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During my graduate studies at the University of Chicago and subsequently my tenure
as a postdoctoral fellow at the IHÉS, a unifying theme of my research has been to un-
derstand two fundamental phenomena, namely percolation and diffusion, in correlated
environments. Studies of these phenomena find their origins in physics and all my re-
search problems are motivated by questions arising in statistical mechanics.

On the percolation side, my contributions can be roughly classified into three subareas.
In [31], we answered a fundamental open question about the phase transition of Ising
model by studying a corresponding problem for the FK-Ising model — a member of a
class of dependent percolation models known as the random-cluster models first introduced
in [38] (see also [42]). These models are very important in statistical mechanics, especially
because of their relation to other models. The second subarea of my research concerns
percolation models driven by some strongly correlated process in the background. A
canonical representative of such a model is the level-set of the Gaussian free field (see
[46, 12, 64]) and in a recent work [33] we obtained a detailed characterization of the
nature of its phase transition. Interestingly, both of these models turned out to be key
ingredients in a different work [32] where we proved the existence of phase transition
for independent (or Bernoulli) percolation on general graphs. Another type of models I
have worked on is first-passage percolation defined using the exponential of some planar
log-correlated Gaussian field. In the works [21, 22], we studied the typical order of first-
passage percolation distance between two generic points in such models which, apart
from being interesting on its own, is relevant for understanding the distance of Liouville
quantum gravity (LQG) [57, 37, 63] — a major challenge in contemporary probability
theory.

In addition to first-passage percolation, I have also worked on a diffusion process driven
by the exponential of planar log-correlated field (see [9]). This was originally studied by
physicists [13, 14] as a model for a particle (or a defect) diffusing in a disordered media
with log-correlations. This process exhibits several interesting features, e.g. anomalous
diffusive behavior, which are significantly different from that of a simple random walk. In
[9] we were able to rigorously establish some of the predictions made in [13, 14] in this
regard.

I am also interested in problems in probability theory that arise from applications in
statistics and machine learning. Recently we revisited the problem of estimating piecewise
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constant functions from noisy data in [16, 15] where we analyzed the statistical risk
associated with several methodologies including some new ones proposed by us.

In the following sections, I describe some of the aforementioned works in more detail
and also discuss my long term research goals inspired by these projects. The titles of all
my works can be found in my list of publications.

1 Truncated two-point function of the Ising model

and the FK-Ising percolation

Originally conceived to explain the phenomenon of phase transition in ferromagnets, the
Ising model is an archetypal example of a model undergoing an order-disorder phase
transition. As one of the most well-studied models in mathematical physics, it has inspired
a great amount of research activity among theoretical physicists and mathematicians alike.
Apart from providing a deep understanding of the model itself and many other related
systems, the study of Ising model has led to the development of various mathematical
tools which has found applications in other areas of mathematics.

Formally an Ising model on Zd (the regular d-dimensional lattice) is a probability
measure 〈·〉 on the space of spin configurations {±1}Zd characterized by the following
property. Conditionally on the spins σZd\Λ := (σx : x ∈ Zd \ Λ) ∈ {±1}Zd\Λ outside a

finite set Λ ⊂ Zd, 〈·〉 penalizes the configuration σΛ := (σx : x ∈ Λ) by e−βH(σΛ), where
β ∈ (0,∞) is called the inverse temperature and H(σΛ) is the Hamiltonian of the system
given by H(σΛ) := −

∑
x∈Λ, y∈Zd, x∼y σxσy. Any such measure is called a Gibbs measure on

Zd for the (nearest-neighbor ferromagnetic) Ising model and the fundamental quantities
to look at are the magnetization 〈σx〉 and the two-point (correlation) function 〈σxσy〉.
Of particular interest is the Ising measure with + boundary condition, denoted as 〈·〉+β ,

for which one can establish the existence of a critical inverse temperature βc = βc(Zd) ∈
(0,∞) such that the magnetization vanishes when β < βc, and is strictly positive for
β > βc.

For a given Gibbs measure 〈·〉, the truncated two-point (correlation) function is defined
as:

〈σ0;σx〉 := 〈σ0σx〉 − 〈σ0〉〈σx〉 .

It is well-known that sufficiently far from the critical phase, most systems of statistical
physics exhibit exponential relaxation of truncated correlations [26], in both the equilib-
rium and the dynamical sense. It is more challenging to narrow the range of exceptions
to a set of points, or lines, in the model’s phase space. In [31], we completed that task for
the d-dimensional nearest-neighbor ferromagnetic Ising model by showing:

Theorem 1.1 (Theorem 1.1, [31]). For the nearest-neighbor Ising model on Zd in dimen-
sion d ≥ 3, for any β > βc there exists c = c(β, d) > 0 such that for every x, y ∈ Zd,

0 ≤ 〈σx;σy〉+β ≤ exp[−c‖x− y‖] .
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Jointly with previously known results [45, 1, 2], this implies that for the nearest-neighbor
Ising model in any dimension it is only at the critical point β = βc that the pure state’s
truncated two-point function fails to decay exponentially fast.

We proved Theorem 1.1 by first converting it into a corresponding statement for a
dependent percolation model, called the random-cluster model, or the Fortuin-Kasteleyn
(FK) percolation. A random-cluster measure is a probability measure on the space of
(bond) percolation configurations {open, closed}Edges(Zd) satisfying the following property.
Conditionally on any configuration ξ outside a finite subgraph Λ of Zd, the probability of
ω ∈ {open, closed}Edges(Λ) is proportional to p#open(ω)(1−p)#closed(ω)qkξ(ω), where p ∈ [0, 1]
and q ≥ 1 are parameters of the model and kξ(ω) is the number of clusters intersecting Λ
of the percolation configuration ω on Zd that agrees with ω in Edges(Λ) and ξ outside. ξ
is also called a boundary condition on Λ.

In any percolation model one is primarily concerned with the connectivity properties
of the underlying configuration, i.e., whether there exists a nearest-neighbor path between
two given subsets S and T of Zd consisting only of open edges (we henceforth denote this
event by S ←→ T ). In fact, the analogous quantities for percolation corresponding to the
magnetization and two-point function are the probabilities of the events x ←→ ∞ and
x ←→ y respectively. For the random-cluster model φp[·] with cluster-weight q = 2 (there
exists a unique such measure, see [11, 60]), this analogy is even more direct in the form
of Edwards-Sokal coupling which states that

φp[x←→ y] = 〈σxσy〉+β , φp[x←→∞] = 〈σx〉+β

for p = 1− e−2β. Because of this, φp[·] is also called the FK-Ising model. Like the critical
inverse temperature βc for Ising, there exists a constant pc = pc(d) ∈ (0, 1) such that
φp[x ↔ ∞] is equal to 0 for every p < pc, and is strictly positive for every p > pc.
As a consequence of the Edwards-Sokal coupling these two critical values are related by
pc = 1− e−2βc . In particular this implies

〈σx;σy〉+β = φp[x↔ y]− φp[x↔∞]φp[y ↔∞]

for some p > pc as soon as β > βc. The exponential decay of the quantity on the right
for Bernoulli percolation follows readily from the phenomenon of percolation in slabs for
supercritical p (see [43]). While the percolation in slabs for the FK-Ising model is known
(see Bodineau [10]), a major challenge to derive Theorem 1.1 from this stems from the
correlations between events supported on distant sets, which could a priori be large (notice
that such correlations vanish for Bernoulli percolation). In view of this we prove in [31],
the following exponential mixing property:

Theorem 1.2 (Theorem 1.3, [31]). For every d ≥ 3 and p > pc, there exists a constant
c > 0 such that for every n ≥ 1,

|φp[A ∩B]− φp[A]φp[B]| ≤ exp(−cn) ,

where A and B are any two events depending on edges in [−n, n]d ∩ Zd and outside
[−2n, 2n]d ∩ Zd respectively.
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Future directions:

Using our techniques in [31], it is actually possible to improve the bound in Theorem 1.2
to exp(−cn)φp[A]φp[B]. In literature this is known as the ratio-weak mixing property. This
falls short of the ratio-strong mixing property related to the phenomenon of boundary phase
transition for Ising models (see [51]). Although this stronger property is absent for Ising
models in dimensions larger than 2 at low temperature, it is expected to hold in the entire
subcritical phase.

Question 1. For d ≥ 3 and p < pc, prove that

|φp[A ∩B]− φp[A]φp[B]| ≤ exp(−cdA,B)φp[A]φp[B]

where dA,B is the distance between the supports of the events A and B.

Another important improvement would be to understand the case of the Potts models
with q ≥ 3 colors. The Potts model is a generalization of the Ising model to more than
two possible spins and has become an object of great interest in the last four decades (see
[42, 30] and the references therein). Like Ising, the q-Potts model is also related to the
random-cluster model with cluster weight q via the Edwards-Sokal coupling. In a recent
paper by Duminil-Copin, Raoufi and Tassion [34], the exponential decay of the two-point
function was proved in every dimension for the subcritical phase. However the study of
the supercritical phase is still limited except in dimension 2 (see [36] and also [35]) which
leads us to the following natural question.

Question 2. Prove that the truncated two-point function for the (nearest-neighbor) q-
Potts model with monochromatic boundary conditions decays exponentially fast for all
q ≥ 2 in any dimension.

There seems to be, at this moment, one major hurdle to overcome before we can reduce
Question 2 to a statement similar to Theorem 1.2. This obstacle arises from the fact that
we do not have an analogue of Bodineau’s result [10] for the random-cluster models with
q > 2 (a partial result was obtained in [35]). Bodineau showed the equality between
the so-called slab percolation threshold p̂c — the minimum value of p above which there
is an infinite cluster in sufficiently thick slabs for any boundary conditions — and the
percolation threshold pc for q = 2 and all d ≥ 3. Therefore an important intermediate
question to answer is

Question 3. Show that p̂c = pc for all integer values of q ≥ 3 and d ≥ 3.

An important ingredient of our proof of Theorem 1.2 is the uniqueness of infinite-
volume measure for the FK-Ising model. While this is true for any random-cluster model
for all but countably many values of p, the question of uniqueness at all (non-critical) p is
still open except in dimension 2.

Question 4. Let d ≥ 3 and q ≥ 3 be an integer. Prove that there exists a unique
random-cluster measure for all p > pc.
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Another important machinery used in the proof of Theorem 1.2 is the random-current
representation of the Ising model (see [29] and the references therein) which itself is not
available for the Potts model.

Question 5. Let d ≥ 3 and p > pc be such that there exists a unique random-cluster
measure with cluster weight q ≥ 3 (an integer). Prove an analogue of Theorem 1.2 for
this measure.

2 Percolation of level-sets of the Gaussian free field

A Gaussian free field (GFF) on a graph (or network) with boundary is a Gaussian process
with covariances given by the Green’s function of the associated simple random walk. It
is one of the most natural Gaussian Markov fields defined on a graph and has deep
connections with simple random walk, potential theory and harmonic analysis. In the
context of the d-dimensional lattice Zd it is also called the Euclidean bosonic massless free
field in physics and as such plays an important role for many constructions in quantum
field theory (see the exposition by Sheffield [68] and the references therein). From a
mathematical perspective it is a rich source of interesting problems, partly stemming
from its Markovian and Gaussian nature. Furthermore, on lattice graphs it is a canonical
representative of strongly-correlated fields. It is therefore natural to study the percolative
properties of the landscape of GFF on Zd (in the transient regime, i.e., d ≥ 3) as a model
for percolation with long-range dependence.

The simplest way to define a percolation model using GFF (or for that matter, any
random field) is to look at its level-sets, i.e., the set of vertices where its value lies above
a certain threshold h ∈ R. This gives a non-increasing one-parameter family of (site)
percolation models indexed by R. Consequently there is a critical point h∗ = h∗(d) such
that the probability of the origin lying in an infinite cluster of the level-set above h is
strictly positive for h < h∗ and 0 for h > h∗. It is a difficult question whether h∗ is
finite in which case the phase transition is called non-trivial. The non-triviality of phase
transition was proved in [12] for d = 3 along with the non-negativity of h∗ for all d ≥ 3.
It took almost three decades before a proof of non-triviality was found by Rodriguez and
Sznitman [64] for all d ≥ 3.

Like in the case of the FK-Ising percolation or any other models in statistical me-
chanics, we might expect the (appropriately) truncated two-point function of the GFF
level-set percolation to decay (stretched) exponentially fast for h far away from h∗. In the
subcritical phase this was proved for all dimensions in [64] (exponential decay for d ≥ 4,
with logarithmic corrections when d = 3, was obtained in [58]). An analogous result
for the supercritical phase was proved by Sznitman in [71]. It is an important question
whether this stretched-exponential decay of the truncated two-point function holds for all
non-critical h. In [33] we answered this question in the affirmative.

Theorem 2.1 ([33]). For all d ≥ 3 and h 6= h∗, there exists ρ = ρ(d, h) ∈ (0, 1] such that
for every x, y ∈ Zd sufficiently far,

P [x and y lie in a finite component of the level-set above h] ≤ exp(−‖x− y‖ρ) .
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In the common parlance of statistical mechanics, Theorem 2.1 implies that the phase
transition of the level-set percolation of GFF is sharp. In fact, this theorem is one of the
main corollaries of a more general result where we proved the identity between three — a
priori different — notions of critical thresholds for GFF level-sets that were introduced in
earlier works. One of these critical thresholds corresponds to a strongly percolating phase
where several geometric and dynamical properties of the infinite cluster have already been
obtained, e.g. the comparability of the chemical (intrinsic) distance on the infinite cluster
with the Euclidean one, scaling limits of balls in the chemical distance [27], quenched
invariance principle for the random walk [59] among others. In view of our new result, all
the above results now are known to hold in the entire supercritical phase.

Our approach in [33] consists in obtaining a comparison result with a finite-range
model in a fictitious non-perturbative regime, i.e., an interval outside which sharpness
follows from (sophisticated) renormalization arguments. This finite-range model has a lot
in common with Bernoulli (site) percolation and as such its sharpness — in the subcritical
as well as the supercritical phase — follows from arguments similar to those for the
Bernoulli percolation (see [43] and the recent paper [34]). However this contradicts our
comparison result implying that the fictitious regime is indeed empty and the phase
transition of the original model is sharp.

2.1 Relationship to Bernoulli percolation and other models

The general strategy of comparing the GFF level-sets to finite-range models can provide
valuable insights about the Bernoulli percolation as well. In fact this is one of the main
ideas used in [32], where we proved:

Theorem 2.2 (Theorem 1.1, [32]). Consider any bounded degree graph G. Suppose that
the probability of a simple random walk on G returning to its starting vertex at any given
time n (the diagonal heat kernel) is uniformly bounded c/nd/2 for some d > 4 and c > 0.
Then the phase transition of Bernoulli percolation on G is non-trivial.

As a corollary, we obtained that the phase transition of Bernoulli percolation on infinite
quasi-transitive graphs (in particular, Cayley graphs) with super-linear growth is non-
trivial, thus answering a conjecture of Benjamini and Schramm [7] dating back to 1996.

Whether a model undergoes a non-trivial phase transition or not is one of the most
fundamental questions in statistical mechanics. In [55], Peierls introduced a combinatorial
technique, known as Peierls argument, to prove that the critical temperature of the Ising
model is non-zero on Zd for d ≥ 2. This argument found many applications to other mod-
els, including Potts models as well as Bernoulli percolation and the random-cluster model.
Peierls argument has two drawbacks. First, it often does not apply to continuous spin
models, for instance the spin O(n) models. In this case, the technique may sometimes be
replaced by two other techniques: Reflection Positivity and the Renormalization Group.
More precisely, Frohlich, Simon and Spencer [39] proved that the spin O(n) model under-
goes a nontrivial order/disorder phase transition on Zd with d ≥ 3 [39] using Reflection
Positivity, and Balaban and coauthors (see [6] and references therein) proved delicate
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properties of the low-temperature regime using the Renormalization Group. Another
problem with Peierls argument is that it requires a precise understanding of so-called cut
sets, i.e., sets of edges which disconnect certain sets of vertices from infinity. On planar
graphs, this boils down to the understanding of circuits in the dual graph. On non-
planar graphs, the question is a much more complex combinatorial problem and it is not
completely understood in general. In this context we believe that the new technique in-
troduced by us in [32] can be useful to prove the existence of a phase transition for various
models. In particular, our results can be immediately extended to finite-range percolation
and random-cluster models via classical comparisons. Furthermore, the Edwards-Sokal
coupling between the random-cluster models and the Ising/Potts model mentioned previ-
ously implies that the results translate into results on the latter. Our hope is to be able
to use this method to prove the existence of a phase transition for the spin O(n) models
that does not rely on reflection positivity.

Another important feature of our work is that we were able to connect two very
fundamental but different processes that can be defined on a graph, namely the random
walk — from which we get the heat kernel as well as the Green’s function governing the
law of the GFF — and percolation. The discovery of this link between a dynamical and
an equilibrium property of a graph is very interesting on its own.

Future directions:

Ideally the ρ in Theorem 2.1 should be 1 but it is a bit more subtle in the case of
GFF level-set percolation. For example, in the subcritical phase the probability that the
GFF is above h along the line Ln connecting 0 and (n, 0, 0, . . .) is bounded below by
e−cCap(Ln) where Cap(Ln) is the random walk capacity of Ln. The latter is linear in all
dimensions strictly larger than 3 whereas in dimension 3 it is of order n/ log n. Therefore
in dimension 3 the best decay one can hope for has indeed a log-corrected linear exponent
as reflected in the bounds obtained in [58]. The supercritical phase is even more unclear
at this moment. Thus, a natural follow-up to Theorem 2.1 would be:

Question 1. Can we replace ‖x − y‖ρ with ‖x − y‖/(log ‖x − y‖)c in Theorem 2.1 for
some c > 0? Is it possible to identify the precise large deviation speed?

A different direction is to see if the strategy developed in [33] can be applied to prove
sharpness for models coming from fields with similar large-scale behavior as the GFF. One
such instance is the model of random interlacements which was introduced by Sznitman
in [69], motivated by the broad question about the disconnection of discrete cylinders and
tori by the trace of simple random walk. The relevant family of random subsets in this
case are the so-called vacant sets which are, roughly speaking, the sets of vertices not
covered by a Poissonian ensemble of simple random walk trajectories. In the series of
works by Lupu and Sznitman [70, 48, 72] a coupling was obtained between the vacant set
of random interlacement and the level-set of GFF for a general class of graphs. However,
the implication of this coupling is not clear as to the question of sharpness.

Question 2. Prove an analogue of Theorem 2.1 for the percolation of vacant sets of
random interlacements.
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Another interesting model with similar decay of correlation as the GFF level-sets where
we expect our strategies to work is the family of stationary distributions of the so-called
voter model (see [47], and also [61] for the percolation problem).

An exciting area to explore is the critical behavior of the level-sets of GFF. In the
setting of metric graphs introduced by Lupu [48] the critical point was shown to be 0 by
explicit computation of connection probabilities. In the same set-up, Ding and Wirth [24]
recently obtained bounds on the critical one-arm probability with matching exponents
for dimension 3. One can expect that the critical exponents of the two models should be
same. The predictions in physics literature (see, e.g., section V in [74]) seem to suggest
that the correlation-length exponent for long-range percolation models with the same rate
of decay as the GFF level-set percolation should be 2/(d − 2) for d ≤ 5 and 1/2 (the
mean-field exponent) for higher dimensions.

Question 3. Show the existence of relevant critical exponents for GFF level-set percola-
tion on Zd and obtain sharp bounds on it.

As an intermediate step one may first work with the model on the metric graph which
possesses additional structures and try to improve the bounds in [24]. It is quite possible
that one can obtain precise estimates in this case.

Question 4. Study Question 3 for the GFF level-set percolation on the metric graph of
Zd. Obtain precise bounds on the critical one-arm exponents.

3 First-passage percolation on the exponential of Gaus-

sian free field

Consider the two-dimensional box VN (⊆ Z2) of side length N and a GFF η on VN with
zero boundary condition. For any fixed γ > 0 and v, w ∈ VN , we define

Dγ,N(v, w) = min
π

∑
u∈π

eγηu ,

to be the first-passage percolation distance between v and w where each vertex u is
assigned a weight eγηu and π ranges over all paths in VN connecting v and w. Our
primary motivation behind this model comes from the random distance associated with
Liouville quantum gravity (LQG) [57, 37, 63]. Informally, LQG is a random surface whose
“Riemannian metric tensor” can be described as eγX(x)dx2, where X is a Gaussian free
field on some planar domain D. Therefore the distance Dγ,N(·, ·) appears as a natural
discrete approximation for the LQG distance. To emphasize this connection we refer to
Dγ,N as the Liouville first-passage percolation (LFPP) distance.

As in the classical case, a fundamental problem in the study of LFPP is to under-
stand the behavior of the typical LFPP distance between two macroscopically separated
vertices in the graph VN . In [22] we were able to show that for small enough γ, the
expected value of the LFPP distance between any two vertices v, w ∈ VN can be at most
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O(N1−cγ4/3/ log γ−1
). This came as a surprise since it appears to be in disagreement with

a non-rigorous prediction made by Watabiki [73] which, according to some “reasonable”
interpretations (see [5, Equation (17), (18)]), implies that the LFPP distance between two
generic vertices should behave like N1−Θ(γ2) for small γ and large N .

In [22] we obtained similar exponents for two other (related) notions of random dis-
tance which also contradict relevant interpretations of Watabiki’s prediction when γ is
small. One of this is an integrated version of Dγ,N(·, ·) defined with respect to a mollified
version of the continuum GFF on a planar domain (this is probably a better approxi-
mation of the conjectured LQG distance than Dγ,N). The other notion comes from the
Liouville quantum gravity (LQG) measure (see, e.g., [44, 37, 62, 63, 67]) which is, roughly
speaking, the volume measure corresponding to the LQG metric. An intuitively natural
way to recover the distance between two points u and v from a volume measure is to
look at, for any given (small) δ, the minimum number of balls with volume at most δ
whose union contains a path between u and v. When the underlying measure is the LQG
measure, we call this the Liouville graph distance [22].

The main idea behind the proofs is a multi-scale analysis approach to construct an
“economical path” connecting any two given points. A similar approach was used earlier
in a different work [21] where we obtained a weaker bound on the exponent in a different
(and simpler) set-up.

Future directions:

A natural question is whether the γ4/3 term in all these distance exponents is optimal.
In a recent work [25] by Ding, Zeitouni and Zhang, the existence of the distance exponent
for the Liouville graph distance was established. In the same paper the authors also
established the existence of an exponent involving the off-diagonal heat kernel of Liouville
Brownian motion (LBM) — the natural diffusion process on the Liouville surface (see
[40, 8]) — and related these two exponents. In a follow-up work [23], Ding and Gwynne
extended this relationship to a larger class of regularized LQG distance exponents as well
as relevant exponents from random planar map models in the LQG universality class.
In view of these recent developments, it seems now even more important to obtain more
precise estimates of any (and hence all) of these exponents.

Question 1. Find upper and lower bounds on the exponent of LFPP (or, equivalently,
the Liouville graph distance) that match in their dependence on γ up to at most a log
factor.

One can also ask if the bound for the LFPP distance is universal over some “suitable”
class of log-correlated Gaussian fields.

Question 2. If ϕ is an arbitrary mean-zero Gaussian field satisfying |Eϕvϕu−log N
1+‖u−v‖ | ≤

K, is it true that the corresponding expected LFPP distance is bounded above by
CK,γN

1−cKγ4/3/ log γ−1
for some CK,γ, cK > 0?
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4 Random walk driven by the two-dimensional Gaus-

sian free field

Let η be an instance of the GFF on Z2 pinned to 0 at the origin. Now for γ > 0 and
conditional on the sample η, consider the random walk {Xt}t≥0 on Z2 among random
networks where the conductance of edge (v, w) is given by eγ(η(v)+η(w)). Random walks of
this type were considered in the physics literature [13, 14] in a more general setup where
the underlying Gaussian field is only required to satisfy Var(η(v) − η(w)) � log |v − w|.
The two-dimensional GFF is arguably the most canonical instance of such a field.

We studied this model in [9] where we showed ([9, Theorem 1.1]) that, for almost
every η, {Xt}t≥0 is recurrent, and with probability tending to 1 as T → ∞ the return
probability of {Xt}t≥0 at time 2T decays like T−1+o(1). We also proved a version of
subdiffusive behavior by showing ([9, Theorem 1.2]) that the expected exit time from a
ball of radius N scales as Nψ(γ)+o(1) with ψ(γ) > 2 (explicitly defined) for all γ > 0. One
can then expect |XT | to scale like T 1/ψ(γ)+o(1) for large T which would make 1/ψ(γ) the
diffusive exponent of the walk. In fact, we were able to prove a corresponding lower bound
in [9, Theorem 1.3]. Our bounds are consistent with the predictions made in [13, 14].

The main difficulty of working with this model is that the network law is not shift
invariant which makes most of the existing theory in random conductance model inap-
plicable. The proofs of our results exploit the connection between random walks and
effective resistances for the underlying network (see, e.g., [49]) and involve delicate con-
trol on the latter. In particular, we showed ([9, Theorem 1.4]) that the effective resistance
between two vertices at Euclidean distance N behaves as N o(1). Considering that effective
resistance is a fundamental metric for a graph, our work in [9] sheds light on a metric
property of planar GFF which is different from the LFPP. The proof of [9, Theorem 1.4]
relies heavily on planarity and uses a novel combination of duality, Gaussian concentration
inequality and the Russo-Seymour-Welsh theory. A point worth noting from our discus-
sions in the previous and current section is that putting random weights/conductances
as exponential of the GFF substantially distorts the graph distance of Z2 but does not
significantly distort the resistance metric of Z2.

Future directions:

Our method of estimating effective resistances can be easily adapted to some other two-
dimensional log-correlated Gaussian fields (e.g., those considered in [50]). An interesting
question therefore would be:

Question 1. Characterize the right universality class of log-correlated Gaussian fields
for the N o(1) growth of the effective resistances.

One important ingredient in our estimate of effective resistance is the Gaussian con-
centration inequality. This poses the question:
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Question 2. Can we derive an analogue of our estimate on the effective resistance when
the underlying random media is not a Gaussian process? A natural class of processes for
which one can try this is that of random gradient fields.

There are many open problems related to the random walk {Xt}t≥0. For example, a
long term goal is:

Question 3. Derive an appropriate scaling limit of the whole problem. This includes the
walk as well as the resistance metric and associated current and voltage configurations.

However, our immediate goals are more modest.

Question 4. Compute the spectral dimension of {Xt}t≥0 which amounts to an almost
sure version of a result we already prove in [9]. Also show that the lower bound 1/ψ(γ)
we obtain on the diffusive exponent is in fact sharp.

5 Other works

Percolation of averages in the stochastic mean field model. Equip the edges
of a complete graph on n vertices with i.i.d. exponential weights of mean n. This is
known as the stochastic mean-field (SMFn) model. Now given any λ > 0, consider the
length L(n, λ) of the longest path whose average edge weight (i.e., the total edge weight
divided by the number of edges) is at most λ. The study of this object was initiated by
Aldous [3] who proved that with high probability L(n, λ) = O(log n) for λ < 1/e and
Θ(n) for λ > 1/e. The critical behavior was established in [19], where it was shown
that with high probability L(n, λ) is Θ((log n)3) when λ is around 1/e within a window
of order (log n)−2. A natural question is the asymptotic behavior of L(n, λ)/n in the
supercritical regime λ > 1/e where a power law behavior was conjectured by Aldous
[4] for λ only slightly bigger than 1/e (the near-supercritical regime). More specifically
Aldous predicted by a non-rigorous analysis that L(n, λ) � n(λ− 1/e)3 when λ− 1/e > 0
is fixed but sufficiently small.

We revisited this problem in [20] and found L(n, λ) to be much smaller to be de-
scribed by any power law. In particular, we showed ([20, Theorem 1.1]) that in the

near-supercritical regime, L(n, λ)/n behaves like e−Θ(1)/
√
λ−1/e. This is quite interesting

given that power-law behavior often seems “natural” in similar situations (for instance,
by analogy with the case of percolation as in [4]). Our proof of [20, Theorem 1.1] is based
on first and second moment methods and a delicate use of sprinkling argument.

Finite size scaling of random XORSAT. Consider a random instance of k-XORSAT
which is a system of n equations over m variables in F2. Each equation is of the form
y1 + y2 + · · · + yk = b where k is fixed, y1, y2, · · · are variables (not necessarily distinct)
and b ∈ F2. The equations are chosen independently and uniformly at random with
replacement. Let Pk(m,n) denote the probability that this system is solvable in F2. It is
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known that Pk(m,n) exhibits a sharp phase transition around a critical value ρk of the
ratio m/n when k ≥ 3. More precisely, limm,n→∞;m/n→ρ Pk(m,n) = 1 or 0 accordingly as
ρ > ρk or < ρk respectively. This was first shown by Dubois and Mandler [28] for k = 3
and independently by Dietzfelbinger et al. [18] and Pittel and Sorkin [56] for all k ≥ 3.

The critical behavior of Pk(m,n) around the satisfiability threshold is a natural ques-
tion which we investigated in [41]. Our main result ([41, Theorem 1.1]) showed that for
any r ∈ R, m = bnρk + rn1/2c and all large n, |Pk(m,n) − Φ(rsk)| ≤ n−c

∗
where Φ(.) is

the standard Gaussian distribution function, sk > 0 depends only on k and c∗ is some
positive constant. Our proof draws upon the tools developed in [17] for studying the finite
size scaling behavior of a different but related problem as well as a result from [56] on the
transition window of a random XORSAT model with more “constraints”.

Estimation of functions under regularity constraints. Originally introduced in
[65], two-dimensional Total Variation Denoising (TVD) is a widely used technique for
image denoising. It is also an important nonparametric regression method for estimating
functions with heterogeneous smoothness. Recent results have shown the TVD estimator
to be nearly minimax rate optimal for the class of functions with bounded variation.
In our work in [16], we complement these worst case guarantees by investigating the
adaptivity of the TVD estimator to functions which are piecewise constant on axis aligned
rectangles. We rigorously show that, when the truth is piecewise constant, the ideally
tuned TVD estimator performs better than in the worst case. We also study the issue
of choosing the tuning parameter. In particular, we propose a fully data driven version
of the TVD estimator which enjoys similar worst case risk guarantees as the ideally
tuned TVD estimator. In a forthcoming work [15] we propose a computationally efficient
methodology which we prove to have nearly-optimal statistical risk for similar class of
estimation problems in more general set-up.

6 Research outlook

My broader goal through all the research questions mentioned in this statement and
beyond is to investigate physically relevant problems in statistical mechanics by rigorous
methods in probability theory. The liaison between mathematical physics and probability
theory is old and beneficial for both fields. In the context of two-dimensional conformal
field theory, the probabilistic methods have already been proven to be successful in the
case of Ising model and Bernoulli percolation (see [30] and the references therein). Very
recently, the conformal structure of the limit of random triangulations on sphere and its
connection to Liouville quantum gravity has been described in a series of works by Miller
and Sheffield [52, 53, 54].

Although many important questions still remain unanswered for planar models, the
understanding in intermediate dimensions, i.e., between the planar and the mean-field
regime, is comparatively limited. Partly this can be attributed to the lack of integrability
in standard three (or higher) dimensional models in statistical mechanics and partly to
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the fact that the conformal groups in these dimensions are more restricted. Through
my research endeavors, I would like to bring new insights into this area in two different
ways. Firstly, I want to modify the models so as to allow more integrability in certain
sense. It may be even possible to ensure, at the heuristic level, that these modified
models belong to the same universality class as their original counterparts. Owing to the
presence of additional structure, analyzing the behavior of such models can be hoped to
be more tractable and would thus provide valuable information. Secondly, I would like
to explore the recently developed technology of conformal bootstrap (see, e.g., [66]) in
conformal field theory which has been very effective in estimating the universal exponents
for the classical models in statistical mechanics in dimension larger than 2. My long
term goal in this regard is to understand the key ideas in this domain and develop their
parallel in probability theory. A significant part of my effort would be to communicate
and collaborate with physicists working in related fields.

Apart from statistical physics, rich sources of new research problems in probability
theory are machine learning and modern statistics. New methodologies are being de-
veloped in neural networks, pattern recognition, nonparametric regression among others.
While the practical utility of these methods are being tested in different contexts, there is
an enormous scope for their theoretical understanding which may lead to the development
of new ideas in probability theory. Presence of a theoretical framework to analyze these
methodologies is also helpful for researchers working in more applied domains who can
use the insights obtained from it to design new methods. I look forward to continuing my
collaboration with statisticians and scientists working in machine learning to explore this
exciting territory of research.
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