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1. I n t r o d u c t i o n  

We first recall some basic definitions on widths (cf. [P] for more details). Let X be a real 

complex normed linear space and A a closed, convex centrally symmetr ic  subset  of X.  

The  n-Kolmogorov width of A in X is given by 

d=(A;X)=inf sup inf I I x - y l l  
X,, zEA yEX,~ 

when the inf imum is taken over all n-dimensional subspaces Xn of X.  

The  n-Bernstein width of A in X is defined as 

b~(A;X) = sup sup{A I AS(X~+I ) C A} 
Xn+~. 

= sup inf I1~11 
X,,+~ z68(AAX,~+l) 

where X~+I in any (n + 1)-dimensional subspace of X, S(X,~+I) is the unit ball of X,~+I. 

The  following inequality holds (see [P], Proof  1.6) 

b,~(A; X) < dn(A; X) . (1.1) 

Clearly dn(A; X) " ~  0 implies compactness of A. The  purpose of this paper  is to develop a 

method to es t imate  certain Bernstein widths in situations where compactness is not available. 

More precisely, we will generalize to several variables the (semi)-classical fact tha t  

b~(S(W:([0 ,1]) )  , L~([0 ,1] ) )  < ! (1.2) 
n 

where Lp, ]1 lip refers to the usual Lebesgue spaces and W~([0,1]) stands for the space of 

functions on [0,1] with integrable derivative and norm 

tlf[Iw:([0,1]) = Hfllx + l[f'tl~ • 

(Here and in the sequel, S( ) will refer to the unit ball.) 

The  proof  of (1.2) is topological and rests on the Borsuk-Ulam ant ipodal  mapping  theorem. 

This me thod  seems difficult to generalize to several variables. Our  approach is based on Banach 

space theory of finite dimensional subspaces of L p (in part icular  change-of-density and entropy- 

methods).  There  is the following generalization of (1.2) 
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T h e o r e m  1.3. Let  d > 1 and ~2 denote the  unit  ball in ~:t d. Then 

b ~ ( s ( w ~ ( a ) )  , t~l~_~(r~) ) < c~,~ -~1~ 

where cd is a constant  only  depending on d. 

The relevant Sobolev inequality here is Gagliardo's inequality 

I lul lL.._,(~.) _< cll gradullL,(R<') for u ~ C ~ ( ~  't) . 

More generally, let for a multi-index a = ( a l , . . . ,  ad), t<~I = E ~i 
i 

D ~ = D ~ ~ • 1 " " D ~  D ~  = OlOz~ 

and denote 
l i p  

(1.3) 

(1.4) 

/ .  \,>i~ ] 

11~II~,~(~) = IlV~'-'llL,(n) + II~llL.(r~) • 
T h e o r e m  1.5. Let d > 1 and fl as in Theorem 1.3. Then 

b ~ ( S ( W ~ ( a ) ) ,  L~o(n)) < c~n -1 • (1.6) 

Notice that ,  up to the value of the constants, inequalities (1.3) and (1.4) are best possible. 

This fact is easily seen by considering polynomial spaces. 

It will be clear from what follows that  one may consider as well the more general type of 

domains fl appearing in the theory of Sobolev spaces (see [M] for these matters).  The aim of 

this exposition is to present the new ideas in the simplest cases. Essentially speaking, Bern- 

stein width estimates may be derived from any localizable Sobolev inequality. In particular, 

application in the context of an inequality such as 

Ilwll~ _> cll~llp 

is of potential interest for the spectrum of the Laplacian. Such applications will not be consid- 

ered here. 

This exposition is not self-contained. The reader will be referred to [M] for some basic 

facts about  coverings and Sobolev inequalities. More importantly,  essential use is made of 

methods and results of [BLM] on the geometry of finite dimensional subspaces of L p and the 

truly interested reader is advised to consult this paper. 
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2. E n t r o p y - E s t i m a t e s  in Subspaees  o f  L p 

Details on what follows may be found in sections 4 and 9 of [BLM]. The next change-of- 

density principle is due to D. Lewis. 

L e m m a  2.1. Let X be an n-dLrnensional subspace of  Ll(Iz), where tz is a probabil i ty measure. 

There is a densi ty  A 6 Ll(Iz),  A > 1 = _ ~, f A d t ~  = 1 such that the space X A - 1 X  considered 

as subspace o f  LI (~) ,  ~ = A.I~ admits an or~honormal basis ~ 1 , . . . ,  ~on satisfying 

\'/211 
( ~  l ~ i " )  i=1 _ < 2 V ~ .  (2.2) 

Def in i t ion  2.3 (entropy numbers). Denote for A, B convex centrally symmetric subsets of 

a linear space by E ( A ,  B)  the minimum number (possibly infinity) of translates of B needed 

to cover A. 

Def in i t ion  2.4. 

for 1 < p < c ~  

Denote also 

If X is a linear space of functions on some probability space (f~, #), denote 

sp(x) = { f  e x I IlfllL~<.) -< 1 }  . 

s ¢ , ( x )  : { f  e x } IlfllL~<,~) ~ 1} 

where ¢2 refers to the Orlicz-function e *~ - 1. Recall also that IIfHz~ 2 ~ sup Illll~ 
p_>l v~" 

L e m m m a  2.5. Let X be an n-dimensional function space on a probabili ty space (f~, Iz) ad- 

ml t t ing  an ortbonormal basis satisfying (2,2). Then for t _> 1 

v/log(1 -t- t) (2.6) l o g E ( S I ( X ) , t S ¢ 2 ( X ) )  <_ c t 

Proof :  

- n .  

By Proof 9.6 of [BLM] 

log E(SI (X), tS2(X)) < c l°g(1 + t) n 
- -  t2 

while, by Lemma 9.2 of [BLM] 

(2.7) 

Since for all 1 < tl < t 

log E ( S I ( X ) ,  t S ¢ , ( X ) )  <_ log E ( S I ( X ) ,  t l S 2 ( X ) )  + log ( t l S 2 ( X ) ,  t S¢~(X) )  . 

(2.6) is immediate from (2.7) and (2.8). It results from Lemmas 2.1, 2.5 that to any n- 

dimensional subspace of L 1 (#) there corresponds a change of density such that the space in its 

new position satisfies the natural (= as in the tPn-scale) entropy-estimates. This fact will be 

exploited as follows 

n log z(s2(x) , ts~ , (x) )  < c ~ .  (2.8) 
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L e m m a  2.9. Given an n-dlmensional subspace of X of Ll(Iz), there exists a density-function 

A (as in Lemma 2.1) such that the following holds: Let Y be a subspace of X of dimension 

dimY >_ ~. Then there is f 6 Y fult~iling the conditions 

I I / I IL , ( , , )  = 1 (2 .10)  

/ [exp ( f )  2 ] .AdI~<_C (2.11) 

where C is an abscdute constant. 

Proof :  In virtue of Lemma 2.1, there is clearly no restriction to assume (2.2) valid, in which 

case, by Lemma 2.5, (2.6) holds. (The density A appearing in Lemma 2.9 is given by Lemma 

2.1.) From volumetric considerations, 

log (s,(r), 4s,(v)) > n .  (2.12) 
From (2.6), for sufficiently large (numerical) value of t 

n (2.13) l ogE(S I (Y ) , t S¢2 (X)  ) <_ ~ .  

Since the centers of the covering balls may always he taken in Y, provided the radius t is 

doubled, also 
n 

log E ( S I ( Y ) ,  2tS•,(Y)) < 

which together with (2.12) implies that 

¼St(Y) ~ 21S¢ , (Y)  . 

Thus there is ~ 6 Y satisfying 11~[[¢2 < 2t and [[~][1 > ¼, completing the proof. 

3. P r o o f  o f  T h e o r e m  1.3 

Recall first following covering property due to Besicovitch (see [M], Theorem 1.2.1 for a 

proof). 

L e m m a  3.1. Let ~ be a bounded set in Kld. Associate to each point x 6 fl a bail B~(~)(x), 

r(x) > 0 and denote 13 the collection of these balls. Then one may choose a sequence {B,~} of 

bails in 13 such that 

NcUB ~ (3.2) 
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and 

{B,~} has multiplicity bounded by M = M ( d )  (3.3) 

(-- a constant only depending on the dimension d). Thus each point is in at most M balls B,,.  

L e m m a  3.2. Le~ ~ be the unit ball in ~ a  and ~1 the intersection of  ~ and a ball centered 

at a poin~ in ~. Then, lett ing p d = ~-:-f, on a subspace oEcodimension 1, the inequality 

II'-,IIL,.(.,~ _< cllvutl.~,¢r,,~ (3.3) 

holds. Here c = Cd only depends on the dimension. 

Proof :  Notice homothetic invariance in (3.3) which permits the assumption ~1 is 1-bounded 

and satisfies the cone-property in a uniform way. Thus ~1 admits a Stein extension operator 

= W~ (~1) ; W~(f f l  d) with a uniform bound (cf. [M]). Also, by Lemma 1.1.11 of [M], there 

is a function ~0 on f/1 such that 

I I ~ -  <'-', ~'o>II~,(a,) -< ollV~ll~.( . , )  (3.4) 

where C is a uniform constant. Hence, applying Gagliardo's inequality 

(cf. [M]), it follows 

I lvllL.(~) <_ OllW, llL.(~,,) (3.5) 

Cll,fllll~- (~, ~o>tlw;(a,~ _< 

This implies Lemma 3.2. 

R e m a r k .  By Lemma 1.1.11 of [M], the generalization of previous localization argument, 

when there are higher order derivatives involved, is clear. 

P r o o f  o f  T h e o r e m  1.3. Let X be an n-dimensional subspace of W~(F/) and consider its 

image ~7(X) under the linear map 

v = ( a , , , . . . , a , , )  : w ; ( a )  , s l ( r~)  e . . .  e L,(r~) ~ L l ( r~  e . . .  e r~).  
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Application of Lemma 2.5 to the space V(X)  gives a density A on 12 such that  any ~- 

dimensional subspace Y of X contains an element f fulfilling the properties 

HVf"I  1 and / f A e x p ( ' ~ ' ) 2  = - -  < C . (3.6) 

(Notice that  in the preceding the linearity of V is important .)  

22~f Define ,c = -W-, where M is the constant of Lemma 3.1. To each ~ E 12, assign r(z)  > 0 

so that  

~ a ( y ) d y  = (3.7) 

Let {B,,~} be obtained applying Lemma 3.1. Notice that  by  (3.3),(3.7), ni  = ~{B,~)  has to 

satisfy 

][u[[L,(a,~) _< C[[Vu[[L,(m~) (i _< m _< nl) (3.8) 

holds, for all u in a space of codimension < nx. In particular, (3.8) holds for all f in a 

half-dimensional subspace Y of X.  Take f satisfying (3.6) in addition. Since in particular 

f IVIIPA ~-p C (3.9) _< 

it follows from (3.2),(3.8),(3.7),(3.3),(3.9) and HSlder's inequality 

f ~  _ f P  It II~,(~) < ~ tt ILL,(n.,)- < C ~ ttVftl~(n~) 

< • li" il~.,(.,~> 

< C,cV-iM 

Hence, by definition of p and ~, [[fHLA~) < Cn -i/d, completing the proof. 

hence 
n 

ni_<~. 

Denote f~,~ = 12 fq Bm for 1 < m _< r~l to which Lemma 3.2 is applied. Thus 
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R e m a r k .  The pevious argument breaks down for d = 1. This case or, more generally (1.4), 

will be considered in the next section. 

4. P r o o f  of  T h e o r e m  1.4 

Since the ball has the Stein extension property, one may as well take for f~ the cube 

]0,1[ a (this simplifies the construction of certain partitions introduced later). We first draw 

the following corollary from Lemma 2.5 

L e m m a  4.1. Let X be an n-dimensionM subspace of Ll(~,Iz) with an or~honormal basis 

satisfying (2.2). Let (Pi)i=l,2 .... be a sequence of t~nite partitions of ~ such that 

1 
~PI=AT/  and #(A)--- ~ -  for A • P i .  (4.2) 

Let (Ai) be a sequence of positlve numbers fuLfiIHng the conditions 

A i < N i  and E N i e x p \  2 A 2 ] < n "  (4.3) 

I f Y  is a subspace of X ,  dimY > ~, there exists f • Y satisfying 

]]fllLl(~) = 1 ] 

sup sup Ad(f, xa)l <_ C . I (4.4) 
i A6~ 

Proof :  

entropy considerations, it will suffice to fulfill an inequality 

l o g E ( S l ( X ) , { f  • X IIIT, fll < A7 ~ for e~ch 

Since, by Lemma 1.5, (2.6) holds, (4.5) may be replaced by 

logE(S¢2(X) , { f  • X I IITifll < A71 for each 

or equivalently 

For each i, consider the operator Tif  = ((f,  XA))Ae'r', ranging in t ~ Again from N~" 

i)) < On .  (4.5) 

i)) < c~ 

logE({(AiTif)  l f  6 S¢2(X)} , S ( O ~ e ~ ) )  < C n .  

Estimate the left number of (4.6) by 

~-'~logE({)~,TJ I f • S¢~(X)} , s(e~,))  . 
i 

(4.6) 

(4.7) 
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By (4.2), taking conditional expectation with respect to 7~i, for IIf11¢2 -< 1 

1 
"~i E exp(N'(f'xA))2 <- 1 

AE'Pi 

hence 
1 

[IT~flIL~ S 

where L~N 2 stands for the L ~2 space on {1,...,N} with normalized counting measure. Thus 

(4.7) is bounded by 

It is easily verified that (t > 1) 

t 2 
logE(S(L~2) , tS(l~)) < Ce-TN (4.0) 

(See [BLM], section 9 for a proof.) Substitution of (4.9) in (4.8) gives the condition (4.3) 

( 1 {Ni~2~  Z N, - ~  \ ~, / / < n . 

R e m a r k .  It is easily verified that Lemma 4.1 remains valid if the hypothesis of the 7~i being 

partitions is replaced by a hypothesis of bounded multiplicity. Let now X be an n-dimensional 

subspace of W~(12) and consider its image V j X  under the mapping 

v ~ :  w ~ ( ~ )  - -~  s ~ !12) e . . -  • s~(12) = s~ (~  e . . .  • a ) :  ] 

d l  c o m p o n e n t s  

, (D~/),o,=d 

where dl = 
d ! ( d - - 1 ) !  " 

Application of Lemma 2.1 to VaX gives a density (A,,)lal=d on 12 @ . . .  q3 12 and we let 

A = ~ ~ A,~. Then (A @. . .  @ A) -x • VaX is a subspace of Ll(@12, A dx) satisfying the 
I~t=ax 

hypothesis of Lemma 4.1. 

Next apply as in the previous section Lemma 3.1 in order to obtain a sequence B 1 , B 2, . . .  , B '¢ 

of intersections of 12 and some cube centered at a point of 12, such that 

fB A(x)dx ,,~ 1 (1 < m _< n') (4.10) 
m n 

{B 1 , . . . , B  '¢ } has bounded multiplicity (4.11) 
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(Lemma 3.1 remains valid if bails are replaced by cubes.) Here n '  ~ n and will be specified 

according to later needs. Fix I < m < n' .  Construct  partitions :P1'~....i~ of B "~ = J1 × "'" × Jd 

in rectangles 

A =/81  x I,,,,= x . . .  x I ,  ....... ~ (sj < 2 ~)  

where for s l , . . . , s j - 1  fixed, I ,  ....... i . . . .  (1 < s < 2 ~) are consecutive intervals chosen such 

that  

/Q /B l l i A = 2-1x . . . . .  i j_t- i j  A ,,~ - -2 -  ~ . . . . .  ~ . (4.12) 
m n 

where Q = L ,  × "'" ×/ax ...... i-~ × / ~  ....... j - t , ,  × Jj+i × ""Jd. Thus letting ~ = ( i l , . . . , id) ,  

I~I = ix ÷ . - -  ÷ i j ,  it follows that  

Mr ~ #~,~' = 21~1 (4.13) 

and 

A A. .~2_lr  11 for A E T n a .  (4.,14) 
n 

Let 7~r be the collection of rectangles obtained as U T'~,  of bounded multiplicity, by (4.11). 
l < : m < n  ~ 

Defining )~r = n '2  ½ I~l, condition (4.3) becomes 

n > ~ IPr[ exp ( -  ½)~'217vr] 2) = n ' ~ 2  I~1 e x p ( -  ½2131) (4.15) 
i t , . . . , ia  

which may  be satisfied for n '  .v n. 

Assume Y a subspace of X,  d i m Y  > ~ and apply the conclusion of Lemma 4.1 to the 

subspace (A G - "  E3 A ) - I V a Y  of (A G . . .  G A)-lxYdX (the systems 7Pr are reproduced here 

on each of the components  of the direct sum space fl O ' "  G Y~). One gets then some f E Y 

satisfying 

sup ][A-1Daf[[Ll(ad~)= sup ltD'~f]ILl(n)= 1 (4.16) 
I,~l=d I~,l=d 

and 

[(Daf, xa)[ = /A(A-ID°~f)(A dx) <_ C2-{1~1n-1 

for f~I=d , l< ,~<n'  A E Z ' ~  

Fixing m = 1 , . . . ,  n '  and considering the domain Bin, one has a uniform inequality 

HfI[Loo(B,~) _< C sup sup](DC'f, xR)] 
j~l=d R 

(4.17) 

(4.18) 

contained in B,n (the validity of this claim is easily seen by rescaling B,,~ to the unit cube and 

for all f taken in a space of codimension _< Ca. The supremum in R relates to all parallelopipeda 
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applying the fundamental theorem of calculus or Theorem 1.1.10.1 of [M]). If n'Cd < ~ and 

the space Y ¢--* X considered above is defined appropriately, one gets some f E X satisfying 

(4.18) in addition to (4.16),(4.17). It remains to evaluate IlftlL~(n) = max IlftIL~(S,,,). By 
l < m < n  ~ 

(4.18), this may be done by estimating <D=], XR), where R is a parallelopipedum in B,= with 

same origin as Bin. It easily foUows from the construction of the partitions 7)~ (~ = ( i , . . . ,  id)) 

that R admits a representation as disjoint union 

R=UR  (4.19) 

where Rr = 0 or Rr E P ~ .  The reader will easily verify this fact by considering d = 1,2 etc. 

From (4.19) and (4.17) 

[<D~/,XR)[ < ~--~ I<D~/,xR~)I ~ Cn -x ~ 2 -~(i1+'''+~') = Cn-1 . 
¥ i l , . . . , ia  

Hence II/11~ < c n  -1, concluding the proof of Theorem 1.4. 
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