Local quantization

A particle on a curve
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Let’s study a particle moving on a real curve C.
Classical energy levels
p*+q(2) 2+ q(2)

N NN
J YAV,

Y

~ /\\
QCR QCR

A classical energy level is a curve in T*C, cut out locally by
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For consistency between charts, we need g = y*q V2.

Quantization
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According to the canonical quantization rules
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a quantum energy level should be described locally by

LG2Y + V@ —E] —~~s (2) —q2)

2 0z
Hill’s operator

What condition should we impose for consistency between charts?

Liouville equivalence is a time-honored choice.
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The geometry of quantum energy levels

This gluing condition produces a convenient space of quantum
curves with a beautiful geometric interpretation.

Operator ordering

Its unusual form can be motivated using an operator-ordering rule.

Operator ordering for quantum curves
Aaron Fenyes (IHES)

The geometry of quantum energy levels

Quantum energy levels
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Liouville
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A quantum energy level on C consists of:

pata An atlas with a Hill’s operator on the image of each chart.
Condition Transitions are Liouville equivalences.
It’s a geometric structure!

Simplification
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Every Hill’s operator is locally Liouville-equivalent to (a%) :

Hence, we can describe a quantum energy level using only projective
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charts, which come with ( ) on their images.
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The Liouville self-equivalences of this operator are the Mobius trans-
formations.

Real projective structures

Mobius
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If we stick to projective charts, we can forget about Hill’s operators.

A quantum energy level on C becomes:

pData An atlas of charts to RP'.
Condition Transitions are Mobius transformations.

This is known as a real projective structure.

G. Segal, “The geometry of the KdV equation” (1991). doi:10.1142/S0217751X91001416.

A differential point of view
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We can view (%) globally on RP' as a differential operator A that sends
sections of the anti-tautological bundle ©(1) to sections of O(—3).

A real projective structure on C globalizes O(1) to a line bundle & with
an isomorphism Z®* « TC. It globalizes A to a differential operator
sending sections of Z to sections of Z®3),

We can recover the real projective structure from Z, A, and Z®? < TC.

Summary
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A quantum energy level is a real projective structure.

Interpretation as quantum curves

Background

Quantum curves were first defined for algebraic curves in T*C.

P. Norbury, “Quantum curves and topological recursion” (2015). arXiv:1502.04394.

Dumitrescu and Mulase have now generalized them to Hitchin spectral
curves in T*C, where C is an algebraic curve with a Higgs bundle.

O. Dumitrescu and M. Mulase, “Lectures on the topological recursion for Higgs bundles...,” §1.6 (2016). arXiv:1509.09007.

—, “Interplay between Opers, Quantum Curves, WKB Analysis, and...”” (2021). doi:10.3842/SIGMA.2021.036.

Our quantum energy levels are quantum curves in that sense.

Complex projective structures
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Make C a complex curve. ( i ) i) ( % ) o)
All our definitions carry over. A _
quantum energy level is now a com- ( ‘ R O
plex projective structure. | Liouville

Its &, A, and £®? < TC form an
SL,(C) oper, which Dumitrescu and
Mulase read as a quantum curve.

Examples

free particle: p* + i falling particle: p* + z

In the complex setting, even the most basic systems have interesting
energy level geometry. This plays a role in the exact WKB method.
A. F., “The complex geometry of the free particle, and its perturbations” (2020). arXiv:2008.03836.

—, “The geometry of quantum energy levels” (2020 talk). Slides available online.

Operator ordering

A more invariant view
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Each transition y : Q — Qliftsto amap Y : T*Q — T*Q defined by

Y'z=y Y*p = py;!

The cotangent lift preserves the Liouville form pdz. This suggests
rewriting each energy level equation in the more invariant form

(pdz)* + q(z)dz* = 0.

The consistency condition becomes §dz* = y*(q dz?).

A classical energy level is a quadratic differential.

The quantum cotangent lift

Let’s apply canonical quantization to the definition of Y. For operator
ordering, we’ll use the “momentum sandwich” rule

p2P ~s ZP/2 o p* o ZP/2
This gives us the quantum cotangent lift
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To quantize quadratic differentials, we introduce a formal symbol dZ
which orders like Z. It pulls back with no ordering ambiguity:

Y'dZ = y,dZ
To generalize, we define

Y[fi(Z,dZ) > gi(P)e...o f(Z, dZ)  g,(P)]
= f(Y*Z, Y*dZ) o g,(Y*P)o...o f(Y*Z, Y*dZ) o g,(Y*P)

The emergence of Liouville equivalence
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dZ o [P2+ql-dZ

Now we can quantize the local quadratic differentials describing a clas-
sical energy level. Their consistency condition quantizes to

dZ o [P+ qledZ = Y*(dZ-[P*+q]-dZ)
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The quantum consistency condition is Liouville equivalence!
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