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1 .  F O R M U L A T I O N  O F  T H E  P R O B L E M  A N D  S T A T E M E N T  O F  R E S U L T S  

1 . 1 .  I n t r o d u c t i o n  

1.1.1.  Le t  M and N be  s m o o t h  n - d i m e n s i o n a l  m a n i f o l d s ,  the  second  b e i n g  p r o v i d e d  with a nondegen -  
e r a t e  ( i . e . ,  nonvanish ing)  n - f o r m  w o We a s k  when a g iven  ( p o s s i b l y  d e g e n e r a t e )  n - f o r m  can  b e  induced  f r o m  
~o onto M by  a s m o o t h  m a p p i n g  M -~ N. 

1.1.2.  The a p p e a r a n c e  of  the  p r e s e n t  p a p e r  i s  m o t i v a t e d  by  a ques t i on  r a i s e d  by  V. I .  A r n o l d '  (s~e 
[1]): Can an exac t  2 - f o r m  be  induced  onto a t w o - d i m e n s i o n a l  s p h e r e  by  a m a p p i n g  onto a p l a n e ?  L a t e r  we 
l e a r n e d  f r o m  V. I .  A r n o l d '  tha t  A .  B.  Katok  has  an a f f i r m a t i v e  a n s w e r  to th is  p r o b l e m  and then  D. V. Ariosov 
i n f o r m e d  us  tha t  A .  B.  K r y g i n  has  c a r r i e d  K a t o k ' s  r e s u l t s  o v e r  to  o t h e r  o r i e n t a b l e  s u r f a c e s .  

1 .1.3.  In the  f i r s t  p a r t  of  o u r  p a p e r ,  p u b l i s h e d  h e r e ,  i t  i s  shown tha t  e v e r y  e x a c t  n - f o r m  can  be  i n -  
duced onto a s t a b l y  p a r a l l e l i z a b l e  m a n i f o l d  M b y  a m a p p i n g  M -~ R n. 

Th i s  p r o p o s i t i o n  i s  g e n e r a l i z e d  and r e f i ne d  by  the f o r m u l a t i o n s  in Sec .  1.2, which  a r e  p r o v e d  in S e c -  
t i ons  2.3 and 2.4.  One n e c e s s a r y  cond i t ion  f o r  i n d u c i b i l i t y  i s  f o r m u l a t e d  in Sec .  1.3 and i s  d e m o n s t r a t e d  in 
Sec. 2.5. 

In the second part of the paper inducibility conditions will be analyzed in detail, the case where M and 
N are of different dimensionality will be considered, and applications to other geometrical problems will be 
given. 

1 . 2 .  A f f i r m a t i v e  R e s u l t s  

1.2.1.  In th i s  p a p e r  the  t e r m  " smoo th"  a l w a y s  r e f e r s  to s m o o t h n e s s  of the c l a s s  C ~ .  

In the c a s e  of  a s m o o t h  m a p p i n g f  of  the  man i fo ld  M into the  mani fo ld  N with the  f o r m  ~ the f o r m  in -  
duced  on M is  deno ted  b y f * ( w ) .  F o r  f ixed n - f o r m s  a on M and w on N the ma pp ing  f :  M --* N is  c a l l e d  
e x a c t  i f  the  d i f f e r e n c e  a - f * ( ~ )  is  e x a c t .  If  the  m a n i f o l d s  a r e  c l o s e d ,  then  e x a c t n e s s  i s  e q u i v a l e n t  to the  

t'z = deg/S o7, w h e r e  deg  i s  the  d e g r e e  of the  m a p p i n g .  I f  N is open e x a c t n e s s  i s  e q u i v a l e n t  to  e q u a l i t y  
M N 

e x a c t n e s s  of  the  f o r m  a and i f  M is  open e v e r y  m a p p i n g  M --* N is  e x a c t .  

A m a p p i n g f  : M ~ N is  c a l l e d  s t a b l y  p a r a l l e l i z a b l c  i f  the  f i b r a t i o n  induced by  i t  out of T(N) is s t a b l y  
e qu iva l en t  to the  t a n g e n t i a l  f i b r a t i o n  T(M).  

We c a l l  a f o r m  a on an o r i e n t a b l e  man i fo ld  a f o r m  of v a r i a b l e  s ign  i f  it  t a k e s  both p o s i t i v e  and n e g a -  

t ive  v a l u e s .  An equ iva l en t  cond i t ion  is the  fu l f i l lmen t  of  the  s t r i c t  i n e q u a l i t y  ~ ] ~ ! > 1 ~  . 

1.2.2o Let  M and N b e  connec t ed  n - d i m e n s i o n a l  (n > 1) m a n i f o l d s  with smoo th  n - f o r m s  a and co, the  
second  b e i n g  n o n d e g e n e r a t e ,  and le t  f 0 :  M ~ N be  an e x a c t ,  s t a b l y  p a r a l l e l i z a b l e  m a p p i n g .  Then  in the  
fo l lowing  t h r e e  c a s e s  t h e r e  e x i s t s  a s m o o t h  m a p p i n g  f :  M -~ N wi th . f* (~ )  = a which is  hom0top i c  to the  

m a p p i n g  f 0 :  

L e n i n g r a d  S ta te  U n i v e r s i t y ,  L e n i n g r a d .  T r a n s l a t e d  f r o m  F u n k t s i o n a l ' n y i  i Ego P r i l o z h e n i y a ,  Vol .  7, 
No. 1, pp .  33 -40 ,  J a n u a r y - M a r c h ,  1973. O r i g i n a l  a r t i c l e  s u b m i t t e d  A p r i l  11, 1972. 
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I) the fo rm cr is  of  va~ab l e  Sign; 

2) ~o is a smooth imbedding; 

3) M is an open manifold. 

Remark  1. Case 3) follows both f rom 1) and f rom 2). The reduction i ~ 3) is obvious since a form 
with an open manifold can be extended with the appearance  of var iable  sign onto a l a rge r  connected manifold. 
The reduction 2 ~ 3) is based on H i r sch ' s  theorem (see [6]), according to which f0 can be deformed into an 
imbedding in our  a r rangement .  

Remark  2. As will become apparent f rom the construct ion of the m a p p i n g f  (see Sections 2.2, 2.3), it 
has a rank not less than n - 1 at every  point m ~ M. 

Corol lar ies  

1.2.3. Let ~ and co be smooth n - fo rm on an n-dimensional  (n > 1) manifold M, the form co being non- 
degenerate  and the difference ~ -co  being exact.  Then there  exists a smooth mapping f :  M ~ M with 
f*(c~) = ~, which is homotopically identical and has a rank not less than n -  1 at every  point. 

This follows f rom case  2) and Remark  2 of Section 1.2.2. 

1.2.4. Let M be a connected, orientable manifold and A ~ M be a closed set  with nonempty comple -  
ment.  Then there  exists a smooth mapping f :  M -~ M, which has the rank n - 1 in points of A and the 
rank n on the complement M\A. Moreover  there  exists  a smooth mapping g: M x [0, 1]--M such that the 
contract ion g I M x 0 is the identical mapping, and all g [M x I --'f, g [ M x t  with t ~ I are  di f feomorphisms.  

If g is ignored, 1.2.4 follows eas i ly  f rom 1.2.3, and the existence of gwi l l  become evident in Sections 
2.2 and 2.3. 

1.2.5. Proposit ion 1.2.4 is also valid in the non-orientable  case,  a fact that will become evident f rom 
the proofs .  The same can also be said of Proposi t ions 1.2.2 and 1.2.3, but in addition to the proofs of these,  
it is neces sa ry  to refine the formulation. 

Mappings with Folds 

1.2.6. Suppose that the set of zeros  of the form cr is a smooth manifold Z ~  M of codimensionaii ty 1. 
This ra ther  typical situation provides an example of a form whose density (with respect  to any nondegener-  
ate form) is a function without a zero  cr i t ica l  value. For  the induction of a s imi la r  form it would be ideal 
to achieve a mapping M --~ N having no other  s ingulari ty than a fold on Z. 

We shall descr ibe  the situation more  prec i se ly .  Let  M and N be connected, orientable,  n-dimensional  
(n > 1) manifolds having no boundaries ,  and suppose that M is divided by a non-empty manifold Z into two 
(necessar i ly  connected) manifolds M+ and M_ with the common boundary Z. We call  a smooth form on 
admissible  if  it is positive within M- and negative with "IV[_. We assume that the smooth n - fo rm co on N is 
posit ive.  The smooth mapping f :  M --~ N is admissible  if the induced formf*(c0) is admiss ible  and the 
contract ion f [ Z : Z -~ M is a smooth imbedding. 

1.2.7. For  any admissible form ~ and any exact  admissible  mapping M ~ N there  exists an admiss i -  
b l e  mapping f : :  M -~ N withf*(co) = ~ that is homotopic to it. 

1.2.8. The necessa ry  and sufficient condition for the existence of an admissible mapping (Joe., a map~ 
ping with a prescr ibed  fold) is to be found in [4]. Referr ing to [4] for the general  case ,  we state only a coro i -  
lary stemming f rom 1.2.7 and case a) of Theorem 3.10 in [4]. 

1.2.9. If n = 3.7, then for any admissible  form ~ and any exact,  stably paral lel izable mapping M --~ N 
there is an admissible  mapp ingf  : M -~ N withf*(co) = ~ that is homotopic to it. 

1 . 3 .  N e g a t i v e  R e s u l t s  

1~.1 .  There is an essent ial  obstacle to the induction of a form on M, For  example, the induction of 
a form ~ by the mapping M - -  R n is equivalent to its representat ion by the external  derivative of n exact 1- 
forms and the neces sa ry  condition for  this is that the form ~ can be factored into the product of n l inear 
(through not necessa r i ly  exact) fo rms .  
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If the f o r m  cr is  not d e g e n e r a t e  and the manifold  M is open,  then  this  condi t ion  is a l so  suf f ic ien t  
{which follows f r o m  case  3) of P ropos i t i on  1.2.2).  On the c o n t r a r y ,  in  the d e g e n e r a t e  ca se  th is  condi t ion  is 
f a r  f r o m  suf f ic ien t ,  as follows f r o m  P r o p o s i t i o n  1.3.3. 

1.3.2. We a g r e e  to ca l l  the d i m e n s i o n a l i t y  of the se t  Z c M the s m a l l e s t  n u m b e r  k for  which the re  is 
a smooth  k - d i m e n s i o n a l  manifold  A and a smooth  mapp ing  A --~ M such that  i ts  i ma ge  con ta ins  Z. 

1 2 . 3 .  Let (~ and ~ b e  smooth  n - f o r m s  o n : n - d i m e n s i o n a l  man i fo lds  M and N, the fo rm aJ b e i n g  nonde-  
gene ra t e ,  and the f o r m  ~ h a v i n g  a compac t  s e t  of z e r o s  which does not i n t e r s e c t  the b o u n d a r y  of the m a n i -  
fold M, this  set  hav ing  a d i m e n s [ o n a l i t y  l e s s  than  n / 2 .  If  n -> 6, then  any smooth  mapp ing  f :  M -~ N with 

f*(w) = a c a n b e  C° -app rox ima ted  by  con t inuous ,  loca l ly  h o m e o m o r p h i c  mappings  M - -  No 

R e m a r k  1. In mos t  c a s e s  P r o p o s i t i o n  1 2 . 3  does not  apply to the  manifo ld  M i t se l f ,  but  appl ies  only 
to those  of i ts  open p a r t s  where  the ze ro s  of the f o r m  a have the a p p r o p r i a t e  d i m e n s i o n a l i t y .  

R e m a r k  2. The d i m e n s i o n a l i t y  n / 2  Cannot be  rep laced  by  a l a r g e r  one; on e v e r y  c losed k - c o n n e c t i o n  
(k< n/2)  i t  is e a sy  to find a f o r m  with an (n - k - 1 )d imens iona l  se t  of z e r o s  which can  be induced by  a m a p -  
p ing  in the  s p h e r e  S n with a n o n d e g e n e r a t e  f o r m .  

R e m a r k  3. If P o i n c a r ~ ' s  hypo thes i s  is t aken  to be val id  in a d i m e n s i o n a l i t y  of four ,  then  the condi t ion  
n - 6 can  be  weakened to n >- 4. 

R e m a r k  4. F r o m  P r o p o s i t i o n  1.3.3 i t  follows that  a m a p p i n g f  induces  c o r r e s p o n d i n g  c l a s s e s  in  M 
f r o m  Shtiefel  c l a s s e s  and r a t i ona l  P o n t r y a g i n  c l a s s e s  of the manifold  N without the need of m a k i n g  the as 
s u m p t i o n  n -> 6, s i n c e  in  these  cases  L e m m a  2.5.2 can  be used  in p lace  of P r opos i t i on  1.3.3. 

§ 2 .  P R O O F S  

2 . 1 .  N o n d e g e n e r a t e  F o r m s  

2.1.1.  With r e f e r e n c e  to a se t  A ~  M the t e r m  " n e a r  A" m e a n s  "in s o m e  neighborhood of the set  A." 

2.1.2. Let M be a connec ted ,  compac t ,  n - d i m e n s i o n a l  manifold  with the b o u n d a r y  B, and let ~o 0 and 
/ b  

a~ 1 be n o n d e g e n e r a t e  n - f o r m s  on M whose va lues  co inc ide  n e a r  ]3. If ~ co 1 = ~ o~0, then  t h e r e  ex i s t s  a dif-  

f e o m o r p h i s m f :  M ~ M, jo ined with the iden t i ty  diffeotopy and fixed n e a r  ]3, such t h a t f * ( w  0) = c01. 

Fo r  the p roo f  see  [7] and [2]. 

2.1.3.  Let M be a connected  n - d i m e n s i o n a l  mani fo ld  that  f ac to rs  into the d i r e c t  p r oduc t  M = M 0 x [0, 
1], and let  COo and e I be n o n d e g e n e r a t e  n - f o r m s  on M whose va lues  co inc ide  n e a r  M 0 x 0. If n > 1, then  
t h e r e  ex i s t s  an imbedd ing  f :  M ~ M w i t h f * ( ~  0) = wl that  is  joined with the iden t i ty  by  a r e g u l a r  homotopy 
fixed n e a r  M 0 x 0. 

Th i s  obvious ly  follows f r o m  2.1.2.  

2 . 2 .  S h o r t  F i b r a t i o n s  

2.2.1.  A o n e - d i m e n s i o n a l  f i b r a t i on  L on a compac t  manifo ld  M with b o u n d a r y  13 is  ca l led  sho r t  if 
eve ry  f i be r  I is  a s egmen t  hav ing  its ends  on Bo T a n g e n c y  of l and B in i n t e r n a l  points  of the s e g m e n t  I is 
not exc luded .  The se t  of poin ts  of t a n g e n c y  be tween  f i be r s  of the f ib ra t ion  and B is denote  by E = ~;(L)~ ]3. 

The o n e - d i m e n s i o n a l  s u b f i b r a t i o n  of a t angen t i a l  f i b r a t i on  T(M) c o n s i s t i n g  of v e c t o r s  that  a r e  t angen t  
to the f ibe r  of the f ib ra t ion  L is denoted by T(L) .  The fac to r  f i b r a t i on  T(M)/T(L)  is denoted by S(L). 

If  L is  a sho r t  f ib ra t ion  f i be r  of the f ib ra t ion  S(L) ly ing on one f i b e r  l of the f ib ra t ion  L can  be i den t i -  
fied by m e a n s  of a ho lonomy a long  l .  The r e s u l t  of the iden t i f i ca t ion  is an (n - 1 ) - d i m e n s i o n a l  (n = d im  M) 
v e c t o r  space ,  which we denote by S l .  By Rl we denote  the ( one - d i me ns i ona l )  v e c t o r  space  of the {n - 1 ) -vec -  
t o r s  of the space  S/, i . e . ,  Rl is the  e x t e r n a l  deg ree  A n - I s / .  

2.2.2,  F o r  an  n~ fo rm ~ on a manifold  M with a sho r t  f i b r a t i on  L, hav ing  a f b e r  l and an  (n D - v e c t o r  
~ R l ,  we deno te  by ~a the l i n e a r  f o r m  on I d e f i n e d ( p r o p e r l y ,  as  can  be seen) by  the f o r m u l a  2,~(x) = ~(~ A x), 

whe re  x is a vec to r  t angen t  to I. 
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F o r  an or ientable  :segment Z0c ~ we denote b y  ~I ~ an (n - -  1)-~form in SZ whose vailue on X ~ RI 
lo 

is equal  t o  the in tegra l  ~ X~. 
to 

2.2.3. A manifold M with boundary  B is conveniently r ep re sen t ed  as pa r t  of a l a r g e r  manifold ~I with 
boundary B, which is obtained b ~ a f f i ~ n g  to B the cy l inder  B x [0, 1]. A shor t  f ibrat ion L on M can be e x -  
tended to some  shor t  f ibrat ion L on M. 

2.2.4. ~ Consider  smooth  n - f o r m s  ~ on M and on M,  the second being nondegenerate .  

a) We cal l  ~r and co~ongruent a long L i f  for  any segment  Z 0, lying en t i re ly  i n o n e  l a y e r  and having i ts  

ends on B, the identity .~ ~ = S ~ is fulfil led. 
lg lo 

b) We say  that  the fo rm ~ is dominated along L by  the f o r m  co if, fo r  any f ibe r  ~ of the f ibrat ion ~ ,  the 

in te rsec t ion7  = ~ ~ M, and any segment  ~0 ~ ~ hav ing  one end on B and the other  on B, the inequali ty I I ~ I ~  
Z 

is sa t i s f ied .  
l0 

2.2.5. A mapping of pa r t  of  a manifold having a f ibration is called l amina r  in the en t i re  manifold if 
eve ry  f iber  goes ove r  into i t se l f .  

2.2.6. Let  the fo rms  ~ and co coincide n e a r  ~ = Z(L) and suppose that  conditions a) and b) of 2.2.4 a r e  
fulfilled. Then the re  exis ts  a unique, smooth ,  l amina r  m a p p i n g / :  M -~ M with/*(co) = ~, which is fixed on 
B and joined with the identi ty homotopy fixed on B. 

Proof .  Take any f iber  Z of the f ibration L, its extension to the f ibe r  T of the f ibrat ion ~,  and a vec to r  
X E RZ. Construct  the mapping /z : / -+ l  with /~ (Xo) = X~, fixed in points of ~ f~ B. Evidently such a m a p -  
ping exis t s ,  is unique, and among the aggrega te  of  m a p p i n g s / z ;  defines the r e q u i r e d / .  

2.2.7. We cal l  a f o r m  ~ on un or ientable  manifold M with a shor t  f ibrat ion L laminar ly  pos i t ive  if for  

any segment  Z 0, lying in one f ibe r  and having its ends on B, the inequality I ~ > 0 is fulfi l led. 
G 

2.2.8. Let  M be a connected,  compac t ,  or ientable  manifold with the shor t  f ibrat ion L and the fo rm 

~ ,  which is posi t ive  n e a r  Z(L) .  If  f ~  > 0 ,  the re  exis ts  a d i f f e o m o r p h i s m / :  M -~ M, assoc ia ted  with the 

identity diffeotopy, fixed nea r  the boundary B, such that  the f o r m / * ( ~ )  is l aminar ly  posi t ive .  

Proof .  Let  UI, . . . .  Uk be connected components  of a region where  the fo rm u has  pos i t ive  values 

such that the i r  union U contains Z(L),  and f~ /~  ! ]~ I .  As a dis tance f rom the boundary B se lec t  a tube 
U M \ U  

T ~  M, i .e . ,  a se t  smoothly  developed as  the d i rec t  product  of  a sphe re  D n- I  and the segment  [0, 1], so  that 
eve ry  segment  d x [0, 1] c T c  M (d E D n-i) lies en t i re ly  in one f iber  of the f ibrat ion L.  We a s s u m e  that 

each segment  of  the tube in t e r sec t s  each of the se ts  U i and the inequality ~ I ~J < f ~ (i = l . . . . .  k) is 
M T U i 

ful f i l led .  This i s e a s i l y  ver i f ied if  ~ is subjected to the effect  of an appropr ia t e  d i f f eomorph i sm.  Under  the 
a s s u m p t i o n s  made,  it is  poss ib le  to cons t ruc t  a l aminar ly  posi t ive fo rm or' which is posi t ive  in U, coincides 

with ~ near  B U (M\U) ,  and is  of such a c h a r a c t e r  that  the equali ty .~ ~' --  ~ = 0 (i = i . . . . .  k) is sa t i s f ied .  

F r o m  2.1.2 it follows tha t  the required d i f feomorphism conver t ing e '  to ~ (in addition to being fixed n e a r  
M\U) ex i s t s .  

2.2.9. L e t  M and L be the s a m e  as  in2 .2 .8 ,  let  ~ be  a l aminar ly  posi t ive f o r m ,  and let co be a pos i -  
t ive  f o r m  o h m  that co inc ides  with ~ n e a r  Z (L). Then the re . ex i s t s  a pos i t ive  f o r m  o~ 0 on M: which is con-  
gruent  to ~ (see a) of 2.2.4) along L and which coincides with 6o n e a r  B, 

Fo r  the p roof  one must  cove r  t he  complement  up to a smal l  neighborhood of  the se t  X(L) in an appro-  
p r i a t e  way with a finite number  of  tubes ,  then achieve  the required  posi t ive  c h a r a c t e r  of the fo rm by chang-  
ing it sequential ly in each of the tubes .  
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2 . 3 .  I n d u c t i o n  o f  F o r m s  

2.3.1 .  C o n s i d e r  the  M and M of  p a r a g r a p h  2.2.3 and p r o v i d e  1~ with a smoo th  R i e m a n n  m e t r i c .  We 
c a l l  th~ m a p p i n g  f :  M - -  M n o r m a l  if  the  fo l lowing  two cond i t ions  a r e  fu l f i l l ed :  

1) the m a p p i n g f  i s  f ixed on the  b o u n d a r y  B and is  jo ined  with the  iden t i t y  h o m o t o p y  tha t  is  f ixed on B; 

2) f o r  e v e r y  po in t  x E M ly ing  n e a r  13 the  i m a g e f ( x )  E M is loca ted  on the g e o d e s i c  tha t  p a s s e s  t h rough  
x and is  n o r m a l  to ]3. 

2 .3 .2 .  F u n d a m e n t a l  L e m m a .  Le t  M be a c o m p a c t ,  connec t ed ,  n - d i m e n s i o n a l  man i fo ld  with n > 1 and 
le t  ~ be a s m o o t h  n - f o r m  on M. M o r e o v e r ,  let  the man i fo ld  ~I be  p r o v i d e d  with a R i e m a n n  m e t r i c  and a 

n o n d e g e n e r a t e  u - f o r m  co such tha t  fo) -- I~  . Then  t h e r e  e x i s t s  a n o r m a l  m a p p i n g  f :  M - -  ~I wi thf*(co)  = 
M M 

a tha t  is  un ique ly  d e t e r m i n e d  n e a r  13. 

P r o o f .  We f ix  an  o r i e n t a t i o n  in M r e l a t i v e  to which the  f o r m  ~o is p o s i t i v e .  Wi thout  l o s s  of  g e n e r a l i t y  
we a s s u m e  tha t  n e a r  s o m e  s m o o t h ,  c l o s e d  s p h e r e  D n ~  Int M the  f o r m s  co and a c o i n c i d e ,  and we deno te  by  
M 0 the man i fo ld  M \  Int Dn with b o u n d a r y  B t3 ~D n. We c o n s t r u c t  a s h o r t  f i b r a t i o n  L 0 on M 0 with exten~: ion 

L0, which ,  n e a r  ]3, c o n s i s t s  of  g e o d e s i c s  n o r m a l  to B.  By v i r t u e  of 2.2.8 the  f o r m  cr can  be  c o n s i d e r e d  
l a m i n a r l y  p o s i t i v e ,  and ,  a c c o r d i n g  to 2.2.9, t h e r e  e x i s t s  a p o s i t i v e  f o r m  co 0 on M0 tha t  is  c o n g r u e n t  to a 
a l o n g  L 0. A u g m e ~ i n g  co 0 o u t s i d e  of  M0, one can  ob ta in  a d o m i n a n c e  ( s ee  2 .2 .4) ,and  so ,  a p p l y i n g  2.2.6,  c o n -  

s t r u c t f  0" M 0 - -  M 0 withf0(co 0) = a .  A c c o r d i n g  to  2.1.2 and 2.1.3 t h e r e  e x i s t s  a m a p p i n g f l :  M 0 --, ~ wi th  
f l  (ca) = ~o0, so tha t  one can  t ake  the  c o m p o s i t i o n  f 0  o f l  a s  the  d e s i r e d f  on M0 and ex tend  i t  onto D n by  the  
i d e n t i t y  t r a n s f o r m a t i o n ,  t h i s  b e i n g  p o s s i b l e  s i n c e  f 0  a n d / 1  w e r e  c o n s t r u c t e d  so  a s  to be  f ixed n e a r  3D n. 

2-3.3.  P r o o f  of  T h e o r e m  1.2.2.  Without  loss  of g e n e r a l i t y  we a s s u m e  tha t  M has  no b o u n d a r y .  U s i n g  
[8] o r  [4], we d e f o r m / 0  into a con t inuous  m a p p i n g  f ° :  M ~ N, fo r  which  t h e r e  e x i s t  n - d i m e n s i o n a l ,  c o n -  
n e c t e d ,  c o m p a c t  m a n i f o l d s  Mt,  M2, . . . .  M i . . . .  (whose  n u m b e r  is  f in i t e  o r  d e n u m e r a b l e ,  depend ing  on 
w h e t h e r  M is  c o m p a c t  o r  not) tha t  c o v e r  M, no p a i r  hav ing  i n t e r e s e e t i n g  i n t e r i o r s ,  such  tha t  the c o n t r a c -  
t ions  f01Mi  a r e  smoo th  i m b e d d i n g s .  S i m p l e  a d d i t i o n a l  c o n s i d e r a t i o n s  enab l e  one to a s s u m e  tha t  the  e q u a l i t y  

I v = f (fo)* (~o) h o l d s .  We e n l a r g e  each  Mi to  Mi and extend the  i m b e d d i n g f ° l M i  to the  i m b e d d i n g f i :  
M i  Ma 

Mi ~ N. We fix a s m o o t h  R i e m a n n  m e t r i c  in N and a s s u m e  s m o o t h n e s s  of  the  n o r m a l  (with r e s p e c t  to the  
m e t r i c  g e n e r a t e d  in M upon a f f ix ing  the m a n i f o l d s  M i with R i e m a n n  m e t r i c s  induced by  the  m a p p i n g f  °) d e -  
c o m p o s i t i o n  of the t u b u l a r  ne ighborhood  of  the  man i fo ld  U OM~ ~ M .  This  can be  done with  a s l i gh t  m o d i -  

i 

f i ca t ion  o f f  °. 

We p r o v i d e  each  Mi with  an  induced m e t r i c  and ar~ induced  f o r m  co i = ( f i )  * (09). A p p l y i n g  L e m m a  
2.3.2,  we c o n s t r u c t  n o r m a l  m a p p i n g s f i :  Mi Mi * w i t h f  i(cui) = a .  The m a p p i n g s  f i  ° f i :  Mi ~ N d e t e r -  
m i n e ,  in the  a g g r e g a t e ,  the r e q u i r e d  f .  

2 . 4  F o l d s  

2 .4 .1 .  In add i t i on  to  the  h y p o t h e s e s  in 1.2.6 i t  w i l l  be  s u p p o s e d  tha t  the man i fo ld  M is  c losed ,  and we 
denote  by M1 . . . . . .  ~/~ ~ M+; .1f~ 1 . . . .  , M~ ~ M c o n n e c t e d  c o m p o n e n t s  of  the  c o m p l e m e n t  M / Z .  M o r e -  
o v e r ,  we fix an i n t e g e r  d and l i m i t  the  t e r m  a d m i s s i b l e  to a d m i s s i b l e  (in the  s e n s e  of  1.2.6) mapp ings  of 
d e g r e e  d.  

s t 

2.4.2.  By H ~  R t w e  sha l l  denote  t h e h y p e r p l a n e  g i v e n b y t h e  equa t ion  ~ x ~  - ~, x ~ = d ,  b y H  +~- H 

the  s e t  of  v e c t o r s  wi th  nonnega t ive  c o m p o n e n t s ,  and b y  Z H + ~  H + the s e t  of  v e c t o r s  wi th  i n t e g e r  c o m p o n e n t s .  

The fo l lowing  fact  is  obv ious .  

2 .4 .3 .  The  convex  hul l  of  t he  s e t  ZH + is  H +. 

2.4.4• F o r  an a d m i s s i b l e  m a p p i n g  g: M ~ N we deno te  b y  N t t =  Ntt(g) c N, w h e r e  1 -- tt < u = u(g) --< 
~ ,  the  connec ted  c o m p o n e n t s  of  t he  c o m p l e m e n t  N \g (Z) ,  and by h~t(g) E ZH + the  v e c t o r  whose  i - t h  (i= 1, 
• . . ,  t) componen t  is  equa l  to the  n u m b e r  of  po in t s  in the  i n t e r s e c t i o n  g- l (a )  N Mi,  w h e r e  a is  s o m e  poin t  of  

N/~. By H(g) ~ ZH + we denote  the  union ] h:~ (g). 
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2.4.5. For  any finite se t  A ~  ZI4 + and any admissible  mapping M --~ N there  exists  an admissible 
mapping g with H(g) ~ A.that is homotopic to it. 

This follows f rom Theorem 2.2 of [4]. 

2.4.6. FOr a n n - f o r m  ~o on N and an admissible g we denote by h(~, g) ~ R t the vec to r  whose i - th  com-  

ponent is equal to the absolute magnitude of the integral i g" (~) • We denote by ~2 the set  of smooth nonde- 
M i 

generate forw~ ¢o for which f (o = i , and by ~2g~ H the union ~Ua h (,0, g). 

The following fact is obvious. 

2.4.7. The set f~g coincides with the in ter ior  of the convex hull of the set  H(g) ~ H. 

2.4.8. Let ¢o Ef~ and let a be an admissible (see 1.2.6) form on M. Then for  any exact, admissible 

mapping M --~ N there  is an admissible  mapping g that is homotopic to it, such that I g" (o)) = f z for i = 
M i M i 

1 ,  . . . ,  t .  

Proof.  We denote by y EH + the vec tor  with components y ~ - - I ~ I .  Using proposi t ions 2.4.3 and 

2.4.5, we first  const ruct  a go: M --~ N for  which the convex hull of the set H(g0) contains the vector  y within 

i tself .  By virtue of 2.4.7 there  exists a form f :  N --~ N wi thf*(~)  = ~o such t h a t f  o go is the required map-  
ping. 

2.4.9. Proof  of Theorem 1.2.7. If  M is closed, Theorem 1.2o7 follows immediately f rom 2.4.8 and 
2.1.2. If M is open, one requires  an analog of Lemma 2.4.8, which is easi ly derived f rom the Smale-Hirsch  
immers ion  theory (see [5, 6]). 

2 . 5 .  M a p p i n g s  w i t h  S m a l l  S i n g u l a r i t i e s  

2.5.1. For  a smooth mapping f :  M ~ N we denote by Z(f) ~ M the set of zeros  of its jacobian and 
by BZ(f)  the intersect ion of the boundary of the manifold M with Z(f ) .  

2.5.2. Let M and No be compact ,  connected, n-dimensional  manifolds and let f0 :  M --* No be a smooth 
mapping, convert ing the boundary of the manifold M into the boundary of the manifold N 0, such that the in- 
ve rse  imagesfol(X) with x E N o are  connected and dim Z(f0) < n/2,  dim BZ( f  0) < (n/2) - 1 (dimensionality 
is understood to be in conformity with 1.3.2). Then f0  is a homotopic equivalence. 

Proof.  The contract ion of the mapping f0  on M\Z( f )  maps the set M\Z(f )  onto its image di f feomor-  
phically and induces an i somorphism in all  homotopies and homologs.  Consequently, the same is t rue of 
the f0  itself and homologs with dimensions up to half  that possessed by M and for all required homologs,  in 
virtue of the Poincar~-Lefshetz  duality. 

2.5.3. If the inequality n >- 6 is satisfied under the conditions of Proposit ion 2.5.2, then the mapping 
f0  can be approximated by the homeomorphism M ~ No 

Proof. We choose a sufficiently fine smooth triangulation on No, this being in a common position with 
r e s p e c t t o f 0 .  I t  suffices to show that the inverse image of every k-dimensional  simplex of this t r iangula-  
tion is homeomorphic  to a k-dimensional  simplex. For k -< (n/2) + 1 the homeomorphism is realized by f0  
itself, since the mapping f0  on k-dimensional  s implices has,  in view of the common position, no more than 
zero-dimensional  s ingulari t ies .  On the remaining simplices the mapping f0  is a homotopic equivalence in 
virtue of 2.5.2, but f o r n  -> 6 the inequality (n/2) + 2 - 5, holds, and this guarantees the applicability of 
Smale ' s  theorem (see [3]), according to which, for k -> 5, a homotopic k-dimensional  sphere is a topological 
sphere.  

2.5.4. Proof of Theorem 1.3.3. We subdivide M into connected components of the inverse images 
f - l (x )  (x E N). The corresponding factor  space No is evidently an n-dimensional  manifold, which is of course  
imbedded in N, and Lemma 2.5.3 applies to the factor  mapping f0 :  M ~ No. 
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