Operator ordering for quantum curves

Local quantization
A particle on a curve

Let's study a particle moving on a real curve C.

Classical energy levels

$\tilde{\Omega} \subset \mathbb{R}$ \qquad $\Omega \subset \mathbb{R}$

A classical energy level is a curve in $T^{*} C$, cut out locally by

$$
\frac{1}{2} p^{2}+V(z)=E \quad \leadsto \quad p^{2}+q(z)=0
$$

For consistency between charts, we need $\tilde{q}=y^{*} q y_{z}^{2}$.

Quantization

According to the canonical quantization rules

$$
z \rightsquigarrow Z:=z \quad \quad p \rightsquigarrow P:=-i \frac{\partial}{\partial z}
$$

a quantum energy level should be described locally by

$$
\begin{equation*}
\frac{1}{2}\left(i \frac{\partial}{\partial z}\right)^{2}+[V(z)-E] \tag{2}
\end{equation*}
$$

Hill's operator
What condition should we impose for consistency between charts?
Liouville equivalence is a time-honored choice

$$
\left(\frac{\partial}{\partial z}\right)^{2}-\tilde{q}=y_{z}^{3 / 2} \circ\left[\left(\frac{\partial}{\partial y}\right)^{2}-y^{*} q\right] \circ y_{z}^{1 / 2}
$$

The geometry of quantum energy levels
This gluing condition produces a convenient space of quantum curves with a beautiful geometric interpretation.

Operator ordering
Its unusual form can be motivated using an operator-ordering rule.

The geometry of quantum energy levels
Quantum energy levels

A quantum energy level on C consists of:
Data An atlas with a Hill's operator on the image of each chart. Condition Transitions are Liouville equivalences.
It's a geometric structure!

Simplification
$\left(\frac{\partial}{\partial z}\right)^{2}-q(z)$
\qquad
Every Hill's operator is locally Liouville-equivalent to $\left(\frac{\partial}{\partial z}\right)^{2}$.
Hence, we can describe a quantum energy level using only projective charts, which come with $\left(\frac{\partial}{\partial z}\right)^{2}$ on their images.
The Liouville self-equivalences of this operator are the Möbius transformations.

Real projective structures

If we stick to projective charts, we can forget about Hill's operators.
A quantum energy level on C becomes:
Data An atlas of charts to $\mathbb{R P}^{1}$.
Condition Transitions are Möbius transformations.
This is known as a real projective structure.
G. Segal, "The geometry of the KdV equation" (1991). doi:10.1142/S0217751X91001416.

A differential point of view

We can view $\left(\frac{\partial}{\partial z}\right)^{2}$ globally on $\mathbb{R P}^{1}$ as a differential operator Δ that sends sections of the anti-tautological bundle $\mathcal{O}(1)$ to sections of $\mathcal{O}(-3)$.

A real projective structure on C globalizes $\mathcal{O}(1)$ to a line bundle \mathscr{L} with an isomorphism $\mathscr{L}^{\otimes 2} \leftrightarrow T C$. It globalizes Δ to a differential operator sending sections of \mathscr{L} to sections of $\mathscr{L}^{\otimes(-3)}$.

We can recover the real projective structure from \mathscr{L}, Δ, and $\mathscr{L}^{\otimes 2} \leftrightarrow T C$.

Operator ordering
A more invariant view

Each transition $y: \tilde{\Omega} \rightarrow \Omega$ lifts to a map $Y: T^{*} \tilde{\Omega} \rightarrow T^{*} \Omega$ defined by
$Y^{*} z=y$

$$
Y^{*} p=p y_{z}^{-1}
$$

The cotangent lift preserves the Liouville form $p d z$. This suggests rewriting each energy level equation in the more invariant form

$$
(p d z)^{2}+q(z) d z^{2}=0
$$

The consistency condition becomes $\tilde{q} d z^{2}=y^{*}\left(q d z^{2}\right)$.

The quantum cotangent lift

Let's apply canonical quantization to the definition of Y. For operator ordering, we'll use the "momentum sandwich" rule

$$
p^{\alpha} z^{\beta} \leadsto Z^{\beta / 2} \circ P^{\alpha} \circ Z^{\beta / 2}
$$

This gives us the quantum cotangent lift

$$
Y^{*} Z=y \quad Y^{*} P=y_{z}^{-1 / 2} \circ P \circ y_{z}^{-1 / 2}
$$

To quantize quadratic differentials, we introduce a formal symbol $d Z$ which orders like Z. It pulls back with no ordering ambiguity:

$$
Y^{*} d Z=y_{z} d Z
$$

To generalize, we define

$$
\begin{aligned}
& Y^{*}\left[f_{1}(Z, d Z) \circ g_{1}(P) \circ \ldots \circ f_{n}(Z, d Z) \circ g_{n}(P)\right] \\
& \quad=f_{1}\left(Y^{*} Z, Y^{*} d Z\right) \circ g_{1}\left(Y^{*} P\right) \circ \ldots \circ f_{n}\left(Y^{*} Z, Y^{*} d Z\right) \circ g_{n}\left(Y^{*} P\right)
\end{aligned}
$$

The emergence of Liouville equivalence

$$
\tilde{\Omega} \subset \mathbb{R} \xrightarrow{d Z \circ\left[P^{2}+\tilde{q}\right] \circ d Z \quad y \quad d Z \circ\left[P^{2}+q\right] \circ d Z} \text {, } \Omega \subset \mathbb{R}
$$

Now we can quantize the local quadratic differentials describing a classical energy level. Their consistency condition quantizes to

$$
\begin{aligned}
d Z \circ\left[P^{2}+\tilde{q}\right] \circ d Z & =Y^{*}\left(d Z \circ\left[P^{2}+\tilde{q}\right] \circ d Z\right) \\
& =\left(y_{z} d Z\right) \circ\left[\left(y_{z}^{-1 / 2} \circ P \circ y_{z}^{-1 / 2}\right)^{2}+y^{*} q\right] \circ\left(y_{z} d Z\right) \\
& \vdots \\
& =\left(y_{z}^{3 / 2} d Z\right) \circ\left[\left(y_{z}^{-1} \circ P\right)^{2}+y^{*} q\right] \circ\left(y_{z}^{1 / 2} d Z\right) \\
d Z \circ\left[\left(-i \frac{\partial}{\partial z}\right)^{2}+\tilde{q}\right] \circ d Z= & \left(y_{z}^{3 / 2} d Z\right) \circ\left[\left(-i \frac{\partial}{\partial y}\right)^{2}+y^{*} q\right] \circ\left(y_{z}^{1 / 2} d Z\right)
\end{aligned}
$$

The quantum consistency condition is Liouville equivalence!

