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1 Galilean relativity

1.1 Classical mechanics
1.1.1 States

The points of a 1+1-dimensional Galilean spacetime can be represented by the
points (t,x) of R2. In this model, the trajectory of a free particle with mass
m is represented by a straight line, and the only restriction on trajectories is
that they can’t be parallel to the line {(0, A)} cr. You could say that the state
space S, of a free particle with mass m is the set of lines that aren’t parallel to

{(0, M} rer-

1.1.2 Observables

For any line L € S,,,, there are unique real numbers w(L) and p(L) such that

b= {()\710([1)—7;2)([/)/\)})\€R.

Since these numbers describe observable properties of the particle, let’s call them
observables. The observable p is the particle’s mass times its velocity—in other
words, it’s the particle’s momentum. The observable w is the particle’s mass
times its position at time zero. There’s no standard name for this quantity, so
I’ll call it the particle’s “weighted position.”

1.1.3 Transformations

If you move £ units to the right, every point in spacetime appears to move &
units to the left. Your change in position can therefore be represented by the
transformation (¢, z) — (¢t,2 — £). This transformation turns the line

()



into the line

Notice that
w(TeL) = w(L) — mé
p(TeL) = p(L).

If you move 7 units into the future, every point in spacetime appears to
move 7 units into the past. Your change in time can therefore be represented
by the transformation (¢,x) — (t — 7, ). This transformation turns the line
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w(U,;L) =w(L)+ 7p(L)
p(UTL) = p(L)

If you boost your velocity v units to the right, a point ¢ units ahead of you in
time appears to move vt units to the left. Your change in velocity can therefore
be represented by the transformation (¢,z) — (¢,2 — vt). This transformation

turns the line I LI
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into the line

Notice that

into the line

Notice that



1.1.4 Group action

The space translations, time translations, and velocity boosts discussed in the
last section form a set of generators for the Galilei group. The maps T¢, U,
and B, therefore describe an action of the Galilei group on the state space S,,.

1.2 Quantum mechanics
1.2.1 States and transformations

Now, let’s consider a free quantum particle with mass m in a 14+1-dimensional
Galilean spacetime. We can safely assume that the states of the particle should
be represented by the rays of a complex Hilbert space H,,. The fact that the
particle lives in a Galilean spacetime, where observers can be translated and
boosted into different frames of reference, strongly suggests that the Galilei
group should act on H,, with transformations T¢, U;, and B,, just like in the
classical case. It turns out that if T¢, U,, and B, are to preserve transition
probabilities, they must generate a unitary or antiunitary projective represen-
tation of the Galilei group on H,, [3, §2.2]. We should therefore be looking
for a complex Hilbert space H,, that carries a unitary or antiunitary projective
representation of the Galilei group.
The set of solutions ¥: R? — C to the equation
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turns out to have almost all of the properties we want. The equation is linear,
so the solutions form a complex vector space, and the operators

[TeW)(t,x) = W(t,x+ &)
U, 9](t,z) = V(L + 7,2)
[B,¥|(t,z) = exp [—i % (3v°t +vz)] W(t, 2 + vt)

generate a projective representation of the Galilei group on the solution set [1].
The sesquilinear form

oo
(®,0) = / @(0,2)¥(0, ) dr
— 00

is not an inner product on the solution set, because it’s not always well-defined,
but it is an inner product on the set of square-integrable solutions—that is,
the set of solutions ¥ for which (¥, ¥) is well-defined. We now have an inner
product space, which can be completed to a Hilbert space. The operators Tg,
U,, and B, are unitary with respect to (-, -).

So, let H,, be the (-, -)-completion of the set of square-integrable solutions

U: R2 — C to the equation
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1.2.2 Observables

It would be nice to have some quantum observables W and P whose expectation
values act like the classical observables w and p under the action of the Galilei
group. Knowing that w and p are the generators of boosts and space transla-
tions, respectively, in Hamiltonian mechanics, we might make the inspired guess
that

WY =ih ti\Il
dv =0
PV = —ih iTE\I!
dg =0
Explicitly,
WU = [mx — tP]¥
0
PU = fzh%\ll.

To check our guess, let’s see how the expectation values of W and P change
under the action of the Galilei group. In general, if A is an observable and F' is
a unitary map,

(A)re = (A)w + (F[A, Fl)u,
where (A), is shorthand for (¥, AU). It’s straightforward to show that
Tgl[W, Te] = —mg
T P, Te) =0

Hence,

W)p,w = (W)
(P)p,v = (P)y —mv

These relations match the classical ones found in §1.1.3.



2 Lorentzian relativity

2.1 Classical mechanics
2.1.1 States

The points of a 1+1-dimensional Lorentzian spacetime can be represented by
the points (¢, ) of R2. In this model, the trajectory of a free particle with mass
m is represented by a straight line. The line through the points (¢1,z1) and
(ta,w2) is a possible trajectory if and only if (to — t1)? — (v2 — 21)? > 0. The
state space S,, of a free particle with mass m is the set of all lines that are
possible trajectories according to the rule above.

2.1.2 Observables

For any line L € S,,, there are unique real numbers w(L) and p(L) such that

L { ( w(L) +p(L)/\> }
R
It will be convenient to define h(L) = \/m? + p(L)3.

The vector (h(L),p(L)) is parallel to the trajectory of the particle, and has
Minkowski norm m. In other words, it’s the particle’s spacetime momentum.
The observables h and p are therefore the particle’s energy and spatial momen-
tum, respectively. The observable w is the particle’s energy times its position
at time zero. In analogy with the Galilean case, I'll refer to w as the particle’s
“weighted position.”

2.1.3 Transformations

If you move £ units to the right, every point in spacetime appears to move &
units to the left. Your change in position can therefore be represented by the
transformation (¢, ) — (¢t,2 — £). This transformation turns the line

b= { ()\, U)(L)h—(’_Lp)(L))\> })\GR

(222 )

sty

into the line

Notice that



If you move 7 units into the future, every point in spacetime appears to
move 7 units into the past. Your change in time can therefore be represented
by the transformation (¢,2) — (¢ — 7, 2). This transformation turns the line

(i I

UL = {(ATT‘W‘)}
AER
{ (A’ w(l) +}Z<LL)>[A - T]) }

w(U,;L) =w(L)+ 7p(L)
h(U, L) = h(L)
p(U-L) = p(L).

into the line

Notice that

A change in your velocity can be represented by the transformation (¢, z) —
(t cosh o —z sinh o, —t sinh 0+ cosh o). (The parameter o is called the rapidity,
and it’s positive when your velocity is boosted to the right.) This transformation

turns the line w(L) 4+ p(L)A
L= { (/\’ h(L)) }/\ER

Msm o, —Asinh o MCOS o
h(L) 8., ZASNAG + h(L) " >})\E]R

{ (_ w(L) sinh o N [A(L) cosh o — p(L) sinh o] A

h(L) h(L) ’

w(L)cosho  [—h(L)sinho + p(L) cosh o]\

WD ML) ).

_f( w(L)sinho w(L)cosho = [—h(L)sinho + p(L) cosh o]\
= { ( WD) TN TR T h(D)cosho = p(L) simbo >}A€R
_ { (/\ w(L)cosho  [—h(L)sinho + p(L)

T R(L) h(L)cosho — p(L) sinh &
[—h(L)sinho + p(L) cosh o]w(L) sinh(co )) }
[h(L)cosho — p(L)sinhalh(L) AER
_ { ()\ w(L)h(L)[cosh? & — sinh? o] N [—h(L)sinho 4 p(L) cosha])\) }

"[h(L) cosh o — p(L) sinh a]h(L) h(L) cosho — p(L) sinh o ACR

{()\ w(L) + [~h(L)sinh o + p(L) cosha]A)} .
’ h(L)cosho — p(L)sinh o ACR

into the line

B,L = {(/\cosha —

cosh o]\
s
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It’s not hard to verify that

w(B,L) = w(L)
h(BsL) = h(L)cosho — p(L)sinh o
p(BoL) = —h(L)sinho + p(L) cosho.

2.1.4 Group action

The space translations, time translations, and velocity boosts discussed in the
last section form a set of generators for the Poincaré group. The maps T¢, U,
and B, therefore describe an action of the Poincaré group on the state space
S

2.2 Quantum mechanics
2.2.1 States and transformations

Now, let’s consider a free quantum particle with mass m in a 1+1-dimensional
Lorentzian spacetime. By the reasoning used in §1.2.1, the state space of the
particle should be a complex Hilbert space H,, that carries a unitary or antiu-
nitary projective representation of the Poincaré group.

The set of solutions ¥: R? — C to the equation

0? 0? m?2
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turns out to have almost all of the properties we want. The equation is linear,
so the solutions form a complex vector space, and the operators

[TeW](t, x) = W(t,x + )
(U W](t,2) = (i + 7,2)
[B,U|(t,z) = ¥(tcosho + zsinh o, tsinh o + = cosh o)

generate a representation of the Poincaré group on the solution set. The sesquilin-
ear form

(P, 0) = i/oo [@(O,x)g\i(o,x) — \I/(O,x)gi(O,x)} dx

—0o0

is not an inner product on the solution set, because it’s not always well-defined—
and when it is defined, it’s not positive definite. We can solve both problems at
once by letting H,, be the (-, -)-completion of the set of functions

vt0) == [ vipew [h (—wn?—+p2t+px)] dp

for which (¥, ¥) is well-defined [2, §14.2].



2.2.2 Observables

It would be nice to have some quantum observables W, H and P whose expec-
tation values act like the classical observables w, h and p under the action of
the Poincaré group. Knowing that w, h and p are the generators of boosts, time
translations, and space translations in Hamiltonian mechanics, we might make

the inspired guess that

wo —in-Lp,w
do o=0
o d
HY =ih —U, ¥
dT =0
PY ik d TeU
= —h —
A
Explicitly,
) 0 0
0
HY = ih—W
ot
0
PV = —ih—W.
! ox

To check our guess, let’s see how the expectation values of W, H and P
change under the action of the Poincaré group. It’s straightforward to show

that

T W, Te) = —¢H

TS H, Te) = 0

T [P, Te) =0

U-'w,u,] =1P

U 'PU]=0

U PU,] =0
B;W,B,] =0

B;'[H,B,] = (cosho)H — (sinho)P — H

B; '[P, B,] = —(sinho)H + (cosho)P — P.



Using the formula from §1.2.2, it follows that

Wrew = (W)e — (H)wé
(H)rew = (H)w
(P)rew = (P)w
Whv,w = W)e +7(P)w
(Hyv.v = (H)w
(Pyv,w = (P)y
W)p,w = (W)

W)
(H)p,w = (H)g cosho — (P)y sinh o
(P)p, v = —(H)gsinho + (P)g cosho.

T

These relations match the classical ones found in §2.1.3.

3 Representations on L*(R)

In the last few pages, I argued that the state space of a free quantum parti-
cle with mass m in a 1+1-dimensional Galilean or Lorentzian spacetime should
be a complex Hilbert space that carries a unitary or antiunitary projective
representation of the spacetime symmetry group. I then showed you two differ-
ential equations whose solution sets, when suitably restricted, completed, and
equipped with inner products, become Hilbert spaces that carry unitary projec-
tive representations of the Galilei and Lorentz groups, respectively. In short, I
showed you Hilbert spaces that can be used to describe free quantum particles
in 14+1-dimensional Galilean and Lorentzian spacetimes.

The Hilbert spaces I showed you are complicated to describe, and their inner
products are difficult to work with. Can we find more user-friendly Hilbert
spaces to use for our calculations?

Yes, we can! Remarkably, both of the Hilbert spaces I showed you are
isomorphic to the Hilbert space L?(R)—the set of square-integrable functions
on R, with the inner product

wo = [ " ) dp.

The representations of the Galilei and Poincaré groups that I showed you are
therefore unitarily equivalent to representations on L?(R). These representa-
tions are summarized below.



3.1 Galilean relativity

Any element of the Hilbert space described in §1.2.1 can be written uniquely in

the form )
1 e i P

— R d

o /oow(p)eXp{h( 5 +px>} D,

where 1 € L?(R), and you can easily verify that the map

1 o i p? )]
- — exp |- | —=—1t+px )| dp.
V2T /—oo vip)exp {h ( om' "V Y
is unitary. Under this isomorphism, the operators T¢, U, and B, from §1.2.1
are equivalent to the operators

[Te](p) = exp [£0€] ¢(p)
[0-6](p) = exp [~ 4 £ 7] ¥(p)
[Bu](p) = 9 (p + mw)

on L2(R), and the operators W and P from §1.2.2 are equivalent to the operators

. ) 0
Wiy = zhma—pw
Py = py

on L%(R).

3.2 Lorentzian relativity

Any element of the Hilbert space described in §2.2.1 can be written uniquely in

the form
m/ P(p exp[ ( vVm? + p? t+px)} dp,

where ¢ € L?(R), and you can easily verify that the map

\/ﬂ/ »(p exp[ (\/m2+p L‘—l—px)]

is unitary. Under this isomorphism, the operators T¢, U,, and B, from §2.2.1
are equivalent to the operators

[Tev)(p) = exp [1€] ¥ (p)
[0 46)(p) = exp [~ 4v/m? + 7 7] 0(p)

[B,¢](p) = — P sinho + cosho | ¥ (\/m2 + p2sinh o + p cosh O')
/m2 +p2
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on L?(R), and the operators W, H and P from §2.2.2 are equivalent to the
operators

o e 0 p
Wﬂ)—lh m2+p25p+7m 'LZJ
Hyp = \/m? + p? ¢
Py = py

on L%(R).
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