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A particle on a curve

𝐶
Ω̃

Ω
𝑦

Let’s study a particle moving on a real curve 𝐶 .

Classical energy levels

𝑝2 + �̃�(𝑧)

𝑇 ∗ℝ

Ω̃ ⊂ ℝ

𝑝2 + 𝑞(𝑧)

𝑇 ∗ℝ

Ω ⊂ ℝ
𝑦

A classical energy level is a curve in 𝑇 ∗𝐶 , cut out locally by
1
2𝑝2 + 𝑉 (𝑧) = 𝐸 𝑝2 + 𝑞(𝑧) = 0

For consistency between charts, we need �̃� = 𝑦∗𝑞 𝑦2𝑧 .

Quantization

( 𝜕
𝜕𝑧)

2 − �̃�(𝑧)

Ω̃ ⊂ ℝ

( 𝜕
𝜕𝑧)

2 − 𝑞(𝑧)

Ω ⊂ ℝ
𝑦

According to the canonical quantization rules

𝑧 ⇝ 𝑍 ∶= 𝑧 𝑝 ⇝ 𝑃 ∶= −𝑖 𝜕𝜕𝑧
a quantum energy level should be described locally by

1
2 (𝑖

𝜕
𝜕𝑧)

2 + [𝑉 (𝑧) − 𝐸] ( 𝜕
𝜕𝑧)

2 − 𝑞(𝑧)
Hill’s operator

What condition should we impose for consistency between charts?

Liouville equivalence is a time-honored choice.

( 𝜕
𝜕𝑧)

2 − �̃� = 𝑦3/2𝑧 ∘ [( 𝜕
𝜕𝑦)

2
− 𝑦∗𝑞] ∘ 𝑦1/2𝑧

The geometry of quantum energy levels

This gluing condition produces a convenient space of quantum
curves with a beautiful geometric interpretation.

Operator ordering

Its unusual form can be motivated using an operator-ordering rule.

Quantum energy levels

𝐶
Ω̃

( 𝜕
𝜕𝑧)

2 − �̃�(𝑧)

Ω

( 𝜕
𝜕𝑧)

2 − 𝑞(𝑧)

Liouville

A quantum energy level on 𝐶 consists of:
Data An atlas with a Hill’s operator on the image of each chart.

Condition Transitions are Liouville equivalences.
It’s a geometric structure!

Simplification

( 𝜕
𝜕𝑧)

2 − 𝑞(𝑧) ( 𝜕
𝜕𝑧)

2

Kummer’s coordinate

Every Hill’s operator is locally Liouville-equivalent to ( 𝜕
𝜕𝑧)

2
.

Hence, we can describe a quantum energy level using only projective
charts, which come with ( 𝜕

𝜕𝑧)
2
on their images.

The Liouville self-equivalences of this operator are the Möbius trans-
formations.

Real projective structures

𝐶
Ω̃

( 𝜕
𝜕𝑧)

2

Ω

( 𝜕
𝜕𝑧)

2

Möbius

If we stick to projective charts, we can forget about Hill’s operators.

A quantum energy level on 𝐶 becomes:

Data An atlas of charts to ℝℙ1.
Condition Transitions are Möbius transformations.

This is known as a real projective structure.
G. Segal, “The geometry of the KdV equation” (1991). doi:10.1142/S0217751X91001416.

A differential point of view

We can view ( 𝜕
𝜕𝑧)

2
globally on ℝℙ1 as a differential operatorΔ that sends

sections of the anti-tautological bundle 𝒪(1) to sections of 𝒪(−3).
A real projective structure on 𝐶 globalizes 𝒪(1) to a line bundleℒ with
an isomorphism ℒ⊗2 ↔ 𝑇𝐶 . It globalizes Δ to a differential operator
sending sections of ℒ to sections of ℒ⊗(−3).

We can recover the real projective structure fromℒ , Δ, andℒ⊗2 ↔ 𝑇𝐶 .

Summary

1
2𝑝2 + 𝑞(𝑧)

classical
energy level

( 𝜕
𝜕𝑧)

2 − 𝑞(𝑧)

quantum
energy level

( 𝜕
𝜕𝑧)

2

real projective
structure

quantize

≅
simplify

A quantum energy level is a real projective structure.

Interpretation as quantum curves

Background

Quantum curves were first defined for algebraic curves in 𝑇 ∗ℂ.
P. Norbury, “Quantum curves and topological recursion” (2015). arXiv:1502.04394.

Dumitrescu and Mulase have now generalized them to Hitchin spectral
curves in 𝑇 ∗𝐶 , where 𝐶 is an algebraic curve with a Higgs bundle.
O. Dumitrescu andM. Mulase, “Lectures on the topological recursion for Higgs bundles…,” §1.6 (2016). arXiv:1509.09007.

—, “Interplay between Opers, Quantum Curves, WKB Analysis, and…” (2021). doi:10.3842/SIGMA.2021.036.

Our quantum energy levels are quantum curves in that sense.

Complex projective structures

Make 𝐶 a complex curve.

All our definitions carry over. A
quantum energy level is now a com-
plex projective structure.

Its ℒ , Δ, and ℒ⊗2 ↔ 𝑇𝐶 form an
SL2(ℂ) oper, which Dumitrescu and
Mulase read as a quantum curve.

Liouville

( 𝜕
𝜕𝑧)

2 − �̃�(𝑧) ( 𝜕
𝜕𝑧)

2 − 𝑞(𝑧)

Examples

free particle: 𝑝2 + 1
4 falling particle: 𝑝2 + 𝑧

In the complex setting, even the most basic systems have interesting
energy level geometry. This plays a role in the exact WKB method.
A. F., “The complex geometry of the free particle, and its perturbations” (2020). arXiv:2008.03836.

—, “The geometry of quantum energy levels” (2020 talk). Slides available online.

Amore invariant view

(𝑝 𝑑𝑧)2 + �̃�(𝑧) 𝑑𝑧2

𝑇 ∗ℝ

Ω̃ ⊂ ℝ

(𝑝 𝑑𝑧)2 + 𝑞(𝑧) 𝑑𝑧2

𝑇 ∗ℝ

Ω ⊂ ℝ
𝑦

𝑌

Each transition 𝑦 ∶ Ω̃ → Ω lifts to a map 𝑌 ∶ 𝑇 ∗Ω̃ → 𝑇 ∗Ω defined by

𝑌 ∗𝑧 = 𝑦 𝑌 ∗𝑝 = 𝑝𝑦−1𝑧

The cotangent lift preserves the Liouville form 𝑝 𝑑𝑧. This suggests
rewriting each energy level equation in the more invariant form

(𝑝 𝑑𝑧)2 + 𝑞(𝑧) 𝑑𝑧2 = 0.
The consistency condition becomes �̃� 𝑑𝑧2 = 𝑦∗(𝑞 𝑑𝑧2).

A classical energy level is a quadratic differential.

The quantum cotangent lift

Let’s apply canonical quantization to the definition of 𝑌 . For operator
ordering, we’ll use the “momentum sandwich” rule

𝑝𝛼𝑧𝛽 ⇝ 𝑍 𝛽/2 ∘ 𝑃𝛼 ∘ 𝑍 𝛽/2

This gives us the quantum cotangent lift

𝑌 ∗𝑍 = 𝑦 𝑌 ∗𝑃 = 𝑦−1/2𝑧 ∘ 𝑃 ∘ 𝑦−1/2𝑧

To quantize quadratic differentials, we introduce a formal symbol 𝑑𝑍
which orders like 𝑍 . It pulls back with no ordering ambiguity:

𝑌 ∗𝑑𝑍 = 𝑦𝑧 𝑑𝑍
To generalize, we define

𝑌 ∗[𝑓1(𝑍 , 𝑑𝑍) ∘ 𝑔1(𝑃) ∘ … ∘ 𝑓𝑛(𝑍 , 𝑑𝑍) ∘ 𝑔𝑛(𝑃)]
= 𝑓1(𝑌 ∗𝑍, 𝑌 ∗𝑑𝑍) ∘ 𝑔1(𝑌 ∗𝑃) ∘ … ∘ 𝑓𝑛(𝑌 ∗𝑍, 𝑌 ∗𝑑𝑍) ∘ 𝑔𝑛(𝑌 ∗𝑃)

The emergence of Liouville equivalence

𝑑𝑍 ∘ [𝑃2 + �̃�] ∘ 𝑑𝑍
Ω̃ ⊂ ℝ

𝑑𝑍 ∘ [𝑃2 + 𝑞] ∘ 𝑑𝑍
Ω ⊂ ℝ

𝑦

Now we can quantize the local quadratic differentials describing a clas-
sical energy level. Their consistency condition quantizes to

𝑑𝑍 ∘ [𝑃2 + �̃�] ∘ 𝑑𝑍 = 𝑌 ∗(𝑑𝑍 ∘ [𝑃2 + �̃�] ∘ 𝑑𝑍)
= (𝑦𝑧 𝑑𝑍) ∘ [(𝑦−1/2𝑧 ∘ 𝑃 ∘ 𝑦−1/2𝑧 )2 + 𝑦∗𝑞] ∘ (𝑦𝑧 𝑑𝑍)
⋮
= (𝑦3/2𝑧 𝑑𝑍) ∘ [(𝑦−1𝑧 ∘ 𝑃)2 + 𝑦∗𝑞] ∘ (𝑦1/2𝑧 𝑑𝑍)

𝑑𝑍 ∘ [(−𝑖 𝜕𝜕𝑧)
2 + �̃�] ∘ 𝑑𝑍 = (𝑦3/2𝑧 𝑑𝑍) ∘ [(−𝑖 𝜕𝜕𝑦)

2
+ 𝑦∗𝑞] ∘ (𝑦1/2𝑧 𝑑𝑍)

The quantum consistency condition is Liouville equivalence!


