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1 Galilean relativity

1.1 Classical mechanics

1.1.1 States

The points of a 1+1-dimensional Galilean spacetime can be represented by the
points (t, x) of R2. In this model, the trajectory of a free particle with mass
m is represented by a straight line, and the only restriction on trajectories is
that they can’t be parallel to the line {(0, λ)}λ∈R. You could say that the state
space Sm of a free particle with mass m is the set of lines that aren’t parallel to
{(0, λ)}λ∈R.

1.1.2 Observables

For any line L ∈ Sm, there are unique real numbers w(L) and p(L) such that

L =

{(
λ,
w(L) + p(L)λ

m

)}
λ∈R

.

Since these numbers describe observable properties of the particle, let’s call them
observables. The observable p is the particle’s mass times its velocity—in other
words, it’s the particle’s momentum. The observable w is the particle’s mass
times its position at time zero. There’s no standard name for this quantity, so
I’ll call it the particle’s “weighted position.”

1.1.3 Transformations

If you move ξ units to the right, every point in spacetime appears to move ξ
units to the left. Your change in position can therefore be represented by the
transformation (t, x) 7→ (t, x− ξ). This transformation turns the line

L =

{(
λ,
w(L) + p(L)λ

m

)}
λ∈R
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into the line

TξL =

{(
λ,
w(L) + p(L)λ

m
− ξ
)}

λ∈R

=

{(
λ,

[w(L)−mξ] + p(L)λ

m

)}
λ∈R

.

Notice that

w(TξL) = w(L)−mξ
p(TξL) = p(L).

If you move τ units into the future, every point in spacetime appears to
move τ units into the past. Your change in time can therefore be represented
by the transformation (t, x) 7→ (t− τ, x). This transformation turns the line

L =

{(
λ,
w(L) + p(L)λ

m

)}
λ∈R

into the line

UτL =

{(
λ− τ, w(L) + p(L)λ

m

)}
λ∈R

=

{(
λ,
w(L) + p(L)[λ+ τ ]

m

)}
λ∈R

.

Notice that

w(UτL) = w(L) + τp(L)

p(UτL) = p(L).

If you boost your velocity v units to the right, a point t units ahead of you in
time appears to move vt units to the left. Your change in velocity can therefore
be represented by the transformation (t, x) 7→ (t, x − vt). This transformation
turns the line

L =

{(
λ,
w(L) + p(L)λ

m

)}
λ∈R

into the line

BvL =

{(
λ,
w(L) + p(L)λ

m
− vλ

)}
λ∈R

=

{(
λ,
w(L) + [p(L)−mv]λ

m

)}
λ∈R

.

Notice that

w(BvL) = w(L)

p(BvL) = p(L)−mv.
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1.1.4 Group action

The space translations, time translations, and velocity boosts discussed in the
last section form a set of generators for the Galilei group. The maps Tξ, Uτ ,
and Bv therefore describe an action of the Galilei group on the state space Sm.

1.2 Quantum mechanics

1.2.1 States and transformations

Now, let’s consider a free quantum particle with mass m in a 1+1-dimensional
Galilean spacetime. We can safely assume that the states of the particle should
be represented by the rays of a complex Hilbert space Hm. The fact that the
particle lives in a Galilean spacetime, where observers can be translated and
boosted into different frames of reference, strongly suggests that the Galilei
group should act on Hm with transformations Tξ, Uτ , and Bv, just like in the
classical case. It turns out that if Tξ, Uτ , and Bv are to preserve transition
probabilities, they must generate a unitary or antiunitary projective represen-
tation of the Galilei group on Hm [3, §2.2]. We should therefore be looking
for a complex Hilbert space Hm that carries a unitary or antiunitary projective
representation of the Galilei group.

The set of solutions Ψ: R2 → C to the equation[
i~
∂

∂t
+

~2

2m

∂2

∂x2

]
Ψ = 0

turns out to have almost all of the properties we want. The equation is linear,
so the solutions form a complex vector space, and the operators

[TξΨ](t, x) = Ψ(t, x+ ξ)

[UτΨ](t, x) = Ψ(t+ τ, x)

[BvΨ](t, x) = exp
[
−im~

(
1
2v

2t+ vx
)]

Ψ(t, x+ vt)

generate a projective representation of the Galilei group on the solution set [1].
The sesquilinear form

〈Φ,Ψ〉 =

∫ ∞
−∞

Φ(0, x)Ψ(0, x) dx

is not an inner product on the solution set, because it’s not always well-defined,
but it is an inner product on the set of square-integrable solutions—that is,
the set of solutions Ψ for which 〈Ψ,Ψ〉 is well-defined. We now have an inner
product space, which can be completed to a Hilbert space. The operators Tξ,
Uτ , and Bv are unitary with respect to 〈·, ·〉.

So, let Hm be the 〈·, ·〉-completion of the set of square-integrable solutions
Ψ: R2 → C to the equation[

i~
∂

∂t
+

~2

2m

∂2

∂x2

]
Ψ = 0.
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1.2.2 Observables

It would be nice to have some quantum observables W and P whose expectation
values act like the classical observables w and p under the action of the Galilei
group. Knowing that w and p are the generators of boosts and space transla-
tions, respectively, in Hamiltonian mechanics, we might make the inspired guess
that

WΨ = i~
d

dv
BvΨ

∣∣∣∣
v=0

PΨ = −i~ d

dξ
TξΨ

∣∣∣∣
ξ=0

.

Explicitly,

WΨ = [mx− tP ]Ψ

PΨ = −i~ ∂

∂x
Ψ.

To check our guess, let’s see how the expectation values of W and P change
under the action of the Galilei group. In general, if A is an observable and F is
a unitary map,

〈A〉FΨ = 〈A〉Ψ + 〈F−1[A,F ]〉Ψ,
where 〈A〉ψ is shorthand for 〈Ψ, AΨ〉. It’s straightforward to show that

T−1
ξ [W,Tξ] = −mξ

T−1
ξ [P, Tξ] = 0

U−1
τ [W,Uτ ] = τP

U−1
τ [P,Uτ ] = 0

B−1
v [W,Bv] = 0

B−1
v [P,Bv] = −mv.

Hence,

〈W 〉TξΨ = 〈W 〉Ψ −mξ
〈P 〉TξΨ = 〈P 〉Ψ

〈W 〉UτΨ = 〈W 〉Ψ + τ〈P 〉Ψ
〈P 〉UτΨ = 〈P 〉Ψ

〈W 〉BvΨ = 〈W 〉Ψ
〈P 〉BvΨ = 〈P 〉Ψ −mv

These relations match the classical ones found in §1.1.3.

4



2 Lorentzian relativity

2.1 Classical mechanics

2.1.1 States

The points of a 1+1-dimensional Lorentzian spacetime can be represented by
the points (t, x) of R2. In this model, the trajectory of a free particle with mass
m is represented by a straight line. The line through the points (t1, x1) and
(t2, x2) is a possible trajectory if and only if (t2 − t1)2 − (x2 − x1)2 > 0. The
state space Sm of a free particle with mass m is the set of all lines that are
possible trajectories according to the rule above.

2.1.2 Observables

For any line L ∈ Sm, there are unique real numbers w(L) and p(L) such that

L =

{(
λ,
w(L) + p(L)λ√
m2 + p(L)2

)}
λ∈R

.

It will be convenient to define h(L) =
√
m2 + p(L)2.

The vector (h(L), p(L)) is parallel to the trajectory of the particle, and has
Minkowski norm m. In other words, it’s the particle’s spacetime momentum.
The observables h and p are therefore the particle’s energy and spatial momen-
tum, respectively. The observable w is the particle’s energy times its position
at time zero. In analogy with the Galilean case, I’ll refer to w as the particle’s
“weighted position.”

2.1.3 Transformations

If you move ξ units to the right, every point in spacetime appears to move ξ
units to the left. Your change in position can therefore be represented by the
transformation (t, x) 7→ (t, x− ξ). This transformation turns the line

L =

{(
λ,
w(L) + p(L)λ

h(L)

)}
λ∈R

into the line

TξL =

{(
λ,
w(L) + p(L)λ

h(L)
− ξ
)}

λ∈R

=

{(
λ,

[w(L)− h(L)ξ] + p(L)λ

h(L)

)}
λ∈R

.

Notice that

w(TξL) = w(L)− h(L)ξ

h(TξL) = h(L)

p(TξL) = p(L).
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If you move τ units into the future, every point in spacetime appears to
move τ units into the past. Your change in time can therefore be represented
by the transformation (t, x) 7→ (t− τ, x). This transformation turns the line

L =

{(
λ,
w(L) + p(L)λ

h(L)

)}
λ∈R

into the line

UτL =

{(
λ− τ, w(L) + p(L)λ

h(L)

)}
λ∈R

=

{(
λ,
w(L) + p(L)[λ+ τ ]

h(L)

)}
λ∈R

.

Notice that

w(UτL) = w(L) + τp(L)

h(UτL) = h(L)

p(UτL) = p(L).

A change in your velocity can be represented by the transformation (t, x) 7→
(t coshσ−x sinhσ,−t sinhσ+x coshσ). (The parameter σ is called the rapidity,
and it’s positive when your velocity is boosted to the right.) This transformation
turns the line

L =

{(
λ,
w(L) + p(L)λ

h(L)

)}
λ∈R

into the line

BσL =

{(
λ coshσ − w(L) + p(L)λ

h(L)
sinhσ,−λ sinhσ +

w(L) + p(L)λ

h(L)
coshσ

)}
λ∈R

=

{(
−w(L) sinhσ

h(L)
+

[h(L) coshσ − p(L) sinhσ]λ

h(L)
,

w(L) coshσ

h(L)
+

[−h(L) sinhσ + p(L) coshσ]λ

h(L)

)}
λ∈R

=

{(
−w(L) sinhσ

h(L)
+ λ,

w(L) coshσ

h(L)
+

[−h(L) sinhσ + p(L) coshσ]λ

h(L) coshσ − p(L) sinhσ

)}
λ∈R

=

{(
λ,
w(L) coshσ

h(L)
+

[−h(L) sinhσ + p(L) coshσ]λ

h(L) coshσ − p(L) sinhσ

+
[−h(L) sinhσ + p(L) coshσ]w(L) sinh(σ)

[h(L) coshσ − p(L) sinhσ]h(L)

)}
λ∈R

=

{(
λ,

w(L)h(L)[cosh2 σ − sinh2 σ]

[h(L) coshσ − p(L) sinhσ]h(L)
+

[−h(L) sinhσ + p(L) coshσ]λ

h(L) coshσ − p(L) sinhσ

)}
λ∈R

=

{(
λ,
w(L) + [−h(L) sinhσ + p(L) coshσ]λ

h(L) coshσ − p(L) sinhσ

)}
λ∈R

.
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It’s not hard to verify that

w(BσL) = w(L)

h(BσL) = h(L) coshσ − p(L) sinhσ

p(BσL) = −h(L) sinhσ + p(L) coshσ.

2.1.4 Group action

The space translations, time translations, and velocity boosts discussed in the
last section form a set of generators for the Poincaré group. The maps Tξ, Uτ ,
and Bσ therefore describe an action of the Poincaré group on the state space
Sm.

2.2 Quantum mechanics

2.2.1 States and transformations

Now, let’s consider a free quantum particle with mass m in a 1+1-dimensional
Lorentzian spacetime. By the reasoning used in §1.2.1, the state space of the
particle should be a complex Hilbert space Hm that carries a unitary or antiu-
nitary projective representation of the Poincaré group.

The set of solutions Ψ: R2 → C to the equation[
∂2

∂t2
− ∂2

∂x2
+
m2

~2

]
Ψ = 0

turns out to have almost all of the properties we want. The equation is linear,
so the solutions form a complex vector space, and the operators

[TξΨ](t, x) = Ψ(t, x+ ξ)

[UτΨ](t, x) = Ψ(t+ τ, x)

[BσΨ](t, x) = Ψ(t coshσ + x sinhσ, t sinhσ + x coshσ)

generate a representation of the Poincaré group on the solution set. The sesquilin-
ear form

〈Φ,Ψ〉 = i

∫ ∞
−∞

[
Φ(0, x)

∂Ψ

∂x
(0, x)−Ψ(0, x)

∂Φ

∂x
(0, x)

]
dx

is not an inner product on the solution set, because it’s not always well-defined—
and when it is defined, it’s not positive definite. We can solve both problems at
once by letting Hm be the 〈·, ·〉-completion of the set of functions

Ψ(t, x) =
1√
2π

∫ ∞
−∞

ψ(p) exp

[
i

~

(
−
√
m2 + p2 t+ px

)]
dp

for which 〈Ψ,Ψ〉 is well-defined [2, §14.2].
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2.2.2 Observables

It would be nice to have some quantum observables W , H and P whose expec-
tation values act like the classical observables w, h and p under the action of
the Poincaré group. Knowing that w, h and p are the generators of boosts, time
translations, and space translations in Hamiltonian mechanics, we might make
the inspired guess that

WΨ = i~
d

dσ
BσΨ

∣∣∣∣
σ=0

HΨ = i~
d

dτ
UτΨ

∣∣∣∣
τ=0

PΨ = −i~ d

dξ
TξΨ

∣∣∣∣
ξ=0

.

Explicitly,

WΨ = i~
[
x
∂

∂t
+ t

∂

∂x

]
Ψ

HΨ = i~
∂

∂t
Ψ

PΨ = −i~ ∂

∂x
Ψ.

To check our guess, let’s see how the expectation values of W , H and P
change under the action of the Poincaré group. It’s straightforward to show
that

T−1
ξ [W,Tξ] = −ξH

T−1
ξ [H,Tξ] = 0

T−1
ξ [P, Tξ] = 0

U−1
τ [W,Uτ ] = τP

U−1
τ [P,Uτ ] = 0

U−1
τ [P,Uτ ] = 0

B−1
σ [W,Bσ] = 0

B−1
σ [H,Bσ] = (coshσ)H − (sinhσ)P −H
B−1
σ [P,Bσ] = −(sinhσ)H + (coshσ)P − P.
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Using the formula from §1.2.2, it follows that

〈W 〉TξΨ = 〈W 〉Ψ − 〈H〉Ψξ
〈H〉TξΨ = 〈H〉Ψ
〈P 〉TξΨ = 〈P 〉Ψ

〈W 〉UτΨ = 〈W 〉Ψ + τ〈P 〉Ψ
〈H〉UτΨ = 〈H〉Ψ
〈P 〉UτΨ = 〈P 〉Ψ

〈W 〉BσΨ = 〈W 〉Ψ
〈H〉BσΨ = 〈H〉Ψ coshσ − 〈P 〉Ψ sinhσ

〈P 〉BσΨ = −〈H〉Ψ sinhσ + 〈P 〉Ψ coshσ.

These relations match the classical ones found in §2.1.3.

3 Representations on L2(R)
In the last few pages, I argued that the state space of a free quantum parti-
cle with mass m in a 1+1-dimensional Galilean or Lorentzian spacetime should
be a complex Hilbert space that carries a unitary or antiunitary projective
representation of the spacetime symmetry group. I then showed you two differ-
ential equations whose solution sets, when suitably restricted, completed, and
equipped with inner products, become Hilbert spaces that carry unitary projec-
tive representations of the Galilei and Lorentz groups, respectively. In short, I
showed you Hilbert spaces that can be used to describe free quantum particles
in 1+1-dimensional Galilean and Lorentzian spacetimes.

The Hilbert spaces I showed you are complicated to describe, and their inner
products are difficult to work with. Can we find more user-friendly Hilbert
spaces to use for our calculations?

Yes, we can! Remarkably, both of the Hilbert spaces I showed you are
isomorphic to the Hilbert space L2(R)—the set of square-integrable functions
on R, with the inner product

〈φ, ψ〉 =

∫ ∞
−∞

φ(p)ψ(p) dp.

The representations of the Galilei and Poincaré groups that I showed you are
therefore unitarily equivalent to representations on L2(R). These representa-
tions are summarized below.
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3.1 Galilean relativity

Any element of the Hilbert space described in §1.2.1 can be written uniquely in
the form

1√
2π

∫ ∞
−∞

ψ(p) exp

[
i

~

(
− p2

2m
t+ px

)]
dp,

where ψ ∈ L2(R), and you can easily verify that the map

ψ 7→ 1√
2π

∫ ∞
−∞

ψ(p) exp

[
i

~

(
− p2

2m
t+ px

)]
dp.

is unitary. Under this isomorphism, the operators Tξ, Uτ , and Bv from §1.2.1
are equivalent to the operators

[T̂ξψ](p) = exp
[
i
~pξ
]
ψ(p)

[Ûτψ](p) = exp
[
− i

~
p2

2m τ
]
ψ(p)

[B̂vψ](p) = ψ(p+mv)

on L2(R), and the operators W and P from §1.2.2 are equivalent to the operators

Ŵψ = i~m
∂

∂p
ψ

P̂ψ = pψ

on L2(R).

3.2 Lorentzian relativity

Any element of the Hilbert space described in §2.2.1 can be written uniquely in
the form

1√
2π

∫ ∞
−∞

ψ(p) exp

[
i

~

(
−
√
m2 + p2 t+ px

)]
dp,

where ψ ∈ L2(R), and you can easily verify that the map

ψ 7→ 1√
2π

∫ ∞
−∞

ψ(p) exp

[
i

~

(
−
√
m2 + p2 t+ px

)]
dp

is unitary. Under this isomorphism, the operators Tξ, Uτ , and Bσ from §2.2.1
are equivalent to the operators

[T̂ξψ](p) = exp
[
i
~pξ
]
ψ(p)

[Ûτψ](p) = exp
[
− i

~

√
m2 + p2 τ

]
ψ(p)

[B̂σψ](p) =

(
p√

m2 + p2
sinhσ + coshσ

)
ψ
(√

m2 + p2 sinhσ + p coshσ
)
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on L2(R), and the operators W , H and P from §2.2.2 are equivalent to the
operators

Ŵψ = i~

[√
m2 + p2

∂

∂p
+

p√
m2 + p2

]
ψ

Ĥψ =
√
m2 + p2 ψ

P̂ψ = pψ

on L2(R).
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