Pleated hyperbolic surfaces in condensed matter physics

Aaron Fenyes (IHÉS)
Heidelberg Geometry Seminar

16 February, 2020

Translation surfaces

Build a translation surface Σ by gluing polygons along parallel sides.

Toy 1D quasicrystals from flat surfaces

Toy 1D quasicrystals from flat surfaces

Fix a direction. Let $\phi: \mathbb{R} \times \Sigma \rightarrow \Sigma$ be the unit-speed flow along it.

Toy 1D quasicrystals from flat surfaces

Fix a direction. Let $\phi: \mathbb{R} \times \Sigma \rightarrow \Sigma$ be the unit-speed flow along it. Follow some $x \in \Sigma$ along ϕ, recording the sides you pass through.

Toy 1D quasicrystals from flat surfaces

Fix a direction. Let $\phi: \mathbb{R} \times \Sigma \rightarrow \Sigma$ be the unit-speed flow along it. Follow some $x \in \Sigma$ along ϕ, recording the sides you pass through.

Toy 1D quasicrystals from flat surfaces

- A- -

Fix a direction. Let $\phi: \mathbb{R} \times \Sigma \rightarrow \Sigma$ be the unit-speed flow along it. Follow some $x \in \Sigma$ along ϕ, recording the sides you pass through.

Toy 1D quasicrystals from flat surfaces

Fix a direction. Let $\phi: \mathbb{R} \times \Sigma \rightarrow \Sigma$ be the unit-speed flow along it. Follow some $x \in \Sigma$ along ϕ, recording the sides you pass through.

Toy 1D quasicrystals from flat surfaces

$$
\sigma-A-B-A-A
$$

Fix a direction. Let $\phi: \mathbb{R} \times \Sigma \rightarrow \Sigma$ be the unit-speed flow along it. Follow some $x \in \Sigma$ along ϕ, recording the sides you pass through.

Toy 1D quasicrystals from flat surfaces

$$
0-A-B-A-A-B
$$

Fix a direction. Let $\phi: \mathbb{R} \times \Sigma \rightarrow \Sigma$ be the unit-speed flow along it. Follow some $x \in \Sigma$ along ϕ, recording the sides you pass through.

Toy 1D quasicrystals from flat surfaces

$$
O-A-B-A-A-B-A
$$

Fix a direction. Let $\phi: \mathbb{R} \times \Sigma \rightarrow \Sigma$ be the unit-speed flow along it. Follow some $x \in \Sigma$ along ϕ, recording the sides you pass through.

Toy 1D quasicrystals from flat surfaces

$$
0-A-B-A-A-B-A-B
$$

Fix a direction. Let $\phi: \mathbb{R} \times \Sigma \rightarrow \Sigma$ be the unit-speed flow along it. Follow some $x \in \Sigma$ along ϕ, recording the sides you pass through.

Toy 1D quasicrystals from flat surfaces

$$
a-A-B-A-B-A-B-\cdots
$$

Fix a direction. Let $\phi: \mathbb{R} \times \Sigma \rightarrow \Sigma$ be the unit-speed flow along it. Follow some $x \in \Sigma$ along ϕ, recording the sides you pass through.

Toy 1D quasicrystals from flat surfaces

$$
\cdots-A-B-A-B-A-B-\cdots
$$

Fix a direction. Let $\phi: \mathbb{R} \times \Sigma \rightarrow \Sigma$ be the unit-speed flow along it. Follow some $x \in \Sigma$ along ϕ, recording the sides you pass through. Continue the cutting sequence backward along ϕ.

Toy 1D quasicrystals from flat surfaces

$$
A-A-B-A-B-A-B \cdot \cdots
$$

Fix a direction. Let $\phi: \mathbb{R} \times \Sigma \rightarrow \Sigma$ be the unit-speed flow along it. Follow some $x \in \Sigma$ along ϕ, recording the sides you pass through. Continue the cutting sequence backward along ϕ.

Toy 1D quasicrystals from flat surfaces

B-A-C-B-A-A-B-A-B-..

Fix a direction. Let $\phi: \mathbb{R} \times \Sigma \rightarrow \Sigma$ be the unit-speed flow along it. Follow some $x \in \Sigma$ along ϕ, recording the sides you pass through.

Continue the cutting sequence backward along ϕ.

Toy 1D quasicrystals from flat surfaces

$$
A-B-A-A-B-A-A-B-B-\cdots
$$

Fix a direction. Let $\phi: \mathbb{R} \times \Sigma \rightarrow \Sigma$ be the unit-speed flow along it. Follow some $x \in \Sigma$ along ϕ, recording the sides you pass through.

Continue the cutting sequence backward along ϕ.

Toy 1D quasicrystals from flat surfaces

$$
B-A-B-A-a-B-A-A-B-A-B-\cdots
$$

Fix a direction. Let $\phi: \mathbb{R} \times \Sigma \rightarrow \Sigma$ be the unit-speed flow along it. Follow some $x \in \Sigma$ along ϕ, recording the sides you pass through.

Continue the cutting sequence backward along ϕ.

Toy 1D quasicrystals from flat surfaces

(A)-B-A-B-A-a-B-A-A-B-A-B-․

Fix a direction. Let $\phi: \mathbb{R} \times \Sigma \rightarrow \Sigma$ be the unit-speed flow along it. Follow some $x \in \Sigma$ along ϕ, recording the sides you pass through.

Continue the cutting sequence backward along ϕ.

Toy 1D quasicrystals from flat surfaces

$$
A-A-B-A-B-A-A-B-A-A-B-A-\cdots
$$

Fix a direction. Let $\phi: \mathbb{R} \times \Sigma \rightarrow \Sigma$ be the unit-speed flow along it. Follow some $x \in \Sigma$ along ϕ, recording the sides you pass through.

Continue the cutting sequence backward along ϕ.

Toy 1D quasicrystals from flat surfaces

$B-A-A-B-A-B-A-A-B-A-B-A-B$

Fix a direction. Let $\phi: \mathbb{R} \times \Sigma \rightarrow \Sigma$ be the unit-speed flow along it. Follow some $x \in \Sigma$ along ϕ, recording the sides you pass through.

Continue the cutting sequence backward along ϕ.

Toy 1D quasicrystals from flat surfaces

$\cdots-B-A-A-B-B-A-A-B-A-B-A-B-\cdots$
Fix a direction. Let $\phi: \mathbb{R} \times \Sigma \rightarrow \Sigma$ be the unit-speed flow along it. Follow some $x \in \Sigma$ along ϕ, recording the sides you pass through.

Continue the cutting sequence backward along ϕ.

Cutting sequences are quasiperiodic

Every word you see in a cutting sequence has occurred before, and will occur again.

The distance to the next occurrance is bounded above and below.
This is a kind of quasiperiodicity.

Family resemblance among cutting sequences

$\cdots-B-A-A-B-A-B-A \cdot B-A-A-B-A-B$
Varying $x \in \Sigma$ gives a family of cutting sequences.
They all contain the same words.
Each word's upper and lower periods are uniform over the family.

Family resemblance among cutting sequences

$\cdots-B-A-A-B-A-A \cdot \cdot A-B-A-B-A-B-\cdots$
Varying $x \in \Sigma$ gives a family of cutting sequences.
They all contain the same words.
Each word's upper and lower periods are uniform over the family.

Family resemblance among cutting sequences

$\cdots-B-A-B-A-A-B-A \cdot B-A-B-A-A-B \cdot \cdots$
Varying $x \in \Sigma$ gives a family of cutting sequences.
They all contain the same words.
Each word's upper and lower periods are uniform over the family.

Family resemblance among cutting sequences

$\cdots-B-A-B-A-A-A \cdot-B-A-A-A-A-B-\cdots$
Varying $x \in \Sigma$ gives a family of cutting sequences.
They all contain the same words.
Each word's upper and lower periods are uniform over the family.

Cutting sequences as quasicrystals

$\cdots-B-A-A-B-A-B-A-B-A-A-B-A-B$

Imagine A and B are types of atoms.
Then a cutting sequence is a quasiperiodic chain of atoms.
Physicists call this a one-dimensional quasicrystal.
Let's investigate its physical properties.
We'll model the motion of an electron hopping from atom to atom.

Cutting sequences as quasicrystals

Imagine A and B are types of atoms.
Then a cutting sequence is a quasiperiodic chain of atoms.
Physicists call this a one-dimensional quasicrystal.
Let's investigate its physical properties.
We'll model the motion of an electron hopping from atom to atom.

Cutting sequences as quasicrystals

Imagine A and B are types of atoms.
Then a cutting sequence is a quasiperiodic chain of atoms.
Physicists call this a one-dimensional quasicrystal.
Let's investigate its physical properties.
We'll model the motion of an electron hopping from atom to atom.

Cutting sequences as quasicrystals

Imagine A and B are types of atoms.
Then a cutting sequence is a quasiperiodic chain of atoms.
Physicists call this a one-dimensional quasicrystal.
Let's investigate its physical properties.
We'll model the motion of an electron hopping from atom to atom.

Cutting sequences as quasicrystals

Imagine A and B are types of atoms.
Then a cutting sequence is a quasiperiodic chain of atoms.
Physicists call this a one-dimensional quasicrystal.
Let's investigate its physical properties.
We'll model the motion of an electron hopping from atom to atom.

Cutting sequences as quasicrystals

Imagine A and B are types of atoms.
Then a cutting sequence is a quasiperiodic chain of atoms.
Physicists call this a one-dimensional quasicrystal.
Let's investigate its physical properties.
We'll model the motion of an electron hopping from atom to atom.

Cutting sequences as quasicrystals

Imagine A and B are types of atoms.
Then a cutting sequence is a quasiperiodic chain of atoms.
Physicists call this a one-dimensional quasicrystal.
Let's investigate its physical properties.
We'll model the motion of an electron hopping from atom to atom.

Cutting sequences as quasicrystals

$\cdots-B-A-A-B-B=A-B-A-A-B-B-\cdots$

Imagine A and B are types of atoms.
Then a cutting sequence is a quasiperiodic chain of atoms.
Physicists call this a one-dimensional quasicrystal.
Let's investigate its physical properties.
We'll model the motion of an electron hopping from atom to atom.

Cutting sequences as quasicrystals

Imagine A and B are types of atoms.
Then a cutting sequence is a quasiperiodic chain of atoms.
Physicists call this a one-dimensional quasicrystal.
Let's investigate its physical properties.
We'll model the motion of an electron hopping from atom to atom.

Quasicrystals are interesting materials

When Σ is a flat torus, the electron is known to move strangely.

- Its allowed energies form a Cantor set of zero measure. Bellissard, Iochum, Scoppola, Testard (1989).
- In some cases, it displays anomalous transport-it doesn't move steadily, or do a random walk, or sit still.
Damanik, Tcheremchantsev (2007); Marin (2010).
Quasicrystals from other translation surfaces might be just as weird.
Even the well-studied flat torus case has some mysteries left.
See Damanik, "Schrödinger operators with dynamically defined potentials," §§7, 8.3.

A model for a hopping electron

In the tight-binding model, the electron's state is a vector $\psi \in L^{2}(\mathbb{Z})$.
Its motion is described by the difference operator

$$
\left(H_{x} \psi\right)^{n}=-\left(\psi^{n+1}+\psi^{n-1}\right)+u_{x}^{n} \psi^{n},
$$

where

$$
u_{x}^{n}= \begin{cases}\alpha & \text { atom } n \text { is type } \mathrm{A} \\ \beta & \text { atom } n \text { is type } \mathrm{B}\end{cases}
$$

is its potential energy at site n.

A model for a hopping electron

In the tight-binding model, the electron's state is a vector $\psi \in L^{2}(\mathbb{Z})$.
Its motion is described by the difference operator

$$
\left(H_{x} \psi\right)^{n}=-\left(\psi^{n+1}+\psi^{n-1}\right)+u_{x}^{n} \psi^{n},
$$

where

$$
u_{x}^{n}= \begin{cases}\alpha & \text { atom } n \text { is type } \mathrm{A} \\ \beta & \text { atom } n \text { is type } \mathrm{B}\end{cases}
$$

is its potential energy at site n.

A model for a hopping electron

In the tight-binding model, the electron's state is a vector $\psi \in L^{2}(\mathbb{Z})$.
Its motion is described by the difference operator

$$
\left(H_{x} \psi\right)^{n}=-\left(\psi^{n+1}+\psi^{n-1}\right)+u_{x}^{n} \psi^{n},
$$

where

$$
u_{x}^{n}= \begin{cases}\alpha & \text { atom } n \text { is type } \mathrm{A} \\ \beta & \text { atom } n \text { is type } \mathrm{B}\end{cases}
$$

is its potential energy at site n.

Flat bundles reveal the electron's energies

The spectrum of $H_{x} \subset L^{2}(\mathbb{Z})$ gives the electron's allowed energies. Studying the E-eigenspace of $H_{x} \subset \mathbb{C}^{\mathbb{Z}}$ will lead us to a test for whether $E \in \mathbb{C}$ is in the spectrum. To build eigenvectors, solve

$$
H_{x} \psi=E \psi
$$

Flat bundles reveal the electron's energies

The spectrum of $H_{x} \bigcirc L^{2}(\mathbb{Z})$ gives the electron's allowed energies.
Studying the E-eigenspace of $H_{x} \odot \mathbb{C}^{\mathbb{Z}}$ will lead us to a test for whether $E \in \mathbb{C}$ is in the spectrum. To build eigenvectors, solve

$$
\begin{aligned}
H_{x} \psi & =E \psi \\
\psi^{n+1} & =\left(u_{x}^{n}-E\right) \psi^{n}-\psi^{n-1}
\end{aligned}
$$

Flat bundles reveal the electron's energies

The spectrum of $H_{x} \bigcirc L^{2}(\mathbb{Z})$ gives the electron's allowed energies. Studying the E-eigenspace of $H_{x} \subset \mathbb{C}^{\mathbb{Z}}$ will lead us to a test for whether $E \in \mathbb{C}$ is in the spectrum. To build eigenvectors, solve

$$
\begin{aligned}
H_{x} \psi & =E \psi \\
\psi^{n+1} & =\left(u_{x}^{n}-E\right) \psi^{n}-\psi^{n-1} \\
{\left[\begin{array}{l}
\psi^{n+1} \\
\psi^{n}
\end{array}\right] } & =\left[\begin{array}{cc}
u_{x}^{n}-E & -1 \\
1 & \cdot
\end{array}\right]\left[\begin{array}{l}
\psi^{n} \\
\psi^{n-1}
\end{array}\right]
\end{aligned}
$$

Flat bundles reveal the electron's energies

The spectrum of $H_{x} \bigcirc L^{2}(\mathbb{Z})$ gives the electron's allowed energies. Studying the E-eigenspace of $H_{x} \subset \mathbb{C}^{\mathbb{Z}}$ will lead us to a test for whether $E \in \mathbb{C}$ is in the spectrum. To build eigenvectors, solve

$$
\begin{aligned}
& H_{x} \psi=E \psi \\
& \psi^{n+1}=\left(u_{x}^{n}-E\right) \psi^{n}-\psi^{n-1} \\
& {\left[\begin{array}{l}
\psi^{n+1} \\
\psi^{n} \\
\nu^{n+1}
\end{array}\right] }=\left[\begin{array}{cc}
u_{x}^{n}-E & -1 \\
1 & \cdot
\end{array}\right]\left[\begin{array}{l}
\psi^{n} \\
\psi^{n-1}
\end{array}\right] \\
& v^{n}
\end{aligned}
$$

Flat bundles reveal the electron's energies

The spectrum of $H_{x} \bigcirc L^{2}(\mathbb{Z})$ gives the electron's allowed energies.
Studying the E-eigenspace of $H_{x} \subset \mathbb{C}^{\mathbb{Z}}$ will lead us to a test for whether $E \in \mathbb{C}$ is in the spectrum. To build eigenvectors, solve

$$
\begin{aligned}
& H_{x} \psi=E \psi \\
& \psi^{n+1}=\left(u_{x}^{n}-E\right) \psi^{n}-\psi^{n-1} \\
& {\left[\begin{array}{l}
\psi^{n+1} \\
\psi^{n} \\
v^{n+1}
\end{array}\right] }=\left[\begin{array}{cc}
u_{x}^{n}-E & -1 \\
1 & \cdot
\end{array}\right]\left[\begin{array}{l}
\psi^{n} \\
\psi^{n-1}
\end{array}\right] \\
& v^{n}
\end{aligned}
$$

The atom type at n determines the transition from v^{n} to v^{n+1}.
See Viana, Lectures on Lyapunov Exponents, §2.1.3.

Flat bundles reveal the electron's energies

$$
B=\left[\begin{array}{cc}
\beta-E & -1 \\
1 & \cdot
\end{array}\right]
$$

$$
A=\left[\begin{array}{cc}
\alpha-E & -1 \\
1 & \cdot
\end{array}\right]
$$

The transition matrices define a flat $\mathrm{SL}_{2} \mathbb{C}$ vector bundle $\mathscr{V}(E) \rightarrow \Sigma$. Its flat sections along the ϕ-orbit of x are the E-eigenvectors of H_{x}.

Flat bundles reveal the electron's energies

$$
B=\left[\begin{array}{cc}
\beta-E & -1 \\
1 & \cdot
\end{array}\right]
$$

$$
A=\left[\begin{array}{cc}
\alpha-E & -1 \\
1 & \cdot
\end{array}\right]
$$

Carrying v^{0}

The transition matrices define a flat $\mathrm{SL}_{2} \mathbb{C}$ vector bundle $\mathscr{V}(E) \rightarrow \Sigma$.
Its flat sections along the ϕ-orbit of x are the E-eigenvectors of H_{x}.

Flat bundles reveal the electron's energies

The transition matrices define a flat $\mathrm{SL}_{2} \mathbb{C}$ vector bundle $\mathscr{V}(E) \rightarrow \Sigma$.
Its flat sections along the ϕ-orbit of x are the E-eigenvectors of H_{x}.

Flat bundles reveal the electron's energies

$$
B=\left[\begin{array}{cc}
\beta-E & -1 \\
1 & \cdot
\end{array}\right]
$$

$$
A=\left[\begin{array}{cc}
\alpha-E & -1 \\
1 & \cdot
\end{array}\right]
$$

$$
B A v^{0}=v^{2}
$$

The transition matrices define a flat $\mathrm{SL}_{2} \mathbb{C}$ vector bundle $\mathscr{V}(E) \rightarrow \Sigma$.
Its flat sections along the ϕ-orbit of x are the E-eigenvectors of H_{x}.

Flat bundles reveal the electron's energies

$$
B=\left[\begin{array}{cc}
\beta-E & -1 \\
1 & \cdot
\end{array}\right]
$$

$$
A=\left[\begin{array}{cc}
\alpha-E & -1 \\
1 & \cdot
\end{array}\right]
$$

$$
A B A v^{0}=v^{3}
$$

The transition matrices define a flat $\mathrm{SL}_{2} \mathbb{C}$ vector bundle $\mathscr{V}(E) \rightarrow \Sigma$.
Its flat sections along the ϕ-orbit of x are the E-eigenvectors of H_{x}.

Flat bundles reveal the electron's energies

The transition matrices define a flat $\mathrm{SL}_{2} \mathbb{C}$ vector bundle $\mathscr{V}(E) \rightarrow \Sigma$.
Its flat sections along the ϕ-orbit of x are the E-eigenvectors of H_{x}.

Flat bundles reveal the electron's energies

$$
B=\left[\begin{array}{cc}
\beta-E & -1 \\
1 & \cdot
\end{array}\right]
$$

$$
A=\left[\begin{array}{cc}
\alpha-E & -1 \\
1 & \cdot
\end{array}\right]
$$

$$
B A A B A v^{0}=v^{5}
$$

The transition matrices define a flat $\mathrm{SL}_{2} \mathbb{C}$ vector bundle $\mathscr{V}(E) \rightarrow \Sigma$.
Its flat sections along the ϕ-orbit of x are the E-eigenvectors of H_{x}.

Flat bundles reveal the electron's energies

$$
A B A A B A v^{0}=v^{6}
$$

The transition matrices define a flat $\mathrm{SL}_{2} \mathbb{C}$ vector bundle $\mathscr{V}(E) \rightarrow \Sigma$.
Its flat sections along the ϕ-orbit of x are the E-eigenvectors of H_{x}.

Flat bundles reveal the electron's energies

$$
B=\left[\begin{array}{cc}
\beta-E & -1 \\
1 & \cdot
\end{array}\right]
$$

$$
A=\left[\begin{array}{cc}
\alpha-E & -1 \\
1 & \cdot
\end{array}\right]
$$

$$
B A B A A B A v^{0}=v^{7}
$$

The transition matrices define a flat $\mathrm{SL}_{2} \mathbb{C}$ vector bundle $\mathscr{V}(E) \rightarrow \Sigma$.
Its flat sections along the ϕ-orbit of x are the E-eigenvectors of H_{x}.

Flat bundles reveal the electron's energies

Theorem (special case of Johnson 1986)
If the orbit of $x \in \Sigma$ is dense, the spectrum of H_{x} is the complement of
$\{E \in \mathbb{C}: \mathscr{V}(E)$ is uniformly hyperbolic with respect to $\phi\}$.

Uniform hyperbolicity is a dynamical condition. It's like being Anosov, but only along ϕ, instead of in all directions.

Uniform hyperbolicity: dynamical definition

Lift ϕ along the flat connection to a flow Φ on $\mathscr{V}(E)$.
We say $\mathscr{V}(E)$ is uniformly hyperbolic with respect to ϕ if it splits into line sub-bundles $\mathscr{V}^{ \pm}(E)$, preserved by Φ, with

$$
\left\|\Phi_{x}^{ \pm t} v\right\| \lesssim e^{-K t}\|v\|
$$

over all $x \in \Sigma, v \in \mathscr{V}^{ \pm}(E)_{x}$, and $t \in[0, \infty)$.

Uniform hyperbolicity: dynamical definition

Lift ϕ along the flat connection to a flow Φ on $\mathscr{V}(E)$.
We say $\mathscr{V}(E)$ is uniformly hyperbolic with respect to ϕ if it splits into line sub-bundles $\mathscr{V}^{ \pm}(E)$, preserved by Φ, with

$$
\left\|\Phi_{x}^{ \pm t} v\right\| \lesssim e^{-K t}\|v\|
$$

over all $x \in \Sigma, v \in \mathscr{V}^{ \pm}(E)_{x}$, and $t \in[0, \infty)$.

Uniform hyperbolicity: dynamical definition

Lift ϕ along the flat connection to a flow Φ on $\mathscr{V}(E)$.
We say $\mathscr{V}(E)$ is uniformly hyperbolic with respect to ϕ if it splits into line sub-bundles $\mathscr{V}^{ \pm}(E)$, preserved by Φ, with

$$
\left\|\Phi_{x}^{ \pm t} v\right\| \lesssim e^{-K t}\|v\|
$$

over all $x \in \Sigma, v \in \mathscr{V}^{ \pm}(E)_{x}$, and $t \in[0, \infty)$.

Uniform hyperbolicity: dynamical definition

$$
\left\|v^{n}\right\| \text { for } v^{0} \in \mathscr{V}^{-}(E)_{x}
$$

Lift ϕ along the flat connection to a flow Φ on $\mathscr{V}(E)$.
We say $\mathscr{V}(E)$ is uniformly hyperbolic with respect to ϕ if it splits into line sub-bundles $\mathscr{V}^{ \pm}(E)$, preserved by Φ, with

$$
\left\|\Phi_{x}^{ \pm t} v\right\| \lesssim e^{-K t}\|v\|
$$

over all $x \in \Sigma, v \in \mathscr{V}^{ \pm}(E)_{x}$, and $t \in[0, \infty)$.

Uniform hyperbolicity: geometric picture

Our construction gives $\mathscr{V}(E)_{x} \xrightarrow{\cong} \mathbb{C}^{2}$ over the fundamental polygon.
That makes $\mathscr{V}^{+}(E)_{x}$ and $\mathscr{V}^{-}(E)_{x}$ points in $\mathrm{PC}^{2} \cong \partial \mathbb{H}^{3}$, giving orbit segments in polygon $\xrightarrow[\text { equivariant }]{ }$ geodesics in \mathbb{H}^{3}

Uniform hyperbolicity: geometric picture

Our construction gives $\mathscr{V}(E)_{x} \xrightarrow{\cong} \mathbb{C}^{2}$ over the fundamental polygon.
That makes $\mathscr{V}^{+}(E)_{x}$ and $\mathscr{V}^{-}(E)_{x}$ points in $\mathrm{PC}^{2} \cong \partial \mathbb{H}^{3}$, giving orbit segments in polygon $\xrightarrow[\text { equivariant }]{ }$ geodesics in \mathbb{H}^{3}

Uniform hyperbolicity: geometric picture

Our construction gives $\mathscr{V}(E)_{x} \xrightarrow{\cong} \mathbb{C}^{2}$ over the fundamental polygon.
That makes $\mathscr{V}^{+}(E)_{x}$ and $\mathscr{V}^{-}(E)_{x}$ points in $\mathrm{PC}^{2} \cong \partial \mathbb{H}^{3}$, giving orbit segments in polygon $\xrightarrow[\text { equivariant }]{ }$ geodesics in H^{3}

Uniform hyperbolicity: geometric picture

Our construction gives $\mathscr{V}(E)_{x} \xrightarrow{\cong} \mathbb{C}^{2}$ over the fundamental polygon.
That makes $\mathscr{V}^{+}(E)_{x}$ and $\mathscr{V}^{-}(E)_{x}$ points in $\mathrm{PC}^{2} \cong \partial \mathbb{H}^{3}$, giving
orbit segments in polygon $\xrightarrow[\text { equivariant }]{ }$ geodesics in H^{3}

Uniform hyperbolicity: geometric picture

The resulting geodesics are bound together by some extra structure.
They should form the pleating locus of a pleated hyperbolic surface with holonomy bundle $\mathscr{V}(E)$.

Uniform hyperbolicity: geometric picture

The resulting geodesics are bound together by some extra structure.
They should form the pleating locus of a pleated hyperbolic surface with holonomy bundle $\mathscr{V}(E)$.

Uniform hyperbolicity: geometric picture

The resulting geodesics are bound together by some extra structure.
They should form the pleating locus of a pleated hyperbolic surface with holonomy bundle $\mathscr{V}(E)$.

Uniform hyperbolicity: geometric picture

The resulting geodesics are bound together by some extra structure.
They should form the pleating locus of a pleated hyperbolic surface with holonomy bundle $\mathscr{V}(E)$.

Uniform hyperbolicity: geometric picture

The resulting geodesics are bound together by some extra structure.
They should form the pleating locus of a pleated hyperbolic surface with holonomy bundle $\mathscr{V}(E)$.

Uniform hyperbolicity: geometric picture

The resulting geodesics are bound together by some extra structure.
They should form the pleating locus of a pleated hyperbolic surface with holonomy bundle $\mathscr{V}(E)$.

Uniform hyperbolicity: geometric picture

The resulting geodesics are bound together by some extra structure.
They should form the pleating locus of a pleated hyperbolic surface with holonomy bundle $\mathscr{V}(E)$.

Uniform hyperbolicity: geometric picture

The resulting geodesics are bound together by some extra structure.
They should form the pleating locus of a pleated hyperbolic surface with holonomy bundle $\mathscr{V}(E)$.

Uniform hyperbolicity: geometric picture

The resulting geodesics are bound together by some extra structure.
They should form the pleating locus of a pleated hyperbolic surface with holonomy bundle $\mathscr{V}(E)$.

Uniform hyperbolicity: geometric picture

The resulting geodesics are bound together by some extra structure.
They should form the pleating locus of a pleated hyperbolic surface with holonomy bundle $\mathscr{V}(E)$.

Uniform hyperbolicity: geometric picture

The resulting geodesics are bound together by some extra structure.
They should form the pleating locus of a pleated hyperbolic surface with holonomy bundle $\mathscr{V}(E)$.

Uniform hyperbolicity: geometric picture

The resulting geodesics are bound together by some extra structure.
They should form the pleating locus of a pleated hyperbolic surface with holonomy bundle $\mathscr{V}(E)$.

Uniform hyperbolicity: geometric picture

The resulting geodesics are bound together by some extra structure.
They should form the pleating locus of a pleated hyperbolic surface with holonomy bundle $\mathscr{V}(E)$.

Uniform hyperbolicity: geometric picture

The resulting geodesics are bound together by some extra structure.
They should form the pleating locus of a pleated hyperbolic surface with holonomy bundle $\mathscr{V}(E)$.

Uniform hyperbolicity: geometric picture

The resulting geodesics are bound together by some extra structure.
They should form the pleating locus of a pleated hyperbolic surface with holonomy bundle $\mathscr{V}(E)$.

Uniform hyperbolicity: geometric picture

The resulting geodesics are bound together by some extra structure.
They should form the pleating locus of a pleated hyperbolic surface with holonomy bundle $\mathscr{V}(E)$.

Uniform hyperbolicity: geometric picture

The resulting geodesics are bound together by some extra structure.
They should form the pleating locus of a pleated hyperbolic surface with holonomy bundle $\mathscr{V}(E)$.

Uniform hyperbolicity: geometric picture

The resulting geodesics are bound together by some extra structure.
They should form the pleating locus of a pleated hyperbolic surface with holonomy bundle $\mathscr{V}(E)$.

Uniform hyperbolicity: geometric picture

The resulting geodesics are bound together by some extra structure.
They should form the pleating locus of a pleated hyperbolic surface with holonomy bundle $\mathscr{V}(E)$.

Uniform hyperbolicity: geometric picture

The resulting geodesics are bound together by some extra structure.
They should form the pleating locus of a pleated hyperbolic surface with holonomy bundle $\mathscr{V}(E)$.

Uniform hyperbolicity: geometric picture

The resulting geodesics are bound together by some extra structure.
They should form the pleating locus of a pleated hyperbolic surface with holonomy bundle $\mathscr{V}(E)$.

Uniform hyperbolicity: geometric picture

The resulting geodesics are bound together by some extra structure.
They should form the pleating locus of a pleated hyperbolic surface with holonomy bundle $\mathscr{V}(E)$.

Uniform hyperbolicity: geometric picture

The resulting geodesics are bound together by some extra structure.
They should form the pleating locus of a pleated hyperbolic surface with holonomy bundle $\mathscr{V}(E)$.

Uniform hyperbolicity: geometric picture

The resulting geodesics are bound together by some extra structure.
They should form the pleating locus of a pleated hyperbolic surface with holonomy bundle $\mathscr{V}(E)$.

Uniform hyperbolicity: geometric picture

The resulting geodesics are bound together by some extra structure.
They should form the pleating locus of a pleated hyperbolic surface with holonomy bundle $\mathscr{V}(E)$.

Uniform hyperbolicity: geometric picture

The resulting geodesics are bound together by some extra structure.
They should form the pleating locus of a pleated hyperbolic surface with holonomy bundle $\mathscr{V}(E)$.

Uniform hyperbolicity: geometric picture

The resulting geodesics are bound together by some extra structure.
They should form the pleating locus of a pleated hyperbolic surface with holonomy bundle $\mathscr{V}(E)$.

Uniform hyperbolicity: geometric picture

The resulting geodesics are bound together by some extra structure.
They should form the pleating locus of a pleated hyperbolic surface with holonomy bundle $\mathscr{V}(E)$.

Uniform hyperbolicity: geometric picture

The resulting geodesics are bound together by some extra structure.
They should form the pleating locus of a pleated hyperbolic surface with holonomy bundle $\mathscr{V}(E)$.

Uniform hyperbolicity: geometric picture

The resulting geodesics are bound together by some extra structure.
They should form the pleating locus of a pleated hyperbolic surface with holonomy bundle $\mathscr{V}(E)$.

Uniform hyperbolicity: geometric picture

The resulting geodesics are bound together by some extra structure.
They should form the pleating locus of a pleated hyperbolic surface with holonomy bundle $\mathscr{V}(E)$.

Uniform hyperbolicity: geometric picture

The resulting geodesics are bound together by some extra structure.
They should form the pleating locus of a pleated hyperbolic surface with holonomy bundle $\mathscr{V}(E)$.

Uniform hyperbolicity: geometric picture

The resulting geodesics are bound together by some extra structure.
They should form the pleating locus of a pleated hyperbolic surface with holonomy bundle $\mathscr{V}(E)$.

Uniform hyperbolicity: geometric picture

The resulting geodesics are bound together by some extra structure.
They should form the pleating locus of a pleated hyperbolic surface with holonomy bundle $\mathscr{V}(E)$.

Uniform hyperbolicity: geometric picture

The resulting geodesics are bound together by some extra structure.
They should form the pleating locus of a pleated hyperbolic surface with holonomy bundle $\mathscr{V}(E)$.

Uniform hyperbolicity: geometric picture

$$
E=+0.50
$$

The resulting geodesics are bound together by some extra structure.
They should form the pleating locus of a pleated hyperbolic surface with holonomy bundle $\mathscr{V}(E)$.

Uniform hyperbolicity: geometric picture

$$
E=+2.00
$$

The resulting geodesics are bound together by some extra structure.
They should form the pleating locus of a pleated hyperbolic surface with holonomy bundle $\mathscr{V}(E)$.

Uniform hyperbolicity: geometric picture

$$
E=-3.00
$$

The resulting geodesics are bound together by some extra structure.
They should form the pleating locus of a pleated hyperbolic surface with holonomy bundle $\mathscr{V}(E)$.

Geometry encodes the electron's motion

Our E-dependent pleated surface encodes $\left(H_{x}-E\right)^{-1}$ for all $x \in \Sigma$.

Geometry encodes the electron's motion

Our E-dependent pleated surface encodes $\left(H_{x}-E\right)^{-1}$ for all $x \in \Sigma$. Choose E-eigenvectors $\psi_{ \pm} \in \mathbb{C}^{\mathbb{Z}}$ with $\psi_{+}^{0}=\psi_{-}^{0}$ and $v_{ \pm}^{0} \in \mathscr{V}^{ \pm}(E)_{x}$. Splice and rescale to get unique $\psi_{\star} \in L^{2}(\mathbb{Z})$ with $\left(H_{x}-E\right) \psi_{\star}=\delta_{0}$.

Geometry encodes the electron's motion

Our E-dependent pleated surface encodes $\left(H_{x}-E\right)^{-1}$ for all $x \in \Sigma$.
Choose E-eigenvectors $\psi_{ \pm} \in \mathbb{C}^{\mathbb{Z}}$ with $\psi_{+}^{0}=\psi_{-}^{0}$ and $v_{ \pm}^{0} \in \mathscr{V}^{ \pm}(E)_{x}$.
Splice and rescale to get unique $\psi_{\star} \in L^{2}(\mathbb{Z})$ with $\left(H_{x}-E\right) \psi_{\star}=\delta_{0}$.

Geometry encodes the electron's motion

Our E-dependent pleated surface encodes $\left(H_{x}-E\right)^{-1}$ for all $x \in \Sigma$.
Choose E-eigenvectors $\psi_{ \pm} \in \mathbb{C}^{\mathbb{Z}}$ with $\psi_{+}^{0}=\psi_{-}^{0}$ and $v_{ \pm}^{0} \in \mathscr{V}^{ \pm}(E)_{x}$.
Splice and rescale to get unique $\psi_{\star} \in L^{2}(\mathbb{Z})$ with $\left(H_{x}-E\right) \psi_{\star}=\delta_{0}$.

Geometry encodes the electron's motion

$\left\|\psi_{\star}^{n}\right\|$, up to scaling

Our E-dependent pleated surface encodes $\left(H_{x}-E\right)^{-1}$ for all $x \in \Sigma$.
Choose E-eigenvectors $\psi_{ \pm} \in \mathbb{C}^{\mathbb{Z}}$ with $\psi_{+}^{0}=\psi_{-}^{0}$ and $v_{ \pm}^{0} \in \mathscr{V}^{ \pm}(E)_{x}$.
Splice and rescale to get unique $\psi_{\star} \in L^{2}(\mathbb{Z})$ with $\left(H_{x}-E\right) \psi_{\star}=\delta_{0}$.

Shear-bend coordinates describe the geometry

Translation surface Σ with chosen direction

Shear-bend coordinates encode the electron's motion

The shear-bend coordinates depend holomorphically on E away from the spectrum.

Their singularities show us some part of the spectrum.

Shear-bend coordinates depend nicely on flow direction

$\cdots-A-B-A-B-A-B-A-A-B-B-A-B-A$
Varying ϕ changes the quasiperiodicity of our material.
For pleated surfaces with finitely many pleats, the shear-bend coordinates only change when ϕ connects vertices of Σ.

The same should be true in our infinitely pleated case.

Shear-bend coordinates depend nicely on flow direction

$\cdots-B-A-B-A-B-A-B-B-B-A-B-A-B$
Varying ϕ changes the quasiperiodicity of our material.
For pleated surfaces with finitely many pleats, the shear-bend coordinates only change when ϕ connects vertices of Σ.

The same should be true in our infinitely pleated case.

Questions

How do we rigorously construct a pleated surface from a uniformly hyperbolic $\mathrm{SL}_{2} \mathbb{C}$ local system?

If we change the fundamental polygon of Σ, can we interpret the new transition matrices physically?

References

Quasicrystals are interesting materials

- Damanik (2017). "Schrödinger operators with dynamically defined potentials" doi:10.1017/etds.2015.120.
- Bellissard, Iochum, Scoppola, Testard (1989). "Spectral properties of one-dimensional quasicrystals" doi:10.1007/BF01218415.
- Damanik, Tcheremchantsev (2007). "Upper bounds in quantum dynamics" doi:10.1090/S0894-0347-06-00554-6.
- Marin (2010). "Dynamical bounds for Sturmian Schrödinger operators" doi:10.1142/S0129055X10004090 (announced 2008 doi:10.1016/j.crma.2008.09.019).

References

Flat bundles reveal the electron's energies

- Viana (2014). Lectures on Lyapunov Exponents isbn:978-1-10-708173-4.
- Johnson (1986). "Exponential Dichotomy, Rotation Number, and Linear Differential Operators with Bounded Coefficients" doi:10.1016/0022-0396(86)90125-7.

References

Shear-bend coordinates describe the geometry

- Bonahon (1996). "Shearing hyperbolic surfaces, bending pleated surfaces, and Thurston's symplectic form" doi:10.5802/afst. 829.
- Gaiotto, Moore, Neitzke (2013). "Wall-crossing, Hitchin Systems, and the WKB Approximation" doi:10.1016/j.aim.2012.09.027.
- Hollands, Neitzke (2013). "Spectral networks and Fenchel-Nielsen coordinates"
doi:10.1007/s11005-016-0842-x.
- F. (to appear). "A dynamical perspective on shear-bend coordinates" arXiv:1510.05757.

