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ON THE ENTROPY OF HOLOMORPHIC MAPS

by Mikhaïl GROMOV

Our purpose is to calculate the topological entropy of a holomorphic map

/ of the complex projective space CF 71 into itself. Every such map is given

by (ra+ 1) homogeneous polynomials in Cm+lC m+1 each of the same degree p,

and the topological degree deg/ is equal to fl.f
1

. When m= 1, the space

CP m is the Riemann sphère S2S
2 and such maps are given by rational functions

of one variable. Geometrically, they are conformai maps S2S
2

— >> S 2S
2 of positive

degree.

The topological entropy h(f), defined in the next section, measures the

asymptotic complexity of the itérâtes f ,
and it is usually hard to calculate.

MAIN RESULT. If f: CP m -> CP rn is holomorphic, then

(0.0)

Remarks and acknowledgements. We prove hère only the inequality

(0.1)

The opposite statement h(f) > log(deg/) was established by Misiurewicz
and Przytycki [4] for ail smooth maps. They proved even more : if / is a

C2C
2 -smooth endomorphism of a compact manifold and points having at least d

preimages are dense then h(f) > log(deg/). For example, every smooth map
of zéro degree of a closed manifold onto itself has entropy not less than log 2

.

Our paper owes very much to Sheldon Newhouse. Inequality (0.1) is a

response to his very first question to me on arriving at IHES. He conjectured
(0.1) in the case m = 1, suggested a possibility of analogous estimâtes for

real polynomial maps and provided an example for a class of maps R2R
2

— y R2R
2

given by polynomials of degree 2
. His further interest in the problem forced



me to write this paper. I also appreciate the hospitality of IHES, which made

possible my involvement in this story. I am especially thankful to Dennis

Sullivan, who took pains to read the paper and to clean it up of multiple
errors.

Structure of the paper. We start with a géométrie outlook on topolog
icalentropy and reduce our inequality (0.1) to standard facts about minimal
varieties. We discuss next the real algebraic analogue of (0.1) and a general
izationto maps. We conclude with an estimate of the entropy involving the

mean curvature.

§1. Notation and definitions

For a space X we dénote by X k the product XxXx ... xX (k factors).
A graph F over X is by définition an arbitrary set FC X 2

. When Xis finite
this is the usual définition of an oriented graph (with loops). The graph of a

map X — > X gives another example.

For a graph Fwe dénote by F^ cXk the set of strings (jci . . , jq, . . . ,
Xk) ,

xt GX, where each pair (x t -i,xi) GX2 is contained in F.

When X is endowed with a metric, we call e -cubes products in X k of

balls from X of radius e . For a set FCXk we dénote by Cap
e

Y the minimal
number of e -cubes needed to cover Y

.

Entropy

Set h
e (T) = limsup^^ £logCap c

rjk, and h(T) = lim e _>o^e(n, for

FcX 2
.

When / is an endomorphism X —> X, we define its entropy h(f) as the

entropy of its graph F/. If the space X is compact, the définition does not

dépend on the choice of the metric [2]. Observe that the entropy of a gênerai

graph F is equal to the entropy of the shift in F^ c X°° : F^ is the space

of doubly infinité strings te)ï=...,-i,0,i,... with the product topology, and the

shift maps (xi) to (jcj+i). For finite X, we corne to the usual définition of the

Markov shift.

Volume

From now on, X is a Riemannian manifold and n = dimF, F c X 2
.

We dénote by Vol F& the n-dimensional volume of F& c X k
,

i.e. the



n -dimensional Hausdorff measure with respect to the Riemann product metric

in X k
.

Set

For an / we set lov/ = lov F/. This is a smooth invariant of / (it does not

dépend on the choice of the Riemann metric).

Our invariant "lov" is sometimes more accessible than entropy and for a

holomorphic / we are going to prove that

(1.0)

Density

Dénote by Dens e (F fc ,7), for 7 e T k c A*, the n -dimensional measure

of the intersection of T k with the bail (in the Riemannian product metric)

of radius e centered at 7. Set Dens
e (r^) = inf^r* Dens e (F^7), and then

lodn e
F = liminf^^oo \ logDens e Tk, and finally

Observe that Vol > Cap 2e
Dens

€
and hence that

(1.1)

§2. ESTIMATES OF DENSITY

Consider a Riemannian manifold W (it will be X k in the sequel) and an

n -dimensional subvariety V C W. We suppose that the boundary of V (if
there is such) does not intersect the bail B

e C W of radius e > 0 centered

at a point vq £ V
.

We suppose also that the injectivity radius of W at vq

is at least e, i.e. the exponential map T
Vo (W) -> W is injective in the e-ball

in TVO(W).T

V0 (W).

Density of a minimal variety

If the sectional curvature in B
e

is not greater than K and V is minimal,
then

(2-0)

where the constant C dépends on n, K, and e, but does not dépend on dim W.



The proof is given below. This fact is well known and C is equal to the

volume of the e-ball in the n -dimensional space of constant curvature K.

Our application of (2.0) to complex geometry is based on

FEDERER' S THEOREM. Analytic subvarieties of a Kàhler manifold are

minimal.

Thus we can apply (2.0), conclude that lodnF = 0 and obtain (1.0) in the

Kâhler case by using (1.1).

Proof of (2.0). We restrict ourselves to the case when Wis the Euclidean

space and V is nonsingular. Dénote by A
e

the (n - 1) - volume
of the boundary V H dB

e .

Minimality of V implies

(2.1)

where Co
e

is the cône over A
e centered at vq.

On the other hand

(2.2)

Regularity of V implies that

(2.3)

where C
n

is the volume of the unit bail in W

Gombining (2.1), (2.2) and (2.3), we get

(2.4)

which implies (2.0) in the Euclidean case.

Proof of (1.0). As we mentioned above, (2.4) implies (1.0), but only in

the Euclidean case where (2.4) is proven. But the local nature of the density
enables us to reduce the gênerai case to the Euclidean one: near each point

x e X we equip the complex manifold X (we suppose that X is compact
without boundary) with a flat (i.e. Euclidean) Kàhler structure and use the

product structure near each point from X k
. Independence of "lodn" upon the

choice of the metric allows one to apply (2.4) to dérive the vanishing of

"lodn" and thus the desired inequality h < lov .



§3. KÄHLER MANIFOLDS

We view a Kâhler manifold as a Riemannian manifold W with a closed

2-form uj. Every submanifold V of dimension n = 2m satisfies the Wirtinger

inequality

(3.0)

and equality

(3.1)

holds if and only if V is complex analytic (of complex dimension m). Observe

that (3.0) and (3.1) imply the Fédérer theorem.

Start now with a Kâhler manifold X of real dimension n = 2m and apply

(3.1) to the iterated graph (Tf ) k cXk of an endomorphism /: X-+X.We
get

(3.2)

where a G H 2 (X,R) is the cohomology class represented by the structural
k

2 -forai, (ËJ = E*=i(f )f(ûo,)

f

(û0, and [X] is the fondamental class of X.

When X= CP m and deg/ =d=pm we hâve

and conclude that

(3.3)

Together with (1.0) this implies our main inequality (0.1).

Remarks. (3.3) holds whenever a is an eigenvector of the operator

/* : H 2
(X, R) — >> H 2

(X, R) but not generally, as shown by linear endomorphisms
of tori.

When X is complex but not Kâhler, neither "lov" nor entropy can be

estimated in homological terms. Moreover, the entropy of a holomorphic
vector field can be non-zero. (In the Kâhler case, maps homotopic to the

identity hâve "lov" = 0 .)



Take a complex semi-simple Lie group and factor it by a discrète uniform

subgroup. The group translations in this factor can hâve non-zero entropy.
To be spécifie, we take SL2(C) acting by isometries in three-dimensional

hyperbolic space. Thus géodésie flows on compact 3 -dimensional hyperbolic
manifolds are factors of translations of the above type and their entropy must

be positive.

Hopf manifolds

The Hopf manifold H™ is diffeomorphic to S
1

x S 2m 1

. As a complex
manifold it is the factor of C m \0 by the following action of Z:

There is a natural fibration H™ -> CP m 1

and each endomorphism of CP" 1

extends to H m
. When m>l Hopf manifolds are not Kàhler; nevertheless,

for any endomorphism /:H™ — >• H m we hâve

(3.4)

Proof. Each endomorphism / préserves the fibers of the fibration

H m — > CP mm ~ l and "lov" is additive in the following sensé.

Given a holomorphic fibration H—> V with fibers T
v , v£V, equiped with

Kàhler structures. Suppose that structural cohomology classes a v G H 2
(T V ;K)

are parallel under the holonomy action of tti(V). If /: H -> H is a fiber

preservingendomorphism, one can define

vq e V, and an endomorphism g: V—» V induced by /.

The addition formula

where m= dime^ 0 ,
and [T Vo

] is the fondamental class of T
Vo .

This formula is almost as obvious as (3.2) and, together with (3.3), it

yields (3.4).



Generalizations and problems

In the previous discussion, we avoided mentioning the fact of the scarcity

of complex endomorphisms. I am not able to add any interesting examples to

those considered above 1

). Generic manifolds hâve no endomorphisms. Every

surjective endomorphism / is finite-to-one and when deg/ =1 it is injective.

More generally, if V and V are complex (not necessarily compact or Kâhler)

manifolds of equal dimensions and their even Betti numbers are flnite and

equal (i.e. bb
2 i = b'

2i
) then every proper surjective holomorphic map /: V — >• V

is finite-to-one and when deg/ = 1 the map is injective. The finitness

condition cannot be omitted; take C 2

,
blow it up at ail points from a lattice.

The endomorphism of the resulting manifold induced by the transformation
C2C

2
— ? C 2

, x i — > | ,
has infinitely many blow-downs.

The lack of endomorphisms can be offset by abundance of gênerai

holomorphic graphs. The most regular asymptotic behavior is displayed by

graphs Fclxl of flnite type when both projections F —^ X are finite-to
one.In the finite type case the infinitely iterated graph F^ can be viewed

as a 2m-dimensional (m = dimc F = dimc^O compact set 'foliated' by

complex m-dimensional leaves and having Cantor sets as transversal sections.

The holomorphic finite type graphs probably hâve finite "lov" and entropy
and at least in the Kàhler case this can be proved as follows : Dénote by

7G H n (X xX\ R) , n= 2ra
, m= dim c F= dim c X

,
the class dual to [F] and

by %i+\ G H n (X
k

;R) the class induced from 7 by projecting X k
onto the

product of its i-th and (/+ l)- factors. Dénote by (3 G H 2
(X

k ;R) the class

represented by the structural 2-form. One can easily see that

thus "lov" is finite.

In the end, I must admit my inability to prove (or disprove) the inequality
h(V) > lov F even when F is a graph of an endomorphism. (Of course, I

mean hère only the holomorphic case. For smooth endomorphisms, the situation
h(J) =0, lov/ >0 occurs already for maps S

1

-» S
1

and, probably, for

higher dimensions the opposite: h(J) > 0, lov/ = 0 can also happen.)
The inequality h(T) > lov F reminds one of the Shub entropy conjecture
[5] proposing a lower estimate for the entropy in homological terms. In the

complex-analytic context, one has more homology théories to provide further
spéculations.

1) There are some in the Appendix.



§4. Real algebraic maps

We are going to show that the entropy of a real algebraic map of "algebraic

degree p" cannot exceed n logp, where n is the dimension. One way of

approach is to complexify the whole situation, i.e. to take the Zariski closure

of the graph of the map, and to apply reasoning from the previous section.

This enables us to solve both problems : to introduce the notion of degree and

to prove the inequality h < n logp.
In order to avoid passing to complex numbers and to make the proof

applicable to piecewise algebraic (say, piecewise linear) maps we shall now

présent a différent argument based on Bézout's theorem.

Let us start for the sake of simplicity with a map / given by two

polynomials in R2R
2 of degree p. Suppose that / sends a square S C R2R

2

into itself and try to estimate the entropy of /: S—> S
. Divide S into pièces

Sj of size <eby straight Unes l i9 i— 1, 2, . . . , r; see Figure 1.

Figure 1

Try now to cover the iterated graph (Tf) k by products of thèse pièces.

Observe that a product S
jl xSh x•••x S

jk Cs* intersects (T f ) k if and only

if the intersection S^ fl/" 1^) H • • • C]f~ (k ~l)(~ l) (S jk ) is not empty. Now let us

estimate the number N k of ail such non-empty intersections. This number is

not greater than the number of components in



and thus A^ cannot exceed 4 times the number of ail pairwise intersections

of ail lines /~ M (//), provided the map /: S -» S was injective. The System

of lines {//} can be represented as the zero-set of a polynomial of degree r

and thus the System {f~^(k)} given by a polynomial of degree k-r-p^; by

Bézout's theorem the number of intersections is not greater than J^r 22

p
2k

.
So

N k < 4k 2
r

2

p
2k and lim*-^ | logN k < llogp.

In the gênerai case (when n > 2, or n — 2 and / is not injective), there

appears a complication pointed out by J. Milnor (and communicated to me

by Newhouse): the components in the complément S\|J/~ M (/;) can contain

no points of intersections of lines (or surfaces when n>2). A typical 'bad'

picture for n — 3 is shown in Figure 2.

Figure 2

But in any case, each component must contain in its boundary a component
of an algebraic variety determined by certain intersections of f~^(k) ; to

estimate the number of those, Milnor suggested using his (and Thom's) theorem
(see [3]):

The number of ail components of the zero-set of a System of polynomials
of degree D in R n is not greater than (2£>)\

(The actual Milnor inequality is more précise and also takes into account the
Betti numbers in positive dimensions.)

It seems more natural to apply the Milnor theorem not in the space X
itself, but in the product X k

,
in particular when we deal with an algebraic



graph. Unfortunately, the direct application leads to the weaker estimate
h < n log(2/ due to the coefficient 2 in the Milnor theorem. But in our

raîher spécial situation, this 2 can easily be removed and we always hâve

h <n logp.

Periodic points

The argument above is the same as in the Artin-Mazur theorem on periodic
points [1] : the number of isolât ed periodic points of a map of degree p cannot

exceed (npf . where k is the period. The number n is the dimension of the

Euclidean (or projective) space in which the manifold X is realized, and p is

the degree of polynomials defining the graph Fclxlc R 2n of the map.
The points of period k correspond to the intersection of Yk C R* 71 with the

preimage of the diagonal in XxX by the projection of X k
to the product

of its first and last factors. Artin and Mazur make use of Bézout's theorem,

which immediately yields the needed estimate. Notice that the Milnor-Thom

inequality implies an analogous estimate for ail Betti numbers of the sets of

periodic points.

Artin and Mazur combine their estimate with the Nash theorem on

approximation of a smooth map by algebraic ones (Le. with algebraic graphs)
and conclude : For a dense set of smooth maps ?

the number of isolated points
k is not greater than (const/ . Omitting *isolated ?

seems not completely trivial

(though geometrically obvious) in the pure algebraic situation. (One even

expects a "generic algebraic* map to hâve no invariant algebraic manifolds of

positive dimension, unlike the smooth case where invariant manifolds can be

persistent.)

The following argument- communicated to me by Newhouse. allows one

to get rid of the 'isolated'.

A map X —> X. X c R*% can be extended to a neighbourhood of X

by a map F strongly expanding in directions normal to X. The invariant

manifold X of this extension is stable under small perturbation of F and

thus the gênerai situation is reduced to the simple case of polynomial maps
in R n

.

Geometric approach

The last remark undermines the rôle of algebraic maps in differential

dwamics (but of course, algebraic dynamics is in many respects more

interesting than differential anyway) and we can go even further replacing



degree by a kind of géométrie complexity (in spirit of Thom) of a smooth

map, making use of a quantitative form of the Thom transversality theorem

instead of Bézout's theorem. The quantitative transversality can be used

also for counting periodic orbits of a vector field and periodic points of

a transformation preserving an additional structure (volume, symplectic form.

etc.) and it yields the Artin-Mazur estimate for dense sets of such maps.

Unfortunately, the detailed proof (at least the one I know of) is more

lengthy than the algebraic one, and I shall treat the subject somewhere

else.

Remark. The quantitative transversality theory has been developed by

Y. Yomdin (see p. 124 in [57]5
7

] for a brief introduction) but does not suffice. as

it stands, for the diff- version of the Artin-Mazur theorem. In facL one needs

hère an adéquate notion of genericity (compare remark on p. 31 in [57])5
7

]) as is

shown in [!'] for smooth maps. I hâve never returned to this issue and can

only conjecture the extension (and sharpening) of the corresponding results in

[l
7

] to structure preserving maps and/or vector fields.

§5. Quasiconformal maps

For a smooth map /: X —> Y from one oriented n -dimensional Riemannian
manifold into another, we dénote by D x f its differential at a\ by ||Z> T /j|
the norm of the differential, by detD T / its Jacobian, and by A/ the ratio
\\D x f\\

n

/dttD x f called the conformai dilution at x G X. A map is called
A-quasiconformal if, for almost ail x, the differential D x f exists, det D x f
does not vanish, and A/ < A. A quasiconformal map must hâve locally
positive degree. If n= 1

,
each locally diffeomorphic map is conformai (i.e.

1 -quasiconformal) .

When n = 2, conformai maps are complex analytic and for n > 2

ail conformai maps are locally diffeomorphic. In particular, when n > 2.

every non-injective conformai endomorphism is conjugate to a homothety of
a flat Riemannian manifold. When A > 1, there are (not locally injective)
A-quasiconformal maps in ail dimensions n > 1. They are locally homeo
morphicoutside a codimension 2 branching set. At that set they are never
(n . > 2) smooth.



GENERALISATION OF (0.1)

If / is a À -quasiconformal endomorphism of a closed

manifold, then

(5.0)

(Compare with the standard estimate h(f) < swp xeX n \og\\DJ\\.)

Proof. As before, we estimate the density and volume of the iterated

graph and we need an analogue of (2.0) only for the Euclidean space. The

only new ingrédient hère is the following obvious fact:

Consider an n-dimensional VC (R n / with ail projections V — >• R n

À -quasiconformal and having volumes not greater than \i > 0. (The volume

of a map is the intégral of its Jacobian.) Then

(5.1)

Combining (5.1) with the isoperimetric inequality applied to the projection
V — ) R n realizing /j, we conclude that

(5.2)

where A dénotes the (n — l)- volume of the boundary dV . (In

other words, graphs of quasiconformal maps are quasiminimal.)

Now, using the same notation as in Section 2, we conclude that

(5.3)

and combining (5.3) with (2.2) and (2.3), we hâve:

(5.4)

Combining (5.4) and (1.1) and observing that projections of the iterated graph

(Tf)ic of a À -quasiconformal / are X
k

-quasiconformal we obtain:

To complète the proof, we apply (5.1) again and get



§6. Mean curvature

Let X be a closed n -dimensional manifold with a Riemannian metric g.

Suppose that iterated graphs T k CXk are smooth of dimension n. Dénote by

Cu(7) , 7G Tk
,

the absolute value of the mean curvature of F* at 7 .
Set

When F* are minimal and lome^ = 0 we know that h < "lov

More generally,

(6.0)

Proof. Despite the possible dependence of "lome" upon the choice of g ,

we can proceed as before and reduce (6.0) to the following local estimate :

Take Vin the Euclidean space R £ - kn and suppose its boundary does not

intersect the bail B 2e centered at v 0 GV. Then

(6.1)

where C\ and C2 are constants depending only on n.

To prove (6.1) we consider the normal bundle N of V and its canonical

map F into R^. The Jacobian J of F at a point v + vt (where v G V, and

vis the unit vector at v normal to V) is equal to fj^_ 1(l1
(l -\-k[t), where kt

are the principal curvatures in the direction v .

If the distance from v+vt to V is equal to t, then \-\-ktt > 0, i = 1, . . . ,
h,

and so

(6.2)

Now we observe that every point of the bail B
e can be joined by a shortest

normal with V and so

where Q and Q_ n are volumes of unit balls in R £ and RR l ~ n
. The last

inequality implies (6.1) and so (6.0) is proved.

The inequality (6.2) was extended by Karcher and Heinze to gênerai
Riemannian manifolds. Discussions with Karcher about such inequalities
influenced my reasoning in this section.



Appendix : Examples of holomorphic endomorphisms

The following examples appeared after the discussion I had with Spencer

Bloch and David Mumford.

(1) Twisted Hopf manifolds

Divide C n \0 by the action of a linear operator A without eigenvalues
in the unit disk. Ail endomorphisms of the quotient (n > 1) corne from

polynomial maps /: C n
— > C n

. For such an endomorphism, its entropy and

"lov" are probably equal to "logdeg".

Example. A: (z u z 2 ) (Aizi ,

X2X
2 z 2 ) and / : fe ,

z 2 ) •— > (z
p

v z
p
2

)
.

(2) Generalized Hopf manifolds

Let /o : Xq — > Xç> be an endomorphism. Take a line bundle L over Xo such

that /0*(L)/

0*(L) = (:= L® ••• ®L , p times). Locating such an Lis usually

quite easy by looking at Pic(Xo). Dénote by F the total space of L. There is

a fiberwise map /:F->F lifting /0/0 and acting on fibers as z i — > zp
. If we

divide Fbya fiberwise action of Z (it is z ' — > zoz, Zo 0, in each fiber)

we get/: Y/Z -> F/Z.
There is another way to compactify F by taking the total space of

the one-dimensional projective bundle associated to L. The endomorphism

/ canonically extends to this compactification.

(3) The Calabi-Eckmann manifolds

Let us take (C
k

x Cl)C l
) \ ((C

k x0)U(0x C
£

)) and divide by the following
action of C :

A\ and A^ are appropriate linear operators in C^ and C £

. For example,

A\ = expÀ, A% = exp/À, where À is a scalar. In the last case, the factor

manifold possesses an endomorphism / which lifts to the following polynomial

map

Recall that the Calabi-Eckmann manifolds are diffeomorphic to S 2^ 1x S 2i l
.

The above map / has degree d = (2(k + £ - \)f and h(J) = lov/ = logd.



(4) Blowing up

Let us take W C Vo and an endomorphism /: Vo -> Vo such that

f~ l
(W) = W. The endomorphism / can be sometimes lifted to the manifold

V obtained by blowing up W.

Example. Vo = CP 1

x CP 1

, Wis the single point (0,0), and /: (z\
, zi)

(5) CONCLUDING REMARKS

A typical compact complex manifold has very few endomorphisms. For

example, manifolds with nontrivial Kobayashi volume hâve no endomorphisms
of degree > 2

.
Do Grassmann manifolds hâve such endomorphisms ? (No,

see [3'].)
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Note des Éditeurs

L'article qui précède a été rédigé en 1976 et a circulé sous la forme d'une

prépublication de SUN Y, dès 1977. Nous l'avons imprimé ici en l'état, à

l'exception de la dernière remarque du §4, de l'adjonction de trois références

et de la correction d'un petit nombre de fautes de frappe. Serge Cantat, que

nous remercions, a bien voulu rédiger à cette occasion un court texte pour
orienter le lecteur vers quelques-uns des nombreux travaux influencés par

l'article de Mikhaïl Gromov.

NOTES SUR L'ARTICLE DE M. GROMOV

par Serge CANTAT

0.1. L'article de M. Gromov a considérablement influencé les travaux sur

la conjecture de Shub (reliant entropie topologique et action sur l'homologie)
ainsi que l'étude des systèmes dynamiques holomorphes, notamment en ce

qui concerne la dynamique à plusieurs variables.

Le texte [14] propose une preuve alternative des résultats principaux obtenus

par M. Gromov. Ceux de Shmuel Friedland ([6], [7] et [8]) proposent diverses

extensions de ces résultats au cadre des transformations méromorphes des

variétés kàhlériennes (voir [s]).

Les deux pages qui suivent ne concernent que la dynamique holomorphe.
Il convient toutefois de noter les articles suivants, qui sont liés à d'autres

aspects de l'article de Gromov et contiennent de nombreuses références: [15]

et plus généralement l'ensemble des travaux de S. Newhouse sur le sujet, ainsi

que [I], qui s'inscrit dans la lignée des travaux d'Artin et Mazur, de Gromov

et de Yomdin.

0.2. Bien souvent, on couple les résultats obtenus par M. Gromov à ceux

de Y. Yomdin (voir [10], [19]) et de S. Newhouse (voir [15]). Le théorème

suivant est un exemple typique.


	ON THE ENTROPY OF HOLOMORPHIC MAPS
	§1. Notation and definitions
	§2. ESTIMATES OF DENSITY
	§3. KÄHLER MANIFOLDS
	§4. Real algebraic maps
	§5. Quasiconformal maps
	§6. Mean curvature
	Appendix : Examples of holomorphic endomorphisms
	...
	Note des Éditeurs


