Lift ¢ along the flat connection to a flow ® on 7'(E).

We say 7 (E) is uniformly hyperbolic with respect to ¢ if it splits into
line sub-bundles 7" *(E), preserved by ®, with

[0 v] < e ]

overall x € 3, v € Z*(E),, and t € [0, o).



Uniform hyperbolicity: dynamical definition

[v*| for v* € 7"~ (E), I
cee = |—| || |—{ - - - —.— || |—{ - - - —| — e

Lift ¢ along the flat connection to a flow ® on 7 (E).

We say 7°(E) is uniformly hyperbolic with respect to ¢ if it splits into
line sub-bundles 7"*(E), preserved by ®, with

[0 v] < e ]

overall x € 3, v € Z*(E),, and t € [0, o).



Uniform hyperbolicity: geometric picture

Our construction gives 7' (E), > €2 over the fundamental polygon.
That makes 7 7(E), and 7"~ (E), points in PC? = gH3, giving

orbit segments in polygon ——————— geodesics in H>
equivariant
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Our construction gives 7'(E), = €2 over the fundamental polygon.
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E = +2.00

The resulting geodesics are bound together by some extra structure.

They should form the pleating locus of a pleated hyperbolic surface
with holonomy bundle 7°(E).
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They should form the pleating locus of a pleated hyperbolic surface
with holonomy bundle 7°(E).
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Our E-dependent pleated surface encodes (H, — E)~! for all x € 3.
Choose E-eigenvectors 17, € CZ with /0 = y/° and v{ € " *(E),.
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Shear-bend coordinates describe the geometry

Uniformly hyperbolic

Holonomy

Pleated surfaces

flat SL, C bundles

Abelianization
Gaiotto, Hollands,
Moore, Neitzke

Translation surface >
with chosen direction

Should commute

modeled on >

Shear-bend
coordinates

See F.

Bonahon

Flat C* bundles



Shear-bend coordinates encode the electron's motion

ImE

ImE

The shear-bend coordinates depend holomorphically on E away
from the spectrum.

Their singularities show us some part of the spectrum.



Shear-bend coordinates depend nicely on flow direction
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Varying ¢ changes the quasiperiodicity of our material.

For pleated surfaces with finitely many pleats, the shear-bend
coordinates only change when ¢ connects vertices of X.

The same should be true in our infinitely pleated case.
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The same should be true in our infinitely pleated case.



Questions

How do we rigorously construct a pleated surface from a uniformly
hyperbolic SL, C local system?

If we change the fundamental polygon of ¥, can we interpret the
new transition matrices physically?
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