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A TOPOLOGICAL APPLICATION OF THE 
ISOPERLMETRIC INEQUALITY 

By M. GRoMov* and V. D. MILMAN** 

Many infinite dimensional topological spaces come with natural uni- 
form structure, often associated to a metric. As an example one can take 
the Hilbert space H', the sphere S5 C H' or the Grassmann manifold 
Gk(Ho). 

We show in this paper that passing from the category of continuous 
maps to the category of uniformly continuous maps has a non-trivial effect 
on the homotopy theory. In particular we exhibit some natural fibrations 
which have continuous sections but have no uniformly continuous (in par- 
ticular Lipschitz) sections. 

1. The Levy measure. For a set A in a metric space X we denote by 
N(A ), e ? 0, its e-neighborhood. 

Consider a family {Xi, Ai}, i = 1, 2, ..., of metric spaces Xi with 
normalized (i.e. Ai(Xi) = 1) Borel measures Ai. We call such a family 
Levy if for any sequence of Borel sets Ai C Xi, i = 1, 2, . . ., such that 
lim infi ,0 Ai(Aj) > 0, and for every e > 0 we have limi<,. Mi(Nj(Ai)) = 1. 

1.1. Principal Example. Let Xi be isometric to the Euclidean sphere 
Si C R '+ of radius ri. Take for ,ui the normalized i-dimensional volume 
element on S'. 

The family {Xi, Ai } is Levy iff rii-F12 -i,o 0 (see [6]). 

Proof. Let A C Si be an arbitrary Borel set and let B C Si be a ball 
(relative to the Riemannian metric in Si) such that /i(B) = ,ui(A). Accord- 
ing to the isoperimetric inequality (see [12], [4]) one has Mi(NE(B)) < 

Ai(NE(A)), e > 0, and the general problem is reduced to the case when Ai 
are balls. A straight-forward calculation (see for instance, [6], [8]) yields 
now our assertion. 

1.2. Ricci curvature. When X is a Riemannian manifold we always 
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844 M. GROMOV AND V. D. MILMAN 

take for A the normalized Riemannian volume element. We set R (X) = 

infT Ric(r, r), where r E T(X) runs over all unit tangent vectors. 

THEOREM. Let {Xi }, i = 1, 2, ..., be closed Riemannian mani- 
folds such that R(Xi) -yi. +oo. Then the family {Xi, ,ti } is Levy. 

Proof. An isoperimetric inequality from [5] reduces this theorem to 
the case of the above spheres. 

Remark 1. For the sphere S1 of radius r one hasR(Si) = (i -)r-2 
and, hence, our Riemannian theorem contains the case of spheres. 

Remark 2. The isoperimetric inequality from [5] says that for any 
measurable A C X and for any e > 0 the following inequality holds 

4 N AA )) 2 RAWN ()) 

where B is a ball on the sphere Srk with k = dim X, and with radius r such 
that R(Sk) = R(X); here Ilk is normalized Haar measure on Sk and 

Ak(B) = AW) 
When ,O(A) > 1/2 this inequality implies (see [8]) the following: 

d(NE(A)) > I- V2exp(- 2 k) 

= 1-V exp (- 2/ R (X)) 1- Vexp( e2 R (X)). 

2. General properties of Levy families. The following three facts 
are immediate from the definition. 

2.1. Let {Xi, ,ti } be a Levy family, let {Y1)} be a family of metric 
spaces and let fi:Xi -+ Yi be an equi-uniformly continuous family of 
maps. Then {Yi, vi = (fi)*(,/i)} is a Levy family. 

2.2. Let {Xi, ,/si}, {Yi, vi} beLevyfamilies. Then {Xi X Yi, ,)i< X vi} 
is a Levy family. 

2.3. Let {Xi, ,tij} be a Levy family and Ai C Xi be Borel sets such 
that limiO,, inf ,,(Ai) > 0. Then {Ai, jAiA}is a Levyfamily where AIA is 
defined as follows: ,/ I A (B) = ,i/(B) ,/A-1(A), B C A. 

We call a family {Xi, ./ii } degenerate if there are balls Bi C Xi of radii 
ri such that ri 0 0 and 4i(Bi) E 1. 
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2.4. If {K, i} is a Levy family for a fixed compact K, then {K, ,i} 
is degenerate. 

Proof. It is enough to show that there exist subsequences in, rn ?+ 0 
and xo E K such that iti (Br (xo)) -+ 1 where Br (xo) is the ball of radius rn 
and center xo. Take some finite covering {BE(xj)}7 1 of K for e > 0. There 
exist a point xE and a subsequence {in } such that lim ,tin(BE(xE)) ? a > 0 
and therefore lim .i (B2E(xE)) = 1. Let e -+ 0. Then one can take for xo 
any accumulation point of {xE}E O. Q.E.D. 

2.5. Levy mean. Let (X, O) be as in section 1 and let f :X -+ R be a 
continuous bounded function. We say that the number Lf is the Levy 
mean (or median of f iff ,/ {x E X: f (x) c Lf} 2 1/2 and , i{x E X: f (x) 2 

LI} 2 1/2. Let {Xi, .4i } be a Levy family. We consider a family of con- 
tinuous functions fi: Xi R. Let At+ = {x E Xi: fi(x) 2 Lf.} and 
A = {x E Xi: Li(x) c Lf.}. It is obvious from the definition of Levy family 
that for any e > 0 one has ti(N,(At) n N(A-)) -iy 1. In particular, 
for uniformly bounded and equi-uniformly continuous family of functions 

fi we have 

fidAi - ai ?-O, i j-o. 

3. Further examples. We say that a family {Xi } of complete Rie- 
mannian manifolds has uniformly bounded geometry if the sectional 
curvatures K(Xi) and the injectivity radii Rad(Xi) satisfy: I K(Xi) I c const, 
Rad(Xi) 2 (const)1, "const" > 0. 

We say that submanifolds Yi C Xi have uniformly bounded relative 
geometry if all principal curvatures a(Yi) satisfy: ao(Yi) c const where r 
runs over all unit vectors normal to Yi. 

We say that a family of sets Yi C Xi is essential if for any e > 0 we 
have limiO0 inf Ai(NE(Yi)) > 0. 

3.1. Let {Xiwi} be a Levy family, where Xi are closed Riemannian 
manifolds with uniformly bounded geometry. Let Yi C Xi be an essential 
family of closed connected submanifolds of fixed codimension and with 
uniformly bounded relative geometry. Then {Yi, vi} is a Levy family 
where vi denote the normalized volume associated to the Riemannian 
metrics induced by the inclusions Yi -+ Xi. 

Proof. When geometry is bounded, then there exists e > 0 such 
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that the normal projections NE(Yi) -+ Yi are well defined and uniformly 
continuous. Applying 2.3 and 2.1 we get 3.1. 

Let us give a criterion for a family Yi C Xi to be essential. Let 
codim Yi = 1 and let each Yi divides Xi into two pieces X?, Xi with com- 
mon boundary Yi. 

3.2. If {Xi, }i I is a Levy family, Xi are connected and 

lim inf min(iti(Xi?), iti(XI)) > O, 
i+ 00 

then Yi are essential. 

Proof. In fact, NE(Yi) D NE(X?) n NE(Xo); hence I (NE(Yi))-y i. 1, 
e > 0. Q.E.D. 

3.3. Let Yi be the Stiefel manifolds W2(R). By using the natural 
imbeddings Yi -+ Si'1 X St-1 and applying 2.2, 3.1 and 3.2 we conclude 
that Yi form a Levy family. Repeating this argument we conclude that for 
each k the family { Wk (R9)} is also Levy. By using the natural projections 
Wk(R1) -+ Gk (R1) we get the Levy property for the Grassmann manifolds 
as well (see [9] for further information). 

3.4. The following examples of Levy family are obtained using 1.2 
and the known values (see [3]) of Ricci curvature for these families (for the 
standard bi-invariant metric): 

R(SO(n)) = 

R(Sn X ... X Sn) 2 n-1; 

R(X1 X ... XXk) 2 min R (Xi) 

if Xi are of non-negative curvatures; 

R(Wk(Rn)) > 
-4 

3.5. Next two examples are combinatorial. 
Let En be an n-dimensional linear space over the field Z2 with 

tn(A C En) = IA /2n(IA I is a number of elements of A) and with the 
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Hamming metric p(x, y) = I {i:xi ? yi} I where x = (x1, ..., x,) E E'2 

and y =(yl, .,yn) EE'2. 

{En2, U, p/n } is a Levy family. Moreover, if A1n(A C En) = 1/2 and 
e = p/n then an (Np (A)) 2 1 - 1/2 exp (-2n E2). 

This follows from a solution of the isoperimetric problem for (E2 ,An, P) 

[13]; see details and some applications in [1]. 

Remark. Let us consider the natural embeddings ... En C E n+' C ... 

and let E' = U ' E n. For x, y E EE', let f (x, y) = p(x, y)/max(p(x, 0), 
p(y, O)) except atx = y = O and letf (0, 0) = O. We define the metric p by 

M(x,y) =inf{f(x,zt) + k f(zi,zi+ ) +f(zk,y) {zY}) CE}2 

It is not difficult to check that f(zl, Zk) ? 2 z-l f(z +, zi) for any 
{z1}k C E' and so -(x, y) c f (x, y) < 2p(x, y) for allx, y inE'. 

As before, (Er, It, p) is a Levy family, where 4n denotes the same 
measure as in 3.5 (note that supp n = E2). 

3.6. Let Sn be the permutation group of the numbers {1, ..., n} 
tn(A C (n) = IAl/n!. We give Sn the Hamming metric d(a, r) = 

I {i: u(i) ?? r(i)} . B. Maurey [7] has proved that if tn(A) 2 ae then 

AnL(Nd(A)) 2 1 - exp(-(d - n log 1/a)2/16n) 1 - exp (-E2n/16) 
for d >>? and E = dln. 

It means that ((, t n, din) is Levy family. 

Remark. In the same way as in the Remark to 3.5 we introduce 

- the group So = U T Sn (considering each S,n as a subgroup of 

Sn+I with natural embedding for every n = 1, 2, . . .), 
- the function s?(a, -q) = d(a, -q)/max(d(a, e), d(-q, e)) for a, q E S 

where e is the identity element of S., 
- and the metric d(a, -q) such that d(a, -q) ' <(a, -q) ' 2d(a, -q). 

Then (Soo, ,Un, d) is a Levy family. 

4. The Laplace operator. Let M be a compact connected Rieman- 
nian manifold. Then the Laplace operator -A on M has its spectrum con- 
sisting of eigenvalues X\ = 0 < X1(M) c X2(M) c .... The first non- 

trivial eigenvalue X1 may be represented as the largest constant such that 

(1) kXI llf 112 C (-Af, f) = I Vf 12 
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for any continuous and "sufficiently smooth" function f on M such that 

SMf = 0 (see some consequences and references [11]). 

4.1. THEOREM. Let M and X1(M)- X1 be as in 4 and let A C M 
be a closed set, with It (A) = a > 0, where It is the normalized Rieman- 
nian volume element of M. Then for E > 0 

jt(NE(A)) 2 1 - (1 - a2) exp (-E X ln(1 + a)). 

Proof. Let A and B be closed subsets of M, I(A) = a > 0, I(B) = 
b > 0, such that the distance p(A, B) = p > 0. We consider a function 

f(x)= - + min(p(x,A), p). 

Let SMfd,1 = ae. Then by (1) we have 

X 11f X_ l2 c I vf 2d1 <12(1t -b 2) (1 -a -b) 

and 

X1Ilf | 112 [ (f o-) d- + (f )2 

= x ((+ a-f) a + h + c)) 

>X( + 1) 

Therefore p2X1 c ('/a + '/b) (1 - a - b) < (1 - a - b)/ab, and 

(2) h 1-a 
1 + X1p2 a 

Take some 6 > 0 and consider a sequence of pairs (Ai, Bi) of subsets 
of M: Ao = A and Bo = (Na(A))C _ M\Na(A); A1 = Na(Ao) and 
B1 = (Na(AI))C and so on. After p-steps we have by (2) 

1-ap. 
P I+A ) = 2ap 

where hp = tt(Bp ), ap = tt(Ap ) = tt(Apb(A)) and ap+I = 1 - hp. 
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Therefore 

(3) 1aP+1 c (- ap) + l2 

(we used ap 2 a). Take 6 1/X and define sp(E) = I(NJ(A)). Then 
apply (3) inductively p times to obtain 

1 -O (p * 6) C ( - a) exp (-p ln (1 + a)). 

Let p6 c e < (p + 1)6. So (e - p6) -1 c l and <(e) 2 o(p6). 
Finitely we have 

1- s(e) p 1-s?(P 6) < (1- a)exp(-p6 A1 ln(1 + a)) 

c (1 - a)exp (-E X ln(1 + a) + (e - p6) A1 ln(1 + a)) 

c (1-a2)exp(-E XA ln(1 + a)). 

COROLLARY. If Xn are compact Riemannian manifolds and XI (Xn) 
00 (n -+ oo) then the family (Xn, 4) is Levy (where l is the normalized 

Riemannian volume element of Xn). 

4.2. Examples. (a) X l(Sn) -n and we once more obtain 1.1. 
(b) Let Tn = S' X ... X S' be the n-dim. torus; R(Tn) = 0 and 

therefore we cannot apply 1.2 to this manifold. However X1(Sl) = 1 and 
so X1(Tn) = 1. LetAAn C Tn and /n (An) ? a > 0. 

Then, by 4.1, Itn(NE (An)) -+ 1 if Cen ?o. (It is worthwhile in this 

example to consider Cen 00 oo because the diameter d(Tn) = 7rVn). So we 
have the following statement: 

Let O < an -oo and let p(x, y) be the usual Riemannian metric on 
T . Then (T , ,ln, Pn np/a,) is Levy family. 

Example (b) returns us to the first observation of this kind, due to 
E. Borel which preceded the Theorem of Levy 1.1. E. Borel gave the fol- 
lowing geometrical interpretation of the Law of large numbers for a sum 
of uniformly distributed on the [-1, 11 independent random variables: 
Let Mn= [-1, 1]n be an n-dim. cube and let /ln be the normalized 
Lebesgue measure on Mn. Let H be a hyperplane which is orthogonal to a 
principal diagonal of Mn at the point 0. Then ,,n {x E Mn s.t. p(x, H) < 
cVe} -+ 1 if n -+ oo for any fixed c > 0 where p(x, H) is the distance from 
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x to the set H. Obviously, example (b) contains not only the observation of 
E. Borel for the hyperplane H and cn = cVG but it claims a stronger 
statement: 

Let fn :Mn -- R be a family of continuous functions, let Ln be the 
Levy mean of fn (see 2.5) and let Hn = {x E Mn: fn(x) = Ln}. Then 

nNEn-(Hn )} 1 for any Cn ?? 00 

5. G-spaces. Let X be a metric space with a uniformly continuous 
action of a group G and G = U I Gi where Gi C Gi+1 are subgroups 
of G. We call the G-space (X, G) Levy if there is a sequence Gi invariant 
measures ti on X, such that {Xi = X, ti} is a Levy family. 

5.1. Examples. Let G be a compact group which acts by isometries 
on the Hilbert sphere S'. The G-space (S, G) is Levy (here Gi G). 

Proof. Take a sequence of great spheres Sdi C S' such that they 
are G invariant and di -- oo as i -- oo. Take for i, the normalized Rieman- 
nian volume supported on Sdi and use 1.1. Q.E.D. 

Take a subgroup G C 0(k). This group naturally acts on the disjoints 
union X = U i'=k Wk(R1) and this action is Levy due to 3.3. 

5.2. Let (X, G), (Y, G) be G-spaces and f: X --Y be a G-invariant 
uniformly continuous map. 

If (X, G) is Levy then (Y, G) is also Levy. 

Proof. Use 2.1. 

5.3. THEOREM. If X is compact, (X, G) is Levy and G acts equi- 
continuously on X then there is a point x E X which is fixed under the 
action of G. 

Proof. Use 2.4. 

Remark. Theorem 5.3 is true even if we don't assume that Gi (and G) 
are groups. 

5.4. MAIN THEOREM. Let (G, X) be a Levy G-space as in 5 and let 
Y be an arbitrary compact G-space without fixed points (i.e. fixed under 
all elements of G). Then there is no G-invariant uniformly continuous 
maps X -- Y. 

Proof. Use 5.2 and 5.3. 

Remark. When Y is contractible there usually is a continuous 
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G-invariant map X -- Y. Examples of a fixed-point-free action on balls 
can be found in [2]. 

5.5. The bundle sections. When G acts on X freely and (Y, G) is 

any G-space one has a natural fibration (X X Y)/G -- X/G with 
fiber Y. (We use the diagonal action in X X Y.) There is a canonical cor- 

respondence between the equivariant maps X -- Y and the sections X/G 
(X X Y)/G. This correspondence preserves uniform continuity and hence 
we get examples of bundles which admit continuous, but not uniformly 
continuous sections. 

6. A spectrum of functions on X. Let again (X, G) be a G-space as 
in 5. Let Gi act transitively on Xi C X, let yi be supported by Xi and let X 
be the closure of U iXi. The following examples are typical: (a) Xi = S'-' 
andX = S'; (b) Xi = Wk(Ri) and X = Wk(H ); (c) Xi = Gk(Ri) and 
X = Gk(H'). In all these examples we have Gi = SO(i). 

6.1. Let f (x) be a uniformly continuous function on X(f: X -- R). 
We say (see [8], [10]) that a number a E R is from the spectrum of f iff for 
every c > 0 and for every i there exists g E G such that I f (x) - a < c for 
every x E gXi i 

6.2. If (X, G) isLevy and {Gi}l are compact thenforany bounded 

uniformly continuous function f: X -- R the spectrum of f is not empty. 
(A number of examples and applications can be found in [8], [10].) 

We shall prove a formally stronger statement: 

6.3. Let {ai } l be the Levy means of fix. as in 2.5. For every integer k 
and any c > 0 there exists an integer N such thatfor any i ? N and any set 

Mi C Xi containing k points (IMI = k) we have If(gix) - ai < e for 
every x E Mi and for some gi E Gi. 

Proof. It is clear that yi are induced by the Haar measures vi on Gi: 
for some fixed xo E Xi and Y C Xi we have ,i(Y) = vi(T = {g E Gi: gxo E Y}). 

Let T- = {g E Gi: If(gx) - ail < c} for fixed x E Xi. By 2.5 

,Li(T ) 1 when i oo. We apply this argument k times for every x E Mi 
and then consider an intersection of k subsets Tx C Gi (for i large enough) 
which is not empty because it has asymptotically (when i -- oo) full 
measure in Gi. Q.E.D. 

To prove 6.2 we consider an c-net of Xi and apply 6.3. 

Remark 1. Of course, we can consider in 6.2 any uniformly con- 
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tinuous map f: X -- Y where Y is a compact space with a metric p = p y 
and we obtain the same kind of result, namely, instead of a E R in 6.1 we 
have a E Y and I f(x) - a < c is replaced by py(f(x), a) < e. 

Remark 2. Let f (x, y) be a uniformly continuous real function on 
the product X X Y where X is as in 6.2 and Y is a compact metric space. 
Then there exists a continuous function a (y): Y -- R such that for every 
y E Y the number a(y) is from the spectrum of f :X X {y} -- R, and 
moreover for every c > 0 and every i there exists g E G such that 

If(x,y)-a(y)I <c 

for every x E gXi and for every y E Y. 

6.4. An additional example. Let Ek = {(Q, x): E E Gk(H) and 
x E t C H', 1x I = 1 } be the canonical sphere bundle over the Grass- 
mann manifold Gk(Hz). If f: Ek -- R is a uniformly continuous function 
then there exists a E R such that for any integer n > k and any e > 0 one 
can find an n-dimensional subspace En C H? such that 

If( ;x)-aI <c for VtEGk(E ) and VxE CEC . 

The proof is based on a simple interpretation of 6.2 for X = Ek and 
G = Un>k Gn, Gn = SO(n). 

Nonexistence of a uniformly continuous section Gk(Hz) S Ek is an 
immediate consequence of this fact (of course, it is well known that even 
continuous section does not exist in this example). Indeed, if such a sec- 
tion had existed then, by Uryssohn Theorem, one could construct a uni- 
formly continuous function f: Ek R which takes the values one and zero 
for every k-dimensional subspace t C H? which contradicts the statement 
of 6.4. 

6.5. We consider now a fibration X X Y/Gk -- X/Gk as in 5.5 
where Y is a compact, (Y, Gk) is a Gk -space and X and G as in 6 and 6.2. 
The next statement follows from 6.3 (see Remark 2): 

Let f: X X Y/Gk -+ R be a uniformly continuous boundedfunction. 
For any c > 0 and for any integer f > k there exists g E G such that 

the function f (Q) I (EX .gX Y/Gk depends (up to e) only on orbits Y/Gk . 

6.6. We are ready to obtain once more the result 5.5 (with some 
additional condition on X) from 6.5 in the same way as we did in 6.4. 

Remark. In all previous results we don't need, in fact, to consider 
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uniformly continuous maps and sections. It is enough to consider even not 
continuous map f but which is "uniformly continuous on an essential sub- 
set." It means that there exists 6 > 0 and a continuous function w (C) -k 0, 
e -+ 0, such that 

lim /i{x: Wf(x; c) < w(()} ? 6 

where wf(x; c) is the modulus of continuity f at the point x E X. 

7. Generalization; A fixed-point theorem. Most of the previous re- 
sults hold not only for metric space X but may be reformulated for X with 
an arbitrary Hausdorff topology. 

Particularly, 2.4 and 5.3 hold for any Hausdorff compact space X. 

7.1. THEOREM. Let (X, G) be a G-space as in 5 and let (Gi, /ti) be a 
Levy family where /ti is the normalized Haar measure on Gi. Let G act on 
X as an equicontinuous transformation group (it means, particularly, that 
0t(g; x) = gx is a uniformly continuous map G X X -+ X). If X is a com- 
pact then there exists a common fixed point under the action of G. 

Proof. Let x0 E X. We construct a map (o: G -+ X, (p(g) = gxo, and 
we consider a family vi of measures on X such that vi = *(/L). By 5.2 
(X, vi) is a Levy family. So we can use 5.3. 

7.2. One can apply 7.1 for 

(i) G = {U 1SO(i)} using 3.4, 
(ii) G = (g0 = U Z1 E taken in the sense of 3.6 with the metric p, 

(iii) G = E = U n E2 as in 3.5 with the metric d. 

Remark. 7.2 (i) and (ii) answer a question of H. Furstenberg. How- 
ever, H. Furstenberg wanted to prove these statements as another ap- 
proach to Theorem 6.2, different from that of [8] and this paper. 

SUNY AT STONY BROOK 

TEL-AVIV UNIVERSITY AND SUNY AT ALBANY 
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