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The abelianization process of Gaiotto, Hollands, Moore, and Neitzke

parameterizes SLK C local systems on a punctured surface by turning them

into C× local systems, which have a much simpler moduli space. When applied

to an SL2 R local system describing a hyperbolic structure, abelianization pro-

duces an R× local system whose holonomies encode the shear parameters of

the hyperbolic structure.

This dissertation extends abelianization to SL2 R local systems on a

compact surface, using tools from dynamics to overcome the technical chal-

lenges that arise in the compact setting. Thurston's shear parameterization

of hyperbolic structures, which has its own technical subtleties on a compact

surface, once again emerges as a special case.
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An invitation to abelianization
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Chapter 1

Introduction

1.1 Context

The space of SL2 C local systems on a surface is complicated, and its

geometry is an active topic of research. The space of C× local systems on

a surface is simple, because a local system is determined up to isomorphism

by its holonomies, and the holonomies of C× local system are just numbers.

The correspondence between local systems and their holonomies identi�es the

space of C× local systems on a surface Σ with the space of homomorphisms

H1(Σ;Z)→ C×, which is a complex manifold isomorphic to (C×)rankH1(Σ;Z).

The abelianization process of Gaiotto, Hollands, Moore, and Neitzke is,

roughly speaking, a machine for turning SL2 C local systems on a punctured

surface S ′ into C× local systems on a branched double cover of S ′. In good

conditions, the process can be inverted, giving a densely de�ned C×-valued

coordinate chart on the space of SL2 C local systems. When applied to local

systems describing hyperbolic structures on S ′, abelianization uni�es and ex-

tends two classical coordinate systems on the space of hyperbolic structures:

W. Thurston's shear parameters and Fenchel-Nielsen coordinates [1].
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1.2 Goals

This paper extends the abelianization process to a certain class of local

systems on compact surfaces, con�rming a conjecture of Gaiotto, Moore, and

Neitzke. The conjecture is discussed further in Section 6.4. You can �nd a

detailed statement of the main result in Section 7.1.

1.3 Invitation

To state and prove the main result, we'll need to bring in a bunch of

special equipment. Though it might look arcane when it's all dumped out

in a pile, much of this machinery arises naturally in the study of geometric

structures on manifolds. I've therefore split the paper into two parts. The

�rst part, which you're currently reading, is a stroll through the theory of

geometric structures, meant to introduce and motivate some of the tools we'll

be using later. The second part lays out all the equipment in full detail and

uses it to prove the main result.
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Chapter 2

Geometric structures as local systems

2.1 A general framework

2.1.1 Global to local, symmetries to sheaves

We often de�ne symmetries as the transformations that preserve a

certain geometric structure. Isometries preserve distances; conformal maps

preserve angles; di�eomorphisms preserve the smoothness of functions; a�ne

maps preserve the straightness of lines. Klein famously proposed to �ip this

idea on its head, de�ning a geometric structure as whatever is preserved by

a certain group of symmetries [2]. Klein's program has been carried on by

Ehresmann [3], Cartan [4], Hae�iger [5], Thurston [6], Goldman [7], and many

others.

Klein's vision of geometry is very broad. Thurston suggested narrowing

it down by focusing on fairly rigid symmetry groups�ones where each element

is determined by its restriction to any open set [6, �3.5]. This approach lends

itself to a description of geometric structures using locally constant sheaves.

Pick a topological manifold X and a symmetry group G

�

X which

is rigid in the sense above. On any topological manifold M , we get a sheaf

O(M,X) of local homeomorphisms from M to X. The symmetry group acts

4



on maps to X by postcomposition, making O(M,X) into a sheaf of G-sets.

There's extra structure to be found when M is X itself. The sheaf

O(X,X) has a special subsheaf G consisting of maps which are locally the

restrictions of elements of G. Because an element of G is determined by its

restriction to any open set, G is locally constant, and its stalks are allG-torsors.

The subsheaf G is therefore a G local system in the sense of Section 8.2. If

we dropped the conditions on G and X that make G locally constant, we'd be

dealing with a potentially much wilder kind of sheaf, called a pseudogroup [4][6,

Chapter 3].

2.1.2 Geometric structures on manifolds

Klein would say the action of G on X de�nes a geometric structure.

The local system G captures the local features of that structure: the features

of open subsets of X that are preserved by the action of G. We can imagine

reproducing the local features of G

�

X on another topological manifold M by

choosing a subsheaf of O(M,X) analogous to G ↪→ O(X,X). A subsheaf like

that is called a (G,X) structure on M . It comes in two parts:

• A G local system E on M , called the catalog.

• A natural inclusion : E ↪→ O(M,X), called the anchor map.

By a natural inclusion, I mean a natural transformation of sheaves of G-sets

which is injective on every open set.

5



A (G,X) structure picks out a special class of local homeomorphisms

from M to X, which we'll call local charts. The catalog tells you how the

local charts are organized, keeping track of how they �t together and how

they're shu�ed around by the action of G. The anchor map links each catalog

entry to an actual map from M to X. When we say that the anchor map is

a natural transformation, we're saying that the catalog accurately re�ects the

organization of the maps it indexes.

The traditional way to specify a (G,X) structure on M is to give an

atlas of charts fromM toX whose transition maps come from G [6, Chapter 3].

That description is equivalent to the one we're using.

Proposition 2.1.A. A catalog and anchor map contain the same information

as an atlas of charts from M to X whose transition maps come from G.

Proof. It's not too hard to build a catalog and anchor map from an atlas of

charts onM . Let E be the subsheaf of O(M,X) consisting of maps that locally

restrict to charts composed with elements of G. The kind of reasoning we used

earlier to show that G ↪→ O(M,X) is a G local system can also be used to

show that E is a G local system. The catalog E was constructed as a subsheaf

of O(M,X), so it comes already equipped with an anchor map.

Extracting an atlas from a catalog E and anchor map takes a little

more care. To construct a chart around a point x ∈ M , �rst recall that E

is locally constant and M is locally connected, so x has an connected open

neighborhood U on which E is isomorphic to a constant sheaf. In Section 8.2,

6



we'll introduce the term simple to describe a neighborhood like this. For

the kind of local system we're considering here, the fact that U is simple

implies that EU is a G-torsor. In particular, EU is nonempty; pick any f ∈ EU .

Since f is a local homeomorphism, it maps some neighborhood V ⊂ U of x

homeomorphically onto an open subset of X. The map f , restricted to V , is

a chart around x.

We can use the construction above to cover M with charts to X. To

verify that these charts �t together into an atlas, we just have to show that

their transition maps belong to G. Take two abstract charts g ∈ EW and

f ∈ EV constructed in the manner above. For convenience, we'll add a ′ to

the name of an open set to denote its image under f . The transition map

( g)( f)−1 is an element of O(X,X)V ′∩W ′ , and we want to show that it lies

in GV ′∩W ′ .

Consider any simple set U ⊂ V ∩W . Because EU is a G-torsor, the

restrictions of g and f to U are related by the action of G. To be precise,

EU⊂W g = φ · EU⊂V f

for some φ ∈ G. We can turn this into a statement about the concrete charts

g and f by applying the anchor map to both sides. The anchor map is a

natural transformation of sheaves of G-sets, and the symmetry group acts on

O(M,X) by postcomposition, so

O(M,X)U⊂W g = φ ◦ O(M,X)U⊂V f.

7



Equivalently,

O(X,X)U ′⊂V ′∩W ′ ( g)( f)−1 = O(X,X)U ′⊂V ′∩W ′ φ,

treating φ as an element of GX ⊂ O(X,X)X . This sounds much nicer when

you say it in words: the restriction of ( g)( f)−1 to U ′ is the restriction of

an element of G.

The argument above started from an arbitrary simple set U ⊂ V ∩W .

Simple sets form a basis for M , so we can cover V ∩W with them. Hence,

we've shown that ( g)( f)−1 is given locally by restrictions of elements of

G. That's exactly what it means for an element of O(X,X)V ′∩W ′ to lie in

GV ′∩W ′ . We've proven that the transition map between any two of the charts

we constructed earlier belongs to G. That means the charts �t together into

an atlas, as we hoped.

2.1.3 Analytic geometric structures

One way to come up with a rigid geometry is to make X a real- or

complex-analytic manifold and pick a symmetry group G whose elements are

analytic maps from X to itself. Thurston introduced (G,X) structures in this

context.

When the model geometry G

�

X is analytic, we can think about (G,X)

structures in the analytic world, where all manifolds come with analytic struc-

tures and all maps respect them. In this world, the sheaf O(M,X) from which

we draw our local charts is the sheaf of locally invertible analytic maps. When

8



we're working in the analytic world, I'll often emphasize it by talking about

analytic (G,X) structures.

Focusing on analytic (G,X) structures can have unexpected conse-

quences. Hyperbolic geometry, discussed in Section 2.2.2, can be naturally

understood as a complex-analytic geometry, but the uniformization theorem

reveals that each complex-analytic surface has exactly one analytic hyperbolic

structure [8]. The resulting correspondence between complex structures and

hyperbolic structures on a topological surface leads to many surprises in two-

dimensional geometry.

Complex projective geometry, discussed in Section 2.2.1, is also complex-

analytic, and in Sections 3.2 and 4.2 we'll learn some interesting techniques

for working with analytic complex projective structures. I suspect these tech-

niques generalize to some other analytic geometries.

The terminology we're using extendeds to other categories of manifolds

and maps. If M is a smooth manifold, for instance, we can think about

smooth (G,X) structures, with local charts drawn from the sheaf O(M,X) of

local di�eomorphisms. Smooth hyperbolic structures feature prominently in

Section 3.3.

2.1.4 Geometry unmoored

You can weaken the notion of a geometric structure by allowing the

anchor map to produce local homeomorphisms that aren't de�ned everywhere,

or forgetting the anchor map entirely. When a catalog is separated from its
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anchor map, we'll say it's become unmoored. When the anchor map produces

partially de�ned local homeomorphisms, we'll say it's partially unmoored. The

partial anchor maps we consider will always produce local homeomorphisms

de�ned on a �xed dense subset of the underlying manifold. We'll sometimes

say a geometric structure is anchored to emphasize that it includes a fully

de�ned anchor map.

If you deform a geometric structure by pushing it forward along an iso-

topy, the anchor map changes, but the catalog stays the same. That's because

�owing a local system forward along an isotopy gives you an isomorphism

between the new local system and the original. Since all manifolds have non-

trivial isotopies, unmoored geometric structures inevitably drift away, never

remembering their anchor maps better than up to isotopy.

For some kinds of geometric structures, like hyperbolic structures, the

isomorphism class of the catalog determines the anchor map up to isotopy. In

this case, specifying an unmoored geometric structure is equivalent to specify-

ing an isotopy class of anchored ones. For other kinds of geometric structures,

like complex projective structures, you can �nd non-isotopic geometric struc-

tures with isomorphic catalogs.1 In this case, an unmoored geometric structure

carries less information than an isotopy class of anchored ones.

1Many thanks to Jorge Acosta and Francis Bonahon for pointing this out to me.
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2.2 Examples

2.2.1 Complex projective structures

As a �rst example of a geometric structure, consider the group of con-

formal maps from the unit sphere to itself. This group is known classically

as the Möbius group. It can be identi�ed with PSL2 C by presenting the unit

sphere as CP1. In addition to preserving angles, Möbius transformations send

circles to circles. The geometric structure PSL2 C

�

CP1 thus provides not

only a way to measure angles, but also a way to distinguish circles from other

curves.

2.2.2 Hyperbolic structures

The isometry group of the hyperbolic plane can be identi�ed with

PSL2 R by presenting the hyperbolic plane as the upper half-plane in CP1.

Isometries of H2 preserve distances, angles, and geodesics, of course, but they

also preserve more subtle things, like families of asymptotic geodesics and fam-

ilies of horocycles. Thus, in addition to a Riemannian metric and a way to

distinguish geodesics from other curves, the geometric structure PSL2 R

�

H2

provides a local notion of visual boundary, and identi�es certain local folia-

tions as horocycle foliations. We'll put these more subtle features to use when

we talk about de�ating hyperbolic surfaces in Section 6.
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2.2.3 Translation structures

The action of the translation group R2 on the plane R2 preserves lots

of interesting features. Surfaces with R2

�

R2 structures are called translation

surfaces. We'll review them in depth in Section 9.2, because the whole second

part of the paper revolves around their geometric and dynamical properties.

We'll also see a lot of them in the �rst part of the paper�especially in Section 6,

where we get our �rst good look at abelianization. I'll therefore use this section

to mention some features of translation structures which will be useful to have

in mind while reading Part I.

Compact translation surfaces are too constrained to be interesting, so

we allow translation structures to have certain kinds of conical singularities. I

don't know of a neat way to �t the singularities into the formalism of (G,X)

structures, so it may be best to think of them as missing points with regularity

conditions imposed on the catalog and anchor map around them. A translation

structure provides a way to distinguish vertical lines from other curves, and

each conical singularity has a few vertical lines diving into and shooting out of

it. These critical leaves play an important part in the geometry and dynamics

of the translation structure.

Looking at the puncture shapes in Section 9.2, you can check that the

catalog of a translation structure has identity holonomy around each punc-

ture. That means the catalog extends to a local system on the whole surface,

including the singularities. The anchor map, of course, doesn't extend.
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The built-in projections from R2 to R split each local chart of a transla-

tion structure into a vertical part and a horizontal part. Vertical translations

only a�ect the vertical part of a chart, and horizontal translations only a�ect

the horizontal part. That makes a translation structure looks a lot like a pair

of independent R

�

R structures, each with its own catalog and anchor map.

The vertical and horizontal parts of a translation structure aren't true geo-

metric structures, because their �local charts� aren't local homeomorphisms.

They are, however, geometrically meaningful, as we'll see in Section 6.3.3.

Picking a complex-analytic translation structure on a Riemann surface

is the same thing as picking a holomorphic 1-form [9]. The zeros of the 1-

form are the conical singularities of the translation structure. If the surface

has punctures, the 1-form can have poles, which appear in the translation

structure as ends of certain shapes. See Appendix F for details.

2.2.4 Half-translation structures

You can generalize translation geometry by acting on the plane R2

with both translations and 180◦ rotations, which I'll call �ips. The subgroup

of IsomR2 generated by these operations is a semidirect product R2 o Z/(2).

This group is twice as big as the translation group, so it must preserve half

as much structure. Accordingly, spaces modeled on its action are called half-

translation surfaces.

The features of translation surfaces we discussed above all have ana-

logues for half-translation surfaces. Like their more disciplined siblings, half-
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translation surfaces are allowed to have conical singularities. The catalog

doesn't always extend over the singularities, but it comes close: its holonomy

around a singularity is either the identity or a �ip. Picking a complex-analytic

half-translation structure on a Riemann surface is the same thing as picking

a holomorphic quadratic di�erential [9, �8.1]. This fact lends an interesting

interpretation to the discussion in Section 4.2.
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Chapter 3

Geometric structures as �at bundles

3.1 Overview

You can turn a principal G bundle with a �at connection into a G local

system by taking its sheaf of �at sections. This functor from �at G bundles

to G local systems is an equivalence, but not an isomorphism: you can always

realize a G local system as the sheaf of �at sections of a �at G bundle, but

you generally can't do it in any canonical way.

By itself, the catalog of a (G,X) structure is just a G local system.

As part of a geometric structure, however, the catalog comes with extra data,

linked to it by the anchor map. For some kinds of (G,X) structures, this

extra data gives a natural way to turn the catalog into a �at G bundle. The

analytic complex projective structures on a Riemann surface provide a striking

example: they all appear naturally as �at connections on a special �carrier

bundle,� described in Section 3.2. A similar idea works for smooth hyperbolic

structures, but with a twist, as we'll see in Section 3.3.
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3.2 A carrier for complex projective structures

Let's consider analytic complex projective structures on a Riemann

surface S. Their local charts are drawn from the sheaf of conformal maps

O(S,CP1). Let P 2(S,CP1) be the bundle of 2-jets of conformal maps1 from

S to CP1 [10, �IV.5]. At each point x ∈ S, a quotient map O(S,CP1)x →

P 2(S,CP1)x projects the germs of conformal maps down to their 2-jets. Com-

posing with the 2-jet evaluation map, we get a factorization

P 2(S,CP1)

��
O(S,CP1)

BB

// CP1

of the germ evaluation map.

The action of Möbius transformations on O(S,CP1) descends to an

action on P 2(S,CP1). Every element of P 2(CP1,CP1) is the 2-jet of a unique

1 Here's a refresher on jets of locally invertible maps in the analytic world. (It works just
as well in the smooth world, and probably other worlds too.) At each point x on a complex
manifold M , there's a ring of germs of holomorphic functions. Within that ring, let m be
the ideal of germs that vanish at x. The k-jet of a germ in m is its projection to m/mk+1,
which describes it �up to kth order.� The k-jets of holomorphic functions on M �t together
into a ring bundle JkM , whose �ber at x is m/mk+1.
A locally invertible analytic map f : M → N pulls local holomorphic functions back from

N to M , inducing a bundle map JkM ← JkN . Together, the point y = fx and the
isomorphism JkMx ← JkNy describe the action of f near x up to kth order. Playing with
polynomials in local coordinates, you can see that any isomorphism JkMx ← JkNy arises
in this way from a locally invertible analytic map de�ned near x and y. The data of a point
x ∈ M , a point y ∈ N , and an isomorphism JkMx ← JkNy thus describe what you might
call the k-jet of a locally invertible analytic map from M to N . These k-jets �t together
into a space P k(M,N), which is naturally a bundle over both M and N . We'll always view
it as a bundle over M .
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Möbius transformation, so P 2(CP1,CP1) is a principal PSL2 C bundle. As a

consequence, P 2(S,CP1) is a principal PSL2 C bundle too.

Take an analytic complex projective structure on S, with catalog E

and anchor map . Composing the anchor map with the projection described

above, we get a PSL2 C-equivariant map

Ex // O(S,CP1)x // P 2(S,CP1)x

An equivariant map between torsors is automatically an isomorphism, so this

map identi�es each stalk of E with the corresponding �ber of P 2(S,CP1).

For any open subset U of S, the map

EU // Ex // O(S,CP1)x // P 2(S,CP1)

varies holomorphically with respect to x ∈ U . It turns the elements of EU

into holomorphic sections of P 2(S,CP1) over U . The tangent planes of these

sections describe a �at connection A on P 2(S,CP1). The sheaf of �at sections

of A is identi�ed with E by construction.

The �at section of P 2(S,CP1) corresponding to a catalog entry f ∈ EU

tells us the 2-jet of f at each point in U . In particular, it tells us the value

of f at each point in U , which is to say it tells us f . The �at connection

A thus completely describes the complex projective structure it came from,

wrapping up the catalog and the anchor map in one neat geometric package.

Through the construction described here, the bundle P 2(S,CP1) pro-

vides a common home for all analytic complex projective structures on S. To
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honor this role, we'll call it a carrier bundle for analytic complex projective

structures.

3.3 Carriers for hyperbolic structures

3.3.1 A canonical construction

The idea we just used to realize analytic complex projective structures

as �at connections on a carrier bundle can also be applied to smooth hyperbolic

structures. Its execution, however, is more subtle. Instead of building the

carrier bundle directly over the surface we're studying, we'll build it over the

bundle of tangent directions of the surface.

Let's consider smooth hyperbolic structures on a smooth surface S.

Their local charts are drawn from the sheaf of local di�eomorphisms O(S,H2).

Let US be the bundle of tangent directions on S, realized formally as TS r 0

modulo scaling by positive numbers. In the presence of a Riemannian metric,

US earns its notation by embedding itself in TS as the unit tangent bundle.

The derivative of a local di�eomorphism from S to H2 sends tangent directions

on S to tangent directions on H2. This de�nes a map δu : O(S,H2)x → UH2

for each u ∈ USx.

Take a smooth hyperbolic structure on S, with catalog E and anchor

map . Bundle projections are open, so E pulls back straightforwardly along

the projection π : US → S, becoming a local system Ẽ on US. The stalk Ẽu

over a tangent direction u ∈ US is naturally identi�ed with Eπu. Compos-

ing this identi�cation with the anchor map and the derivative map described
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above, we get a PSL2 R-equivariant map

Ẽu // Eπu // O(S,H2)πu
δu // UH2

An isometry of H2 is determined by its action on any tangent vector, so UH2

is a PSL2 R-torsor. Hence, as before, the map above is an isomorphism. We

can think of it as identifying each stalk of Ẽ with the corresponding �ber of

UH2, the trivial UH2 bundle over US.

For any open subset U of US, the map

ẼU // Ẽu // Eπu // O(S,H2)πu
δu // UH2

varies smoothly with respect to u ∈ U . Thus, as before, it describes a �at

connection A on UH2, whose sheaf of �at sections is identi�ed with Ẽ by

construction.

By de�nition, ẼU = EπU . The �at section of UH2 corresponding to a

catalog entry f ∈ ẼU tells us what the derivative of f does to each tangent

direction in U . In particular, it tells us the value of f at each point in πU ,

which is to say it tells us f . Thus, as before, the �at connection A completely

describes the hyperbolic structure it came from. The bundle UH2 → US there-

fore deserves to be called a carrier bundle for smooth hyperbolic structures.

Because UH2 is canonically trivial, its parallel transport maps can be

seen as elements of PSL2 R. When you construct a �at connection on UH2

from a hyperbolic structure, its parallel transport lifts each loop around a

�ber of US to a loop around an elliptic subgroup of PSL2 R, which is not
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contractible. The �at connections on UH2 that describe hyperbolic structures

are therefore examples of twisted �at connections on S [11, �10.1].

3.3.2 Construction from a reference hyperbolic structure

Building a bundle over another bundle feels a bit perverse, so you might

wonder if we can �nd a carrier bundle for smooth hyperbolic structures on

S that lives over S itself. It turns out we can, but at the cost of doing

something even more perverse: �xing an arbitrary hyperbolic structure on

S and describing all other hyperbolic structures in terms of it.

We start o� following our construction of a carrier bundle for ana-

lytic complex projective structures. At each point x ∈ S, a quotient map

O(S,H2)x → P 1(S,H2)x projects the germs of local di�eomorphisms down to

their 1-jets. You can think of a 1-jet that sends x ∈ S to y ∈ H2 as a linear

isomorphism TSx → TH2
y.

The analogy with the complex projective story immediately breaks

down, because Möbius transformations don't act transitively on P 1(S,H2)x,

so the bundle of 1-jets isn't a principal PSL2 R bundle. To patch over this dif-

�culty, we �x a smooth hyperbolic structure on S, with catalog E? and anchor

map ?. The map

E?x
?
// O(S,H2)x // P 1(S,H2)x

is injective, so its image is a PSL2 R-torsor. For an open subset U of S, the
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map

E?U // E?x
?
// O(S,H2)x // P 1(S,H2)x

varies continuously with respect to x ∈ U , so it sweeps out a principal PSL2 R

bundle Q? ↪→ P 1(S,H2). The notation is meant to emphasize that Q? depends

on the reference hyperbolic structure.

Now that we have a principal bundle over S, we can start following

the complex projective story again. The next step is to �nd a good map

O(S,H2)x → Q?
x at each point x ∈ S. We can't just send each germ to its 1-jet,

like we did before, because the 1-jet Φ ∈ P 1(S,H2)x of a germ φ ∈ O(S,H2)x

generally won't belong to Q?
x. Instead, we'll send φ to the unique 1-jet in Q?

x

that lines up with Φ in a certain sense.

As I mentioned earlier, you can think of Φ as a linear isomorphism

TSx → TH2
fx. One way to compare Φ with another 1-jet Ψ it to look at

how you'd have to distort TH2
fx to turn Φ into Ψ. That distortion is the

automorphism ΨΦ−1. The Riemannian metric on H2 makes TH2
fx an inner

product space, so we can use the polar decomposition to express ΨΦ−1 uniquely

as a positive-de�nite map followed by an orthogonal one�a stretch followed by

a rotation. It seems natural to say that Ψ lines up with Φ when the rotational

part of ΨΦ−1 is the identity.

If Ψ is in Q?
x, we can get all the other 1-jets in Q?

x by applying the

action of PSL2 R. To get only the 1-jets that send x to fx, we apply only

the subgroup of PSL2 R that stabilizes fx, which acts faithfully on TH2
fx by
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rotations. One way to describe the polar decomposition is to say that there's

a unique rotation Ω for which ΩΨΦ−1 is positive-de�nite. That means ΩΨ is

the unique 1-jet in Q?
x that lines up with Φ.

Now that we've found a bundle map O(S,H2) → Q?, we can compose

it with the 1-jet evaluation map to get a factorization

Q?

��
O(S,H2)

BB

// H2

of the germ evaluation map. From there, can follow the complex projective

story through to the end.

3.4 A general framework

In both of the cases where we managed to build a carrier bundle for

(G,X) structures directly over the manifold M we were studying, the carrier

bundle E was a principal G bundle providing an equivariant factorization

E

��
O(M,X)

CC

// X

of the germ evaluation map. This suggests a link between our notion of a

carrier bundle and Goldman's formalism of graphs of geometric structures [7].

Goldman's approach uses an X bundle over M with structure group

G, rather than a principal G bundle. To specify a (G,X) structure on M , you

give the bundle two things:
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• A �at connection, called the tangent connection.

• A global section transverse to the connection planes, called the develop-

ing section.

To connect Goldman's picture with ours, observe that an equivariant map

from a principal G bundle to X holds the same information as a section of

the associated X bundle [12, Proposition 3.11], so the X bundle associated to

the carrier bundle gets a section from the factorization above. If we use that

section as a developing section, a �at connection on the carrier bundle and the

induced �at connection on the associated X bundle should hopefully specify

the same geometric structure.
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Chapter 4

Comparing geometric structures

4.1 Overview

In this section, we'll look at two instruments for measuring the di�er-

ence between a pair of geometric structures. The �rst, called the Schwarzian

derivative, is classical device for comparing analytic complex projective struc-

tures. We won't need it for any technical purpose, but it illustrates the rich

interaction between complex projective geometry and half-translation geome-

try that runs throughout this paper and its references. The second, which I'm

calling the deviation, can be used to compare all sorts of geometric structures,

and more general things too. It seems to be less widely used, but it will play

a central role in this paper.

4.2 The Schwarzian derivative

4.2.1 The setup

Say we have two analytic complex projective structures on the same

Riemann surface S, with catalogs E , E ′ and anchor maps , ′. I'll call

them the old structure and the new structure, for short. They induce �at

connections A, A′ on P 2(S,CP1) as described in Section 3.2, realizing E and
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E ′ as the corresponding sheaves of �at sections. To lighten the notation, I'll

implicitly identify the �bers of P 2(S,CP1) with the stalks of E and E ′, and

I won't write stalk restrictions or their inverses. The stalkwise isomorphism

Υ: E → E ′ de�ned by the diagram

E ′x

P 2(S,CP1)x

88

'' Ex

Υx

OO

is an essential component of the comparison we're about to discuss, though it

won't be named explicitly.

4.2.2 The de�nition

Given an analytic complex projective structure on S, we can use the

anchor map to extend any 2-jet of a map S → CP1 to the germ of a local

chart. In our present situation, that gives us two maps

E ′x ′

&&
P 2(S,CP1)x

88

''

O(S,CP1)x

Ex

77

By comparing these maps, we can see how local charts get distorted in passing

from the old complex projective structure to the new one. Pursuing this

idea down a path pointed out by Thurston will lead us to the Schwarzian

derivative [13].
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Pick a 2-jet f ∈ P 2(S,CP1)x that sends x to zero. We can think of

the germs z = f and z′ = ′f as the germs of meromorphic functions. By

construction, z and z′ both have f as their 2-jet, so they're actually the germs

of holomorphic functions that vanish at x.

Within the ring of germs of holomorphic functions, let m be the ideal

of germs that vanish at x. Now we can say concretely what it means for z and

z′ to have the same 2-jet: they represent the same element of m/m3. In other

words,

z′ ∈ z + m3.

The germ z is locally invertible, because it's the germ of a local chart. Con-

sequently, its �rst derivative is nonzero�it represents a nonzero element of

m/m2. It follows, with a bit of thought, that z generates m. In particular,

m3 = zm2, so we can rewrite the approximation above as

z′ ∈ z(1 + m2).

Our �rst chance to detect a di�erence between the two complex pro-

jective structures on S is to compare z and z′ in m/m4, at the level of 3-jets.

Rewrite the approximation above as

z′ ∈ z(1 + qx)

for some coset qx ∈ m2/m3, noting that qx is determined uniquely by z and z′.

In coordinates,

qx = pxz
2 + m3

26



for some px ∈ C. It will be convenient to view qx as a bilinear form on

(1, 0) tangent vectors, using the classical1 isomorphism between m2/m3 and the

symmetric square of T ∗1,0Sx. From this perspective, our coordinate expression

for qx should be read as

qx = px dz
2.

We'll see later that qx doesn't depend on which 2-jet f we started with.

We can do the calculation above at any point in S, yielding a section

q : S → Sym2 T ∗1,0S

x 7→ qx

A section of Sym2 T ∗1,0S is called a quadratic di�erential [9, �8.1]. Because the

local charts z and z′ are analytic, qx turns out to vary holomorphically with x.

The holomorphic quadratic di�erential q is called the Schwarzian derivative

of the new complex projective structure with respect to the old one. As we

1 An element of m2/m3 is the second-order part of a function that vanishes to �rst order.
Intuitively, it's the second derivative of a function whose �rst derivative vanishes�a Hessian.
A Hessian is typically expressed as a bilinear form on (1, 0) tangent vectors, classically
described as a �matrix of second derivatives.� This is possible because the multiplication
map

Sym2(m/m2)→ m2/m3

(g + m2)� (h+ m2) 7→ gh+ m3

is an isomorphism, and m/m2 is the (1, 0) cotangent space at x.
As you might have inferred from its general terms, the discussion above makes sense on

any complex manifold M . Without the references to the (1, 0) part of the tangent space, it
makes equally good sense on any smooth manifold. Just as we de�ne the cotangent bundle
T ∗1,0M as the bundle whose �ber at x is m/m2, we could de�ne a �Hessian bundle� H1,0M
whose �ber at x is m2/m3. The Hessian of a function at x is an element of H1,0Mx, just as
the derivative of a function at x is an element of T ∗1,0Mx.
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mentioned in Section 2.2.4, choosing a holomorphic quadratic di�erential on

a Riemann surface is the same thing as choosing an analytic half-translation

structure. The Schwarzian derivative tells us that the di�erence between two

analytic complex projective structures is itself a geometric structure.

4.2.3 Showing the de�nition makes sense

When we de�ned the Schwarzian derivative, we got qx from a 2-jet

f ∈ P 2(S,CP1)x that sends x to zero. What if we'd picked a di�erent 2-jet?

Recall that PSL2 C acts transitively on each �ber of P 2(S,CP1), so any other

2-jet at x can be written asM ·f for some Möbius transformationM . We want

M ·f to send x to zero, like f does, so we have to pick a Möbius transformation

that �xes zero. Hence, we can use a matrix of the form[
a ·
c 1

]
to represent M ∈ PSL2 C.

The anchor map for a (PSL2 C,CP1) structure is PSL2 C-equivariant,

so

(M · f) = M · f ′(M · f) = M · ′f

= M · z = M · z′.

The value of qx ∈ m2/m3 we get from M · f is thus characterized by the

approximation

M · z′ ∈ (M · z)(1 + qx).
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Writing M out as a rational function, we get

az′

1 + cz′
∈ az

1 + cz
(1 + qx),

or equivalently

z′ ∈ 1 + cz′

1 + cz
z(1 + qx)

=

[
1 +

c(z′ − z)

1 + cz

]
z(1 + qx).

Recall again that z′ and z have the same 2-jet, so z′ − z ∈ m3. Hence,

z′ ∈ (1 + m3) z(1 + qx)

⊂ z(1 + qx + m3)

= z(1 + qx),

showing that the qx we get from M · f is the same one we got from f .

4.2.4 Some geometric meaning

A holomorphic quadratic di�erential, as we remarked in Section 2.2.4,

de�nes an analytic half-translation structure on S. This structure provides a

lot of features, including a pair of singular foliations called the horizontal and

vertical foliations. The horizontal and vertical foliations of the Schwarzian

derivative have a cute geometric meaning.

As we mentioned in Section 2.2.1, a complex projective structure pro-

vides a way to distinguish circles from other curves. When we pass from the

old complex projective structure on S to the new one, the curves that used

29



to be circles through x generally won't stay circular. There are a few circles

through x, however, that stay circular up to third order. They're the ones

tangent to the horizontal and vertical leaves of the Schwarzian derivative!

We can say this more formally using the language of germs of curves.

Let A be the sheaf of real-analytic functions from S to R, and let n ⊂ Ax be

the ideal of germs that vanish at x. If a germ c ∈ n has nonzero derivative,

its zero set is the germ of a one-dimensional smooth submanifold of S�the

germ of a curve through x. The curve depends only on the ideal c generates.

We can thus identify the germs of curves through x with certain ideals in Ax,

which I'll call curve ideals.

Once we're viewing curves as the zero sets of functions, we can approx-

imate curves by approximating the corresponding functions. Given a curve

ideal c ⊂ Ax, which describes the germ of a curve, we'll say the ideal c + nk+1

describes the k-jet of that curve. Other curves with the same k-jet are de-

scribed by other curve ideals contained in c + nk+1.

We're trying to prove something about circles, so we need to char-

acterize circle ideals�the curve ideals describing germs of circles. Say z ∈

O(S,CP1)x is the germ of a local chart for the old complex projective struc-

ture. An ideal in Ax is a circle ideal if and only if it's generated by a germ of

the form

αzz̄ + βz + βz,

with α ∈ R and β ∈ C× [14].
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Now we're ready to see which circles in the old complex projective

structure stay approximately circular in the new one. Fix a circle ideal c ⊂ Ax

in the old complex projective structure. Pick a 2-jet f ∈ P 2(S,CP1)x that

sends x to zero and lays the circle tangent to the real axis. In terms of the

local chart z = f ,

c =
[
αzz̄ + z + z̄

]
Ax

for some α ∈ R. Any circle ideal in the new complex projective structure can

be exprssed in terms of the local chart w = ′f as

c′ =
[
α′ww̄ + β′w + β′w

]
Ax,

where α′ ∈ R and β′ ∈ C×. We want to know whether we can set α′ and β′ so

that

c + n4 = c′ + n4.

Assume that qx is nonzero, so it picks out horizontal and vertical di-

rections in the tangent space at x. Write qx in coordinates as pxz2 + m3. The

coe�cient px is real when c describes a circle tangent to the horizontal or ver-

tical direction of qx. The sign of px determines whether the circle is horizontal

or vertical; the assumption that qx picks out horizontal and vertical directions

ensures that px can't be zero.

From the de�nition of the Schwarzian derivative and the fact that z
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generates m, we reason that

z(1 + qx) + m4 = w + m4

z + m4 = w(1− qx) + m4

z ∈ w(1− qx) + m4.

Using this approximation, we can rewrite qx in coordinates as pxw2 + m3. We

can also deduce that

c + n4 =
[
αww̄ + w + w̄ − (wqx + wqx)

]
Ax + n4

=
[
αww̄ + w + w̄ − (pxw

3 + pxw3)
]
Ax + n4.

By writing a general element of c′ out to second order, we see that we have to

set α′ = α and β′ = 1 for c′+n4 to have any chance of containing the generator

c = αww̄ + w + w̄ − (pxw
3 + pxw3).

We can therefore restrict our attention to the case where c′ is generated by

c′ = αww̄ + w + w̄.

Writing a general multiple of c′ out to third order reveals that

c+ n4 = c′r + n4

for some r ∈ Ax if and only if px is real. The germ r turns out to be invertible

modulo n4 if it exists, so we've shown that

c + n4 = c′ + n4
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if and only if px is real. As we remarked earlier, px is real when c describes a

circle tangent to the horizontal or vertical direction of qx. Hence, we've proven

what we set out to prove.

4.3 Deviations of geometric structures

The Schwarzian derivative compares complex projective structures mi-

croscopically, using the in�nitesimal details of local charts at each point. As

a result, it relies on some degree of smoothness in the geometric structures

and the underlying manifold. Our second instrument, the deviation, works on

macroscopic principles, comparing local charts on open sets. Although we'll

introduce it using imagery from the smooth world, it generalizes readily to

geometric structures on topological manifolds. In fact, its real calling lies in

the even craggier setting of Part II, where we'll use it to compare local systems

on spaces quite far from being manifolds. In Section 4.4, we'll get a preview

of how deviations work at that level of generality.

For now, though,2 let's say M is a smooth manifold, and E → M

is a carrier bundle for (G,X) structures on M . Suppose we have two (G,X)

structures onM , represented by �at connections A and A′ on E. Their catalogs

E and E ′ are the corresponding sheaves of �at sections. The stalk Ex is the

space of germs of �at sections of A at x. Sending each germ in Ex to the unique

germ in E ′x that has the same value at x gives an isomorphism Υx : Ex → E ′x.

2This portion of Section 4.3 appeared previously, with minor di�erences, as [15, �2.3].

33



U

e

ΥU
x e

x

Ex

If you read the proof of Proposition 2.1.A, you might recall the notion of a

simple set, which will be introduced formally in Section 8.2. If U ⊂M is simple

with respect to both E and E ′, we can visualize Υx by its action ΥU
x : EU → E ′U

on �at sections over U , as shown above. Then, for any x, y ∈ U , we can

de�ne an automorphism υUyx of EU that tells us how parallel transport along

A′ deviates from parallel transport along A:

E ′U∈
{{

E ′y
Υ−1
y

��

E ′x

∈−1cc

Ey
∈−1 $$

Ex

Υx

OO

EU
∈

::

υUyx

��
U

e

ΥU
x e

x

Ex

υUyxe

y

Ey

This automorphism is characterized by the property that ΥU
y υ

U
yx = ΥU

x . If

V ⊂ U is a simple neighborhood of x and y, the automorphisms υUyx and

υVyx commute with the restriction map EV⊂U , so all these automorphisms �t

together into a natural automorphism υyx of the functor we get by restricting
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E to the poset of simple neighborhoods of x and y. Restricting E further to

the simple neighborhoods of three points x, y, and z, we can observe that

υzyυyx = υzx. Collectively, the natural automorphisms {υyx}x,y∈M might be

called the deviation of A′ from A.

4.4 Deviations of locally constant sheaves

In Section 4.3, we used the conceptual framework of carrier bundles for

geometric structures to motivate the de�nition of a deviation. Now, if we tear

down the sca�olding, we'll see the deviation standing on its own in a much

more general context. To avoid getting bogged down in details, we'll just take

a quick look, enough to make sense of the way deviations are used in Section 5.

A more precise treatment will appear in Section 8.3.

Say we have two locally constant sheaves E and E ′ on a topological space

M . Give a stalkwise isomorphism Υx : Ex → E ′x, we can measure the deviation

υyx just as we did before. The choice of stalkwise isomorphism might not be

canonical anymore, so we should really talk about �the deviation of Υ� instead

of �the deviation of E ′ from E .�

When M is locally connected, as we'll assume from now on, the devia-

tion of Υ speci�es Υ and E ′ uniquely up to canonical isomorphism. Because the

features of a locally constant sheaf are spread out over open sets, Υ doesn't

have to be de�ned at every point in M for this to work. It just has to be

de�ned on a dense subset, which we'll call the support of Υ and its deviation.
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The deviations we used earlier to compare geometric structures always

had full support, because the stalkwise isomorphism Υ de�ned by the diagram

E ′x

Ex

99

&& Ex

Υx

OO

was de�ned at every point x ∈ M . In our examples, the identi�cation of the

�bers of E with the stalks of E and E ′ went through the anchor maps, like

this:

O(M,X)x E ′x
′

oo

Ex

99

%% O(M,X)x Exoo

Υx

OO

Ultimately, Υ was de�ned everywhere because the anchor maps were.

Deviations with partial support appear when geometric structures come

partially unmoored, with anchor maps only de�ned on a dense subset of M .

This is a typical result of cutting and gluing constructions, which we'll explore

in Section 5.
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Chapter 5

Warping geometric structures

5.1 The general idea

I mentioned in Section 4.4 that a stalkwise isomorphism between locally

constant sheaves is determined up to isomorphism by its deviation. We'll

see in Section 8.4 that every deviation, conversely, determines a stalkwise

isomorphism between locally constant sheaves. To be precise, say we're given

a deviation υ from a locally constant sheaf E , supported on D ⊂ M . We can

then build a locally constant sheaf E ′ and a stalkwise isomorphism Υ: E → E ′,

supported on D, whose deviation is υ. The deviation isn't just a measuring

device: it's also construction equipment.

The process of building a stalkwise isomorphism from a deviation will be

called warping. It encompasses many classical and not-so-classical operations

on geometric structures, including abelianization. It's especially well suited for

cutting and gluing operations, which tend to behave well only on dense subsets

of the spaces they act on. In this section, we'll get a feel for warping by using

it to describe some cutting and gluing constructions related to abelianization.
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5.2 Cataclysms on punctured hyperbolic surfaces

5.2.1 Setup

Take a surface S ′, with negative Euler characteristic, which is compact

except for a �nite set of punctures. Break it into triangles by drawing edges

from puncture to puncture, like this:

The edges of the triangles should be non-intersecting one-dimensional subman-

ifolds of S ′, and each triangle should have three distinct edges. This gives an

ideal triangulation of S ′ [16].

Weight each edge e of the triangulation by a real number le. A weighted

ideal triangulation speci�es an operation, called a cataclysm, that turns hy-

perbolic structures on S ′ into new hyperbolic surfaces [17]. Let's see how this

operation works in the simplest case, where the edge weights of the triangula-

tion sum to zero around each puncture.

5.2.2 Cataclysms on surfaces with cusps

Give S ′ a hyperbolic structure, with a cusp at each puncture. Each

edge of the triangulation snaps tight to a geodesic by a homotopy relative
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to the punctures, making each triangle isometric to an ideal triangle in the

hyperbolic plane. It's easiest to see how this works on the universal cover of

S ′.

Cut along the edges of the triangulation, so S ′ falls apart into ideal triangles.

Shift the triangles adjacent to edge e by the displacement le. The sign of the

displacement determines the direction of the shift: when le is positive, someone

standing on either triangle sees the other triangle move left. Glue the triangles

back together, making a new surface S ′′ with a new hyperbolic structure. This

new object is the outcome of the cataclysm.
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Because we're assuming the weights of the triangulation sum to zero around

each puncture, the hyperbolic structure on S ′′ has a cusp at each puncture,

just like the structure on S ′ that we started with.

The new surface S ′′ is homeomorphic to S ′, but not in any canonical

way. Each triangle of S ′′, however, is canonically isometric to the correspond-

ing triangle of S ′. This creates a new partially anchored hyperbolic structure

on S ′, with local charts de�ned away from the edges of the triangulation. The

new structure easier to see than it is to say, so before we go into the details of

its construction, let's look at the image of one of its local charts.
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The chart restricts to a chart for the original hyperbolic structure on each

triangle. However, it doesn't extend continuously over edges.

Now for the details. Consider a quadrilateral Q′ ⊂ S ′�the union of two

adjacent triangles and the edge e between them. Let Q′′ be the corresponding

quadrilateral in S ′′, and let c be the map from Q′ r e to Q′′ that restricts to

the canonical isometry on each triangle. De�ne a local chart on Q′ to be an

isometry Q′′ → H2 pulled back along c. Since local charts on Q′ are maps from

Q′r e to H2, they can be restricted to open subsets of Q′, forming a constant

sheaf. The sheaves of local charts on di�erent quadrilaterals agree on overlaps,

so they glue up into a partially anchored hyperbolic structure on S ′.

5.2.3 The deviation of a cataclysm

Let E ′ be the catalog of the original hyperbolic structure on S ′, and let

E ′′ be the catalog of the new hyperbolic structure produced by the cataclysm.

On an open set U ⊂ S ′ that doesn't cross any edges of the triangulation, the
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new local charts are the same as the original ones, so E ′′U and E ′U are identi�ed.

This de�nes a stalkwise isomorphism K : E ′ → E ′′ on the complement of the

edges of the triangulation. Let's measure its deviation κ.

Consider an open set U ⊂ S ′ which is split in two by an edge e of

the triangulation, like the one pictured a few paragraphs ago. Since U is a

connected subset of a quadrilateral, it's simple with respect to E ′ and E ′′, so the

deviation gives an automorphism κUyx of E ′U for each pair of points y, x ∈ Ure.

If y and x lie on the same side of e, then κUyx is the identity. If y and x

lie on opposite sides of e, then κUyx shifts each local chart φ : U → H2 along

the geodesic containing φe. The displacement is le, as measured by someone

standing at φx.

Notice that κUyx doesn't act on local charts by postcomposing them with

a �xed isometry of H2. No automorphism of E ′U can act that way, because an

automorphism of a torsor is an equivariant map, and the group action that

de�nes the torsor isn't equivariant unless the group is abelian.

We �rst de�ned a cataclysm as a cutting and gluing operation that

turns each hyperbolic structure on S ′ into new hyperbolic surface S ′′. Then

we worked our way back to S ′, building a new partially anchored hyperbolic

structure and measuring its deviation from the original. In the end, though,

our description of κ came directly from the original hyperbolic structure on

S ′. That means we could just as well de�ne a cataclysm as an operation that

turns each hyperbolic structure on S ′ into a partially supported deviation,

which speci�es a new partially anchored hyperbolic structure.
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5.2.4 Cataclysms on surfaces with holes

So far, we've only considered weighted triangulations in which the sum

of the weights around each puncture is zero. Let's relax that restriction,

demanding only that the sum of the weights around each puncture is non-

negative. Now a cataclysm can open cusps like camera apertures, turning

them into holes with geodesic boundary. Triangulations whose edge weights

are all non-negative automatically satisfy the weakened sum constraint. They

describe a special class of cataclysms, called left earthquakes [18].

5.3 Cataclysms on compact hyperbolic surfaces

5.3.1 Generalizing weighted ideal triangulation

If you want to do a cataclysm on a punctured hyperbolic surface, your

�rst step is to cut the surface into ideal triangles. If you want to do a cataclysm

on a compact hyperbolic surface, you're stuck, because there isn't any obvious

way to cut the surface into ideal triangles. There is, however, a delightfully

non-obvious way to cut the surface into ideal triangles, and you can use it to

do a cataclysm after all [18][17].

On a compact surface S with negative Euler characteristic, the analogue

of an ideal triangulation is something called a maximal geodesic lamination.

The easiest way to get your hands on one is to pick a hyperbolic structure

on S. Then you can de�ne a geodesic lamination on S to be a set of disjoint

simple geodesics whose union is closed [19, Proposition 1]. The geodesics are

called the leaves of the lamination. A geodesic lamination is maximal if no
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other geodesic lamination contains it. We'll use other terms from [19] without

repeating their de�nitions. The facts below, unless otherwise cited, can be

found in or inferred from the same reference.

A maximal geodesic lamination is a very strange thing. Its complement

is a �nite set of disjoint ideal triangles. If it has no isolated leaves, however, its

leaf set is uncountable. This is easier to picture once you learn that a transverse

slice across a geodesic lamination with no isolated leaves is a Cantor set [19,

Proposition 7]. For a maximal lamination, the gaps in the Cantor set are slices

of the complementary triangles, which cross the transversal over and over as

they wind around the surface.

A Cantor set has two kinds of points: the countably many points on the

boundaries of the gaps, which I'll call the boundary points, and the uncountably

many others, which I'll call the bulk points. Accordingly, a maximal geodesic

lamination with no isolated leaves has two kinds of leaves: the �nitely many

leaves on the boundaries of the complementary triangles, which I'll call the

boundary leaves, and the uncountably many other leaves, which I'll call the

bulk leaves.

Here's a maximal geodesic lamination with no isolated leaves on a

genus-2 surface.
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The details of the leaves are notoriously hard to see in pictures like these, as

discussed in [19, �A more explicit example�]. The complementary triangles,

however, are clearly visible.

The leaves of a geodesic lamination often bunch up so closely that it

doesn't make sense to assign them individual weights. Instead, more generally,

we assign weights to swaths of leaves, using a gadget called a transverse cocycle.

Transverse cocycles with non-negative weights are countably additive, so we

call them transverse measures [20].

Geodesic laminations, in spite of the name, are purely topological ob-

jects. Here's a sketch of how to de�ne a geodesic lamination without picking

a hyperbolic structure, taken from the end of [6, �8.5]. Recall that a geodesic

on S is speci�ed by a pair of distinct points on the boundary of the universal

cover S̃ → S. Two pairs de�ne the same geodesic if and only if they're related

by the action of π1S on ∂S̃. A geodesic lamination is speci�ed by a closed set

λ of pairs of distinct points in ∂S̃, invariant under the action of π1S. Because
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the leaves of a geodesic lamination are disjoint, no two pairs in λ are crossed

in the way pictured below.

Uncrossed Uncrossed Crossed

A closed set of mutually uncrossed pairs of distinct points in ∂S̃ speci�es a

geodesic lamination. Intuitively, each pair speci�es a homotopy class of curves

in S relative to the boundary at in�nity. These curves snap tight to geodesics

when you pick a hyperbolic structure on S.

5.3.2 Performing cataclysms

Let S be a compact surface with negative Euler characteristic. Take

a maximal geodesic lamination on S, with no isolated leaves, and equip it

with a transverse cocycle. This is analogous to choosing a weighted ideal

triangulation on a punctured surface. In the punctured case, a weighting

speci�es a cataclysm if the sum of the weights around each puncture is non-

negative. In the compact case, a transverse cocycle speci�es a cataclysm if it

lies in a certain �non-negative cone� in the vector space of transverse cocycles.

The cone is the one described in Theorem B of [20], but with ≥ in place of >.

Transverse measures automatically satisfy the non-negativity constraint. The

cataclysms they describe, like before, are called left earthquakes [18].
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The cataclysm speci�ed by a transverse cocycle is tricky to carry out.

The method Bonahon uses to do it in [20, �5] is an example of warping in dis-

guise. Bonahon works on the universal cover S̃ → S, where the whole space is

simple with respect to the catalog E of the hyperbolic structure. Isometries of

S̃ act on local charts by precomposition, which commutes with the postcom-

position action of PSL2 R, so an isometry of S̃ gives a torsor automorphism of

ES̃. Bonahon constructs a family of isomorphisms ϕPQ of S̃, which specify a

deviation from E supported away from the geodesic lamination. For points x,

y lying in plaques P,Q ⊂ S̃, the deviation automorphism ϕS̃xy is given by ϕPQ.
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Chapter 6

Abelianizing geometric structures

6.1 Shear parameters for cusped hyperbolic surfaces

The cataclysms we studied in Section 5 are related to abelianization

through W. Thurston's shear parameterization of the space of hyperbolic struc-

tures on a surface. Shear parameters have many remarkable properties and

applications [21][22][16], but we'll satisfy ourselves with a quick de�nition.

As we did in Section 5.2, take a punctured surface S ′ with negative

Euler characteristic and equip it with an ideal triangulation. When we put

a cusped hyperbolic structure on S ′, the edges of the triangulation snap to

geodesics, and the triangles become isometric to ideal triangles in the hyper-

bolic plane.

The corners of an ideal triangle come intrinsically foliated by horocycles.

The foliations meet around a central region I'll call the contact triangle, after

its Euclidean analogue.
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Adjacent ideal triangles are described completely, up to isometry, by the dis-

placement between the corners of their contact triangles.

For each edge e of the triangulation of S ′, let xe ∈ R be the displacement of

the ideal triangles adjacent to e. Following the convention of Section 5.2, we

say xe is positive when someone standing at the corner of one contact triangle

can look across e and see the other contact triangle to the left.

The numbers Xe = expxe are the shear parameters of the hyperbolic

structure on S ′. They tell you how to piece S ′ together out of ideal triangles,

determining its hyperbolic structure up to isotopy. By changing the cusped

hyperbolic structure, you can set the log shear parameters xe to any values
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that sum to zero around each puncture. If you allow hyperbolic structures

with holes as well as cusps, you can set the xe to any values that sum to

something non-negative around each puncture.

The log shear parameters form a weighting of the ideal triangulation

they come from. If you take a hyperbolic structure with log shear parameters

x and do a cataclysm with weighting l, you get the hyperbolic structure with

shear parameters x+ l.

6.2 Shear parameters for compact hyperbolic surfaces

In Section 5.3, we adapted the notion of a cataclysm from punctured

surfaces to compact ones by generalizing from ideal triangulations to max-

imal geodesic laminations. In this section, we'll do the same for the shear

parameterization [22, ��3 � 4].

Take a compact surface S with negative Euler characteristic and equip

it with a maximal geodesic lamination with no isolated leaves. When we put

a hyperbolic structure on S, the leaves of the lamination snap to geodesics,

and the complement of the lamination becomes a �nite set of disjoint ideal

triangles. We'd like to measure the displacements between adjacent triangles,

but there aren't any: two adjacent triangles would be separated by an isolated

leaf. Instead, more generally, we assign displacements to swaths of leaves, as

described at the end of [22, �3.2]. Shear parameters on a compact surface form

a transverse cocycle, which Bonahon calls the shearing cocycle [20].
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As the hyperbolic structure on S varies, the shear parameters range

over a certain �positive cone� in the vector space of transverse cocycles [20,

Theorem B]. If you take a hyperbolic structure with shearing cocycle x and do

a cataclysm with transverse cocycle l, you get the hyperbolic structure with

shearing cocycle x+ l [20, �0].

6.3 Abelianization on punctured surfaces

6.3.1 A geometric realization of the shear parameters

On a punctured surface with an ideal triangulation, you can compare

two hyperbolic structures by taking the di�erence of their shear parameters.

A cataclysm realizes the di�erence as a densely de�ned isometry. Another

cutting and gluing process, which I'll call de�ation, provides an embodiment

of the shear parameters themselves.

Let S ′ be a punctured surface with a positively weighted ideal trian-

gulation. Pick a cusped hyperbolic structure on S ′, snapping the edges of the

triangulation to geodesics. Each edge is now isometric to a vertical line in R2.

Expand each edge to a vertical strip whose width is the edge weight. Then,

collapse each triangle to a tripod, leaving the vertical strips glued along their

edges.
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We've turned the triangulated hyperbolic surface S ′ into a �at surface

Sab, with a conical singularity at the center of each collapsed triangle. We built

Sab out of vertical strips in R2, gluing them along their edges using translations

and 180◦ rotations. Hence, Sab comes with a half-translation structure�one of

the geometric structures we discussed in Section 2.2. As we mentioned there,

a half-translation structure provides a way to distinguish vertical lines from

other curves. The vertical lines coming out of the conical singularities are

the boundaries of the strips we glued together to build Sab. The strips aren't

just an artifact of the construction; they're an intrinsic feature of the half-

translation surface, which we'll discuss further in Section 12. Looking at Sab,

we can read o� the log shear parameter xe by �nding the strip associated with

the edge e and measuring the vertical displacement between the singularities

on its edges.

6.3.2 Shear parameters as periods

It's easy enough to measure the shear parameters when you're looking

at an aerial photograph of Sab, as we did in the previous section. A more

challenging task, and a very rewarding one, is to measure the shear parameters
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from the ground.

Since the shear parameters are given by displacements on Sab, our �rst

thought might be to �nd them using a surveyor's wheel, an old and venerable

instrument for measuring displacements on Riemannian surfaces. A surveyor's

wheel is just a wheel on a stick. When it's in contact with a surface, its wide,

grippy treads force it to roll in a straight line. The net angle the wheel rolls

through measures displacement along the line. You can measure the vertical

displacement between two singularities by rolling a surveyor's wheel along the

piecewise geodesic path shown below, recording only the displacement for the

vertical segment.1

The downside of this method is that you have to start and end exactly

on the singularities, inviting both error and potential injury. A safer and more

1Many thanks to Andy Neitzke for helping prepare the �gures for this section.
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forgiving method uses an improved version of the surveyor's wheel, which you

might call a surveyor's omniwheel. An omniwheel is a wheel ringed with little

rubber rollers, which allow it to slip sideways without turning. A surveyor's

omniwheel can roll along any path, geodesic or not. It only records displace-

ment along the direction the wheel is pointing. On a �at surface, if you �x the

initial direction of the wheel, the measured displacement only depends on the

homotopy class of the path relative to its endpoints.

You can measure the vertical displacement between two singularities

by rolling a surveyor's omniwheel around the loop shown below, or any loop

in Sab minus the singularities which is homotopic to it.

On the vertical segments of the loop, you alternate between pushing and

pulling the wheel, so the displacements you record are alternately positive

and negative. You somehow end up pushing the wheel along both edges of
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the shaded region, so the displacements you record there have the same sign.

The rest of the displacements cancel out, leaving a net displacement of −2xe

around the whole loop.

To understand the cancellations that make this method work, it was

essential to keep track of which way the omniwheel was pointing. On a half-

translation surface, there's an intrinsic notion of vertical and horizontal, and

an omniwheel that starts o� vertical will always stay that way. A vertical line

has two orientations, though, and rolling the omniwheel around a loop can

switch it from one to the other. The two vertical orientations form a double

cover of Sab away from the singularities. Around each singularity, the double

cover looks like a punctured disk, so we can �ll in the missing point to get

a surface Σab and a branched covering map Σab → Sab. We'll construct Σab

more formally in Section 9.2, where we name it the translation double cover of

the half-translation surface Sab. Gaiotto, Moore, and Neitzke construct Σab

in a di�erent way, calling it the spectral curve. (The two constructions don't

agree in general, but they do agree for the three-pronged singularities we're

considering here.) The surface Σab comes with a 1-form that tells you how

the reading on the surveyor's omniwheel will change if you roll it with a given

velocity. When you roll the omniwheel around on Sab, you're integrating the

1-form along your lifted path in Σab.

By working out a good way to measure the shear parameters from

the ground, we've realized those parameters as the periods of a 1-form on a

branched double cover of Sab. Both the cover and the 1-form are determined
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by the half-translation structure of Sab.

6.3.3 Shear parameters as holonomies

Introduction The de�ation process described above turns a hyperbolic struc-

ture on S ′ into a translation surface Σab. On the level of catalogs, it turns a

PSL2 R local system E on S ′ into a surface Σab equipped with an R2 local sys-

tem.2 The log shear parameters xe, as we saw, are given by certain holonomies

of the vertical part of the catalog for the translation structure on Σab. Using

the exponential map R→ R×, we can turn that vertical part into an R× local

system Eab on Σab, whose holonomies give the shear parameters Xe.

In our construction of Eab, we took advantage of the anchor map that

came with the catalog E , using local charts to talk about distances, geodesics

and ideal triangles on S ′. However, it's also possible to get Eab directly from the

unmoored hyperbolic structure E , using the abelianization process of Gaiotto,

Hollands, Moore, and Neitzke. This version of the construction extends from

the catalogs of hyperbolic structures to generic PSL2 R and PSL2 C local sys-

tems on S ′. Just as de�ation encodes the shear parameterization for hyperbolic

structures, abelianization encodes an interesting coordinate system for PSL2 C

local systems, developed by Fock and Goncharov [23, �5].

In this section, I'll sketch out a route from the de�ation process, which

acts on geometric objects, to the abelianization process, which operates purely

2As we pointed out in Section 2.2.3, the catalog extends over the singularities, because
its holonomy around each singularity is the identity.
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on the level of catalogs. The description of abelianization we'll arrive at won't

be the simplest or the most vivid, but its relationship with de�ation should

be clear. In Section 12.1, we'll review abelianization again from a more con-

crete point of view, taking advantage of the fact that a PSL2 C-torsor can be

realized as the set of line decompositions of a two-dimensional vector space

with a volume form. I �nd the concrete formulation easier to grasp, but its

relationship with de�ation is obscured.

Why abelianization is possible The reason we can get Eab directly from

E is that the vertical part of each translation chart on Σab factors through a

unique hyperbolic chart on S ′. To see how this works, recall that a vertical

chart on a translation surface is a map to R that locally preserves vertical

displacements. Fixing an isometry R → H2, we identify R with an oriented

geodesic γ, and we can treat vertical charts as maps to γ.

Each strip Y ⊂ Σab comes from an edge e of the triangulation on S ′.

Since Y was made by expanding e horizontally, there's a map η : Y → e that

collapses it back down. Every vertical chart on Y factors through η via a

unique isometry e → γ, identifying EabY with a subset of the generalized stalk

Ee.

We can �nd EabY inside of Ee using nothing but information from the

catalog E . To see how, let P+ be the subgroup that �xes the head of γ, and

let P− be the subgroup that �xes the tail. The edge e gets an orientation from

the vertical orientation of Y , so we can label the punctures it connects as its
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head q and its tail p. The charts that send q to the head of γ form a P+-torsor

E+
e in Ee, which is characterized by its invariance under the holonomy around

q. Similarly, the charts that send p to the tail of γ form a P−-torsor E−e in Ee,

the only one invariant under the holonomy around p. The intersection of E+
e

and E−e is EabY .

The reasoning above determines Eab over each strip of Σab. Now we

just have to understand how the pieces �t together across strip boundaries.

Consider two adjacent strips Y ′ and Y in Σab coming from edges e′ and e of

the triangulation on S ′. Assume, for convenience, that Y ′ and Y are joined

at the top. The edges e′ and e bound a common triangle T . According to the

orientations induced by Y ′ and Y , the edges share a head q, but have di�erent

tails p′ and p.

Because e′ and e lie on the boundary of T , and T is simple with respect

to E , the generalized stalks Ee′ and Ee are both canonically identi�ed with ET .

As subsets of ET , the P+-torsors E+
e′ and E+

e coincide, but the P−-torsors E−e′

and E−e are typically di�erent.

To make Σab, we collapsed the triangle T along its horocycle foliation,

gluing e to e′ along the isometry e → e′ that preserves horocycles around q.

This isometry corresponds to an automorphism of ET , the one that sends E−e
to E−e′ and restricts to the identity on E+

e . The automorphism tells us how the

pieces of Eab �t together across the boundary between Y ′ and Y . It can be

interpreted as the transition map from EabY ∼= Ee to EabY ′ ∼= Ee′ given by parallel

transport across the boundary.
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All the reasoning above went on under the assumption that Y ′ and Y

are joined at the top. Similar reasoning works for strips joined at the bottom.

The abelianization process We just found a procedure for building Eab

from the catalog E . If we strip out the reasoning that justi�es each step, we're

left with the following instructions.

1. Construct Σab, as a topological surface, from the combinatorics of the

ideal triangulation on S ′. Notice that Σab still comes with a decomposi-

tion into strips.

2. Fix an oriented geodesic γ in H2. Let P+ and P− be the subgroups of

PSL2 R that �x its head and tail, respectively.

3. Over each strip Y ⊂ Σab, let Eab be the constant sheaf with value Ee,

where e is the edge Y came from.

4. Given two adjacent strips Y ′, Y ⊂ Σab which are joined at the top, carry

out the following steps.

4.1. Let T be the common triangle bounded by e′ and e.

4.2. Using the fact that e′ and e lie on the boundary of T , canonically

identify Ee′ and Ee with ET .

4.3. Use the vertical orientations of the strips Y ′ and Y to orient the

corresponding edges e′ and e.
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4.4. Let q be the puncture at the shared head of e′ and e, and let p′ and

p be the punctures at the tails.

4.5. Let E+
e be the unique P+-torsor in ET invariant under parallel trans-

port around q.

4.6. Let E−e′ and E−e be the unique P−-torsors in ET invariant under

parallel transport around p′ and p, respectively.

4.7. Across the boundary between Y ′ and Y , set the transition map from

EabY ′ = Ee′ to EabY = Ee to be the automorphism of ET that sends E−e

to E−e′ and restricts to the identity on E+
e .

5. Carry out the analogous steps for adjacent strips joined at the bottom.

This is the abelianization process of Gaiotto, Hollands, Moore, and Neitzke [1,

�4][11, �10]. You can compare it to the more elementary formulation in Sec-

tion 12.1, which replaces all the torsor gadgetry with linear algebra.

6.3.4 Ideal triangulations and half-translation structures

To make �rm contact with Gaiotto, Hollands, Moore, and Neitzke's

formalism for abelianization, we need to point out a subtle distinction. If

you carry out the abelianization process described here, you end up with an

abelianized local system Eab on a topological surface Σab, which you pieced

together according to the combinatorics of the ideal triangulation on S ′. Al-

though Σab is homeomorphic to a branched double cover of S ′, it doesn't come

equipped with a covering map.
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Gaiotto, Hollands, Moore, and Neitzke build the abelianized local sys-

tem on a translation surface Σ′ that does come with a branched covering map

to S ′. They get it by realizing the ideal triangulation on S ′ as the WKB

triangulation of a half-translation structure [23, �6]. Then they de�ne Σ′ as

the translation double cover of S ′. Although the auxiliary half-translation

structure carries more information than the ideal triangulation, the extra in-

formation doesn't a�ect the abelianization process in any signi�cant way.

Using the covering map Σ′ → S ′, we can push E back to Σ′ in one piece,

instead of carrying it over strip by strip like we did on Σab. The abelianization

process on Σ′ therefore involves cutting as well as gluing along the boundaries

between the strips.

On a punctured surface, the choice between ideal triangulations and

half-translation structures is just a formality. On a compact surface, the choice

matters: geodesic laminations and half-translation structures feel quite di�er-

ent to work with, and passing between them is not straightforward. All the

technical work of this paper will be done on the half-translation side.

6.4 Abelianization on compact surfaces

In the original account of abelianization, Gaiotto, Moore, and Neitzke

suggested that the role of the punctures in their construction could be removed,

leading to an abelianization process for compact surfaces [11, open problem

7]. In hindsight, their conjecture was already supported by at least two clues

in the geometric topology literature. First, in [20], Bonahon had generalized
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the shear parameterization to pleated surfaces�deformed hyperbolic surfaces

whose geometries are described by a special class of PSL2 C local systems.

Second, Casson and Bleiler had described an operation on compact surfaces

which strongly resembles our de�ation process for punctured surfaces [24, proof

of Lemma 6.2]. As it turns out, Casson and Bleiler's construction can indeed

be adapted to produce a de�ation process for compact surfaces, which takes in

a hyperbolic structure and spits out a compact half-translation surface whose

geometry encodes the shear parameters.3

The main result of this paper is to con�rm that abelianization extends

to a certain class of SL2 R local systems on compact surfaces. Spe�cially, it

extends to local systems with a dynamical property called uniform hyperbol-

icity, discussed in Section 11. The result and its proof should carry over to

SL2 C local systems, but it hasn't been fully checked in that case, as discussed

in Section 7.2.

Uniform hyperbolicity generalizes a dynamical condition called the Anosov

property, which plays an important role in the study of geometric structures on

surfaces [25]. Because abelianization extends to local systems which are uni-

formly hyperbolic but not Anosov, it might be useful for studying the boundary

of the region where the Anosov property holds.

3This construction seems to be well-known in some circles, but I haven't been able to
�nd a printed account of its details. I hope to produce one in the course of future work.
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Part II

Abelianization on compact

surfaces
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Chapter 7

Introduction

7.1 Results

In this part of the paper,1 we'll learn how to abelianize uniformly hy-

perbolic SL2 R local systems on a compact translation surface Σ, as promised

in Section 6.4. The translation surface Σ is analogous to the translation dou-

ble cover Σ′ that appears in Section 6.3.4, although it doesn't have to be a

translation double cover itself.

From a naive point of view, the abelianization process we'll use is es-

sentially the same as the cutting and gluing construction Gaiotto, Hollands,

Moore and Neitzke use on Σ′, which we review in Section 12.1. The catch is

that the cutting and gluing will have to be done along lines that �ll Σ densely.

If you've read Sections 4.3 � 4.4 and 5 of Part I, you've already seen some of

the tools we'll use to make sense of this. The bulk of Part II will be spent

setting up those tools, collecting more tools, and working out the conditions

we need for all our equipment to work reliably.

The main result, with all the necessary tools and conditions accounted

for, is summarized below. Its statement is very condensed, making it look

1Part II is a revised and expanded version of the preprint [15].
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intimidatingly remote, but the trip from here to there will hopefully feel more

like a long hike up a gentle slope than a short climb up a sheer cli�. Words

and ideas that won't be introduced until later along the route are tagged with

references to the relevant sections. You can get an idea of what those sections

are about from the table of contents in Section 7.3.

Theorem 7.1.A (Sections 12.2 � 12.3). Let Σ be a compact translation surface

(9.2.1) with generic dynamics (12.2), and let B be its �nite set of singular-

ities. Let
↔
Σ be the associated divided surface (9), whose category of SL2 R

local systems is equivalent to the category of SL2 R local systems on Σ r B

(Theorem 9.4.E).

Given a uniformly hyperbolic (11) SL2 R local system E on
↔
Σ, we can

�nd a new SL2 R local system F and a stalkwise isomorphism Υ: E → F ,

supported on a dense subspace of
↔
Σ, with the following properties:

• The deviation (4.3 � 4.4, 8.3) of Υ behaves like the deviation of an

abelianized local system from its original would behave on a punctured

surface (12.1).

• The local system F splits into a direct sum of R× local systems.

Proof. Sections 13 � 14.

The most striking new feature of this result is the appearance of uniform

hyperbolicity, a dynamical condition that plays no noticeable role in abelian-

ization on punctured surfaces. The need for �generic dynamics� on Σ is also
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new: the corresponding requirement in the punctured case is purely topolog-

ical. As we'll see, abelianization on a compact surface involves dynamics in

an essential way. This raises some interesting questions. On a punctured sur-

face, for instance, deciding which local systems can be abelianized is pretty

straightforward. The set of abelianizable local systems is open and dense,

with a simple shape described by the opening sentence of Section 12.1.3. On

a compact surface, deciding which local systems are uniformly hyperbolic is

much trickier. The set of uniformly hyperbolic local systems is open, but not

expected to be dense, and the descriptions I've seen of it suggest that its shape

could be complicated. Section 11.6 and its main reference [26] say more about

this.

7.2 Why not SL2 C?

I expect the results of this paper to generalize from SL2 R to SL2 C local

systems. Outside of Section 11.6, where there may be some subtlety in saying

what it means for an SL2 C cocycle to be eventually positive, the generalization

should amount to little more than declaring all the vector spaces to be complex.

In our arguments about dynamical cocycles, however, we'll use results found in

[26], [27], and [28], which only discuss the SL2 R case. Until it can be veri�ed

that these results apply to SL2 C cocycles, the results of this paper can only

be stated with con�dence for SL2 R local systems.
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7.3 Contents

Introduction

Chapter 7 Summary of results and various administrative things,

including notation that will be used throughout this part of the

paper.
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Tools

Chapter 8 Abstracting from the idea of deforming a �at connec-

tion on a smooth bundle, we get a more general way of deforming

local systems, called warping.

Chapter 9 After a brief introduction to translation surfaces, we

describe a way to enlarge a singular translation surface by split-

ting its critical leaves. We show that the resulting divided surface

has useful topological and dynamical properties, and that it resem-

bles the original surface both dynamically and in terms of its local

systems.

Chapter 10 We show how the warping process from Section 8

can be used to make sense of the idea of cutting and gluing a local

sytem along the critical leaves of a divided surface, even when the

critical leaves �ll the surface densely.

Chapter 11 We take a well-studied condition on dynamical co-

cycles, called uniform hyperbolicity, and reinterpret it as a condition

on local systems on compact translation surfaces.
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Abelianization

Chapter 12 We review how abelianization works for SL2 C lo-

cal systems on a translation surface with punctures, point out the

obstacles to carrying it out a compact translation surface, and de-

scribe how these obstacles can be overcome using the machinery

from the previous sections. Section 12.3 contains the main product

of the paper: instructions for abelianizing an SL2 R local system on

a compact translation surface, which are guaranteed to work under

the conditions laid out in Section 12.2.

Chapter 13 We show that abelianization, as de�ned by the in-

structions in Section 12.3, produces a well-de�ned local system,

assuming the conditions from Section 12.2.

Chapter 14 We show that the abelianized local system splits

into a direct sum of R× local systems, assuming the conditions

from Section 12.2.

Chapter 15 A non-rigorous sample computation that uses abelian-

ization to �nd holomorphic coordinates on the SL2 C character va-

riety of the punctured torus.

Future directions

Chapter 16 We discuss a few of the interesting features that

abelianization on a compact surface is expected to have, now that

we know it can be done.
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Appendices

Appendix A A pair of small technical lemmas for Section 8.

Appendix B A formalism for dynamical systems described by

relations, used throughout the paper.

Appendix C Results about uniformly hyperbolic cocycles over

a minimal, uniquely ergodic dynamical system, used at key points

in Sections 11, 13, and 14.

Appendix D Results on in�nite ordered products, used heavily

in Sections 10, 13, and 14.

Appendix E Linear algebra facts about the Euclidean plane,

used in Section 14.

Appendix F A list of standard puncture shapes for translation

surfaces and an explanation of where they come from, included to

clarify the review in Section 12.

7.4 Setup

7.4.1 Running notation

The terminology of this section hasn't been introduced yet, but will be

familiar to readers familiar with translation surfaces. If you'd like to become

familiar with translation surfaces, skip ahead to Section 9.2.

From now on, Σ will be a compact translation surface, B its set of

singularities, and W the union of its critical leaves. Within W, let W+ and
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W− be the unions of the backward- and forward-critical leaves, respectively.

Saying that Σ has no saddle connections is the same as saying that W+ and

W− are disjoint. The ± labeling is meant to evoke the fact that, in the absence

of saddle connections, the vertical �ow is well-de�ned on W+ for all positive

times, and on W− for all negative times.

I should stress that Σ doesn't need to be the translation double cover

of a half-translation surface, and there are nice examples of abelianization

where it isn't. One of these is discussed in Section 15. There are many special

properties abelianization is expected to gain when Σ is a translation double

cover, but our discussion of them will be limited to the speculative Section 16.

7.4.2 Index of symbols

Symbols can be hard to look up, so here's a list of unusual symbols

that appear frequently in this paper, with references to the sections where

they're de�ned. The �rst three are introduced in this paper, and the fourth is

common, but not universal, in analysis.

↔
Divided interval or surface (Sections 9.3.1 and 9.4.1).

� �

Fractured interval or surface (same sections).
- -

Intersection with fractured interval or surface (Section 9.4.2).
. Bounded by a constant multiple (Section 11.1).
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Chapter 8

Warping local systems

8.1 Overview

In this section, we'll �nish developing the tools for measuring and con-

structing locally constant sheaves that we introduced in Sections 4.3 � 4.4 and

5.

8.2 Conventions for local systems

8.2.1 Basics

Given a group G, we de�ne a G local system to be a locally constant

sheaf of G-sets whose stalks are all G-torsors. Until Section 11, it won't matter

much what G is, so we'll often just talk about local systems in general.

The category of G-sets is a nice target category for sheaves, because it's

a type of algebraic structure [29, Tag 007L]. Throughout this article, �sheaf�

will mean a sheaf whose target category is a type of algebraic structure. With

this said, we can de�ne a constant sheaf to be a sheaf of locally constant

functions�that is, functions constant on every connected component of their

domain. In a locally connected space, every connected component of an open

set is open, so the constant sheaf with value A is characterized by the property
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that it sends every connected, non-empty open set to A, and every inclusion

of such sets to 1A.

If F is a constant sheaf on a locally connected space, the stalk restriction

morphism Fx∈X : Fx ← FX is an isomorphism for every x ∈ X. In our context,

the converse is true as well:

Proposition 8.2.A. Suppose F is a sheaf on a locally connected space X.

If the stalk restriction Fx∈X is an isomorphism for every x ∈ X, then F is

isomorphic to a constant sheaf.

Proof. Let F̄ be the constant sheaf with value FX . For each U ⊂ X, the re-

striction FU⊂X gives a morphism F̄U → FU , and these morphisms �t together

into a natural transformation from F̄ to F . This natural transformation in-

duces an isomorphism on every stalk, so it's an isomorphism of the underlying

sheaves of sets, and therefore an isomorphism of sheaves of algebraic structures.

(Many thanks to Jen Berg for pointing out this argument.)

To save ink, let's say a connected open subset of a space is simple with

respect to a sheaf if the restriction of the sheaf to the subset is isomorphic to

a constant sheaf. Notice that the value of a G local system on a simple set is

a G-torsor.

We'll frequently and without fanfare make use of the fact that a sheaf

de�ned on a basis for a topological space extends uniquely (up to canonical

isomorphism) to a sheaf on the full poset of open sets [29, Tag 009H, Lemma 9].
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8.2.2 Linear local systems

Let's say G is a linear group�a subgroup of the automorphism group of

some �nite-dimensional vector space R. De�ne a G-structure on a vector space

V to be an isomorphism V → R modulo postcomposition by G. When a vector

space is equipped with a G-structure, we'll call it a G vector space. Observe

that G-structures pull back along isomorphisms. You can say an isomorphism

between G vector spaces is structure-preserving if it pulls the G-structure on

the target back to the G-structure on the source.

Lots of familiar structures on an n-dimensional complex vector space

are examples of G-structures.

• A volume form is an SLnC-structure.

• An inner product is a Un-structure.

• A complete �ag is a structure of the upper-triangular subgroup of GLnC.

• A line decomposition is a structure of the diagonal subgroup of GLnC.

In general, if G is de�ned as the group of automorphisms of R preserving

a certain structure, you can turn around and de�ne that structure as a G-

structure.

The isomorphisms V → R that de�ne a G-structure are interesting in

their own right. We'll call them structured frames. The structured frames for

the familiar G-structures listed above are also familiar objects.
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• A unit-volume basis is an SLnC-structured frame.

• An orthonormal basis is an SLnC-structured frame.

• A basis subordinate to a complete �ag is an upper-triangular-structured

frame.

• A basis subordinate to a line decomposition is a diagonal-structured

frame.

By de�nition, the set of structured frames for a G vector space V is the orbit

of an isomorphism V → R under the action of G by postcomposition. Since G

acts freely on isomorphisms V → R, it acts freely and transitively on the set

of structured frames. In other words, the structured frames form a G-torsor.

The set of structured frames is what de�nes a G-structure in the �rst place, so

there's a pithier way to say it: a G-structure is a G-torsor. That's why we're

talking about G-structures in a section on G local systems.

We can de�ne a functor from G vector spaces to G-torsors by sending

each G vector space to its G-torsor of structured frames. This functor is an

equivalence of categories. If we de�ne a �compound G vector space� to be a

formal direct sum of G vector spaces, the structured frames functor should

extend to an equivalence between the category of compound G vector spaces

and the category of G-sets generated by taking limits and colimits of G-torsors.

Let's say a linear G local system is a locally constant sheaf of compound

G vector spaces whose stalks are all single G vector spaces. Using the equiv-
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alence above, we can realize any G local system as a linear G local system.

Later in the paper, when we're dealing exclusively with SL2 R local systems,

let's assume that all our local systems are linear. Concretely, that means we'll

be working with locally constant sheaves of two-dimensional real vector spaces

with volume forms.

8.3 The descriptive power of deviations

In Section 4.4, we introduced the deviation as a general instrument for

comparing locally constant sheaves. I claimed that the deviation of a stalkwise

isomorphism Υ determines both Υ and its target up to canonical isomorphism.

Now is the time to explain what that means, and to prove that it's true.

Consider three locally constant sheaves G, F , and F ′ on a locally con-

nected space X. If two stalkwise isomorphisms Φ: G → F and Ψ: G → F ′

have the same deviation, υ, I claim there's a unique natural isomorphism

T : F → F ′ such that Ψx = TxΦx for all x ∈ X. Here's why.

If we can �nd a natural isomorphism like this, it's clearly unique, be-

cause a natural transformation of sheaves is completely described by its action

on stalks. Now, let's �nd one. Choose a basis B for the topology of X consist-

ing of sets which are simple with respect to all three sheaves. (We can do this

because the sheaves are locally constant, and X is locally conected.) Look at

any basis element U ∈ B. For any x ∈ U , de�ne a morphism TUx : FU → F ′U
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by

FU

TUx

((

∈
// Fx

Φx−1
// Gx Ψx

// F ′x ∈−1
// F ′U

What if we had chosen another point y ∈ U instead? Let υ be the shared

deviation of Φ and Ψ, and consider the diagram

Fy
Φy−1

// Gy
∈−1

// GU
∈ // Gy

Ψy // F ′y
∈−1

��
FU

∈
CC

∈
��

F ′U

Fx
Φx−1

// Gx ∈−1
// GU

υUyx

OO

∈
// Gx Ψx

// F ′x
∈−1

BB

Notice that the bottom path is TUx , and the top path is TUy . The left and right

chambers both commute, because υ is the deviation of both Φ and Ψ, so TUx =

TUy for all x, y ∈ U . Thus, we really have just one morphism TU : FU → F ′U ,

which can be written in terms of any point in U .

For any other basis element V ⊂ U , writing T V and TU in terms of the

same point x ∈ V makes it easy to check that the square

FU
⊂
��

TU // F ′U
⊂
��

FV
TV
// F ′V

commutes. Since we've been working with arbitrary basis elements, we now

see that the morphisms {TU}U∈B �t together into a natural transformation

T : F → F ′, and it's clear by construction that Ψx = TxΦx for all x ∈ X.
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8.4 Warping locally constant sheaves

We just saw that, under favorable conditions, a stalkwise isomorphism

is determined up to canonical isomorphism by its deviation. Let's see if we

can go the other way and produce a stalkwise isomorphism with a speci�ed

deviation. First, we have to say what it means to specify a deviation.

Suppose F is a locally constant sheaf on a locally connected space X,

D is a dense subset of X, and B is a basis for the topology of X consisting

of F -simple sets. To specify a deviation from F with support D, de�ned over

the basis B, we give for each pair of points x, y ∈ D and each neighborhood

U ∈ B of x and y an automorphism υUyx of FU . These automorphisms have to

�t together as follows:

• If V ⊂ U is a basis element containing x and y, the automorphisms υUyx

and υVyx commute with the restriction morphism FV⊂U .

• For any three points x, y, z ∈ D, we have υUzyυ
U
yx = υUzx.

The �rst condition just says that υyx is a natural automorphism of the restric-

tion of F to the poset of basis elements containing both x and y.

It turns out that, given a deviation υ from F , we can always produce a

locally constant sheaf F ′ and a stalkwise isomorphism Υ: F → F ′, supported

on D, whose deviation is υ. We'll call this process warping. Here's how it's

done. For each U ∈ B, pick a point xU ∈ U ∩D. De�ne F ′U to be the same as
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FU , but with the warped restriction morphism

F ′V⊂U = FV⊂U υUxV xU

for each basis element V ⊂ U . Because every basis element is F -simple, FV⊂U

is an isomorphism, so F ′V⊂U is an isomorphism too. It follows that the stalk

restriction F ′x∈U is an isomorphism for any x ∈ U , so every basis element is

F ′-simple. The stalkwise isomorphism Υ: F → F ′ is given by

Υx = F ′x∈U υUxUx Fx∈U
−1

for any basis element U containing x ∈ D.

There are three claims implicit in the description of F Υ→ F ′ above:

• F ′ is a locally constant sheaf.

• The de�nition of Υx doesn't depend on our choice of neighborhood U .

• The deviation of F ′ from F is υ.

Let's check these claims.

F ′ is a locally constant sheaf The functoriality of F ′ follows easily from

the fact that υ is a deviation. To verify that F ′ is a sheaf, pick any element

U of the basis B. Suppose that for each basis element V ⊂ U , we have an

element sV of F ′V , and these elements commute with the restriction morphisms

of F ′. We need to �nd an element s of F ′U that restricts to sV on every basis
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element V ⊂ U . Since each of the restrictions F ′V⊂U is an isomorphism, there

can only be one element like this, and it will exist if and only if the elements

F ′V⊂U
−1 sV match for all the basis elements V ⊂ U .

For two basis elements W ⊂ V contained in U , we have

F ′W⊂U
−1
sW = F ′W⊂U

−1 F ′W⊂V sV

= F ′V⊂U
−1
sV ,

so W and V give the same element. Since any two overlapping basis elements

contain another basis element in their intersection, it follows that any two over-

lapping basis elements give the same element as well. Because U is connected,

any two basis elements can be linked by a �nite sequence of overlapping basis

elements (Appendix A.1). Therefore, all the basis elements contained in U

give the same element. This is the element s we were looking for, completing

our proof that F ′ is a sheaf.

To see that F ′ is locally constant, �rst recall that the elements of B

are simple, so the restriction arrows of F over B are isomorphisms. Thus, the

restriction arrows of F ′ are isomorphisms as well. Now, pick any point x ∈ X,

not necessarily in D. Applying F ′ to the poset of basis elements containing x

yields a downward-directed diagram whose arrows are all isomorphisms. The

de�ning arrows from a diagram like this to its colimit are always isomorphisms

(Appendix A.2). In other words, the stalk restriction F ′x∈U is an isomorphism

for every U ∈ B containing x. Since x was an arbitrary point in X, it follows

by Proposition 8.2.A that F ′ is locally constant.

80



Υx is well-de�ned To see that the de�nition of Υx doesn't depend on our

choice of neighborhood, �rst observe that for two basis elements V ⊂ U con-

taining x,

(F ′x∈U) υUxUx Fx∈U
−1 = (F ′x∈V [F ′V⊂U ]) υUxUx Fx∈U

−1

= F ′x∈V [FV⊂U (υUxV xU ] υUxUx) Fx∈U
−1

= F ′x∈V [FV⊂U (υUxV x)] Fx∈U
−1

= F ′x∈V [υVxV x (FV⊂U ] Fx∈U−1)

= F ′x∈V υVxV x (Fx∈V −1),

so V and U give the same isomorphism. Since any two basis elements contain-

ing x contain another basis element in their intersection, it follows that every

basis element containing x gives the same isomorphism.

The deviation of F ′ from F is υ Finally, let δ be the deviation of Υ. It's

easy to calculate δUyx by de�ning Υx and Υy in terms of U :

δUyx = Fy∈U−1 (Υ−1
y ) F ′y∈U F ′x∈U

−1
(Υx) Fx∈U

= Fy∈U−1 (Fy∈U υUyxU F
′
y∈U

−1
) F ′y∈U F ′x∈U

−1
(F ′x∈U υUxUx Fx∈U

−1) Fx∈U

= υUyxU υ
U
xUx

= υUyx.

Thus, δ = υ, as claimed.
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8.5 Warping local systems

Local systems are just a special kind of locally constant sheaves, so

all the constructions of the previous sections can be applied to them. In this

case, the de�nition of a deviation can be pared down a bit, because if F is a

G local system and U is an F -simple open set, an automorphism of FU is just

an element of G.

Warping a local system always produces another local system. To see

why, take a G local system F and warp it by some deviation. The warped

sheaf F ′ is locally constant, and stalkwise isomorphic to F over the support

of the deviation. Because the support is dense, it follows that every stalk of

F ′ is isomorphic to a stalk of F , and hence a G-torsor.
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Chapter 9

Dividing translation surfaces

9.1 Overview

For working out the technical details of abelianization, it will be useful

to embed the surface Σ r B in a larger space
↔
Σ, called the divided surface,

whose local systems are naturally in correspondence with the local systems on

ΣrB. On the divided surface, we can stand in�nitesimally close to any critical

leaf, streamlining our discussion of the abelianization process in Sections 12

and 13.

Removing the critical leaves of Σ from the divided surface yields a

compact space
� �

Σ, called the fractured surface, which can be metrized in a very

natural way. Its metric properties will play a crucial role in Section 14, where

we prove that abelianization does the job it's meant to do.

The divided surface is also a point of contact between the worlds of

�at and hyperbolic geometry. In Section 6, we described how a hyperbolic

surface with a maximal geodesic lamination can be de�ated to a �at surface

with a half-translation structure by collapsing the complementary triangles of

the lamination. The divided version of a half-translation surface is what you

might imagine a de�ating hyperbolic surface looks like in the instant before it
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�attens out.

9.2 A review of translation and half-translation surfaces

9.2.1 Translation surfaces

A non-singular translation surface is a manifold whose charts are open

subsets of R2 and whose transition maps are translations. Every translation

surface comes with a bunch of geometric structures induced by the translation-

invariant geometric structures on R2, which include:

• The �at metric.

• The four cardinal directions: up, down, right, and left.

• The vertical and horizontal foliations, whose leaves are vertical and hor-

izontal lines. Both foliations can be oriented; we'll orient them upward

and rightward, respectively.

• The vertical �ow, which moves points upward at unit speed. On a sur-

face which is non-compact, as most non-singular translation surfaces are,

this �ow might not be de�ned everywhere at all times. In general, the

�ow at a given time will be only a bicontinuous relation, rather than a

homeomorphism (see Appendix B for details).

Whenever I refer to a foliation of a translation surface, I mean the vertical

one, unless I say otherwise.
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It's conventional, and convenient, to allow translation surfaces to have

conical singularities, which look like this:

6 5 4 3 2 1

4 5 2 3 6 1

The like-numbered triangles are identi�ed through translation. The triangles

include the cross-marked center points, which get quotiented down to a single

point by the identi�cations. In the case shown above, the total angle around

the singularity is 6π; in general, any even multiple of π is possible. It's some-

times useful to mark a discrete set of ordinary points as �singularities� of cone

angle 2π.

A compact translation surface can have only �nitely many singularities.

Conformally, the vertical and horizontal foliations in the neighborhood of a

singularity look like this:
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Vertical Vertical and horizontal

The vertical leaves that dive into the singularity are called forward-critical,

and the ones that shoot out of the singularity are called backward-critical. A

leaf which is critical in both directions is called a saddle connection. Critical

leaves are spaced evenly around the singularity at angles of π.

The vertical �ow on a singular translation surface is only de�ned away

from the singularities. It acts by bicontinuous relations, making points on the

critical leaves disappear as they fall into the singularities. When restricted

to the complement of the critical leaves, the vertical �ow acts by homeomor-

phisms.

A translation surface is said to be minimal if all its vertical leaves are

dense. We'll see in Section 9.2.2 that a non-critical leaf which is dense in one

direction must be dense in both directions. Thus, on a minimal translation

surface, every leaf that's not forward-critical is dense in the forward direction,

and every leaf that's not backward-critical is dense in the backward direction.
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A translation surface with no saddle connections is automatically minimal [30,

proof of Theorem 1.8].

Away from the singularities, the topology of a translation surface has

a basis consisting of �ow boxes: open rectangles with vertical and horizontal

sides. A compact translation surface can be covered by a �nite collection of

�ow boxes and singularity charts. The special class of well-cut �ow boxes,

de�ned in the next section, will play an important role in this paper.

Because translations form a normal subgroup of Aff R2, a translation

structure can be modi�ed by composing an element of GL2 R with all its

charts. In particular, a translation structure can be rotated, tilting the ver-

tical foliation. If you rotate a translation structure through a full circle, all

but countably many of the structures you pass through will have no saddle

connections [30, proof of Theorem 1.8]. Moreover, for all but a measure-zero

subset of the minimal structures, the vertical �ow will be uniquely ergodic on

the complement of the critical leaves [30, Theorem 3.5]. Hence, an arbitrarily

small rotation is all it takes to turn any translation structure into a transla-

tion structure with no saddle connections and a vertical �ow which is uniquely

ergodic on the complement of the critical leaves.

9.2.2 First return maps

Let's say a horizontal segment on a translation surface is a subset that

looks like an open, closed, or half-open horizontal line segment in some chart.

Pick a point on a horizontal segment, and watch it as it's carried upward
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by the vertical �ow. On a compact translation surface, unless it falls into a

singularity, the point will eventually return to the segment it started on. This

is an immediate corollary of [30, Lemma 1.7], which for reference I'll restate

here.

Lemma 9.2.A. Let Z be a closed horizontal segment on a compact translation

surface, and let p be one of its endpoints. Unless the vertical leaf through p is

forward-critical, the vertical �ow will eventually carry p back to Z.

On any horizontal segment Z in a compact translation surface, we can

de�ne a relation α that sends each point to the place where it �rst returns to

Z under the vertical �ow. When fed a point that falls into a singularity before

returning, α gives back nothing. We'll call α the �rst return relation on Z.

The inverse relation α−1 sends each point to the place where it �rst returns to

Z under the backward vertical �ow.

When restricted to the complement of the forward-critical leaves, α

becomes a function, and is called the �rst return map. Similarly, α−1 becomes

a function when restricted to the complement of the backward-critical leaves.

On the complement of all the critical leaves, α and α−1 are inverse functions.

Because the vertical foliation only has a few kinds of local geometry,

the �rst return relation only has a few kinds of local behavior. Under mild

conditions, it belongs to the class of transformations called interval exchanges,

which we'll hear more about in Section 9.3.2 [31, �3]. The conditions are the

price we pay for de�ning �rst return relations, horizontal segments, and inter-
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val exchanges in a slightly non-standard way, whose advantages will become

apparent in Section 9.5.2.

In our framework, the �rst return relation is only an interval exchange

on a well-cut segment, which is a horizontal segment with the following prop-

erties:

• It looks like an open horizontal line segment bounded by critical leaves.

(Both endpoints may lie on the same critical leaf.)

• The forward vertical �ow drops each forward-critical boundary point

into a singularity without carrying it through the segment. Similarly,

the backward vertical �ow drops each backward-critical boundary point

into a singularity without carrying it through the segment.

When we construct the forward and backward �rst return relations on a hor-

izontal segment Z, this condition prevents the vertical �ow ψt from breaking

ψtZ across the boundaries of Z in a way inconsistent with our de�nition of an

interval exchange. We'll call a �ow box well-cut if every horizontal slice across

it is a well-cut segment.

When critical leaves are plentiful, well-cut segments are easy to �nd.

Proposition 9.2.B. If Z is an open horizontal segment bounded by critical

leaves, every non-critical point on Z is contained in a well-cut subsegment of

Z.
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Proof. Carry each forward-critical boundary point of Z along the forward ver-

tical �ow, marking each place it passes through Z before falling into a sin-

gularity. Do the same with each backward-critical boundary point, using the

backward vertical �ow. Removing the marked points breaks Z into a �nite

collection of open horizontal segments, which are all well-cut.

9.2.3 Half-translation surfaces

A half-translation surface is the same thing as a translation surface,

but with transition maps composed of both translations and half-turn rota-

tions. This expansion of the structure group is pretty small, so half-translation

surfaces have almost as much structure as translation surfaces do:

• The �at metric remains.

• The vertical and horizontal foliations remain, but they're no longer

canonically oriented. In fact, it's often not possible to give either fo-

liation a consistent global orientation.

• As a result, it's often not possible to de�ne a global vertical �ow.

The group generated by translations and half-turns has the translation group

as a normal subgroup, so each of its elements is either a translation or a

translation followed by a half-turn. I'll call the latter a �ip.

In a translation surface, we saw that the angle around a conical sin-

gularity could be any even multiple of π. In a half-translation surface, any

multiple of π is possible. Here's a pattern for a singularity with cone angle 3π:
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2 1

2 3 3 1

The triangles labeled 3 are identi�ed by a �ip. A singularity with cone angle

π can be constructed, informally, by using a �ip to glue one of the notched

square building blocks we've been using to itself:

1 1

The vertical and horizontal foliations can't be oriented consistently

around an odd singularity, but they can be oriented on a small enough neigh-

borhood of any other point. In particular, on a half-translation surface, the

de�nition of a �ow box still makes sense, and the vertical and horizontal foli-

ations can be oriented inside a �ow box.

Every half-translation surface comes with a translation surface hovering

over it as a branched double cover, with a projection map that preserves the

half-translation structure. Away from the singularities, this translation double
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cover is built by making two copies of each �ow box on the half-translation sur-

face, one for each possible orientation of the vertical foliation. The transition

maps of the half-translation surface induce transitions between the oriented

copies in a natural way.

The translation double cover can be extended over the whole surface

by duplicating the cut square pieces that make up the region around each

singularity. In the picture below, duplicate pieces are labeled with the same

numbers. One piece from each pair is drawn in dark ink, and the other in light

ink.

3̄ 2̄ 1̄ 3 2 1

1̄ 2̄ 2 3 3̄ 1

The new region is a double cover of the original, branched at the singularity.

The branch point is a conical singularity with twice the angle of the original.

The doubling process produces a branch point even when you start with a

singularity of cone angle 2π, so we've found a meaning for these removable

singularities: they stand for genuine singularities in the translation double

cover. At the same time, the doubling process turns singularities with cone
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angle π into ones with cone angle 2π, so removable singularities above mark

genuine singularities below.

9.3 Dividing intervals

9.3.1 Construction of divided and fractured intervals

Dividing a translation surface is essentially a one-dimensional process,

so let's start in the one-dimensional case. Let I ⊂ R be an open interval, and

let W be a subset of I which is countable or smaller. To divide I at W , �rst

build a new set
↔
I = {←w, ŵ, →w}w∈W t {s}s∈IrW .

There's an obvious map π :
↔
I → I which sends ←w, ŵ, and →

w to w and each point

in IrW to itself. Order
↔
I so that π is order-preserving and ←

w < ŵ <
→
w. Give

↔
I the topology generated by all the non-empty intervals (a, b) except the ones

that look like (
←
w, b) or (a,

→
w). This topology is coarser than the order topology,

and non-Hausdor�: neither ←
w nor →

w can be separated from ŵ by open sets.

The generating intervals described above form a basis for the topology, so I'll

refer to them as �basis intervals.�

As you might expect, π turns out to be a quotient map. Going the

other direction, let ι : I →
↔
I be the map that sends w ∈ W to ŵ and each

point in IrW to itself. Perhaps surprisingly, ι turns out to be an embedding.

(Both of these claims will be proven in Section 9.3.3.) De�ne the fractured

interval
� �

I to be the complement of ιW in the divided interval
↔
I.
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9.3.2 Examples from dynamics

Divided intervals arise naturally in the study of some one-dimensional

dynamical systems. In this setting, the fractured interval often turns out to

be a familiar coding of the system. The binary shift provides an excellent

example.

Divided intervals arising from interval exchange transformations will

play an important role in this paper. The corresponding fractured intervals,

for minimal interval exchanges, have appeared in the literature as Cantor

minimal systems [32].

In both examples, we'll describe the dynamics using a partial map;

you'll probably be able to guess from context what that means. To be precise,

it means a coinjective, bicontinuous relation, in the terminology of Appendix B.

The binary shift The binary shift is the partial map from (0, 1) to itself

that sends s to b2sc, returning nothing if b2sc = 1. Shifting a number in (0, 1)

removes the �rst digit of its binary expansion. We can extend the binary shift

to all reals by thinking of R r Z as a union of copies of (0, 1). Shifting a

number in R r 1
2
Z shifts the fractional part of its binary expansion, leaving

the integer part alone. Shifting a number in 1
2
Z returns nothing.

Applying the shift map over and over, let W ⊂ R be the set of points

that eventually �fall into a break,� reaching a point where the map returns

nothing. This turns out to be the set of rationals whose denominators are

powers of two.
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Divide R atW . Let C ⊂
↔
R be the interval [

→
0,
←
1], noting that πC = [0, 1],

and let
- -

C = C∩
� �

R. We'll soon learn, from Corollary 9.3.I in Section 9.3.4, that
- -

C is a Cantor set. In the meantime, we can see this directly by identifying
- -

C

with the space of one-sided binary sequences. A number s ∈ (0, 1) rW has

a unique binary expansion, ιs. A number w ∈ W has two binary expansions:

←
w, the one ending in ones, and →

w, the one ending in zeros. The quotient map

π :
- -

C → [0, 1] interprets each binary sequence as a number.

The shift on a space of one-sided sequences is the map that removes the

�rst symbol of the sequence. The shift on
- -

C and the binary shift on (0, 1)rW

commute with the embedding ι : (0, 1) r W →
- -

C. The shift on
- -

C extends

uniquely to a relation on C that commutes with ι : (0, 1) → C. This relation

can be seen as a divided version of the binary shift. Notice that the binary

shifts on C and [0, 1] don't quite commute with the quotient map π, because

when a point w ∈ W falls into a break, its lifts ←w and →
w keep going.

Interval exchanges An interval exchange transformation is a partial map

from (0, 1) to itself that works by splitting (0, 1) into �nitely many open subin-

tervals and shu�ing them around:

On the break points between the intervals, the map returns nothing.
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An interval exchange, unlike the binary shift, is injective, so its inverse

relation is also a partial map. In fact, its inverse is another interval exchange,

which unshu�es the pieces of (0, 1).

Just as we did with the binary shift, we can extend an interval exchange

to all reals by thinking of Rr Z as a union of copies of (0, 1).

Pick an interval exchange, and let W ⊂ R be the set of points that

eventually fall into a break under iteration of either this map or its inverse.

Just as before, divide R at W . Let C ⊂
↔
R be the interval [

→
0,
←
1], noting

that πC = [0, 1], and let
- -

C = C ∩
� �

R. If W is dense in R, Corollary 9.3.I in

Section 9.3.4 will tell us that
- -

C is a Cantor set. In this case,
- -

C can be seen as a

subspace of the two-sided sequence space whose alphabet is the set of intervals

shu�ed by the interval exchange. The orbit of a point s ∈ (0, 1) rW under

iteration of the interval exchange and its inverse is in�nite in both directions,

so we can get a two-sided sequence ιs by keeping track of which intervals the

orbit passes through.

The orbit of a point w ∈ W ends when it falls into a break, but it can be

continued in two natural ways. One is to extend the interval exchange relation

to a left-continuous map on (0, 1], so each point travels with the points to the

left of it, and the intervals being shu�ed become closed on the right. The orbit

of w becomes in�nite in both directions, and keeping track of which intervals

it goes through yields a two-sided sequence ←w. The other way to continue the

orbit of w is to extend the interval exchange relation to a right-continuous

map on [0, 1), giving a di�erent two-sided sequence →
w.
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The shift on a space of two-sided sequences is the map that moves every

symbol one step earlier. The shift map on
- -

C and the interval exchange map

on (0, 1)rW commute with the embedding ι : (0, 1)rW →
- -

C. The shift on
- -

C

extends uniquely to a relation on C that commutes with ι : (0, 1) → C. This

relation can be seen as a divided version of the interval exchange. Notice that

interval exchanges on C and [0, 1] don't quite commute with the quotient map

π, because when a point w ∈ W falls into a break, its lifts ←w and →
w keep going,

following the left- and right-continuous extensions of the interval exchange.

9.3.3 Properties of divided intervals

For convenience, let ←ι : I →
↔
I be the map that sends w ∈ W to ←

w and

each point in I rW to itself. De�ne →ι similarly.

A basis interval has a leftmost element if and only if it looks like (ŵ, b) =

[
→
w, b), and a rightmost element if and only if it looks like (a, ŵ) = (a,

←
w]. It will

often be useful to trim a basis interval by removing its leftmost and rightmost

elements, if they exist. The trimmed version of an interval (a, b) ⊂
↔
I, denoted

trim(a, b), can be written explicitly as (
→
ιπa,

←
ιπb). Notice that π trim(a, b) =

ι−1(a, b) = (πa, πb) for any basis interval (a, b), and that trimming a basis

interval does not remove any points in the image of ι. Conveniently, for any

basis interval, π−1ι−1(a, b) = trim(a, b).

With these tools in hand, let's prove the claims about π and ι made in

the previous section.
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Proof that π is a quotient map. To see that π is continuous, observe that the

preimage of (a, b) ⊂ I under π is the basis interval (
→
ιa,
←
ιb).

To see that π is a quotient map, pick any S ⊂ I whose preimage under

π is open. We want to show S is open. For any s ∈ S, the point ιs is in π−1S,

so there is a basis interval H ⊂ π−1S containing ιs. Since trimH also contains

ιs, and π sends trimmed basis intervals to open intervals, π trimH is an open

subset of S containing s.

Proof that ι is an embedding. To see that ι is continuous, recall that ι−1(a, b) =

(πa, πb) for any basis interval (a, b).

To see that ι is an embedding, observe that the image under ι of an

interval (a, b) ⊂ I is the intersection of (ιa, ιb) with ιI.

The continuity of ι is a way of saying that passing from I to
↔
I spreads

out the points of W , but it doesn't spread them out too much. Here are two

more re�ections of this idea.

Proposition 9.3.A. The embedding of I in
↔
I is dense.

Proof. It's enough to show that ιI intersects every basis interval. Suppose

the basis interval (a, b) doesn't intersect ιI, so its preimage (πa, πb) under ι is

empty. Since I is densely ordered, this means πa = πb, which is precluded by

the rules de�ning basis intervals.

Proposition 9.3.B. The divided interval
↔
I is locally connected.
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Proof. It's enough to show that every basis interval is connected. Recall that

basis intervals are non-empty by de�nition. Let's say the basis interval (a, b)

is disconnected by two open subsets U and V . Since ιI is dense in
↔
I, the

preimages of U and V under ι are non-empty, so they disconnect the preimage

(πa, πb) of (a, b).

For our purposes, the most important feature of
↔
I is that its local

systems are naturally in correspondence with the local systems on I. This

idea can be stated more precisely as follows.

Theorem 9.3.C. For any linear group G, the direct image functors π∗ and

ι∗ give an equivalence between the category of G local systems on
↔
I and the

category of G local systems on I.1

The reason
↔
I has no more local systems than I, despite having more

open subsets, is that a local system on
↔
I is determined entirely by its values

on trimmed intervals.

Lemma 9.3.D. If F is a local system on
↔
I, the restriction FtrimH⊂H is an

isomorphism for any basis interval H.

Proof. If H has neither a least element nor a greatest element, trimH = H, so

there's nothing to prove. Let's assume H has a least element, but no greatest

element; the remaining cases are essentially the same.

1Though they're stated for categories of local systems, Theorem 9.3.C and Lemma 9.3.D
hold for categories of locally constant sheaves into any �xed target category. The proofs are
the same, keeping in mind our convention (from Section 8.2) that the target category is a
type of algebraic structure.
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Since F is locally constant, we can pick a basis interval A ⊂ H which

contains the least element of H and is small enough that F|A is constant.

Since A and trimA are both connected, FtrimA⊂A is an isomorphism. The

diagram

FtrimA

⊂−1

{{
=

��

FtrimH
⊂oo

=

��
FA ⊂

// FtrimA FtrimH⊂
oo

commutes, so taking limits of its top and bottom rows gives a map FtrimH →

FH , which inverts FtrimH⊂H .

Proof of Theorem 9.3.C. There's a canonical natural isomorphism between

π∗ι∗ and the identity functor, because πι is the identity map from I to it-

self. Now, all we need is a natural isomorphism between ι∗π∗ and the identity.

Pick any local system F on
↔
I. For each basis interval H, recall that

π−1ι−1H = trimH, so

(ι∗π∗F)H = Fπ−1ι−1H

= FtrimH .

Thus, the restriction FtrimH⊂H gives a morphism from FH to (ι∗π∗F)H , and

Lemma 9.3.D tells us this morphism is an isomorphism. For any basis interval

H ′ ⊂ H, the diagram

FH′
⊂
��

FH
⊂oo

⊂
��

FtrimH′ FtrimH⊂
oo
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commutes because all the arrows are restrictions, so we've found a natural

isomorphism from F to ι∗π∗F .

9.3.4 Properties of fractured intervals

One nice feature of
� �

I is that, with ŵ out of the way, the points ←w and

→
w can be separated by open sets. The consequence is just what you'd expect.

Proposition 9.3.E. The fractured interval
� �

I is Hausdor�.

Proof. Pick two points s < t in
� �

I. If πs 6= πt, we can �nd disjoint neighbor-

hoods of πs and πt in I and pull them back to
� �

I. If πs = πt, then s =
←
w and

t =
→
w for some w ∈ W . Hence, (−∞, ←w] and [

→
w,∞) are disjoint neighborhoods

of s and t.

When studying
↔
I, we found it useful to work with basis intervals whose

leftmost and rightmost elements had been removed. For studying
� �

I, it will be

useful to go the opposite direction. Let's say a basis interval is full if it has

both a leftmost element and a rightmost element. As we saw earlier, the full

intervals in
↔
I are the ones that look like [

→
a,
←
b]. The full intervals in

� �

I are the

same.

Proposition 9.3.F. In
� �

I, every full interval is compact.

Proof. Consider a full interval [
→
a,
←
b]. Let W ′ be the subset of W lying between

→
a and

←
b. Pick a function κ : W ′ → R+ for which the sum K =

∑
w∈W ′ κw is
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�nite, and let θ be the map from [
→
a,
←
b] ∩

� �

I to R given by the formula

θs = πs+
∑
w∈W ′
ŵ<s

κw.

It's not hard to see that θ is a homeomorphism whose image is the set

[a, b+K] r
⋃
w∈W ′

(θ
←
w, θ

→
w),

which is closed and bounded.

Proposition 9.3.G. In
� �

I, every full interval is clopen.

Proof. In
� �

I, the complement of a full interval [
→
a,
←
b] is the union of the basis

intervals (−∞,←a] and [
→
b,∞).

Proposition 9.3.H. If W is dense in I, the full intervals form a basis for
� �

I.

Proof. Suppose W is dense in I. Pick any point s ∈
� �

I and any basis interval

(a, b) containing it. If πa 6= πs, �nd a point of W in the interval (πa, πs) and

call it α. If πa = πs, observe that a = α̂ and s =
→
α for some α ∈ W . One

way or another, we've found a point α ∈ W with a < →
α ≤ s. Using the same

technique, we can �nd a point β ∈ W with s ≤
←
β < b. The full interval [

→
α,
←
β]

is a neighborhood of s contained in (a, b).

Corollary 9.3.I. If W is dense in I, every full interval in
� �

I is a Cantor set.

Proof. Suppose W is dense in I. Because we require W to be countable or

smaller, the results above imply that
� �

I is a Hausdor� space with a countable
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basis of clopen sets. Any full interval H ⊂
� �

I has the same properties, and in

addition is compact. Therefore, H is a Cantor set as long as it has no isolated

points [33, Theorem 3].

Intersecting H with a basis interval in
� �

I yields another basis interval.

Since every basis interval contains more than one point, it follows that H has

no isolated points.

9.3.5 Metrization

The topology of I is induced by the metric that I inherits from R. If

W is dense in I, the topology of
� �

I can be metrized too, and there's a simple

way to do it. For the examples given in Section 9.3.2, the resulting metric is

dynamically meaningful.

For the rest of this section, suppose W is dense in I. Let's say we've

assigned each point in W a natural number, its grade, and there are only

�nitely many points of each grade. Since W is countable or smaller, this is

always possible.

For the binary shift, the points in W are the numbers whose binary

expansions are eventually constant, and they're naturally graded by the num-

ber of digits before the constant tail. For an interval exchange, the points

in W are the points that will eventually fall into a break under forward or

backward iteration, and they're naturally graded by how long it takes for that

to happen. For the sake of concreteness in our proof of Proposition 9.5.I, we'll

�x a normalization by declaring the break points to have grade zero.
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Pick a real number ∆ > 1, and de�ne the height of a point in w ∈ W

to be ∆− gradew. In
↔
I, de�ne the height of ŵ ∈ ιW to be the height of w, and

the height of any other point to be zero. The heights of some points in the

divided interval for the binary shift are illustrated below.

∆−0

∆−1

∆−2

←
1
2

1̂
2

→
1
2

←
1
4

1̂
4

→
1
4

←
3
4

3
4

→
3
4

Let's say the distance between two points a, b ∈
� �

I is the height of the highest

point in (a, b) ⊂
↔
I. This de�nes a metric (in fact, an ultrametric) on

� �

I, which

I'll call the division metric with steepness ∆. The assumption that W is dense

in I is essential here: it guarantees that distances between distinct points are

positive.

Proposition 9.3.J. The division metric induces the topology of
� �

I.

Proof. Let's see what the open balls of the division metric look like. Given a

radius r > 0, let W≥r be the set of points in W with heights greater than or

equal to r. This set is �nite, because there are only �nitely many points of

each grade. Listing the points in W≥r from left to right as w1, . . . , wn, we can

write down all the open balls of radius r:

(−∞, ŵ1), (ŵ1, ŵ2), . . . , (ŵn−1, ŵn), (ŵn,∞).
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From this description, it's clear that the open balls of the division metric

are open subsets of
� �

I. It's also clear that every full interval is a union of open

balls, because every full interval can be written as (â, b̂) for a, b ∈ W . By

Proposition 9.3.H, the full intervals form a basis for
� �

I, so we're done.

For both of the examples in Section 9.3.2, the division metric tells you

how long two points in the fractured interval travel together before they end

up on opposite sides of a break. Nearby points move together for a long time,

while the most distant points are separated immediately. A single step of the

dynamics can take a pair of points at most one step closer to being separated,

increasing the distance between then by at most a factor of ∆. That means

the dynamical map is Lipschitz with respect to the division metric, essentially

by construction.

The division metric on
� �

I and the Euclidean metric on I are very dif-

ferent, so playing them o� against one another might lead to amusing results.

Let's get them talking by de�ning gapr to be the minimum distance between

points in W≥r, according to the Euclidean metric on I. We can force the two

metrics to work together by putting conditions on the gap function. Now,

what sort of trouble can we start?

The division metric entertains all kinds of Hölder functions, but the

Euclidean metric will not allow any interesting function to have a Hölder ex-

ponent greater than one. A function f on
� �

I factors through π if and only if

its values match at adjacent edge points, in the sense that f ←w = f
→
w for all
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w ∈ W . If a Hölder function on
� �

I were to factor through π, there might be a

bit of a problem.

Theorem 9.3.K. Suppose the gap function falls o� slower than a power law,

so gapr ≥ Mrα for some positive constants M and α. Consider a function f

from
� �

I into some metric space X which factors through π as shown:

� �

I

π

��

f // X

I
f̃

@@

If f is Hölder with exponent ν > 0, then f̃ is Hölder with exponent ν/α.

Interesting, but not terribly entertaining. Let's turn up the heat.

Corollary 9.3.L. Suppose the gap function falls o� slower than every power

law: for any α > 0, no matter how small, we can �nd a positive constant

M with gapr ≥ Mrα. If f is a Hölder function on
� �

I whose values match at

adjacent endpoints, then f is constant.

A bit of terminology will speed our proof of Theorem 9.3.K. Let's say

a point s ∈
� �

I is in the left watershed of w ∈ W if s < ŵ, and every point in

(s, ŵ) ⊂
↔
I is lower than w. De�ne the right watershed similarly. The left and

right watersheds of 1
4
and 5

8
for the binary shift are sketched below.
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1̂
4

5̂
8

Watersheds are useful because of the following fact.

Lemma 9.3.M. For any s ∈ I, if →ιs is in the left watershed of w ∈ W , then

gapd(
→
ιs,
←
w) ≤ w − s. The mirror image statement also holds.

Proof. Let v̂ ∈ ιW be the highest point in (
→
ιs, ŵ) ⊂

↔
I, and let h be its height.

Since →ιs is in the left watershed of w, the point w is higher than v. That means

v and w are both in W≥h, so w − v is at least gaph. Thus, w − s is at least

gaph. Since v̂ was the highest point between
→
ιs and ŵ, we have d(

→
ιs,

←
w) = h by

de�nition, so we're done. The mirror image statement is proven similarly.

Proof of Theorem 9.3.K. Suppose f is Hölder with exponent ν > 0 and scale

constant C > 0. To see that f̃ is Hölder, pick any two points a < b in I.

Observe that

d(f̃a, f̃ b) = d(f
→
ιa, f

←
ιb).

Let w ∈ W be the highest point in (
→
ιa,
←
ιb) ⊂

↔
I. By assumption, f ←w = f

→
w, so

the triangle inequality and the Hölder condition on f give

d(f̃a, f̃ b) ≤ d(f
→
ιa, f

←
w) + d(f

→
w, f

←
ιb)

≤ Cd(
→
ιa,

←
w)ν + Cd(

→
w,
←
ιb)ν .
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Since →ιa is in the left watershed of w, the lemma tells us that

gapd(
→
ιa,
←
w) ≤ w − a gapd(

→
w,
←
ιb) ≤ b− w.

Our lower bound on the gap function then ensures that

Md(
→
ιa,

←
w)α ≤ w − a Md(

→
w,
←
ιb)α ≤ b− w,

so

d(f̃a, f̃ b) ≤ B[(w − a)ν/α + (b− w)ν/α]

for B = C
Mν/α . Since the function t 7→ tν/α is non-decreasing, it follows2 that

d(f̃a, f̃ b) ≤ 2B[(w − a) + (b− w)]ν/α

= 2B(b− a)ν/α.

Since a and b were arbitrary, aside from the condition that a < b, we've shown

that f̃ is Hölder with exponent ν/α and scale constant 2C
Mν/α .

9.4 Dividing translation surfaces

9.4.1 Construction of divided and fractured surfaces

Now, let's move up to the two-dimensional case. Cover ΣrB with �ow

boxes. Each �ow box can be identi�ed with a rectangle I × L ⊂ R2, where I

and L are open intervals in R. The critical leaves of Σ intersect the �ow box

2 If ρ : [0,∞)→ R is non-decreasing, and t ≤ t′,

ρt+ ρt′ ≤ 2ρt′ ≤ 2ρ(t+ t′).

Many thanks to Sona Akopian for pointing this out.
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as vertical lines {w}×L. There are only �nitely many critical leaves, and each

one passes through the �ow box at most countably many times. Dividing I at

the positions of the critical leaves, we can produce a divided �ow box
↔
I×L. In

the divided �ow box, each critical leaf {w}×L splits into a left lane {←w}×L,

a median {ŵ} × L, and a right lane {→w} × L.

The transition maps between the �ow boxes induce transitions between

the divided �ow boxes in a natural way. Gluing the divided �ow boxes together

along these transitions yields a new space�a divided version of Σ rB.

We still need to decide what to do with the singularities. The region

around a singularity b ∈ B can be built from cut square pieces, as described

in Section 9.2.1. Here's one of them, with the critical leaves marked. (Since

the critical leaves are generally dense in Σ, I've only drawn �nitely many of

them thick enough to see.)

The leaf through the center point is critical, of course, because the center point

is b itself. Here's a divided version of the same cut square:
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Zooming in, you can see that I've cut away b̂, but kept
←
b and

→
b. When a

singularity is built from pieces that look like this one (and its half-rotation),

the left and right lanes of the center leaf will connect up into lines running

past the singularity, but the medians will remain disconnected rays that end

at the singularity. Topologically, the region around a divided singularity looks

like this:

The zoomed-in picture on the right shows how the lanes of the critical leaves

join up around the singularity. For clarity, only the parts of the critical leaves

adjacent to the singularity are shown.

Now that we've decided what to do with the singularities, we can ex-

tend our divided version of Σ r B to a full divided surface
↔
Σ. The quotient

map discussed in the one-dimensional case extrudes naturally to a quotient

map π :
↔
Σ → Σ. Away from the singularities, the embedding from the one-

dimensional case also extrudes, yielding an embedding Σ r B →
↔
Σ. This

embedding can't be extended over the singularities, because a singularity has
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no median point associated with it, and sending it to an associated lane point

would break continuity.

We'll refer to the π-preimage of a leaf of Σ as a road.3 If L is a critical

leaf of Σ, the critical road π−1L splits into a left lane {←w : w ∈ L}, a median

{ŵ : w ∈ L}, and a right lane {→w : w ∈ L}, as we saw locally at the beginning

of the section. Each of the lane points associated with a singularity is adjacent

to a lane of a forward-critical road and a lane of a backward-critical road. For

convenience, we'll consider it an honorary member of both.

As in the one-dimensional case, de�ne the fractured surface
� �

Σ to be the

complement of the critical leaves of Σ�or, more precisely, their images under

ι�in the divided surface
↔
Σ. The divided �ow boxes and divided singularity

charts from which we constructed
↔
Σ pull back to an atlas of fractured �ow

boxes and fractured singularity charts on
� �

Σ.

9.4.2 Properties of divided and fractured surfaces

Within each divided �ow box
↔
I × L, we can �nd more �ow boxes of

the form H ×L, where H ⊂
↔
I is a basis interval. For convenience, let's de�ne

the notation
- -

H = H ∩
� �

I. A �ow box U = H × L will be called full if H

is full, and well-cut if H is full and ι−1U is well-cut. De�ne
- -

U as U ∩
� �

Σ,

or equivalently
- -

H × L, and trimU as (trimH) × L. It's apparent from the

analogous one-dimensional result that π−1ι−1U = trimU for any �ow box U .

3Our one-way roads are technically di�erent from, but morally related to, the two-way

streets of [11].

111



Flow boxes form a basis for
↔
Σ. If the critical leaves are dense in Σ, full

�ow boxes form a basis for
� �

Σ, as a consequence of Proposition 9.3.H. If full

�ow boxes form a basis for
� �

Σ, well-cut �ow boxes do too, as a consequence of

Proposition 9.2.B.

Propositions 9.3.A, 9.3.B, and 9.3.E carry over from dimension one

straightforwardly enough that I'll state them without proof.

Proposition 9.4.A. The embedding of Σ in
↔
Σ is dense.

Proposition 9.4.B. The divided surface
↔
Σ is locally connected.

Proposition 9.4.C. The fractured surface
� �

Σ is Hausdor�.

Because Σ is compact, Proposition 9.3.F can be extended to a global

result.

Proposition 9.4.D. The fractured surface
� �

Σ is compact.

Proof. Because Σ compact, it can be covered by a �nite collection of �ow boxes

and singularity charts. Therefore,
� �

Σ can be covered by a �nite collection of

fractured �ow boxes and fractured singularity charts. Each fractured �ow box
� �

I×L can be covered almost out to the edges by a �full closed box� of the form
- -

H ×C, where H ⊂
↔
I is full interval and C ⊂ L is a closed interval. Similarly,

each fractured singularity chart can be covered almost out to the edges by a

�nite collection of full closed boxes, taking crucial advantage of the fact that

the non-compact medians of the critical rays have been removed.

112



With a little care, we can now cover
� �

Σ with a �nite collection of full

closed boxes. Each full closed box is a product of two compact spaces, so we've

covered
� �

Σ with a �nite collection of compact sets.

Theorem 9.3.C carries over with a catch: dividing a translation surface

opens up a tiny hole at each singularity, and a local system on the divided

surface can have nontrivial holonomies around those holes.

Theorem 9.4.E. For any linear group G, the direct image functors π∗ and

ι∗ give an equivalence between the category of G local systems on
↔
Σ and the

category of G local systems on Σ rB.

The reason for the theorem remains the same.

Lemma 9.4.F. If F is a local system on
↔
Σ, the restriction FtrimU⊂U is an

isomorphism for any �ow box U .

Proof. Write U as H × L for some basis interval H ⊂
↔
I and repeat the proof

of Lemma 9.3.D, replacing A with A× L.

Proof of Theorem 9.4.E. Replace

↔
I

π

��
I

ι

VV

with

↔
Σ

π

��
Σ rB

ι

VV

in the proof of Theorem 9.3.C, and change all the basis intervals to �ow boxes.
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9.5 Dynamics on divided surfaces

9.5.1 The vertical �ow

Within a �ow box I × L in Σ, the vertical �ow is easy to describe:

ψt : (s, ζ) 7→ (s, ζ + t),

as long as t is small enough that ζ + t is still in the interval L. This local

description can be lifted directly to the divided �ow box
↔
I × L in

↔
Σ; the only

change is that s will now be a point in
↔
I instead of in I.

The vertical �ow on a singularity chart can be lifted in the same way.

It's worth thinking carefully about how the lifted �ow acts on the critical roads

of
↔
Σ. Pick a singularity chart on Σ, and look at a point w on a forward-critical

leaf that plunges into the singularity without leaving the chart. In
↔
Σ, the point

w splits into the three points ←w, ŵ, →w on a forward-critical road. As time runs

forward, the point w falls into the singularity and disappears. Its lift ŵ, on

the median of the road, does the same. The points ←w and →
w, however, follow

the left and right lanes past the singularity, peeling o� in di�erent directions:

←
w ŵ

→
w
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On a backward-critical road, the story is the same, but told backward.

Just as the local vertical �ows on �ow boxes and singularity charts �t

together into a global vertical �ow on Σ r B, their lifts �t together into a

global vertical �ow on
↔
Σ. For convenience, I'll refer to this vertical �ow also

as ψ. The vertical �ows on
↔
Σ and Σ r B commute with the embedding ι.

They don't quite commute with the quotient map π, because when a point on

a critical leaf of ΣrB falls into a singularity, its left- and right-lane lifts keep

going. The forward vertical �ows on ΣrW− and its π-preimage, however, do

commute with π. The same goes for the backward vertical �ows on Σ rW+

and its π-preimage.

The vertical �ow on
↔
Σ, like the one on ΣrB, is a �ow by bicontinuous

relations. This should not be taken for granted: the topology of a divided

interval was engineered to make it so. The medians of the critical leaves are

the only parts of
↔
Σ that vanish into the singularities under the vertical �ow.

Removing them leaves an invariant subspace,
� �

Σ, on which the vertical �ow

acts by homeomorphisms. Thus, while the vertical �ows on ΣrB and
↔
Σ may

look a bit ugly, the vertical �ow on
� �

Σ is remarkably well-behaved: it's a �ow

by homeomorphisms on a compact Hausdor� space.

The divided and fractured surfaces are foliated by the orbits of the

vertical �ow�or they would be, at least, if foliations were usually de�ned on

more general spaces than manifolds. With that in mind, we'll sometimes refer

to the orbits of the vertical �ows on
↔
Σ and

� �

Σ as vertical leaves.
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9.5.2 First return maps

Let's say a horizontal segment on a divided surface is a subset that

looks like a horizontal basis interval in some �ow box. More precisely, it's a

horizontal slice H × {ζ} across a divided �ow box H × L. The quotient map

π projects horizontal segments on
↔
Σ down to horizontal segments on Σ, as

de�ned in Section 9.2.2. Lemma 9.2.A, which made it sensible to talk about

�rst return maps on a translation surface, has an analogue on the divided

surface.

Lemma 9.5.A. Let Z be a horizontal segment on
↔
Σ, and let p be a point in

Z. Unless p is on the median of a forward-critical road, the vertical �ow will

eventually carry p back to Z.

The proof is edifying, but rather long, so I've postponed it to the end

of the section. The most important consequence of this lemma is that we can

de�ne a �rst return relation on any horizontal segment in
↔
Σ, just like we did

for horizontal segments in Σ.

Suppose Z is a horizontal slice across a well-cut �ow box U = H×L in
↔
Σ. Then ι−1Z is a well-cut horizontal segment in Σ, so the �rst return relation

on ι−1Z is an interval exchange. The divided version of that interval exchange,

constructed as in Section 9.3.2, is precisely the �rst return relation on Z.

Identifying Z and ι−1Z with H and ι−1H in the obvious way, we can

think of the �rst return relations as relations on H and ι−1H. These relations

don't depend on which slice across H × L we take, so we can talk about the
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�rst return relations on H and ι−1H de�ned by a well-cut �ow box H × L

without picking a slice at all. The �rst return relation becomes a function

when restricted to
- -

H.

We'll be working with these �rst return relations a lot, so it will be use-

ful to set down a pattern of notation for talking about them. For convenience,

I'll refer to the �rst return relations on H and ι−1H both as α. Let W ⊂ ι−1H

be the positions of the critical leaves, recalling that
- -

H = H r ιW . Within W ,

let W+ and W− be the positions of the backward- and forward-critical leaves.

If Σ has no saddle connections, W+ and W− are disjoint, and thus form a

partition of W .

Let B+ ⊂ W+ be the places where the backward-critical leaves �rst pass

through ι−1U after shooting out of their singularities. Similarly, let B− ⊂ W−

be the places where the forward-critical leaves last pass through ι−1U before

diving into their singularities. The sets B+ and B− are the break points of the

backward and forward �rst return relations α−1 and α on ι−1H, as described

in Section 9.3.2.

Proof of Lemma 9.5.A. If p is in ιΣ, we can just apply Lemma 9.2.A to an

appropriate closed subinterval of πZ, and we're done. The only time we have

to do something less direct is when p is in the left or right lane of a critical

road.

Suppose p =
→
w for some w ∈WrW−. Because it's in the right lane of

a critical road, p can't be the rightmost element of a horizontal basis interval.
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We can therefore assume, without loss of generality, that Z has no rightmost

element. In this case, the only way for π−1πZ to contain more points than Z

is for Z to have a leftmost point →a, in which case π−1πZ = {←a, â} ∪ Z.

By Lemma 9.2.A, ψtw returns to πZ at some time t > 0. Away from

W− and its π-preimage, the forward vertical �ows on
↔
Σ and Σ commute, so

πψtp ∈ πZ. In other words, ψtp ∈ π−1πZ. Points traveling along the vertical

�ow on
↔
Σ never change lanes, so ψtp is in a right lane. Hence, knowing that

ψtp ∈ π−1πZ, we can conclude that ψtp ∈ Z, which is what we wanted to

show. The same reasoning can be used when p =
←
w for some w ∈WrW−.

On the other hand, suppose p =
→
w for some w ∈ W−. In this case,

we can assume without loss of generality that p is the leftmost point of Z.

Follow ψtZ upward along the vertical �ow until ψtp passes a singularity, ex-

iting the forward-critical road it started on and merging onto the adjacent

backward-critical road. By this time, a few pieces of ψtZ may have already

hit singularities and peeled o� to the right, but some piece of ψtZ is still

traveling with ψtp.
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
Zp

φtp

The backward-critical road ψtp is now following might also be forward-critical�

a saddle connection. In that case, we can repeat the same maneuver. Because

Σ is compact, it has only �nitely many forward-critical roads, so ψtp will even-

tually end up on either a road that isn't forward-critical or a road that it's

traveled before. In the latter case, because ψtp can only merge onto a road

at its very beginning, ψtp will eventually return to a point it's passed through

before. Since ψ is a �ow by bicontinuous relations, as de�ned in Appendix B,

it follows that ψtp is de�ned for all t ∈ R, and periodic. As a result, ψtp will

eventually return to its starting point, and thus to Z.

This leaves us with the case where ψtp �nally merges onto a road that

isn't forward critical. In other words, at some time t > 0, we have πψtp ∈

W rW−. Let Y be the piece of ψtZ that's stuck with ψtp all this time. We

showed earlier that the vertical �ow eventually carries ψtp back to Y . The

vertical �ow is injective, so ψtp must have passed through ψ−tY on its way
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back to Y . Since ψ−tY ⊂ Z, we've proven that ψtp eventually returns to

Z.

9.5.3 Minimality

Assuming that the vertical �ow on
� �

Σ is minimal will make our discussion

of abelianization and the conditions required for it go much more smoothly�

so much so that I suspect it's a necessary condition for abelianization to make

sense. Fortunately, this condition follows from a simple condition on Σ.

Proposition 9.5.B. If Σ has no saddle connections, the forward and backward

vertical �ows on
� �

Σ are both minimal as dynamical systems.

Proof. The forward and backward cases are mirror images of each other, so

let's focus on the forward vertical �ow. Suppose Σ has no saddle connections,

recalling that this implies Σ is minimal. We want to prove that the forward

orbit P of any point p ∈
� �

Σ is dense.

Suppose p = ιq for some q ∈ Σ r W. Then we can just observe that

the minimality of Σ implies that the forward orbit of q is dense in Σ. Since ιΣ

is dense in
� �

Σ by Proposition 9.4.A, we're done.

Suppose p is in the left or right lane of a backward-critical road. In

other words, p ∈ {←w, →w} for some w ∈ W+. Let W be the forward orbit of

w. Because Σ has no saddle connections, the backward-critical leaf w lies on

can't also be forward-critical, so the minimality of Σ implies that W is dense

in Σ.
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Because Σ is minimal, full �ow boxes form a basis for
� �

Σ, as pointed out

in Section 9.4.2. Thus, to show that P is dense in
� �

Σ, we just have to show that

it intersects every full �ow box
- -

U . Note that U is a full �ow box in
↔
Σ. Since ι

is continuous, ι−1U is an open subset of Σ, and therefore intersects the dense

orbit W . That means π−1ι−1U intersects ιW . Recall from Section 9.4.2 that

π−1ι−1U = trimU . In
↔
Σ, any open subset that contains a point in the median

of a critical road also contains the corresponding points in the left and right

lanes, so trimU intersects P . Since trimU ⊂ U , we've shown that U intersects

P . Since P ⊂
� �

Σ, it follows that
- -

U intersects P . Since
- -

U could have been any

full �ow box in
� �

Σ, we've proven that P is dense in
� �

Σ, under the assumption

that p is in the left or right lane of a backward-critical road.

Finally, suppose p is in the left or right lane of a forward-critical road.

The forward vertical �ow will eventually carry p past a singularity, where it

will leave its current road and merge onto an adjacent backward-critical road.

That means the forward orbit of p contains the left or right lane of a backward-

critical road. We just proved that the left and right lanes of a backward-critical

road are both dense in
� �

Σ, so we're done.

On the fractured surface, a minimal vertical �ow induces minimal �rst

return maps.

Proposition 9.5.C. Let H × L be a well-cut �ow box in
↔
Σ. If the vertical

�ow on
� �

Σ is minimal, the �rst return map on
- -

H is too.
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Proof. Suppose the �rst return map on
- -

H is not minimal. Find a closed

invariant subset C ⊂
- -

H which is neither empty nor all of
- -

H. Let C be the

orbit of C × L under the vertical �ow. Notice that C can't intersect the open

set (
- -

HrC)×L: if it did, the �rst return map on
- -

H would send some element

of C into
- -

H r C. Since C is made of vertical orbits, we've shown that not

every orbit of the vertical �ow is dense in
� �

Σ. Hence, the vertical �ow on
� �

Σ is

not minimal.

9.5.4 Ergodic theory

Proposition 9.4.A says that
↔
Σ is no bigger than Σ with respect to con-

tinuous functions, and Theorem 9.4.E says the same with respect to locally

constant sheaves. It will be useful to have a similar result with respect to

vertically invariant measures. Such a thing should be true, because passing

from ΣrW to
� �

Σ just means adding �nitely many vertical leaves, which ought

to have measure zero.

To turn these intuitions into something tangible, �rst equip Σ and
� �

Σ

with their Borel σ-algebras. You can show, with a little thought, that any

vertical slice across a �ow box of
� �

Σ is measurable. It follows that every vertical

leaf of
� �

Σ is measurable, allowing us to formulate the following proposition.

Proposition 9.5.D. If the vertical �ow on
� �

Σ is minimal, an invariant prob-

ability measure on
� �

Σ assigns measure zero to every vertical leaf.

Proof. Assume the vertical �ow on
� �

Σ is minimal. Let L be a vertical leaf.
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Pick a segment L0 of L that looks like {s} × [0, τ) in some divided �ow box
- -

H × (−τ, τ). Observe that L0 is measurable. Let Ln = ψnτL0 for each integer

n. The segments Ln can't overlap locally, and a minimal �ow on
� �

Σ has no

periodic orbits, so in fact all the segments are disjoint.

Let µ be an invariant probability measure on
� �

Σ. The segments Ln tile

L, so

µL =
∑
n∈Z

µLn.

Because it's invariant, µ assigns the same measure to each Ln. Hence,

µL =
∑
n∈Z

µL0.

For the sum on the right-hand side to converge, its value must be zero.

Corollary 9.5.E. If the vertical �ow on
� �

Σ is minimal, an invariant probability

measure on
� �

Σ assigns measure one to ι(Σ rW).

Proof. The only parts of
� �

Σ that don't lie in ι(Σ rW) are the vertical leaves

containing the left and right lanes of the critical roads. There are only �nitely

many of these, and each one has measure zero by the previous proposition.

The corollary above leads to the following proposition, which links the

ergodic properties of
� �

Σ and Σ rW.

Proposition 9.5.F. If the vertical �ow on
� �

Σ is minimal, then it's uniquely

ergodic if and only if the vertical �ow on Σ rW is.
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Proof. Assume the vertical �ow on
� �

Σ is minimal. The pushforward of an

ergodic measure along a morphism of dynamical systems is ergodic, and the

restriction of an ergodic measure to a measure-one invariant subspace is also

ergodic. Therefore,
� �

Σ has an ergodic measure if and only if Σ rW does.

Suppose Σ rW is not uniquely ergodic. Distinct ergodic measures on

Σ r W push forward along ι to distinct ergodic measures on
� �

Σ, so
� �

Σ isn't

uniquely ergodic either.

On the other hand, suppose Σ r W is uniquely ergodic. Then every

ergodic measure on
� �

Σ must restrict to the same measure on ΣrW. All ergodic

measures on
� �

Σ assign ι(Σ r W) measure one, so if they agree on ι(Σ r W),

they agree everywhere. Hence,
� �

Σ is uniquely ergodic.

Just like minimality, unique ergodicity of the vertical �ow on
� �

Σ can be

localized to any well-cut �ow box, as long as the vertical �ow is minimal.

Proposition 9.5.G. Let H × L be a well-cut �ow box in
↔
Σ. If the vertical

�ow on
� �

Σ is minimal and uniquely ergodic, the �rst return map on
- -

H is too.

The proof should bring to mind a fractured analogue of the idea that a

minimal translation surface can be expressed as a suspension of the �rst return

map on any well-cut segment [34]. We don't need the full power of this idea,

however, so we won't develop it in detail.

Proof. Pick a horizontal slice Z = H×{ζ} across H×L. Removing the break

points of the �rst return map from Z turns it into a disjoint union of full basis
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intervals Z1, . . . , Zk. As each segment Zj is carried back to Z by the vertical

�ow, it sweeps out a �full half-open box� of the form Yj ∼= Zj× [0, Tj). Because

the vertical �ow on
� �

Σ is minimal,
- -

Y 1, . . . ,
- -

Y k cover
� �

Σ, forming a measurable

partition of it.

A measure on
- -

Z restricts to a measure on each segment
- -

Zj. The mea-

sures on
- -

Z1, . . . ,
- -

Zk induce product measures on
- -

Y 1, . . . ,
- -

Y k, which �t together

into a measure on
� �

Σ. In this way, a measure µ on
- -

Z can be extruded to a

measure µ̃ on
� �

Σ. If µ is invariant under the �rst return map, µ̃ is invariant

under the vertical �ow. If µ is a probability measure, µ̃
� �

Σ is �nite, so we can

normalize µ̃ to get a probability measure. Di�erent probability measures on

Z produce di�erent probability measures on
� �

Σ.

Let µ be an ergodic measure on Z, and µ̃ the measure on
� �

Σ constructed

from it. Consider an invariant subset Q of
� �

Σ. Because Q is invariant, its inter-

section with the box
- -

Y j looks like Qj × [0, Tj), where Qj ⊂ Zj is a measurable

set. The µ̃-measure of Q is given in terms of µ by

µ̃Q = T1 µQ1 + . . .+ Tk µQk.

The disjoint unionQ = Q1∪. . .∪Qk is an invariant subset of Z, so its µ-measure

is either zero or one. It follows that µ̃Q is either zero or T1 µZ1 + . . .+Tk µZk,

which is equal to µ̃
� �

Σ. We now see that µ̃ assigns each invariant subset either

zero measure or full measure, so its normalization is an ergodic measure on
� �

Σ.

We've shown that any ergodic measure on Z can be used to produce

an ergodic measure on
� �

Σ, and we remarked earlier that di�erent probability
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measures on Z produce di�erent probability measures on
� �

Σ. Hence, if the

�rst return map on Z isn't uniquely ergodic, the vertical �ow on
� �

Σ can't be

either.

When the vertical �ow on
� �

Σ is uniquely ergodic, we can make simple and

accurate long-term predictions about how often it will carry a point through

a given well-cut segment. To see how this works, consider a horizontal slice

Z = H × {ζ} across a well-cut �ow box H × L in
↔
Σ. For each h ∈ H and

n ∈ Z, let τnh be the time it takes for the vertical �ow to carry (h, ζ) back to

Z for the nth time. Negative values of n refer to returns that happened in the

past, so n and τnh always have the same sign. Notice that ψτ
n
h (h, ζ) = (αnh, ζ).

LetW+ andW− be the places where the backward- and forward-critical

leaves pierce Z. When h ∈ W+, the backward vertical �ow only carries (h, ζ)

through Z �nitely many times before it falls into a singularity, so τnh is unde-

�ned for large negative n. Similarly, when h ∈ W−, the time τnh is unde�ned

for large positive n. We should therefore think of τ as a relation, rather than

a function. We'll call it the return time relation on Z. It restricts to an honest

function when we consider forward returns to H rW−, or backward returns

to H rW+. We can also think of τ as a relation on the well-cut segment πZ

in Σ by restricting it to ιπZ.

Proposition 9.5.H. Consider a horizontal slice Z = H×{ζ} across a well-cut

�ow box H ×L in
↔
Σ, with W± ⊂ H de�ned as above. Let τ be the return time

relation on H. When the �rst return map on
- -

H is uniquely ergodic, there's an
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average return time τ̄ characterized by the fact that

lim
n→∞

τ±nh
n

= ±τ̄

uniformly over h ∈ H rW∓.

This result is a divided version of the one discussed after Lemma 1 of

[35], and its proof is essentially the same.

Proof of Proposition 9.5.H. The relation h 7→ τ 1
h restricts to a continuous

function on
- -

H. The �rst return map on
- -

H is always continuous, and we're

assuming it's uniquely ergodic as well. Recalling that
- -

H is compact and metriz-

able, we can apply a version of the uniform ergodic theorem4 to get the desired

forward and backward uniform convergence over
- -

H [37, Proposition 4.7.1].

To see how the forward convergence extends over H rW−, consider

any ŵ ∈ W+ rW−. The point (ŵ, ζ) lies on the median of a road which is

backward-critical, but not forward-critical. Looking back to Section 9.5.1, we

see that the three points (
←
w, ζ), (ŵ, ζ), (

→
w, ζ) travel together forever under the

forward vertical �ow. As a result, τnŵ is de�ned for all positive n, and it has

the same value as τn←
w
and τn→

w
when it's de�ned. Since ←w and →

w are in
- -

H, we're

back to the previously solved case. Switching directions, we can use the same

argument to show that the uniform convergence of the backward limit extends

over H rW+.

4As far as I can tell, it started out as a corollary to Lin's uniform ergodic theorem [36].
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9.5.5 The fat gap condition

On a generic translation surface, you should expect the critical leaves to

�ll up each �ow box more or less evenly as you follow them out from the singu-

larities, rather than clumping together. The fat gap condition formalizes this

property. When horizontal distances on the fractured surface are measured

using the the division metric from Section 9.3.5, the fat gap condition implies

the hypothesis of Corollary 9.3.L, which restricts the behavior of Hölder func-

tions on horizontal segments. This control over horizontal Hölder functions

will be the crux of our argument in Section 14 that abelianization does what

it's supposed to.

For convenience, we'll keep track of �rst return relation break points

in this section using the height function from Section 9.3.5, with steepness ∆.

The de�nition we're about to present won't depend on the height function,

but stating it in terms of the height function will allow for more consistent

notation, and it will help us connect the fat gap condition with the properties

of the division metric.

The local de�nition Consider a well-cut horizontal segment Z in Σ. As

usual, let W ⊂ Z be the positions of the critical leaves. Recall from Sec-

tion 9.3.5 that W≥r is the set of points in W with heights greater than or

equal to r, and gapr is the minimum distance between points in W≥r accord-

ing to the Euclidean metric on Z. Let's say Z satis�es the fat gap condition if
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for all λ > 0, no matter how small,

∆λn gap∆−n

is bounded below by a positive number as n varies in N. Intuitively, the fat

gap condition says that the break points of the iterated �rst return relations

αn and α−n don't cluster too much as n grows. Speci�cally, the gaps between

the break points shrink more slowly than any exponential. We'll say Σ satis�es

the fat gap condition if all its well-cut segments do.

A global su�cient condition The fat gap condition, as stated, can be a

bit of a pain to check, because it says something about the �rst return map on

every well-cut segment. Fortunately, there's a more globally de�ned condition

which implies the fat gap condition, and is still weak enough to hold for generic

translation surfaces.

Following the terminology of [38], let's say a translation surface is ϕ-

Diophantine if it satis�es the conclusion of part (1) of Theorem 1.1 in [39].

Here, ϕ : [0,∞)→ (0,∞) is a strongly decreasing function.

Proposition 9.5.I. Suppose Σ has no saddle connections, and the vertical �ow

on Σ r W is uniquely ergodic. If Σ is (∆−λt)-Diophantine for every λ > 0,

then Σ satis�es the fat gap condition.

For any λ > 0, Proposition 1.2 of [39] can be used to show that if you

rotate a translation structure through a full circle, almost all the structures
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you pass through will be (∆−λt)-Diophantine. Hence, in any rotation family

of translation structures, almost all will be (∆−λt)-Diophantine for every λ ∈

{ 1
m

: m ∈ N>0}, and thus for every λ > 0.

To prove Proposition 9.5.I, we'll need to introduce the notion of a gen-

eralized saddle connection on a translation surface. This is a geodesic, with

respect to the �at metric, from one singularity to another. Equivalently, it's

a saddle connection with respect to a rotated translation structure. In [39],

Marchese refers to generalized saddle connections simply as saddle connections.

Every translation surface has a canonical complex-valued 1-form ω that

sends horizontal unit vectors to 1 and vertical unit vectors to i. In a local

translation chart z : Σ → R2, thinking of R2 as C, this is just the 1-form dz.

For any generalized saddle connection γ on Σ, let

Qγ =

∫
γ

ω.

The real and imaginary parts of Qγ measure the horizontal and vertical dis-

tances traveled by γ.

Proof of Proposition 9.5.I. Pick any well-cut segment Z in Σ. As usual, let

W+ and W− be the places where the backward- and forward-critical leaves

pierce Z, and let B± ⊂ W± be the break points of α∓1. Because Σ has no

saddle connections, W+ and W− are disjoint, so the relation α± restricts to a

function on W±.

Let's start with some tools for keeping track of time. Let τ be the

return time relation on Z. Let T be the maximum forward return time for a
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point on Z, observing that |τnb | < |n|T for all b ∈ B+ ∪ B− and n ∈ Z. For

each b ∈ B±, let −ρb be the time at which the vertical �ow carries b into its

singularity bb. Notice that ρb is positive for b ∈ B+ and negative for b ∈ B−.

Let P be the maximum of |ρb| over all break points b.

For each n ∈ N, �nd a pair of points inW≥∆−n that are as close together

as possible, so the distance between then is gap∆−n . Because they're in W ,

these points can be expressed as αku and αlv for some break points u, v ∈

B+ ∪ B−. For concreteness, let's say αku is to the left of αlv. Because αku

and αlv are in W≥∆−n , we know that |k| and |l| are at most n.

All the break points of α±(n+1) are in W≥∆−n , so none of them can lie

between αku and αlv. Thus, as t varies from 0 to −τ ku , the vertical �ow ψt

keeps the interval (αku, αlv) in one piece, eventually bringing it to the interval

(u, αl−kv). In fact, if we nudge t out to −τ ku − ρu, the interval still holds

together, coming to rest with its left endpoint at bu. Similarly, ψt keeps the

interval (αku, αlv) in one piece as t varies from 0 to −τ lv − ρv, �nally parking

it with its right endpoint at bv. The vertical �ow from times −(τ ku + ρu) to

−(τ lv + ρv) therefore sweeps out a �ow box Un with bu at one corner and bv at

the opposite corner.

The diagonal of Un from bu to bv is a generalized saddle connection,

which I'll call γn. Recall that γn was constructed from a pair of points inW≥∆−n

that are as close together as possible. There could be several such pairs, but it

won't matter which one we picked. We can �nd Qγn by observing that its real

and imaginary parts are the width and height of Un, with appropriate signs.

131



The real part is the distance from αku to αlv, which we set up to be gap∆−n .

The imaginary part is −(τ lv + ρv) + (τ ku + ρu). Letting ` be the length of the

segment Z, we get the bound

|Qγn| ≤ | − (τ lv + ρv) + (τ ku + ρu)|+ gap∆−n

≤ |τ lv|+ |τ ku |+ |ρv|+ |ρu|+ `.

Recalling the constants T and P we de�ned earlier, we can simplify this to

|Qγn| ≤ |l|T + |k|T + 2P + `

≤ 2nT + 2P + `.

Now, suppose Σ is (∆−λt)-Diophantine for all λ > 0. This means that,

for any λ > 0, there are only �nitely many generalized saddle connections γ

with

|ReQγ| < ∆−λ|Qγ |.

We want to prove Z satis�es the fat gap condition. In other words, given any

µ > 0, we want to show that

∆µn gap∆−n

is bounded below by a positive number as n varies in N.

Pick any µ > 0, and let λ = µ
2T
. Because Σ is minimal, gap∆−n goes to

zero as n grows, so each generalized saddle connection has only �nitely many

chances to appear in the sequence γn. Hence, by the Diophantine condition,

|ReQγn| < ∆−λ|Qγn |
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for only �nitely many n ∈ N. Because ∆−λt is decreasing, we can infer from

our earlier bound on |Qγn| that ∆−λ(2nT+2P+`) is no greater than ∆−λ|Qγn |, so

|ReQγn| < ∆−λ(2nT+2P+`)

for only �nitely many n ∈ N. Recalling that |ReQγn| = gap∆−n and rearrang-

ing the right-hand side, we see that

gap∆−n < ∆−λ(2P+`)∆−µn

for only �nitely many n ∈ N. In other words,

∆µn gap∆−n < ∆−λ(2P+`)

for only �nitely many n ∈ N. Since the right-hand side is positive and inde-

pendent of n, it follows immediately that the left-hand side is bounded below

by a positive number as n varies in N.

Implications for the division metric Now that we have a practical way

to enforce the fat gap condition, let's see how it implies the hypothesis of

Corollary 9.3.L, restricting the behavior of Hölder functions on horizontal seg-

ments.

Proposition 9.5.J. Let Z be a well-cut segment in Σ. Suppose Z satis�es

the fat gap condition. The gap function on Z then has the property that for

any λ > 0, we can �nd a positive constant M with gapr ≥Mrλ.
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Proof. Pick any λ > 0. By the fat gap condition, there's some ε > 0 such that

∆λn gap∆−n ≥ ε

for all large enough n ∈ N. Equivalently,

gap∆−n ≥ ε∆−λ∆−λ(n−1)

for all large enough n ∈ N. That means

gap∆−n ≥M(∆−n+1)λ

for some M > 0 small enough to absorb the constant ε∆−λ and deal with the

transient behavior of gap∆−n at small n. For every r > 0 we have ∆−n ≤ r ≤

∆−n+1 for some n, so it follows that

gapr ≥Mrλ

for all r.
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Chapter 10

Warping local systems on divided surfaces

10.1 Overview

Many classic geometric constructions involve cutting, shifting, and reglu-

ing a local system on a manifold along something akin to a codimension-one

submanifold. For example, a Fenchel-Nielsen twist shifts the PSL2 R local sys-

tem encoding the hyperbolic structure of a surface along a closed geodesic. A

grafting or a cataclysm shifts a PSL2 R local system along a geodesic lamina-

tion on a hyperbolic surface. Higher versions of these processes act on PSL2 C

and PSLnR local systems [40][41].

The version of abelianization described in this paper shifts an SL2 R

local system along the critical leaves of a translation surface Σ. It's most

conveniently carried out by pushing the local system up to the divided surface
↔
Σ and warping it along a deviation supported on

� �

Σ. The special class of

deviations used in this process will be the subject of this section.

Our discussion of warping only makes sense on a locally connected

space, so the local connectedness of the divided surface is now playing an

important role. The fact that we can warp local systems on the divided surface,

like the equivalence of categories of local systems given by Theorem 9.4.E, can
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be seen as a re�ection of the general idea that local systems on the divided

surface tend to be well-behaved.

10.2 Critical leaves in a �ow box

Consider a �ow box U = H × L in
↔
Σ. The median of each critical leaf

passes through U at most countably many times, intersecting it in a collection

of vertical lines I'll call dividers. The dividers are naturally ordered by their

positions in H. Given two points y and x in
- -

U , with y sitting to the left of x

along H, let's write (y | x)U to denote the ordered set of dividers in U that lie

between y and x.

10.3 Deviations de�ned by jumps, conceptually

Let F be a locally constant sheaf on
↔
Σ. The F -simple �ow boxes form

a basis for the topology of
↔
Σ. To specify a jump in F , we give for each divider

P in a simple �ow box U an automorphism jP of FU . These automorphisms

have to �t together as follows:

• If the basis element U contains the basis element V , and the divider P in

U contains the divider Q in V , the automorphisms jQ and jP commute

with the restriction morphism FV⊂U .

Consider a simple �ow box U and a pair of points y and x in
- -

U , with

y to the left of x. In the presence of a jump j, the ordered set (y | x)U of

dividers between y and x becomes an ordered set of automorphisms of FU ,
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which are just begging to be composed. There are probably in�nitely many

of them, so composing them may not make sense, but let's do it anyway, and

call the result

δUyx =
∏

P∈(y|x)U

jP .

For good measure, de�ne δUxy to be the inverse of δ
U
yx, so we don't have to worry

about checking that y is to the left of x in U .

Our notation makes δ look like a deviation from F with support
� �

Σ,

de�ned over the basis of F -simple �ow boxes. In fact, δ really will be a

deviation as long as the compositions de�ning it make sense, and behave in

the way you'd expect. We'll see this concretely in the next section, where we

specialize to the case of jumps in local systems.

10.4 Deviations de�ned by jumps, concretely

Let's say F is a G local system. In this case, a jump in F assigns

an element of G to each divider. Because G is a linear group, it comes with

a topology that can be used to make sense of in�nite ordered products, as

described in Appendix D. Using the properties of these products, we can show

that the construction in the previous section really does produce a deviation

δ from a jump j, as long as all the products converge.
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10.4.1 The restriction property

We want to prove that for any simple �ow boxes V ⊂ U and any

two points y, x ∈ V ∩
� �

Σ, the automorphisms δUyx and δVyx commute with the

restriction morphism FV⊂U . We can assume, without loss of generality, that

y is to the left of x. Jumps are required to commute with restriction, so∏
P∈(y|x)U

jP =
∏

P∈(y|x)V

F−1
V⊂U jP FV⊂U .

Recalling that conjugation is a topological group automorphism, we apply

Proposition D.4.A and get

∏
P∈(y|x)U

jP = F−1
V⊂U

 ∏
P∈(y|x)V

jP

FV⊂U ,
which is what we wanted to show.

10.4.2 The composition property

We want to prove that δUzyδ
U
yx = δUzx for any simple �ow box U and any

three points z, y, x ∈ U ∩
� �

Σ. If z, y, x happen to be ordered from left to right,

we're trying to prove that ∏
P∈(z|y)U

jP

 ∏
P∈(y|x)U

jP

 =
∏

P∈(z|x)U

jP .

Since, in the notation of Section D, (z | y)U t (y | x)U = (z | x)U , this follows

directly from Proposition D.3.A.

Now, suppose the three points are ordered di�erently. If the ordering

from left to right is y, z, x, we can use the reasoning above to conclude that
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δUyzδ
U
zx = δUyx, rewrite this as (δUzy)

−1δUzx = δUyx, and rearrange to get the desired

result. The other cases work similarly.
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Chapter 11

Uniform hyperbolicity for SL2 R dynamics

11.1 Motivation and notation

In Section 10.3, we saw a way to turn a jump into a deviation by

taking in�nite products of jump automorphisms. To apply that construction

to a given jump in a local system E on
↔
Σ, we need some way of showing that

all those in�nite products converge. A convenient approach is to show that the

jump automorphisms decay rapidly as you follow them out along the critical

leaves of
↔
Σ.

Uniform hyperbolicity is a powerful and well-studied decay condition on

the sections of a local system over a dynamical base. It will be a key player

in our abelianization procedure, with a role going far beyond ensuring that

jumps converge.

A bit of notation will streamline our reasoning about growth and decay.

For positive functions f and g, we'll write f . g to say that f is bounded by

a constant multiple of g. When f and g depend on several parameters, we

might say that f . g over a parameter t to specify that we're thinking of f

and g as functions of t, with the other parameters held �xed.
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11.2 The global version

Parallel transport along the vertical �ow ψ : R×
� �

Σ→
� �

Σ induces a �ow

Ψ on the stalks of E . At time t, the parallel transport �ow gives a morphism

Ψt : Ex → Eψtx for each x ∈
� �

Σ. Pick an inner product on the stalks of E

over
� �

Σ which is continuous in the sense that, for any two vectors u, v ∈ EU

over an open set U ⊂
↔
Σ, the inner product of u and v in the stalk Ex varies

continuously as a function of x ∈
� �

Σ. Because
� �

Σ is compact, it doesn't matter

which inner product we pick.

Saying E is globally uniformly hyperbolic means that for every x ∈
� �

Σ,

the dynamics of Ψ split Ex into a direct sum of two one-dimensional subspaces

E+
x and E−x , called the forward-stable and backward-stable lines, respectively.

These lines are characterized by the following properties:

1. The parallel transport map Ψt sends E±x to E±ψtx.

2. There is a constant K > 0 such that

‖Ψ±tv‖ . e−Kt‖v‖

over all x ∈
� �

Σ, v ∈ E±x , and t ∈ [0,∞).

We'll call the constant K a bounding exponent for E . Bounding exponents

are not by any means unique: if K is a bounding exponent for a uniformly

hyperbolic local system, every positive number less than K is a bounding

exponent too.
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The decay condition in the de�nition of uniform hyperbolicity only

talks about forward parallel transport, but we can turn it around to get an

equivalent growth condition on backward parallel transport. Our argument

depends crucially on the fact that x and v are treated as variables in the decay

condition, rather than parameters that can be held �xed. That detail is the

�uniform� part of �uniform hyperbolicity.�

Proposition 11.2.A. For a given value of K and choice of sign, Condition 2

in the de�nition of global uniform hyperbolicity holds if and only if

eKt‖v‖ . ‖Ψ∓tv‖

over all x ∈
� �

Σ, v ∈ E±x , and t ∈ [0,∞).

Proof. Suppose Condition 2 holds. Then there's a constant C such that

‖Ψ±tv‖ ≤ Ce−Kt‖v‖

for all x ∈
� �

Σ, v ∈ E±x , and t ∈ [0,∞). In particular,

‖Ψ±tΨ∓tv′‖ ≤ Ce−Kt‖Ψ∓tv′‖

for all x ∈
� �

Σ, v′ ∈ E±ψ±tx, and t ∈ [0,∞). Simplifying the inequality and

rewriting the quanti�er over x, we see that

‖v′‖ ≤ Ce−Kt‖Ψ∓tv′‖

for all x′ ∈
� �

Σ, v′ ∈ E±x′ , and t ∈ [0,∞). This implies the condition in the

proposition.
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We've now shown that Condition 2 implies the condition in the propo-

sition. The same kind of reasoning can be used to prove the reverse implica-

tion.

When the dynamics of Σ are favorable, uniform hyperbolicity implies

much stronger conditions than it demands. Although it doesn't restrict the

way the stable lines vary from leaf to leaf, it turns out to ensure that they vary

continuously. Furthermore, although it only asks for vectors on the stable lines

to decay at least exponentially fast, it ends up persuading them to decay at a

precise exponential rate.

Lemma 11.2.B. Suppose that Σ is minimal, and the vertical �ow on
� �

Σ is

uniquely ergodic. Then the stable lines E±x of a uniformly hyperbolic local

system E vary continuously1 with respect to x ∈
� �

Σ.

Lemma 11.2.C. When Σ is minimal, and the vertical �ow on
� �

Σ is uniquely

ergodic, Condition 2 in the de�nition of uniform hyperbolicity sharpens to the

following:

2′. There is a constant Λ > 0 such that

lim
t→∞

1

t
log
‖Ψ±tx v‖
‖v‖

= −Λ

uniformly2 over all x ∈
� �

Σ and v ∈ E±x .

1To be precise, over any simple open set U in
� �

Σ, the stable lines vary continuously in EU .
For a more global perspective, you can realize E as a �at vector bundle over

� �

Σ and observe
that the stable lines are continuous sections of its projectivization.

2In case of ambiguity, see the corresponding footnote in Lemma 11.3.C.
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The constant Λ, called the Lyapunov exponent of E, is the supremum of the

set of bounding exponents for E.

Proof of Lemma 11.2.B. Suppose E is globally uniformly hyperbolic. Under

our assumptions, the vertical �ow on
� �

Σ is minimal and uniquely ergodic, satis-

fying the hypotheses of Proposition 11.4.A and Lemma 11.3.C. On each simple,

well-cut �ow box U in
↔
Σ, the Proposition tells us that E is locally uniformly

hyperbolic, and the Lemma goes on to imply that its stable lines vary con-

tinuously over
- -

U . Because Σ is minimal, the remarks in Section 9.4.2 ensure

that simple, well-cut �ow boxes cover
� �

Σ. Hence, the stable lines of E vary

continuously over
� �

Σ.

Proof of Lemma 11.2.C. Essentially the same as the proof of Proposition 11.3.C,

which can be found in Appendix C. The biggest changes are in the argument

that the angle between the stable lines is bounded away from zero. In this

version, we use Lemma 11.2.B rather than Lemma 11.3.B to show that the

stable lines are continuous, and we throw in an appeal to the continuity of the

stalkwise inner product on E .

11.3 The local version

Consider a simple, well-cut �ow box U = H × L in
↔
Σ, and let E = EU .

Let α :
- -

H →
- -

H be the �rst return map discussed in Section 9.5.2. For each

h ∈
- -

H, parallel transport along the leaf through {h}×L gives an automorphism
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Ah of E, de�ned by the commutative square

E

E{h}×L⊂U
��

Ah // E

E{αh}×L⊂U
��

E{h}×L
parallel
transport

// E{αh}×L

These automorphisms form a cocycle over α, which we'll call the parallel trans-

port cocycle. Write Anh for the parallel transport along n iterations of α, start-

ing at h. Pick an inner product on E (it doesn't matter which one).

Saying E is locally uniformly hyperbolic with respect to U means that

for every h ∈
- -

H, the dynamics of A split E into a direct sum of two one-

dimensional subspaces E+
h and E−h , called the forward-stable and backward-

stable lines, respectively. These lines are characterized by the following prop-

erties:

1. The parallel transport map Ah sends E
±
h to E±αh.

2. There is a constant K > 0 such that

‖A±nh v‖ . e−Kn‖v‖

over all h ∈
- -

H, v ∈ E±h , and n ∈ N.

This is a standard de�nition of uniform hyperbolicity for dynamical cocy-

cles [27, �2.2], specialized to the task at hand.

We can turn the decay condition around to get an equivalent growth

condition on backward parallel transport, just like we did for the global version

of uniform hyperbolicity.
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Proposition 11.3.A. For a given value of K and choice of sign, Condition 2

in the de�nition of local uniform hyperbolicity holds if and only if

eKn‖v‖ . ‖A∓nh v‖

over all h ∈
- -

H, v ∈ E±h , and n ∈ N.

Proof. Essentially the same as for Proposition 11.2.A.

When the dynamics of the �rst return map are favorable, local uni-

form hyperbolicity implies much stronger conditions than it demands, again

in analogy with the global story.

Lemma 11.3.B. Suppose α is minimal and uniquely ergodic. Then the stable

lines E±h of a uniformly hyperbolic cocycle A vary continuously with respect to

h.

Lemma 11.3.C. When α is minimal and uniquely ergodic, Condition 2 in

the de�nition of uniform hyperbolicity sharpens to the following:

2′. There is a constant Λ > 0 such that

lim
n→∞

1

n
log
‖A±nh v‖
‖v‖

= −Λ

uniformly3 over all h ∈
- -

H and v ∈ E±h .

3The uniform convergence of this limit means that, for any neighborhood Ω of the right-
hand side, making n large enough guarantees that the left-hand side will be in Ω for all h
and v.
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The constant Λ, called the Lyapunov exponent of A, is the supremum of the

set of bounding exponents for A.

These results hold in more generality than I've stated them in, and

they may be useful outside the context of this paper. I've therefore placed

their proofs in Appendix C, where they can be treated in the generality they

deserve.

The sharp decay condition in Lemma 11.3.C can be turned around in

the same way as the decay condition in the de�nition of uniformity.

Proposition 11.3.D. For a given value of Λ and choice of sign, Condition 2′

from the lemma holds if and only if

lim
n→∞

1

n
log
‖A∓nh v‖
‖v‖

= Λ

uniformly over all h ∈
- -

H and v ∈ E±x .

This result, like the previous ones, is proven in more generality in Ap-

pendix C.

11.4 The two versions are usually equivalent

Suppose the vertical �ow on
� �

Σ is minimal and uniquely ergodic. Then,

for any simple, well-cut �ow box U in
↔
Σ, global uniform hyperbolicity is equiv-

alent to local uniform hyperbolicity with respect to U . That means we can

drop the distinction between them, and just talk about uniform hyperbolicity.
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There's even a precise relationship between the local and global Lyapunov

exponents, mediated by the average return time de�ned in Section 9.5.4.

The claims above are too much for me to prove in one go, so let's start

with a fragment just strong enough to prove Lemma 11.2.C.

Proposition 11.4.A. Suppose the vertical �ow on
� �

Σ is minimal and uniquely

ergodic. If the local system E is globally uniformly hyperbolic, then it's locally

uniformly hyperbolic with respect to any simple, well-cut �ow box in
↔
Σ.

Proof. Take any simple, well-cut �ow box U in
↔
Σ. Pick a horizontal slice

Z = H × {ζ} across U , and let τ be the return time relation on Z. We'll use

all the notation and equipment of Sections 11.2 and 11.3. Because H is full,

we can �nd a continuous function on
� �

Σ which is one on Z and zero outside

of U . Using this function, we can pick the continuous inner product on the

stalks of E over
� �

Σ so that it matches the inner product on E at every point

in Z. Then, for any h ∈
- -

H and v ∈ E(h,ζ), we can say that ‖Anhv‖ = ‖Ψτnh v‖,

implicitly identifying E with E(αnh,ζ) through the stalk restriction E(αnh,ζ)∈U .

Suppose E is globally uniformly hyperbolic, with bounding exponent

K. Then there's a constant C such that

log
‖Ψ±tv‖
‖v‖

≤ −Kt+ C

for all h ∈
- -

H, v ∈ E±(h,ζ), and t ∈ [0,∞). In particular, since ±τ±nh ∈ [0,∞) for

all n ∈ N,

log
‖Ψτ±nh v‖
‖v‖

≤ −K(±τ±nh ) + C
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for all h ∈
- -

H, v ∈ E±(h,ζ), and n ∈ N.

Let E±h ⊂ E be the line that restricts to the stable line E±(h,ζ) ⊂ E(h,ζ).

We're going to show that E±h are stable lines for the parallel transport cocycle

A. It's not hard to see that Ah sends E
±
h to E±αh, so we just need to verify the

decay condition. By the inequality above,

log
‖A±nh v‖
‖v‖

≤ −
(
±τ
±n
h

n

)
Kn+ C

for all h ∈
- -

H, v ∈ E±h , and n ∈ N. Pick a positive constant σ smaller than

the average return time of Z. The limit de�ning the average return time in

Proposition 9.5.H is uniform over
- -

H, so we can �nd a new constant C ′ ≥ C

such that

log
‖A±nh v‖
‖v‖

≤ −σKn+ C ′

for all h ∈
- -

H, v ∈ E±h , and n ∈ N. Equivalently,

‖A±nh v‖ ≤ eC
′
e−σKn‖v‖

for all h ∈
- -

H, v ∈ E±h , and n ∈ N. This veri�es the decay condition, showing

that E is locally uniformly hyperbolic with respect to U .

With Lemma 11.2.C in hand, we can talk about Lyapunov exponents

in the global setting as well as the local one, opening the way to a stronger

result.

Proposition 11.4.B. Suppose the vertical �ow on
� �

Σ is minimal and uniquely

ergodic. Let U be a simple, well-cut �ow box in
↔
Σ, and let τ̄ be the average
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return time of a horizontal slice across U . The local system E is globally

uniformly hyperbolic if and only if it's locally uniformly hyperbolic with respect

to U . The local Lyapunov exponent is τ̄ times the global one.

The factor of τ̄ relating the local and global Lyapunov exponents re�ects

the fact that the local exponent is unitless, while the global one has units of

inverse time.

Proof of Proposition 11.4.B. Pick a horizontal slice Z = H × {ζ} across U ,

and let τ be the return time relation on Z. We'll keep using all the notation

and equipment from the proof of Proposition 11.4.A, including the stalkwise

inner product on E built to match the inner product on E.

In the proof of Proposition 11.4.A, we saw how a Ψ-invariant distri-

bution of lines E±x ⊂ Ex over
� �

Σ can be turned into an A-invariant distribu-

tion of lines E±h ⊂ E parameterized by
- -

H. An A-invariant line distribu-

tion E±h extends uniquely to a Ψ-invariant line distribution E±x by the reverse

process. We're going to show that E±x satis�es the global decay condition

from Lemma 11.2.C if and only if E±h satis�es the local decay condition from

Lemma 11.3.C.

Suppose

lim
n→∞

1

n
log
‖A±nh v‖
‖v‖

= −τ̄Λ

uniformly over all h ∈
- -

H and v ∈ E±h . From the de�nition in Proposition 9.5.H,

lim
n→∞

n

±τ±nh
=

1

τ̄
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uniformly over h ∈
- -

H. It follows that

lim
n→∞

1

±τ±nh
log
‖A±nh v‖
‖v‖

= −Λ

uniformly over all h ∈
- -

H and v ∈ E±h . Equivalently,

lim
n→∞

1

±τ±nh
log
‖Ψτ±nh v‖
‖v‖

= −Λ

uniformly over all h ∈
- -

H and v ∈ E±(h,ζ).

Let T be the maximum forward return time for a point on Z. Because
� �

Σ is compact, and both the parallel transport �ow and the stalkwise inner

product on E are continuous, the ratio ‖Ψ
t+δu‖
‖Ψtu‖ is bounded away from zero and

in�nity as u varies over the stalks of E and δ varies over the interval [0, T ].

Considering the limit above in light of this fact, you can deduce that

lim
n→∞

1

t
log
‖Ψ±tv‖
‖v‖

= −Λ

uniformly over all h ∈
- -

H and v ∈ E±(h,ζ).

We've now shown that the local decay condition from Lemma 11.3.C,

with Lyapunov exponent τ̄Λ, implies the global decay condition from Lemma 11.2.C,

with Lyapunov exponent Λ. The reverse argument is similar, and slightly eas-

ier, since it avoids the subtlety of extending the limit from just the times ±τ±nh
to all the times t ∈ [0,∞).

11.5 Extending over medians

Suppose that Σ has no saddle connections, and the vertical �ow on

Σ rW is uniquely ergodic. Consider a point w on a critical leaf of Σ. Every
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neighborhood of ŵ contains ←w and →
w, so we can take a colimit over neighbor-

hoods U in the diagram

E←w EU
E←
w⊂Uoo

E→
w⊂U // E→w

to get isomorphisms

E←w Eŵoo // E→w

identifying the three stalks. I'll refer to all three as Ew, writing
←
v, v̂, or →v when

I want to think of a vector v ∈ Ew as an element of one or the other.

Let's say w is on a backward-critical leaf. The left and right lanes of

this leaf are never separated by the forward vertical �ow, so Ψt←v = Ψt→v for

all v ∈ Ew as long as t ≥ 0. From the continuity of the inner product and

the compactness of
� �

Σ, you can show that the di�erence between log ‖Ψt←v‖

and log ‖Ψt→v‖ stays bounded as t varies over [0,∞).4 Thus, if E is uniformly

hyperbolic, the forward-stable lines E+
←
w
and E+

→
w
are the same, and we can refer

to both as E+
w . The backward-stable lines at

←
w and →

w, on the other hand, are

typically di�erent. If w is on a forward-critical leaf instead of a backward-

critical one, we can use the same reasoning in the other direction to de�ne

E−w .

Working in a well-cut �ow box H ×L ⊂
↔
Σ, it will be useful to describe

our extension of Ψt in terms of the �rst return map. As we did in Section 9.5.2,

4Here's a sketch of the proof. Cover
↔
Σ with a �nite collection U of simple open sets.

For each U ∈ U , the closure of
- -

U in
� �

Σ is compact. Hence, the di�erence between log ‖v‖x
and log ‖v‖y stays bounded as x and y vary over

- -

U and v varies over EU . In particular,
the di�erence between log ‖v‖←w and log ‖v‖→w is bounded over all w ∈ W ∩ πU . Now, just
combine the bounds over all U ∈ U .

152



let W ⊂ πH be the positions of the critical leaves, and partition it into the

backward- and forward-critical sets W+ and W−. By our previous reasoning,

A←w = A→w for all w ∈ W+. De�ning Aŵ to be equal to both, we can extend the

forward parallel transport cocycle A over the medians of all backward-critical

points. If E is uniformly hyperbolic, the forward-stable lines E+
←
w
and E+

→
w
of

E = EU match, so we can de�ne E+
ŵ to be equal to both. The backward cocycle

A−1 extends over the medians of all forward-critical points in the same way,

allowing us to de�ne E−ŵ for all w ∈ W−.

11.6 Constructing uniformly hyperbolic local systems

Our abelianization process can only be carried out when E is uniformly

hyperbolic, so it will be nice to have a way of constructing uniformly hyperbolic

SL2 R local systems on
↔
Σ. We might as well assume that Σ is minimal and the

vertical �ow on ΣrW is uniquely ergodic, since we'll need those conditions for

abelianization anyway. The construction of uniformly hyperbolic local systems

can then be done locally, in a well-cut �ow box H × L ⊂
↔
Σ.

Recall that α :
- -

H →
- -

H is the fractured version of an interval exchange.

The parallel transport cocycle over α is constant on each of the exchanged

intervals. I'll call this kind of cocycle an interval cocycle. A local system on
↔
Σ

is determined up to isomorphism by the parallel transport cocycle it induces

over α. Conversely, any interval cocycle over α is the parallel transport cocycle

of some local system on
↔
Σ.

To get a sense of why the claims above are true, �rst recall that Theo-
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rem 9.4.E lets us pass from local systems on
↔
Σ to ones on Σ rB. Because Σ

is minimal, we can express Σ rB as a suspension of the �rst return relation

on ι−1H [34]; you can see roughly what that means by looking at the proof of

Proposition 9.5.G. Any local system on ΣrB can be trivialized over the �ow

boxes that make up the suspension, with transition morphisms given by the

parallel transport cocycle. Conversely, the transition morphisms given by an

interval cocycle can be used to construct a local system over Σ rB.

Now all we need is a way of constructing uniformly hyperbolic SL2 R

cocycles over α :
- -

H →
- -

H. For convenience, let's have our cocycles act on R2

with the standard volume form. Let A be the intersections of the intervals

exchanged by α and the ones exchanged by α−1. Consider a pair of functions

u, v : A → R2 that assign a basis for R2 to every interval in A. We can think

of u and v as continuous functions
- -

H → R2 by composing them with the

function
- -

H → A that sends each point to its interval. An interval cocycle

over α is positive with respect to u, v if at every h ∈
- -

H it maps uh and vh

into the interior of the cone generated by uαh and vαh. A cocycle is eventually

positive if its nth iteration is positive, for some n ∈ N. Theorems 3 and 4 of

[26] show that an interval cocycle over α is uniformly hyperbolic if and only if

it's eventually positive with respect to some basis u, v : A → R2.

Using this result, you can easily construct a lot of uniformly hyperbolic

SL2 R local systems on ΣrB: just write down interval cocycles whose matrix

entries are all positive with respect to the standard basis for R2. You can also

see that uniformly hyperbolic cocycles form an open set in the space of all
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interval cocycles, which is a product of copies of SL2 R.
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Chapter 12

Abelianization in principle

12.1 Overview

Now that we have the tools we need, we can turn again to our goal of

extending abelianization to surfaces without punctures. At this point, it will

be useful to take a closer look at the original description of abelianization,

which is implicit in [11, �10], but �rst appears explicitly in [1, �4].

Our review will be simpli�ed in two important ways. First, we'll re-

strict our attention to SL2 C local systems, though Gaiotto, Hollands, Moore,

and Neitzke show how to abelianize special linear local systems of any rank.

Second, we'll only talk about abelianization using translation structures, leav-

ing aside Gaiotto, Moore, and Neitzke's more powerful and general spectral

networks.

12.1.1 Setting

Our review takes place on a translation surface Σ′ which is compact

except for a �nite set of punctures. A puncture is a region homeomorphic to

a punctured disk, with a translation structure taken from a certain family of

shapes. This de�nition of a puncture is analogous to our earlier de�nition of
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a singularity. For simplicity, let's consider a translation surface whose punc-

tures all have the simplest shape: a half-in�nite cylinder. A complete list of

puncture shapes, and an explanation of where they come from, can be found

in Appendix F.

Let's assume Σ′ has no saddle connections. In this case, if you follow a

vertical leaf in some direction, your fate is easy to describe. If you're following a

critical leaf in the critical direction, you will by de�nition fall into a singularity

after a �nite amount of time. Otherwise, you'll end up falling forever into a

puncture; in our case, that means spiraling down the long end of a half-in�nite

cylinder.

Every non-critical leaf on Σ′ is thus associated with two punctures,

not necessarily distinct: the punctures its ends spiral into. If you remove the

critical leaves W, the surface Σ′ falls apart into in�nite vertical strips of leaves

that all go into the same punctures. Each strip is bounded by four critical

leaves, joined at two singularities, as illustrated below. Gaiotto, Hollands,

Moore, and Neitzke compactify the surface by �lling in the punctures, so the

closure of each strip becomes a quadrilateral with singularities as two of its

vertices and punctures as the other two.
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Strip Compacti�ed strip

12.1.2 Framings

To abelianize an SL2 C local system E on Σ′, we �rst need to give

it a bit of extra structure, called a framing (or �ag data, in [11]). In the

abstract settings of [1] and [11], a framing is speci�ed geometrically by giving

a projectively �at section of E on a neighborhood of each puncture (a framing

can also be speci�ed analytically, as we'll recall in Section 12.1.4). For reasons

that will become apparent later, I'll refer to the sections given by the framing as

stable lines. Framings always exist, because an operator on a �nite-dimensional

complex vector space always has at least one eigenvector.

The framing gives a pair of lines in every stalk of E over a non-critical

leaf. One, which I'll call the forward-stable line, is gotten by following the

forward vertical �ow until you fall into a puncture, grabbing the stable line,

and carrying it back by parallel transport. The backward-stable line is gotten

158



in the same way by following the backward vertical �ow. The forward- and

backward-stable lines �t together into sections of E over every strip of Σ′rW.

The framing also gives a line in every stalk of E over a critical leaf�the

stable line from the puncture the critical leaf falls into. This line matches

the backward- or forward-stable lines in the strips on either side, depending

on whether the leaf is forward- or backward-critical. Hence, as you cross the

boundary between two strips, one of the stable lines stays �xed, although the

other can change.

The stable lines over two adjacent strips
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12.1.3 Abelianization

For a generic local system, the forward and backward-stable lines over

each strip are complementary, splitting E into a direct sum of C× local systems

over Σ′rW. The changes in the stable lines at the boundaries between strips

generally prevent this splitting from extending over all of Σ′. At each critical

leaf, however, there's a unique element of SL2 C that sends the stable lines on

one side to the stable lines on the other, acting by the identity on the line that

stays �xed.

By cutting E along the critical leaves, shifting it by this automorphism, and

gluing it back together, we can match up the stable lines across the boundaries

of the strips, so the splitting they give becomes global.
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Cutting and gluing to match up the stable lines

That's abelianization.

12.1.4 Abelianization without punctures

If we want to carry out the process above on a surface without punc-

tures, there are two questions we have to settle. One is conceptual: what

should play the role of the framing? If you've read Section 11, our sugges-

tive terminology may have already told you the answer. When E is uniformly

hyperbolic, it comes with complementary forward- and backward-stable lines

over every non-critical leaf, which can be used as the forward- and backward-

stable lines in the process above. The discussion in Section 11.5 amounts to

saying that one of the stable lines stays �xed when you cross a critical leaf, so

we can de�ne the automorphisms over the critical leaves just as we did before.

This approach feels di�erent than the one in [11], because the stable

lines of a uniformly hyperbolic local system are a property of the local system,
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rather than additional data. It's very reminiscent, however, of the more con-

crete approach taken in [23], where the framing comes from a specially chosen

inner product on the stalks of the local system.1 The stable line at a puncture

consists of the sections that shrink as you fall in, just as the stable lines in our

approach consist of the sections that shrink as you follow the vertical �ow.

The stable lines in [11] and [23] live at the punctures in the surface,

which lift to points on the boundary of the universal cover. Similarly, the stable

lines in our approach can be seen as living on the boundary of the universal

cover, at the points where the lifts of the vertical leaves begin and end. This

point of view is central to Bonahon and Dreyer's generalization of the shear

parameterization to higher-rank local systems on compact surfaces [42]. In

our work, though, it won't be used.

The other question is just a technical di�culty. On a compact transla-

tion surface with no saddle connections, every vertical leaf is dense, so how do

we think about shifting E along the automorphisms over the critical leaves?

How do we know the process is well-de�ned? How do we know the resulting

local system actually splits into a direct sum of C× local systems? The three

parts of this question are answered in Sections 12.3, 13, and 14, respectively.

1That inner product is the celebrated harmonic metric from the theory of Hitchin sys-
tems. See Sections 6.5 and 13.2 of [23] for more information.
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12.2 Running assumptions

The compact translation surface Σ introduced in Section 7.4.1 will,

of course, stay with us. We'll discuss the abelianization of a �xed SL2 R

local system E on
↔
Σ. Abelianization will yield a new SL2 R local system F

and a stalkwise isomorphism Υ: E → F , supported on
� �

Σ. As discussed in

Section 7.2, our results should generalize from SL2 R to SL2 C without too

much trouble.

From now on, we'll assume the following things about Σ:

• The surface Σ has no saddle connections.

• The vertical �ow on Σ rW is uniquely ergodic.

• The surface Σ satis�es the fat gap condition of Section 9.5.5.

We'll also make one crucial assumption about E :

• The local system E is uniformly hyperbolic.

If you happen to have picked a surface Σ that doesn't satisfy the required

conditions, have no fear. The remarks in Sections 9.2.1 and 9.5.5 show that

you can �x this problem with an arbitrarily small rotation of the translation

structure on Σ. In fact, if you rotate the translation structure on Σ through

a full circle, all but a measure-zero subset of the structures you pass through

will satisfy all the conditions needed. Once you've �xed a good translation

structure on Σ, you can use the results of Section 11.6 to �nd lots of uniformly

hyperbolic local systems E .
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12.3 The slithering jump

12.3.1 Overview

Working on
↔
Σ gives us a convenient way to talk about the stable lines

on either side of a critical leaf: using the identi�cation in Section 11.5, we can

compare the stable lines over the left and right lanes. The automorphisms

that match up the stable lines across the median can be encoded as a jump

in the local system E , as de�ned in Section 10. This jump contains essentially

the same information as slithering maps de�ned by Bonahon and Dreyer in

[42], so we'll call it the slithering jump. We abelianize E by warping it along

the deviation de�ned by the slithering jump. More explicitly, we abelianize E

by carrying out the following steps:

1. Compute the slithering jump, using the formulas in Section 12.3.3.

2. Turn the slithering jump into a deviation, as described in Section 10.3.

3. Warp E along the deviation, as described in Section 8.4.

We'll prove in Sections 13 and 14 that these instructions have the desired

e�ect, as long as the conditions in Section 12.2 are satis�ed.

12.3.2 De�nition

Consider a point w on a backward-critical leaf of Σ. Because Ew is two-

dimensional, and SL2 R is the group of volume-preserving linear maps, there's

a unique automorphism sw of Ew that sends E−→
w
to E−←

w
and is the identity on E+

w .
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This induces an automorphism of EU for any simple �ow box U containing ŵ. If

w is on a forward-critical leaf instead of a backward-critical one, we can de�ne

sw in the same way, with the roles of the backward-stable and forward-stable

lines reversed.

Given a divider P in a simple �ow box U , it's not hard to see that sw in-

duces the same automorphism of EU for every w ∈ P . Call this automorphism

sP . As P varies over all dividers in all simple �ow boxes, the automorphisms

sP �t together into a jump s in the local system E�the slithering jump.

12.3.3 Formulas

Assuming, for convenience, that w is on a backward-critical leaf, we

can get an explicit expression for sw by choosing representatives

u′ ∈ E−←
w

v ∈ E+
w u ∈ E−→

w
.

Observe that {v, u′} and {v, u} are ordered bases for Ew. By rescaling u′ and u,

we can ensure that both ordered bases have unit volume. The transformation

sw is then given by2

v 7→ v u 7→ u′.

2Given a pre-existing basis for Ew, you can �nd sw by solving the matrix equation[
v u′

]
= sw

[
v u

]
,

which I have found convenient for numerical work.
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A quick calculation with the volume form D gives the relation

u′ = u+D(u′, u) v,

revealing that sw is a shear transformation whose o�-diagonal part sw − 1 is

given by

v 7→ 0 u 7→ D(u′, u)v.

When w is on a forward-critical leaf, similar expressions can be obtained.

12.3.4 Flow invariance

Suppose w is on a backward-critical leaf. Because sw is de�ned in terms

of the stable lines E±w and the volume form on Ew, which are all invariant under

the vertical �ow, the diagram

Eψtw Eψtw
sψtwoo

Ew

Ψt

OO

Ewsw
oo

Ψt

OO

commutes for all positive times t. If w is on a forward-critical leaf, the same

is true for all negative times.

This �ow invariance property is not unique to the slithering jump. In

fact, it holds for all jumps, as a direct consequence of the de�ning consistency

condition. Its introduction has been delayed until now only for convenience.
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Chapter 13

Abelianization converges

13.1 Overview

To show that the slithering jump de�nes a deviation σ, as discussed in

Section 10, we need to verify that the in�nite product de�ning the automor-

phism σUyx converges for every simple �ow box U ⊂
↔
Σ and every pair of points

y, x ∈
- -

U . Because jumps commute with restrictions, it's enough to check for

convergence on a set of simple �ow boxes that cover
↔
Σ. We'll use the simple,

well-cut �ow boxes for this purpose.

Consider a simple, well-cut �ow box U = H × L in
↔
Σ, and let E = EU .

Pick an inner product on E, so we can use the asymptotic growth conditions

given by the uniform hyperbolicity of E . As usual, letW ⊂ πH be the positions

of the critical leaves, recalling that
- -

H = HrιW . Label each divider {ŵ}×L in

U by the point w ∈ W it sits above. As we did in Section 9.5.2, let B+ ⊂ W+

and B− ⊂ W− be the break points of α−1 and α, respectively.

We'll keep using the shorthand . to say that one positive function is

bounded by a constant multiple of another, as we started doing in Section 11.1.
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13.2 Bounding the jump

For any b ∈ B+, we can choose representatives

u′ ∈ E−←
b

v ∈ E+

b̂
u ∈ E−→

b

for which D(v, u′) and D(v, u) are 1 and conclude that sb − 1 is given by

v 7→ 0 u 7→ D(u′, u) v,

as described in the previous section. Applying the �ow invariance of jumps,

we see that sαnb − 1 is given by

An
b̂
v 7→ 0 An

b̂
u 7→ D(u′, u)An

b̂
v

for all positive n.

We see from the formula above that D(u′, u)An
b̂
v spans the image of

sαnb− 1. We also learn that the shortest vector sαnb− 1 sends to D(u′, u)An
b̂
v

is the orthogonal projection of An
b̂
u onto the orthogonal complement of An

b̂
v.

From this, we can calculate the operator norm of sαnb − 1:

‖sαnb − 1‖ =
|D(u′, u)|

d∠(An
b̂
v, An

b̂
u)

‖An
b̂
v‖

‖An
b̂
u‖
,

where d∠ is the function that takes two nonzero vectors in E and measures

the sine of the angle between the lines they span. Rearranging a bit, we get

‖sαnb − 1‖ =
|D(u′, u)|

d∠(An
b̂
v,An

b̂
u)

‖v‖
‖u‖
·
‖An

b̂
v‖

‖v‖
· ‖u‖
‖An

b̂
u‖
.

Because E is uniformly hyperbolic, the �rst-return cocycle A is uniformly hy-

perbolic too, as a consequence of Proposition 11.4.B. Pick a bounding exponent

168



K > 0 for A. The stable lines of A vary continuously (Lemma 11.3.B), and
- -

H

is compact (Proposition 9.3.F), so d∠(An
b̂
v, An

b̂
u) is bounded away from zero.

That and the uniform hyperbolicity of A tell us that

‖sαnb − 1‖ . e−2Kn

over all b ∈ B+ and n ∈ N.

Applying the same reasoning in the other direction, we see more gen-

erally that

‖sα±nb − 1‖ . e−2Kn

over all b ∈ B± and n ∈ N.

13.3 Showing its product converges

Recall that σ is the deviation we're hoping will be de�ned by the slith-

ering jump. Pick any two points y, x ∈
- -

U . Since we're labeling the dividers in

U by points of W , we can think of (y | x)U as a subset of W , and write

σUyx =
∏

w∈(y|x)U

sw.

Proposition D.6.A in Appendix D tells us that this product converges if the

sum

Cyx =
∑

w∈(y|x)U

‖sw − 1‖

does. (I've given the sum a name because its value, as a function of y and x,

will be useful to us later.)
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Let's say every point in (y | x)U takes at least n iterations of α or α−1

to hit a break point. Then the set

⋃
m≥n

[
{αmb : b ∈ B+} ∪ {α−mb : b ∈ B−}

]
contains all the points in (y | x)U , so

Cyx ≤
∑
m≥n

[∑
b∈B+

‖sαmb − 1‖+
∑
b∈B−

‖sα−mb − 1‖

]
.

Applying the bound from the previous section, we see that

Cyx .
∑
m≥n

[∑
b∈B+

e−2Km +
∑
b∈B−

e−2Km

]
.
∑
m≥n

e−2Km.

Hence, the sum de�ning Cyx converges.

Summing the geometric series, we learn that Cyx . e−2Kn. But n is the

grade of the highest point in (y | x)U , so e−2Kn is the distance between y and x

in the division metric with steepness e2K ! The implied constant multiple in the

bound above doesn't depend on y and x, so we've proven that Cyx . d(y, x)

over all y, x ∈
- -

U .
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Chapter 14

Abelianization delivers

14.1 Overview

Now we know the slithering jump de�nes a deviation σ, so we can

warp E along this deviation to produce a new local system F and a stalkwise

isomorphism Υ: E → F , supported on
� �

Σ. By design, Υ matches up the stable

lines of E across the medians of
↔
Σ, sending corresponding stable lines in E←w

and E→w to the same line in Fŵ for all w ∈ W. To show that F splits into a

direct sum of two R× bundles, we need to prove that Υ matches up the stable

lines on larger scales. For any simple �ow box U ⊂
↔
Σ, we have to show that Υ

sends the corresponding stable lines in all the stalks of E over
- -

U to the stalk

restrictions of a single line in FU . Because of the way deviations restrict, it's

enough to prove the desired result on a set of simple �ow boxes that cover
↔
Σ,

just like in Section 13. Once again, we'll use the simple, well-cut �ow boxes

for this purpose.

We'll keep all the notation from Section 13, and add to it the shorthand

F = FU . To make the geometry facts from Appendix E available, scale the

inner product on E so that the unit square has unit volume. To make the

results from Sections 13 and 9.3.5 available, pick a bounding exponent K > 0
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for A, and give
- -

H the division metric with steepness e2K .

The argument we're about to do is somewhat technical, so let's �rst

recall how it works over a punctured surface Σ′, where it's so straightforward

that we barely mentioned it earlier. Think of the stable lines of E as lines in

E parameterized by the points of
- -

U , and think of their images in F under

Υ as lines in F . The stable lines are constant in E away from the critical

leaves of Σ′, and the slithering jump only disturbs E at the critical leaves.

Hence, the images under Υ of the stable lines are constant in F away from

the critical leaves. By design, the images of the stable lines under Υ are also

constant across the critical leaves, so they must be constant everywhere. In

other words, Υ matches up the images of the stable lines in F all across
- -

U .

On the unpunctured surface Σ, it's hard to get away from the critical

leaves, which �ll the surface densely. The property of being constant away from

the critical leaves thus has no clear meaning, and we'll have to replace it with

something else if we want to reproduce the argument above. Corollary 9.3.L

and the discussion at the end of Section 9.5.5 suggest that in our scenario,

Hölder continuity might be a viable substitute. Most of the work below is

concerned with proving that the stable lines and their images under Υ vary

Hölder continuously over
- -

U .

14.2 The stable distributions are Hölder

Let's say the distance between two lines in E is the sine of the angle

between them. This puts a metric on the projective space PE, which I'll call
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the sine metric. I'll write d∠(u, v) to mean the distance in PE between the

lines generated by u, v ∈ E.

Let's collect all the forward- and backward-stable lines over
- -

H into a

pair of functions E± :
- -

H → PE, the stable distributions. Our regularity condi-

tions on Σ and E guarantee that E± are Hölder. We can see this by applying a

recent theorem of Araújo, Bufetov, and Filip to the parallel transport cocycle

over
- -

H [43, Theorem A]. Once we check that its conditions are satis�ed, the

theorem will tell us that E± are Hölder on any appropriate regular block in
- -

H.

We'll then show that all of
- -

H is an appropriate regular block.

14.2.1 The conditions of the theorem are satis�ed

As we discussed in Section 9.5.2, the �rst return map on
- -

H is the

fractured version of an interval exchange on πH, with break points ιB−. Re-

moving the dividers over the break points from U turns it into a disjoint union

of full �ow boxes H1 × L, . . . , Hk × L. Each of these �ow boxes stays in one

piece as the vertical �ow carries it around
↔
Σ and back to U . As a result, the

parallel transport cocycle A :
- -

H → AutE is constant on each of the intervals
- -

H1, . . . ,
- -

Hk, which form an open partition of
- -

H.

It immediately follows that log ‖A‖ and log ‖A−1‖ are integrable with

respect to the ergodic probability measure on
- -

H. Because the intervals
- -

H1, . . . ,
- -

Hk

are full, distances between points in di�erent intervals are bounded away from

zero, so the fact that A is constant on each interval also implies that A is

Hölder.
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We saw in Section 9.3.5 that the fractured version of an interval ex-

change is Lipschitz with respect to the division metric it de�nes. The �rst

return map on
- -

H is therefore Lipschitz.

14.2.2 The stable lines are Hölder on appropriate regular blocks

Lyapunov exponents play a role in the de�nition of a regular block, so

we'll take advantage of Lemma 11.3.C, which gives us a cheap way to talk about

the Lyapunov exponents of uniformly hyperbolic SL2 R local systems. The

limit we've been calling the �Lyapunov exponent� is really the top Lyapunov

exponent of A, and we'll refer to it that way here for consistency with the

language of [43].

Regular blocks are parameterized by two real numbers ε > 0 and ` > 1.

Araújo, Bufetov, and Filip take `, for convenience, to be an integer, and the

same could be done here as well. Their proof of Theorem A, found in [43, �3.2],

shows that E± are Hölder on any regular block for which ε is small enough and

` is large enough. Referring back to [43, �2.2], where the relevant thresholds

are de�ned, we see that ε must be smaller than a tenth of the minimum gap

between the Lyapunov exponents of A, and ` must be large enough for the

regular block to have positive measure.

In our case, the Lyapunov exponents of A are ±Λ, so the minimum gap

is 2Λ. In the next section, we'll choose ε to be less than 1
5
Λ, and we'll make

` large enough for the resulting regular block to be the whole of
- -

H, which of

course has measure one.
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14.2.3 The whole interval is an appropriate regular block

In our context, the regular block with parameters ` ∈ (1,∞) and ε ∈

(0, 1
5
Λ) consists of the points h ∈

- -

H at which

1
`
e(−Λ−ε)n−ε|m|‖v‖ ≤ ‖A±nαmhv‖ ≤ `e(−Λ+ε)n+ε|m|‖v‖

1
`
e(Λ−ε)n−ε|m|‖v‖ ≤ ‖A∓nαmhv‖ ≤ `e(Λ+ε)n+ε|m|‖v‖

for all m ∈ Z, v ∈ E±αmh, and n ≥ 0, and√
1− d∠(E+

αnh, E
−
αnh)

2 ≤ 1− 1
`
e−ε|n|

for all n ∈ Z [43, �2.2]. We'll see that, given any ε, we can choose ` large

enough to make both conditions hold for all h ∈
- -

H.

To see that the norm condition is satis�ed everywhere for large enough

`, �rst note that it's enough to show that

1
`
e(−Λ−ε)n‖v‖ ≤ ‖A±nαmhv‖ ≤ `e(−Λ+ε)n‖v‖

1
`
e(Λ−ε)n‖v‖ ≤ ‖A∓nαmhv‖ ≤ `e(Λ+ε)n‖v‖

for all m ∈ Z, v ∈ E±αmh, and n ≥ 0. Now m plays no role other than to move

our starting point, so really we only need to show that

1
`
e(−Λ−ε)n‖v‖ ≤ ‖A±nh v‖ ≤ `e(−Λ+ε)n‖v‖

1
`
e(Λ−ε)n‖v‖ ≤ ‖A∓nh v‖ ≤ `e(Λ+ε)n‖v‖

for all v ∈ E±h and n ≥ 0. Equivalently,

−Λ−
(
ε+

log `

n

)
≤ 1

n
log
‖A±nh v‖
‖v‖

≤ −Λ +

(
ε+

log `

n

)
Λ−

(
ε+

log `

n

)
≤ 1

n
log
‖A∓nh v‖
‖v‖

≤ Λ +

(
ε+

log `

n

)

175



for all v ∈ E±h and n ≥ 0. The uniform convergence in Lemma 11.3.C and

Proposition 11.3.D guarantees that

−Λ− ε ≤ 1

n
log
‖A±nh v‖
‖v‖

≤ −Λ + ε

Λ− ε ≤ 1

n
log
‖A∓nh v‖
‖v‖

≤ Λ + ε

for large enough n, and we can always choose ` large enough to contain the

transient behavior at small n.

To show that the angle condition is satis�ed for large enough `, it's

enough to prove that d∠(E+
αnh, E

−
αnh) is bounded away from zero. This holds

because
- -

H is compact (Proposition 9.3.F), the stable lines vary continuously

(Lemma 11.3.B), and the forward- and backward-stable lines can never coin-

cide.

14.3 The stable distributions after abelianization

Recall that warping E along σ has given us a new local system F and a

stalkwise isomorphism Υ: E → F , supported on
� �

Σ. We're using the shorthand

F = FU . Because U is simple, the stalk restrictions of E and F identify Ep

with E and Fp with F for every p ∈
- -

U . We can thus view Υ as a map from
- -

U

to SL(E,F ). Because σ comes from a jump, Υ is constant along the vertical

leaves of
� �

Σ, so in fact we can treat Υ as a map from
- -

H to SL(E,F ). This

section takes place entirely within the �ow box U , so we'll abbreviate σUyx as

σyx and (y | x)U as (y | x).
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Just as parallel transport in E along the vertical �ow gave the linear

cocycle A :
- -

H → SL(E), parallel transport in F along the vertical �ow gives a

linear cocycle
- -

H → SL(F ). De�ne F±h ⊂ F as the images of the lines E±h under

Υh. Like E±, the distributions F± are invariant under the parallel transport

cocycle.1 Let's put an inner product on F by declaring Υa, for some arbitrary

a ∈
- -

H, to be an isometry. We then get a sine metric on PF , and we can ask

whether the functions F± are Hölder.2

Recalling that Υh = Υaσah, we see that F
±
h = ΥaσahE

±
h for all h ∈

- -

H.

Since Υa is, by de�nition, an isometry,

d∠(F±y , F
±
x ) = d∠(σayE

±
y , σaxE

±
x )

for all y, x ∈
- -

H. We might therefore be able to prove that F± are Hölder by

looking at how σU a�ects distances in PE.

14.4 The abelianized stable distributions are still Hölder

14.4.1 The deviation between nearby points is close to the identity

Remember the bound Cyx we used in Section 13.3? We'll soon see

that ‖σyx − 1‖ . Cyx over all y, x ∈
- -

H. Combining this with the bound

1As a matter of fact, F should be uniformly hyperbolic, with F± as its stable distribu-
tions. We don't need to know that, though.

2In light of the previous footnote, you might hope to show that F± are Hölder the same
way we showed that E± are Hölder, by applying the theorem of Araújo, Bufetov, and Filip.
The di�culty in this approach is that we don't know much about the parallel transport
cocycle for F , making it hard to check the conditions of the theorem.
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Cyx . d(y, x) proven at the end of Section 13.3, we'll learn that

‖σyx − 1‖ . d(y, x)

over all y, x ∈
- -

H.

Let's get down to business. Recall that σyx is the ordered product

∏
w∈(y|x)

sw.

For any w′ ∈ W , observe that

‖σyx − 1‖ =

∥∥∥∥∥∥
 ∏
w∈(y|x)

sw

 − 1

∥∥∥∥∥∥
=

∥∥∥∥∥∥
 ∏
w∈(y|x)rw′

sw

 +

 ∏
w∈(y|w′)

sw

 (sw′ − 1)

 ∏
w∈(w′|x)

sw

 − 1

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
 ∏
w∈(y|x)rw′

sw

− 1

∥∥∥∥∥∥ + ‖sw′ − 1‖
∏

w∈(y|x)rw′
‖sw‖

≤

∥∥∥∥∥∥
 ∏
w∈(y|x)rw′

sw

− 1

∥∥∥∥∥∥ + ‖sw′ − 1‖
∏

w∈(y|x)

‖sw‖.

Recalling the de�nition of Cyx, we see that
∏

w∈(y|x) ‖sw‖ ≤ expCyx by Propo-

sition D.6.C. Thus,

‖σyx − 1‖ ≤

∥∥∥∥∥∥
 ∏
w∈(y|x)rw′

sw

− 1

∥∥∥∥∥∥ + ‖sw′ − 1‖ expCyx.
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By repeating the argument above, we see that for any �nite subset S

of (y | x),

‖σyx − 1‖ ≤

∥∥∥∥∥∥
 ∏
w∈(y|x)rS

sw

− 1

∥∥∥∥∥∥ +

(∑
w∈S

‖sw − 1‖

)
expCyx.

The convergence of the product
∏

w∈(y|x) sw tells us that as S grows, the �rst

term of the inequality above goes to zero, leaving us with the bound

‖σyx − 1‖ ≤

 ∑
w∈(y|x)

‖sw − 1‖

 expCyx

= Cyx expCyx.

Since Cyx . d(y, x), and distances in
- -

H are bounded, we can bound expCyx by

a constant. Hence, ‖σyx − 1‖ . Cyx. It follows, as explained at the beginning

of the section, that

‖σyx − 1‖ . d(y, x)

over all y, x ∈
- -

H.

14.4.2 The abelianized stable distributions are Hölder

We know from Section 14.2 that E± are Hölder, say with exponent ν.

Because distances in
- -

H are bounded, Hölder continuity with a given exponent

implies Hölder continuity with all lower exponents, so we might as well assume

for convenience that ν ≤ 1. For any y, x ∈
- -

H, as discussed in Section 14.3,

d∠(F±y , F
±
x ) = d∠(σayE

±
y , σaxE

±
x )

= d∠(σayE
±
y , σayσyxE

±
x ).
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Proposition E.D gives

d∠(F±y , F
±
x ) ≤ ‖σya‖2 d∠(E±y , σyxE

±
x ).

Because distances in
- -

H are bounded, the result of the previous section ensures

that ‖σya‖ is bounded as well. Therefore,

d∠(F±y , F
±
x ) . d∠(E±y , σyxE

±
x )

≤ d∠(E±y , E
±
x ) + d∠(E±x , σyxE

±
x )

over all y, x ∈
- -

H. Proposition E.C combines with the bound from the previous

section to show that

d∠(E±x , σyxE
±
x ) ≤ ‖σyx − 1‖

. d(y, x).

Using the fact that distances in
- -

H are bounded and the assumption that ν ≤ 1,

we conclude that

d∠(E±x , σyxE
±
x ) . d(y, x)ν .

Meanwhile, the Hölder continuity of E± gives

d∠(E±y , E
±
x ) . d(y, x)ν .

Therefore, altogether,

d∠(F±y , F
±
x ) . d(y, x)ν

over all y, x ∈
- -

H. In other words, the abelianized stable distributions F± are

Hölder.
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14.5 The abelianized stable distributions are constant

By construction, the values of the functions F± :
- -

H → PF match at

adjacent edge points, as de�ned before Theorem 9.3.K. Since we just saw that

F± are Hölder, and we're assuming the translation structure on Σ satis�es

the fat gap condition of Section 9.5.5, Corollary 9.3.L tells us that F± are

constant.

Globally, this means the stable distributions F± are constant with re-

spect to the local system F , so they're actually R× local subsystems of F . In

fact, F is the direct sum of the R× local systems F+ and F−.
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Chapter 15

A quick example

15.1 Overview

Now that we've proven abelianization works, let's see an example of

what it does. The calculations in this section aren't rigorous, but I'll try to

indicate what it would take to make them rigorous. Since abelianization is

expected to work for SL2 C cocycles, and in this case it does, we'll work over

C rather than R.

15.2 Setting the scene

15.2.1 A translation surface

Construct a torus with a translation structure by gluing the opposite

sides of a parallelogram, inserting a singularity of cone angle 2π at the corner.

For concreteness, let's �x the base of the parallelogram to be horizontal with

length one, and set the height to be one as well. This leaves only one degree

of freedom in the translation structure: the slope parameter m labeled in the

drawing below.
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m

B

A

The torus has one forward-critical leaf and one backward-critical leaf. The

drawing follows the critical leaves a little ways out from the singularity, so

you can get an idea of how they wind around the surface. We'll assume m is

irrational, ensuring that neither critical leaf is a saddle connection.

The details of the computation depend on which way the parallelogram

is leaning�a �rst hint of cluster-like behavior. To match the drawings, we'll

show the work for the left-leaning case.

15.2.2 A variety of local systems

An SL2 C local system on the torus minus the singularity is speci�ed, up

to isomorphism, by the group elements A,B ∈ SL2 C that describe the parallel

transport across the sides of the parallelogram, as shown in the drawing. Any

values of A and B are possible.

Let's restrict ourselves to the dense open subset of the character va-

riety in which B has distinct eigenvalues. In this region, we can hit every
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isomorphism class using group elements of the form

A =

[
µ ρ
ρ ν

]
B =

[
λ ·
· 1

λ

]
,

where |λ| < 1. Restricting further to the dense open subset in which µν /∈

(−∞, 1], we can make ρ a holomorphic function of µ and ν by noting that

detA = 1 and imposing the additional constraint Re ρ > 0. This gives a

holomorphic parameterization of a dense open subset of the character variety

by the three variables µ, ν, and λ, which vary over the domain

µν /∈ (−∞, 1] |λ| < 1.

15.2.3 Reduction to an interval exchange

Let Z be the horizontal segment running across the middle of the paral-

lelogram. Under the vertical �ow, Z sweeps out a simple �ow box that covers

almost the whole torus. The vertical edge of the �ow box is non-critical, so

we can compute the abelianized local system just by looking at the parallel

transport cocycle over Z. For this purpose, we'll mostly carry on with the

notation from Section 13.

Z

Identify Z with (−1, 0). The �rst return relation α has a single break

point, b = −m
2
. Its inverse α−1 has break point c = −1 + m

2
. Because Z
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isn't well-cut, the break points aren't the only points where α and α−1 return

nothing: −m and −1 +m vanish under the actions of α and α−1 as well. We

aren't calling the latter break points because they don't lie on critical leaves.

The forward parallel transport cocycle is constant on the intervals

(
−1,−m

) (
−m,−m

2

) (
−m

2
, 0
)
,

where it has the values

B A−1B BA−1,

respectively.

15.3 Abelianization

15.3.1 Approximation

There isn't an obvious way to compute the abelianized local system

exactly, but there is a pretty obvious way to approximate it when m is tiny.

As before, we'll show the work for the left-leaning case.

15.3.2 The slithering jumps at the break points

As m approaches zero, the sequence of SL2 C elements generated by

repeatedly applying the forward parallel transport cocycle to
→
b approaches

. . . B,B,B,B,BA−1,

in the sense that it takes more and more iterations to deviate from this se-

quence. Using the discussion after Lemma 2.2 of [27], you can deduce from
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this that the forward-stable line E+
→
b
approaches the line spanned by

A

[
1
0

]
=

[
µ
ρ

]
∼
[

1
ρ
µ

]
Similarly, applying the forward parallel transport cocycle to

←
b yields a sequence

approaching

. . . B,B,B,B,A−1B

as m goes to zero, so E+
←
b
approaches the span of

B−1A

[
1
0

]
=

[
1
λ
µ

λ ρ

]
∼
[

1
λ2 ρ

µ

]
.

On the other hand, applying the backward parallel transport cocycle to b yields

a sequence approaching

. . . B−1, B−1, B−1, B−1, B−1,

so E−b goes to the span of [
0
1

]
.

The slithering jump sb therefore approaches[
1 ·

(λ2 − 1) ρ
µ

1

]
as m goes to zero. A similar computation shows that sc approaches[

1 (λ2 − 1) ρ
µ

· 1

]
in the same limit.
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15.3.3 The slithering jumps at all the critical points

The slithering jumps at all the critical points can be deduced from

the ones at the break points using the �ow-invariance property discussed in

Section 12.3.4. For each n ≥ 0, the jump sα−nb at the forward-critical point

α−nb goes to

B−nsbB
n =

[
1 ·

λ2n(λ2 − 1) ρ
µ

1

]
as m goes to zero. The jump sαnc at the backward-critical point αnc goes to

BnscB
−n =

[
1 λ2n(λ2 − 1) ρ

µ

· 1

]
in the same limit.

15.3.4 The slithering deviation

Looking back at the drawing in Section 15.2.1, you can see that forward-

critical points α−nb march from right to left across Z as n grows, while the

backward-critical points αnc march from left to right. As m goes to zero, it

takes longer and longer for the parades to meet at −1
2
∈ Z. It seems clear

that the bound from Section 13.2 will hold more or less uniformly as m goes

to zero, so we shouldn't have to worry too much about the later jumps. We

can therefore compute as though the parades never meet.

In this approximation, the deviation to −1
2
from 0 is given by the

product

· · · sα−3b sα−2b sα−1b sb,
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and the deviation to −1 from −1
2
is given by

sc sα1c sα2c sα3c · · · .

As m goes to zero, the jumps sα−nb go to commuting shears, so you should be

able to show that their product approaches[
1 ·
ρ
µ
(λ2 − 1)

∑∞
n=0 λ

2n 1

]
=

[
1 ·
− ρ
µ

1

]
Similarly, the product of the jumps sαnc should approach[

1 ρ
µ
(λ2 − 1)

∑∞
n=0 λ

2n

· 1

]
=

[
1 − ρ

µ

· 1

]
Now we know enough to approximate the holonomy Aab of the abelian-

ized local system around the loop that starts at −1
2
, runs left to 0, wraps

around to 1, and runs left back to −1
2
. As m goes to zero, this holonomy

approaches [
1 ·
− ρ
µ

1

]
A

[
1 − ρ

µ

· 1

]
=

[
µ ·
· 1

µ

]
.

As expected, the abelianized holonomy preserves the stable lines E+
−1/2 and

E−−1/2, which approach [
1
0

]
and

[
0
1

]
as m goes to zero. In the limit, abelianization has no e�ect on the holonomy

around a vertical loop, so Bab goes to B as m goes to zero.

15.4 Spectral coordinates

We've learned that on the translation torus constructed from a left-

leaning parallelogram with slope parameter m, the abelianization of the local
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system

A =

[
µ ρ
ρ ν

]
B =

[
λ ·
· 1

λ

]
approaches

Aab =

[
µ ·
· 1

µ

]
Bab =

[
λ ·
· 1

λ

]
as m goes to zero. For a right-leaning parallelogram, the analogous calculation

shows that the abelianization approaches

Aab =

[
1
ν
·

· ν

]
Bab =

[
λ ·
· 1

λ

]
as m goes to zero.

As expected, the abelianized local system splits into a pair of C× local

systems comprising the forward- and backward-stable lines of the original.

Restricing our attention to the forward-stable local systems, we get the limiting

holonomies

A+
ab = µ B+

ab = λ

in the left-leaning case, and

A+
ab = 1

ν
B+

ab = λ

in the right-leaning case. Looking at both limits, we can recover the holomor-

phic coordinates µ, ν, and λ that we've been using to parameterize a dense

open subset of the SL2 C character variety.
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Chapter 16

Future directions

16.1 Twisted character varieties

In this section, it will be convenient to use the language of twisted

character varieties, which we encountered brie�y in Section 3.3. I'll only give

the barest sketch of how they look; a more detailed picture can be found in [44].

The twisted SL2 C character variety of a compact Riemann surface C,

which I'll denote MC, is the space of irreducible �at SL2 C vector bundles

over the bundle of tangent directions UC. The topological type of a bundle in

MC is determined by its holonomy around the �ber of UC, which turns out

to always be a square root of unity times the identity [45]. Hence, classifying

bundles by topological type splits the character variety into two pieces,M1C

andM−1C, labeled by the square roots of unity.

16.2 Abelianization should be more

The main result of this paper has been to show that, for a generic

compact translation surface Σ, abelianization gives a well-de�ned map from

an open subspace of the SL2 R local systems on Σ r B to the space of R×

local systems on Σ r B. In the previously studied case of abelianization
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on a punctured half-translation surface, however, the mere existence of the

abelianization map is the least interesting of its properties. Many of the special

features of the abelianization map are expected to persist for compact half-

translation surfaces.

Let's review the setting for this version of abelianization. Since we're

speculating anyway, let's assume the results of this paper can be extended to

SL2 C local systems, as discussed in Section 7.2. Suppose Σ is the translation

double cover of a compact half-translation surface C. Pushback of twisted

local systems along the covering Σ → C gives a map from M−1C to M1Σ.

Composing this map with the abelianization process, we get an abelianization

map that sends twisted SL2 C local systems on C to C× local systems on

Σ rB. The abelianized local systems turn out to have holonomy −1 around

each singularity, so abelianization actually sends twisted SL2 C local systems

on C to twisted C× local systems on Σ.

16.3 It should be a Darboux chart on M−1C

When the compact translation surface C is replaced with a punctured

half-translation surface C ′, Gaiotto, Moore, and Neitzke showed that the

abelianization map is a symplectomorphism onto its image [11, �� 10.4 and

10.8]. It can therefore be seen as a Darboux coordinate system on the dense

open subset ofM−1C
′ where it's de�ned. This is the spectral coordinate sys-

tem discussed in [1, �4.4]. In the compact case, we've only managed to de�ne

abelianization for uniformly hyperbolic local systems, so its domain is no longer
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expected to be dense. Nonetheless, it should still be a symplectomorphism onto

its image.

16.4 It may be a generalized cluster coordinate chart

In the punctured case, Gaiotto, Moore, and Neitzke showed that the

spectral coordinates are actually Fock-Goncharov coordinates, as we men-

tioned in Section 6.3.3. In particular, the spectral coordinate systems produced

by rotating the half-translation structure of C ′ �t together into a cluster alge-

bra. In the compact case, rotationally related spectral coordinate systems also

appear to �t together into something bigger, but that something doesn't seem

to be a cluster algebra: it has mutation-like behavior, but no readily identi-

�able clusters. Some preliminary investigations of this structure are brie�y

reported in [46].

16.5 It should be holomorphic

On a punctured half-translation surface, the source and target of the

abelianization map are not only symplectic manifolds, but holomorphic sym-

plectic manifolds, and abelianization is a holomorphic symplectomorphism [11,

�10.4]. The holomorphicity of the abelianization map isn't special to half-

translation surfaces, and it appears to persist in the compact case. Here's a

sketch of an argument that the abelianization map for a compact translation

surface Σ is holomorphic. Note that Σ doesn't have to be the translation

double cover of a half-translation surface.
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An easy way to see the complex structure on the moduli space of SL2 C

local systems on Σ rB is to pick a well-cut �ow box in
↔
Σ. As we observed in

Section 11.6, a local system on Σ rB is described up to isomorphism by an

interval cocycle over the �ow box's �rst return relation α, and interval cocycles

cut across all the isomorphism classes. An interval cocycle over α is just an

element A of (SL2 C)A
+
, where A+ is the set of intervals exchanged by α. The

complex structure of this space matches the one on the space of local systems.

Suppose A is uniformly hyperbolic. As in Section 12.3, write the slith-

ering jump for A at a critical point w of α as sw ∈ SL2 C. The deviation σ

that abelianizes A is given by ordered products of sw over the critical points.

The Lyapunov exponent of A can be bounded when A varies over a small

enough region [27, proof of Proposition 2.6], so the bound on the size of sw in

Section 13.2 should be uniform with respect to A. The products that de�ne

σ should therefore converge uniformly with respect to A. If this works, the

task of showing that σ varies holomorphically with A is reduced to the task of

showing that sw does for each critical point w.

Say w is a backward-critical point. The formulas in Section 12.3 make it

clear that sw depends holomorphically on the stable lines E−←
w
, E+

w , E
−
→
w
∈ PC2.

The line E±h is approximated by the line most contracted by A±nh when n

is large [27, proof of Proposition 2.1]. In fact, the convergence of the most

contracted line to the stable line is uniform with respect to A [27, discussion

around Equation 2.6], so we just need to show that the most contracted line

depends holomorphically on A.
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Using the standard inner product on C2, we can observe that the line

most contracted by A±nh lies in the eigenspace of (A±nh )†(A±nh ) with the smallest

eigenvalue. Since A is uniformly hyperbolic, it should be safe to assume that

(A±nh )†(A±nh ) has distinct eigenvalues for large enough n, so the most contracted

line is just the eigenline with the smallest eigenvalue. The relationship between

an operator and its eigenlines is holomorphic, and the map that sends A to

A±nh is too, so we should be done.
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Appendix A

Technical tools for warping local systems

A.1 The lily pad lemma

Lemma A.1.A. Suppose U is an open cover of a connected space. For any

two points a and b in the space, there is a �nite sequence of elements of U

in which the �rst element contains a, the last element contains b, and every

element intersects the next one.

Proof. Let's call a �nite sequence of elements of U a lily path if every element

intersects the next one. We'll say two points a and b can be �connected by a

lily path� if there's a lily path whose �rst element contains a and whose last

element contains b.

A lily path connecting a to b also connects a to every other point in

the last element of the path, which is an open neighborhood of b. Hence, the

set of points that can be connected to a by a lily path is open.

On the other hand, suppose b can't be connected to a by a lily path.

Since U is a cover, there's some U ∈ U containing b. If a point in U could be

connected to a by a lily path, adding U to the end of that path would give a

lily path connecting a to b. Hence, no point in U can be connected to a by a
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lily path. Therefore, the set of points that can't be connected to a by a lily

path is also open.

A.2 Collapsing downward-directed colimits

Proposition A.2.A. Suppose Λ is a downward-directed set, C is some cate-

gory, and F : Λ → C is a diagram in which all the arrows are isomorphisms.

Then F has a colimit, and the de�ning arrows from the diagram to its colimit

are isomorphisms.

Proof. Pick any object s of Λ. For any other object t, we can get an isomor-

phism ft : F (t) → F (s) by picking a common lower bound ť of s and t and

taking the composition F (ť← s)−1F (ť← t). The isomorphism we get doesn't

depend on our choice of ť.

Now, pick any object c of C. Suppose that for each object t of Λ, we

have an arrow φt : F (t)→ c, and these arrows commute with the arrows of the

diagram F . Observing that

φsft = φsF (ť← s)−1F (ť← t)

= φťF (ť← t)

= φt,

we see that the object F (s), equipped with the isomorphisms ft : F (t)→ F (s),

is a colimit of the diagram F .
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Appendix B

Relational dynamics

Some dynamical systems, including vertical �ows on singular trans-

lation surfaces, interval exchanges, and even the humble doubling map, are

discontinuous if you insist on de�ning them at every point. (These particular

examples are discussed in Sections 9.2.1 and 9.3.2.) You can recover a kind of

continuity, however, if you describe the dynamics using relations rather than

maps, allowing points to get lost as they fall into singularities, breaks between

intervals, or whatever.

Consider a relation φ between topological spaces Y and X. De�ne

φA = {y ∈ Y : y φ a for some a ∈ A}

Bφ = {x ∈ X : b φ x for some b ∈ B}

for subsets A ⊂ X and B ⊂ Y . For convenience, we'll relax the distinction

between singletons and points, denoting φ{x}, for example, by φx. If φ is a

function Y ← X, then φx ∈ Y is the value of φ at a point x ∈ X, and Bφ ⊂ X

is the preimage of a subset B ⊂ Y .

De�ne φ to be injective if yφ is a singleton for all y ∈ Y , coinjective

if φx is a singleton for all x ∈ X, and biinjective if it's both injective and
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coinjective. In less baroque language, a coinjective relation is just a partially

de�ned function.

De�ne φ to be continuous if V φ is open whenever V ⊂ Y is open,

cocontinuous if φU is open whenever U ⊂ X is open, and bicontinuous if it's

both continuous and cocontinuous. If φ is a function, �continuous� means

what it usually means, and �cocontinuous� means �open.� Local systems can

be pushed forward and backward along a bicontinuous relation.

A �ow by bicontinuous relations on X can be de�ned as a relation ψ

between X and R×X with the following properties:

• As a whole, ψ is continuous and coinjective.

• For all t ∈ R, the relation ψt = ψ (t, ) is bicontinuous and biinjective.

• For all t, s ∈ R, we have ψtψs = ψt+s.

This kind of partially de�ned �ow acts a lot like an ordinary �ow by home-

omorphisms. In particular, if X carries a local system E , it gives a parallel

transport morphism EψtU ← EU for every open subset U of X and every time

t.
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Appendix C

Uniform hyperbolicity and Lyapunov exponents

Let α : X → X be a homeomorphism of a compact, metrizable space.

Consider a dynamical cocycle over α speci�ed by a continuous map A : X →

SL(E), where E is the Euclidean plane as characterized in Section E. In this

more general setting, the local uniform hyperbolicity condition discussed in

Section 11.3 is just called uniform hyperbolicity [27, �2.2]. Its de�nition carries

over word for word, substituting X for
- -

H. The terminology of stable lines and

bounding exponents introduced in Section 11.3 will be used here as well.

The purpose of this appendix is to prove Lemma 11.3.B, Lemma 11.3.C,

and Proposition 11.3.D from Section 11.3 in the general setting described

above. Like the de�nition of uniform hyperbolicity, the statements of these

lemmas carry over word for word, substituting X for
- -

H. Condition 2′ from

Lemma 11.3.C is stronger than Condition 2 in the de�nition of uniform hyper-

bolicity. It can therefore be substituted in to give an alternate characterization

of uniform hyperbolicity for cocycles over a minimal, uniquely ergodic dynam-

ical system.

We get the �rst lemma by stringing together a few results from the

literature.
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Proof of Lemma 11.3.B. SupposeA is uniformly hyperbolic. By Proposition 2.1

of [27], there's a constant ∆ > 1 such that ∆n . ‖Anx‖ for all x ∈ X, with n

varying over N. The constant multiple implied in this bound can be made the

same for all x ∈ X. Corollary 4.4 of [28] then gives us a constant Λ > 0 such

that1

lim
n→∞

1

n
log ‖Anx‖ = Λ

uniformly over all x ∈ X. Applying Theorem 3 of [28], we learn that E±x vary

continuously with respect to x.

The proof of the second lemma is more involved. We start by proving

Proposition 11.3.D, which turns around the decay condition from Lemma 11.3.C

to get an equivalent growth condition on backward parallel transport. As you

might expect from the discussion before the analogous Proposition 11.2.A, our

argument depends crucially on the uniform convergence of the limit in the

decay condition.

Proof of Proposition 11.3.D. Suppose Condition 2′ holds. Then, given any

neighborhood Ω of Λ, we can �nd some N ∈ N such that

1

n
log
‖A±nx v‖
‖v‖

∈ −Ω

for all x ∈ X, v ∈ E±x , and n ≥ N . In particular,

1

n
log
‖A±nx A∓nα±nxv

′‖
‖A∓nα±nxv′‖

∈ −Ω

1To avoid confusion when comparing with the article cited, note that uniformity and
uniform hyperbolicity are distinctly di�erent conditions, though in our current setting they
are closely related.
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for all x ∈ X, v′ ∈ E±α±nx, and n ≥ N . Rearranging the expression and

rewriting the quanti�er over x, we see that

1

n
log
‖A∓nx′ v′‖
‖v′‖

∈ Ω

for all x′ ∈ X, v′ ∈ E±x′ , and n ≥ N . We found the N in this expression

starting from an arbitrary neighborhood Ω of Λ, so we've shown that the limit

in the proposition converges uniformly.

We now see that Condition 2′ implies the condition in the proposition.

The same kind of reasoning can be used to prove the reverse implication.

Armed with the proposition above, we're ready to prove the second

lemma.

Proof of Lemma 11.3.C. Suppose A is uniformly hyperbolic. We want to show

that it satis�es the uniform decay condition 2′, and that its Lyapunov exponent

is the supremum of its bounding exponents.

The uniform decay condition is satis�ed We can �nd ‖Anx‖ by taking

the supremum of
‖Anx(u+ v)‖
‖u+ v‖

over all u ∈ E−x and v ∈ E+
x with u+ v 6= 0. Using Proposition E.E,

‖Anx(u+ v)‖
‖u+ v‖

≤ ‖A
n
xu‖

‖u+ v‖
+
‖Anxv‖
‖u+ v‖

≤ 4

d∠(u, v)2

(
‖Anxu‖
‖u‖

+
‖Anxv‖
‖v‖

)
.
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The right-hand side is the same for all u ∈ E−x and v ∈ E+
x , so

‖Anx‖ ≤
4

d∠(u, v)2

(
‖Anxu‖
‖u‖

+
‖Anxv‖
‖v‖

)
for any u ∈ E−x and v ∈ E+

x .

We know from Lemma 11.3.B that the stable lines E±x vary continuously

with respect to x. Since X is compact, and the forward- and backward-stable

lines can never coincide, it follows that d∠(E−x , E
+
x ) is bounded away from zero.

We can therefore summarize the inequality above by saying that

‖Anx‖ .
‖Anxu‖
‖u‖

+
‖Anxv‖
‖v‖

,

over all x ∈ X, u ∈ E−x , and v ∈ E+
x .

Rewrite the summarized inequality as

‖Anx‖ .
‖Anxu‖
‖u‖

(
1 +
‖Anxv‖
‖v‖

· ‖u‖
‖Anxu‖

)
.

The uniform hyperbolicity of A, with some bounding exponent K > 0, implies

that
‖Anxv‖
‖v‖

· ‖u‖
‖Anxu‖

. e−2Kn

over all x ∈ X, u ∈ E−x , v ∈ E+
x , and n ∈ N. Consequently,

‖Anx‖ .
‖Anxu‖
‖u‖

over all x ∈ X, u ∈ E−x , and n ∈ N.

At this point, it's convenient to pick a constant eC such that

eC‖Anx‖ ≤
‖Anxu‖
‖u‖
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for all x ∈ X, u ∈ E−x , and n ∈ N. Combining this bound with the de�nition

of the operator norm, we see that

eC‖Anx‖ ≤
‖Anxu‖
‖u‖

≤ ‖Anx‖

(learning, incidentally, that C must be negative). Logarithmically,

C

n
+

1

n
log ‖Anx‖ ≤

1

n
log
‖Anxu‖
‖u‖

≤ 1

n
log ‖Anx‖.

The left- and right-hand sides both converge uniformly to Λ as n grows, so

we've proven that

lim
n→∞

1

n
log
‖Anxu‖
‖u‖

= Λ

uniformly over all x ∈ X and u ∈ E−x . It follows, by Proposition 11.3.D, that

vectors in E− decay as desired under backward iteration of A.

Now we just need to show that vectors in E+
x decay as desired under

forward iteration of A. Pick any nonzero u ∈ E−x and v ∈ E+
x . Since the maps

Ax are volume-preserving, Proposition E.A tells us that

‖Anxu‖‖Anxv‖ d∠(Anxu,A
n
xv) = ‖u‖‖v‖ d∠(u, v)

for all n ∈ N. Rearranging, we see that

‖Anxv‖
‖v‖

=
‖u‖
‖Anxu‖

d∠(u, v)

d∠(Anxu,A
n
xv)

for all n ∈ N. Logarithmically,

1

n
log
‖Anxv‖
‖v‖

= −
(

1

n
log
‖Anxu‖
‖u‖

)
+

1

n
log

d∠(u, v)

d∠(Anxu,A
n
xv)
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for all n ∈ N. We argued earlier that the distance between the stable lines

is bounded away from zero, the de�nition of the sine metric ensures that the

distance is bounded above by one. That means the distance ratio term on

the right-hand side goes uniformly to zero as n grows. The other term, which

describes the growth of u ∈ E−x , is familiar from before: we proved that the

part in brackets converges to Λ uniformly over all x ∈ X and u ∈ E−x . Thus,

lim
n→∞

1

n
log
‖Anxv‖
‖v‖

= −Λ

uniformly over all x ∈ X and v ∈ E+
x .

The supremum of the bounding exponents is Λ Let's start with the

quick direction: showing that any bounding exponent for A is less than or

equal to Λ. If K > 0 is a bounding exponent,

eKn‖u‖ . ‖Anxu‖

as n varies over N for all x ∈ X and u ∈ E−x , with the same implied constant

multiple for all x. Combining this with the bound ‖Anxu‖ ≤ ‖Anx‖‖u‖, we learn

that

eCeKn ≤ ‖Anx‖

for some constant C. Logarithmically,

C

n
+K ≤ 1

n
log ‖Anx‖.

Taking limits of both sides as n grows, we see that K ≤ Λ.
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Now for the tedious direction: showing that any positive number less

than Λ is a bounding exponent for A. Pick some K ∈ (0,Λ). Since

1

n
log ‖Anx‖ = Λ

uniformly over x, we can �nd some N ∈ N such that

K ≤ 1

n
log ‖Anx‖

for all n ≥ N . In other words,

eKn ≤ ‖Anx‖

for all n ≥ N . Since X is compact, and Anx is never zero, ‖Anx‖ is bounded

away from zero for any �xed n. That means we can �nd a constant multiple

of eKn small enough to slip under the ‖Anx‖ for all n < N and x ∈ X. In other

words,

eKn . ‖Anx‖

over all x ∈ X and n ∈ N.

We saw earlier that

‖Anx‖ .
‖Anxu‖
‖u‖

over all x ∈ X, u ∈ E−x , and n ∈ N. Combining this with the bound above,

we learn that

eKn .
‖Anxu‖
‖u‖
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over all x ∈ X, u ∈ E−x , and n ∈ N. This is the uniform forward growth

condition we want for vectors in E−x .

Now we just need to prove the associated uniform forward decay con-

dition for vectors in E+
x . The growth condition we just proved implies that

‖u‖
‖Anxu‖

. e−Kn

over all x ∈ X, u ∈ E−x , and n ∈ N. Recall that

‖Anxv‖
‖v‖

=
‖u‖
‖Anxu‖

d∠(u, v)

d∠(Anxu,A
n
xv)

for all u ∈ E−x and v ∈ E+
x , and the distance ratio factor on the right-hand side

is both bounded above and bounded away from zero. Together, these facts

tell us that
‖Anxv‖
‖v‖

. e−Kn

over all x ∈ X, v ∈ E+
x , and n ∈ N. This is the forward uniform decay

condition we want for vectors in E+
x .
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Appendix D

In�nite ordered products

D.1 De�nition

Suppose M is a Hausdor� topological monoid, like the one formed by

the endomorphisms or automorphisms of a �nite-dimensional vector space,

and A is a totally ordered set. Given a function m : A→M , we'd like to make

sense of the potentially in�nite ordered product

∏
p∈A

mp,

which I'll refer to in writing as �the product of m over A.�

Recall that a function from a directed set Λ into a topological space is

called a net. For any s ∈ Λ, let's call the set {t ∈ Λ : t ≥ s} the shadow of s.

A net is said to converge to a point if, for every open neighborhood Ω of that

point, there is some element of Λ whose shadow is sent by the net into Ω. A

net into a Hausdor� space, like M , converges to at most one point.

The �nite subsets of A form a directed set under inclusion, and the

product ofm over any �nite subset is well-de�ned, so we can de�ne the product

of m over A to be the limit of the net that sends each �nite subset of A to the

product of m over that subset. I'll call this net the �product net� for short.
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D.2 Calculation

Suppose Λ′ and Λ are directed sets, n is a net on Λ, and f : Λ′ → Λ is

an order-preserving map whose image intersects the shadow of every element

of Λ. In these circumstances, the net n◦f is called a subnet of n. If n converges

to a certain point, every subnet of n converges to that point.

In particular, let A be a totally ordered set, and Λ its �nite subsets.

If f : N → Λ is an increasing sequence of subsets whose union is all of A, the

image of f intersects the shadow of every �nite subset. Thus, if a product over

A converges, we can �nd it by looking at partial products over any sequence of

�nite subsets whose union is A. Such a sequence must exist if A is countable.

D.3 Composition

Given two totally ordered sets B and A, let BtA be the disjoint union

of B and A with the total order that makes the inclusions order-preserving

and puts every element of B to the left of every element of A.

Proposition D.3.A. Say we have a function m : BtA→M . If the products

of m over B and A converge, then the product over B tA converges too, and

∏
p∈BtA

mp =

(∏
p∈B

mp

)(∏
p∈A

mp

)
.

Proof. Let β and α be the products of m over B and A, respectively. Given

an open neighborhood Ω of βα, we want to �nd a �nite subset of BtA whose

shadow is sent by the product net into Ω.
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Using the fact that multiplication in M is continuous, �nd open neigh-

borhoods ΩB of β and ΩA of α with ΩBΩA ⊂ Ω. Then, �nd �nite subsets SB

and SA of B and A whose shadows are sent into ΩB and ΩA, respectively.

For any �nite subset R of B t A containing SB ∪ SA, we can use the

fact that B > A to rewrite the product of m over R as( ∏
p∈R∩B

mp

)( ∏
p∈R∩A

mp

)
.

Observing that R ∩ B contains SB and R ∩ A contains SA, we conclude that

the product of m over R is in Ω.

D.4 Equivariance

Proposition D.4.A. If the product of m : A→M over A converges,

φ

(∏
p∈A

mp

)
=
∏
p∈A

φ(mp)

for any continuous homomorphism φ : M →M .

Proof. Given an open neighborhood Ω of the left-hand side, we want to �nd

a �nite subset S of A with the property that

∏
p∈R

φ(mp) ∈ Ω

for all �nite subsets R ⊂ A containing S.

Since φ is continuous, φ−1(Ω) is open neighborhood of the product of

m over A. By the de�nition of convergence, we can �nd a �nite subset S of A
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with the property that ∏
p∈R

mp ∈ φ−1(Ω)

for all �nite subsets R ⊂ A containing S. Applying φ to both sides, we see

that S is just what we wanted.

D.5 Inversion

Instead of just a map into a topological monoid, suppose we have a map

g : A→ G into a topological group. Let Aop be A with the opposite order.

Proposition D.5.A. If the product of g over A converges,

∏
p∈Aop

g−1
p =

(∏
p∈A

gp

)−1

.

Proof. Analogous to the proof of Proposition D.4.A.

We won't use this result for anything. It's only here to reassure you that

the directionality of our construction of deviations from jumps in Section 10.3

doesn't introduce any actual asymmetry.

D.6 Convergence

Any Banach algebra, like EndR2 with the operator norm, can be thought

of as a topological monoid by forgetting the addition. Since all the ordered

products we care about will be taken in SL2 R, a closed submonoid of EndR2,

understanding ordered products in a Banach algebra will be very helpful to us.
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The following results generalize Theorem 2.3, Corollary 2.4, and a simpli�ed

version of Theorem 2.7 from [47] to products over arbitrarily ordered index

sets.

Proposition D.6.A. Suppose we have a totally ordered set A, a unital Banach

algebra X , and a function x : A → X . If the sum
∑

p∈A ‖xp − 1‖ converges,

the product
∏

p∈A xp converges as well.

Proposition D.6.B. If the sum in the proposition above converges, and each

factor xp is invertible, the product is invertible.

Our proof will give a handy bound for free.

Proposition D.6.C. If the sum in Proposition D.6.A converges, the product∏
p∈A ‖xp‖ converges as well, and∥∥∥∥∥∏

p∈A

xp

∥∥∥∥∥ ≤
∏
p∈A

‖xp‖ ≤ exp

(∑
p∈A

‖xp − 1‖

)
.

Let's start with a less ambitious result.

Proposition D.6.D. If the sum in Proposition D.6.A converges, then for any

C > exp
(∑

p∈A ‖xp − 1‖
)
, there's a �nite subset S of A with the property that

∏
p∈R

‖xp‖ < C

for all �nite subsets R ⊂ A containing S.
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Proof. Assume
∑

p∈A ‖xp − 1‖ converges, and consider any positive constant

C with logC >
∑

p∈A ‖xp − 1‖. By the de�nition of convergence, we can �nd

a �nite subset S of A with the property that∑
p∈R

‖xp − 1‖ < logC

for all �nite subsets R ⊂ A containing S. Since

log ‖xp‖ ≤
∣∣‖xp‖ − 1

∣∣ and
∣∣‖xp‖ − 1

∣∣ ≤ ‖xp − 1‖

for all p ∈ A, we know ∑
p∈R

log ‖xp‖ < logC.

for all �nite subsets R ⊂ A containing S. Exponentiating both sides gives the

desired result.

Proof of Proposition D.6.A. By de�nition, X is complete, so we can prove that

the product converges by showing that the product net is Cauchy. To that

end, given any ε > 0, we want to �nd a �nite subset S of A with the property

that ∥∥∥∥∥∏
p∈R

xp −
∏
p∈S

xp

∥∥∥∥∥ < ε

for all �nite subsets R ⊂ A containing S.

Assume the sum
∑

p∈A ‖xp − 1‖ converges, and pick a constant C >

exp
(∑

p∈A ‖xp − 1‖
)
. Every convergent net is Cauchy [48, Proposition 3.2],

so we can �nd a �nite subset S ′ of A with the property that∣∣∣∣∣∑
p∈R

‖xp − 1‖ −
∑
p∈S′
‖xp − 1‖

∣∣∣∣∣ < ε/C
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for all �nite subsets R ⊂ A containing S ′. This inequality simpli�es to

∑
p∈RrS′

‖xp − 1‖ < ε/C.

By Proposition D.6.D, we can also �nd a �nite subset S ′′ of A with the property

that ∏
p∈R

‖xp‖ < C

for all �nite subsets R ⊂ A containing S ′′. De�ning S as S ′∪S ′′, and observing

that Rr S ′ contains Rr S, we see that

∑
p∈RrS

‖xp − 1‖ < ε/C and
∏
p∈R

‖xp‖ < C

for all �nite subsets R ⊂ A containing S.

Put the elements of Rr S in some order r1, . . . , rn. Let

R0 = S,

R1 = R0 ∪ {r1},

R2 = R1 ∪ {r2},

and so on. Let

∆k+1 =

∥∥∥∥∥∥
∏

p∈Rk+1

xp −
∏
p∈Rk

xp

∥∥∥∥∥∥
Notice that

∏
p∈Rk+1

xp −
∏
p∈Rk

xp =

 ∏
p∈Rk
p>rk+1

xp

 (xrk+1
− 1)

 ∏
p∈Rk
rk+1>p

xp

 ,
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yielding the bound

∆k+1 ≤ ‖xrk+1
− 1‖

∏
p∈Rk

‖xp‖

≤ ‖xrk+1
− 1‖C.

Finally, observe that∥∥∥∥∥∏
p∈R

xp −
∏
p∈S

xp

∥∥∥∥∥ ≤ ∆1 + . . .+ ∆n

≤ ‖xr1 − 1‖C + . . .+ ‖xrn − 1‖C

= C
∑
p∈RrS

‖xp − 1‖

< ε.

Since R could have been any �nite subset of A containing S, and the method

we used to �nd S works for any ε > 0, we've proven that the product net is

Cauchy.

Proof of Proposition D.6.B. Given an ordered set I, let Iop be the same set in

the opposite order. Assume
∑

p∈A ‖xp − 1‖ converges. Equivalently, because

addition is commutative,
∑

p∈Aop ‖xp − 1‖ converges. This is only possible if

‖xp− 1‖ ≤ 6/7 for all but �nitely many p ∈ Aop. It follows, by the calculation

in the proof of [47, Lemma 2.6], that ‖x−1
p ‖ ≤ 7 for all but �nitely many

p ∈ Aop. That means ‖x−1
p ‖ has a maximum over all p ∈ Aop, which I'll call

M . Just as in the proof of [47, Theorem 2.7], observe that

‖x−1
p − 1‖ = ‖x−1

p (1− xp)‖

≤M‖xp − 1‖

215



for all p ∈ Aop. Then [49, Exercise 7.40.c] tells us that
∑

p∈Aop ‖x−1
p − 1‖

converges, so
∏

p∈Aop x−1
p converges by Proposition D.6.A.

De�ne y′′ =
∏

p∈Aop x−1
p and y′ =

∏
p∈A xp. Multiplication in a Banach

algebra is continuous, so for any open neighborhood Ω of y′′y′, we can �nd

open neighborhoods Ω′′ of y′′ and Ω′ of y′ with Ω′′Ω′ ⊂ Ω. By convergence, we

can �nd �nite subsets S ′′ and S ′ of A such that

∏
p∈Rop

x−1
p ∈ Ω′′

for all �nite subsets R ⊂ A containing S ′′, and

∏
p∈R

xp ∈ Ω′

for all �nite subsets R ⊂ A containing S ′. Now, de�ning S as S ′′ ∪ S ′, we can

observe that ( ∏
p∈Sop

x−1
p

)(∏
p∈S

xp

)
∈ Ω.

But the product in the expression above is clearly equal to 1! We've shown

that every open neighborhood of y′′y′ contains 1, which means y′′y′ is equal to

1. The same argument can be used to show that y′y′′ is 1. Therefore,
∏

p∈A xp

is invertible, with inverse
∏

p∈Aop x−1
p .

Proof of Proposition D.6.C. Assume
∑

p∈A ‖xp − 1‖ converges. By Proposi-

tion D.6.A,
∏

p∈A xp converges too. The convergence of
∏

p∈A ‖xp‖ follows

immediately from the fact that the norm is continuous. The �rst inequality is

easy to establish.
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Because
∑

p∈A ‖xp − 1‖ is a sum of non-negative numbers, its conver-

gence implies that at most countably many of its terms are nonzero. We

can therefore assume, without loss of generality, that A is countable. Com-

bining this fact with Proposition D.6.D and the discussion in Section D.2,

it's not hard to show that
∏

p∈A ‖xp‖ is less than any number greater than

exp
(∑

p∈A ‖xp − 1‖
)
. That gives the second inequality.
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Appendix E

Linear algebra on the Euclidean plane

The Euclidean plane is a two-dimensional real inner product space E

with a volume form D in which the unit square has unit volume. It will be

useful to collect some basic facts about geometry in such a space. Really

well-known facts will be stated without proof.

The sine metric d∠ on PE is de�ned as in Section 14.2. The area of

a parallelogram can be computed from the lengths of its sides and the angle

between them.

Proposition E.A.

|D(u, v)| = ‖u‖‖v‖ d∠(u, v)

for all u, v ∈ E.

By comparing the areas of some well-chosen parallelograms, you can

deduce the law of sines.

Proposition E.B (The law of sines).

‖u‖ d∠(u, u+ v) = ‖v‖ d∠(v, u+ v)

for all u, v ∈ E with u+ v 6= 0.
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From this we see that the extent to which a linear map T can move

lines is limited by the operator norm of T − 1.

Proposition E.C. For any linear map T : E → E,

d∠(u, Tu) ≤ ‖T − 1‖

whenever Tu 6= 0.

Proof. Because distances in PF are never greater than one, it follows from the

law of sines that

d∠(u, u+ v) ≤ ‖v‖
‖u‖

In particular,

d∠(u, Tu) ≤ ‖(T − 1)u‖
‖u‖

.

The extent to which a volume-preserving map can expand angles is

limited by the operator norm of its inverse.

Proposition E.D. For any T ∈ SL(E),

d∠(Tu, Tv) ≤ ‖T−1‖2 d∠(u, v)

for all u, v ∈ E.
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Proof.

d∠(Tu, Tv) =
|D(Tu, Tv)|
‖Tu‖‖Tv‖

=
‖u‖
‖Tu‖

‖v‖
‖Tv‖

|D(u, v)|
‖u‖‖v‖

=
‖u‖
‖Tu‖

‖v‖
‖Tv‖

d∠(u, v)

≤ ‖T−1‖2 d∠(u, v).

The angle between two vectors puts a lower bound on how completely

they can cancel out when you add them together.

Proposition E.E.

d∠(u, v)2

4
‖u‖ ≤ ‖u+ v‖

for all u, v ∈ E.

Proof. By the Cauchy-Schwarz inequality,

‖u‖‖u+ v‖ ≥ |〈u, u+ v〉|

=
∣∣‖u‖2 + 〈u, v〉

∣∣
≥ ‖u‖2 − |〈u, v〉|.

Rearranging and dividing through by ‖u‖, we �nd that

‖u‖ ≤ |〈u, v〉|
‖u‖

+ ‖u+ v‖.
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In other words,

‖u‖ ≤ ‖v‖| cos θ|+ ‖u+ v‖,

where θ is the angle between the lines spanned by u and v. We know from the

triangle inequality that ‖v‖ ≤ ‖u‖+ ‖u+ v‖, so

‖u‖ ≤ (‖u‖+ ‖u+ v‖)| cos θ|+ ‖u+ v‖.

Rearranging again, we see that

‖u‖ ≤ 1 + | cos θ|
1− | cos θ|

‖u+ v‖

=
(1 + | cos θ|)2

1− | cos θ|2
‖u+ v‖

≤ 4

| sin θ|2
‖u+ v‖

Observing that d∠(u, v) = | sin θ| completes the proof.
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Appendix F

Standard punctures for translation surfaces

F.1 Motivation

To see where the standard puncture shapes come from, we need to talk

about the complex geometry of translation surfaces, whose only role until now

has been a brief appearance in the proof of Proposition 9.5.I.

Every translation surface Σ comes with a complex structure, which

we get by identifying R2 with C in the usual way, and a complex-valued 1-

form ω, which sends horizontal unit vectors to 1 and vertical unit vectors to

i. Observing that ω = dz for any local translation chart z : Σ → C, we see

that ω is holomorphic. Conversely, a complex 1-manifold equipped with a

holomorphic 1-form is canonically a translation surface. Where ω has a zero

of order n, the translation structure has a conical singularity of angle 2(n+1)π.

The complex point of view suggests a natural class of translation sur-

faces that are non-compact, but still well-behaved. Putting a meromorphic

1-form on a compact Riemann surface de�nes a translation structure on the

complement of the poles. The poles correspond to the ends of the translation

surface, and the Riemann surface is its end compacti�cation [50, �1]. The

poles of a 1-form have a limited variety of behaviors, so the ends of the trans-
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lation surface have a limited variety of shapes, which we'll call the standard

punctures.

F.2 First-order punctures

A �rst-order pole in ω makes a puncture shaped like a half-in�nite

cylinder. You can build one by rolling up a half-in�nite rectangular strip and

gluing its sides together:

1

1

The translation structure of the cylinder you end up with is determined by

two parameters: the width of the strip and its orientation in the plane. In

most orientations, the vertical leaves spiral up or down the cylinder. When

the strip is horizontal, the vertical leaves close up into circles.

F.3 Higher-order punctures

The puncture created by a higher-order pole in ω can be glued together

out of planes with quadrants cut away, like this:
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6 5 4 3 2 1

4 5 2 3 6 1

The notches at the centers of the pieces �t together into a polygonal hole that

the rest of the surface can be connected to. For the pieces to �t together, the

notches all have to be the same size, which can be adjusted to accommodate

the part of the surface the puncture is supposed to hook up to.

Unlike �rst-order punctures, which come in a C×-worth of shapes pa-

rameterized by the residues at their poles, higher-order punctures depend only

on the orders of their poles.

F.4 Counting ends

As I remarked earlier, a puncture is an end of the surface it lives in.

Intuitively, you can think of it as a point on the boundary at in�nity of the

surface. The notion of an end is purely topological, however, and you might

wonder if there's a notion of boundary at in�nity that takes the translation

structure into account. Here's one proposal, which is suitable at least for
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translation surfaces with punctures.

Let's say two vertical rays on a translation surface are translation-

equivalent if they're connected by a continuous family of vertical rays.1 A

vertical end is an equivalence class of vertical rays. A generic �rst-order punc-

ture, whose vertical leaves spiral up or down rather than closing up into circles,

is a single vertical end. A higher-order puncture, on the other hand, comprises

several vertical ends, one for each building block.

1To be formal about it, de�ne a vertical ray to be a local isometry of [0,∞) into a
vertical leaf. We can then say a continuous family of vertical rays is a continuous map from
[0, 1] × [0,∞) into the surface which restricts to a vertical ray when the �rst argument is
�xed.
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