CONSTRUCTION OF A SMOOTH MAPPING
WITH PRESCRIBED JACOBIAN. I

M. L. Gromov and Ya. M. Eliashberg

1. FORMULATION OF THE PROBLEM AND STATEMENT OF RESULTS

1.1. Introduction

1.1.1. Let M and N be smooth n-dimensional manifolds, the second being provided with a nondegen-
erate (i.e., nonvanishing) n-form w. We ask when a given (possibly degenerate) n-form can be induced from
w onto M by a smooth mapping M — N.

1.1.2. The appearance of the present paper is motivated by a question raised by V. I. Arnold’' (sze
[1]): Can an exact 2-form be induced onto a two-dimensional sphere by a mapping onto a plane? Later we
learned from V. I. Arnold' that A. B. Katok has an affirmative answer to this problem and then D. V. Aposov
informed us that A. B. Krygin has carried Katok's results over to other orientable surfaces.

1.1.3. In the first part of our paper, published here, it is shown that every exact n-form can be in-
duced onto a stably parallelizable manifold M by a mapping M — R,

This proposition is generalized and refined by the formulations in Sec. 1.2, which are proved in Sec-
tions 2.3 and 2.4. One necessary condition for inducibility is formulated in Sec. 1.3 and is demonstrated in
Sec. 2.5.

In the second part of the paper inducibility conditions will be analyzed in detail, the case where M and
N are of different dimensionality will be considered, and applications to other geometrical problems will be
given.

1.2. Affirmative Results

1.2.1, In this paper the term "smooth" always refers to smoothness of the class C*%,

In the case of a smooth mapping f of the manifold M into the manifold N with the form w the form in-
duced on M is denoted by f*(w). For fixed n-forms ¢ on M and w on N the mapping f: M — N is called
exact if the difference ¢ —f*(w) is exact. If the manifolds are closed, then exactness is equivalent to the

equality Sa = deg fS o, where deg is the degree of the mapping. If N is open exactness is equivalent to
M N
exactness of the form ¢ and if M is open every mapping M — N is exact.

A mapping f: M — N is called stably parallelizable if the fibration induced by it out of T(N) is stably
equivalent to the tangential fibration T(M).

We call a form o on an orientable manifold a form of variable sign if it takes both positive and nega-
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tive values. An equivalent condition is the fulfillment of the strict inequality S]a!>
M

1.2.2. Let M and N be connected n-dimensional (n > 1) manifolds with smooth n-forms o and w, the
second being nondegenerate, and let f;: M — N be an exact, stably parallelizable mapping. Then in the
following three cases there exists a smooth mapping f: M — N with.f/*(w) = ¢ which is homotopic to the
mapping f : '
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1) the form o is of variable sign;
2} f, is a smooth imbedding;
3) M is an open manifold.

Remark 1. Case 3) follows both from 1) and from 2). The reduction 1 = 3) is obvious since a form
with an open manifold can be extended with the appearance of variable sign onto a larger connected manifold.
The reduction 2 — 3) is based on Hirsch's theorem (see [6]), according to which f, can be deformed into an
imbedding in our arrangement.

Remark 2. As will become apparent from the construction of the mapping f (see Sections 2.2, 2.3), it
has a rank not less than n~ 1 at every point m € M.

Corollaries

1.2.3. Let o and w be smooth n-form on an n-dimensional (n > 1) manifold M, the form w being non-
degenerate and the difference 0 — w being exact. Then there exists a smooth mapping f: M — M with
f*w) = o, which is homotopically identical and has a rank not less thann—1 at every point.

This follows from case 2) and Remark 2 of Section 1.2.2.

1.2.4. Let M be a connected, orientable manifold and A M be a closed set with nonempty comple-
ment. Then there exists a smooth mapping f: M — M, which has the rank n— 1 in points of A and the
rank n on the complement M\ A, Moreover there exists a smooth mapping g: M x [0, 1]—M such that the
contraction g |y¢ » , is the identical mapping, and all g IM x1=fs8 M xt with t ¢ 1 are diffeomorphisms.

If g is ignored, 1.2.4 follows easily from 1.2.3, and the existence of g will become evident in Sections
2.2 and 2.3.

1.2.5. Proposition 1.2.4 is also valid in the non-orientable case, a fact that will become evident from
the proofs. The same can also be said of Propositions 1.2.2 and 1.2.3, but in addition to the proofs of these,
it is necessary to refine the formulation.

Mappings with Folds

1.2.6. Suppose that the set of zeros of the form ¢ is a smooth manifold Z< M of codimensionality 1.
This rather typical situation provides an example of a form whose density (with respect to any nondegener-
ate form) is a function without a zero critical value. For the induction of a similar form it would be ideal
to achieve a mapping M — N having no other singularity than a fold on Z.

We shall describe the situation more precisely. Let M and N be connected, orientable, n-dimensional
(n > 1) manifolds having no boundaries, and suppose that M is divided by a non-empty manifold Z into two
(necessarily connected) manifolds M, and M_ with the common boundary Z. We call a smooth form on
admissible if it is positive within M_ and negative with'M_. We assume that the smooth n-form w on N is
positive. The smooth mappingf: M — N is admissible if the induced form f*(w) is admissible and the
contraction f |5 : Z — M is a smooth imbedding.

1.2.7. For any admissible form o and any exact admissible mapping M — N there exists an admissi~
. ble mapping f:. M — N with f*(w) = ¢ that is homotopic to it.

1.2.8. The necessary and sufficient condition for the existence of an admissible mapping (i.é.; 2 map~-
ping with a prescribed fold) is to be found in [4]. Referring to [4]) for the general case, we state only a corol-
lary stemming from 1.2.7 and case a) of Theorem 3.10 in [4].

1.2.9. If n = 3.7, then for any admissible form ¢ and any exact, stably parallelizable mapping M — N
there is an admissible mappingf: M — N with f*(w) = o that is homotopic to it.

1.3. Negative Results

1.3.1, There is an essential obstacle to the induction of 4 form on M. For e‘xéunple, the induction of
a form ¢ by the mapping M — R is equivalent to its representation by the external derivative of n exact 1~
forms and the necessary condition for this is that the form ¢ can be factored into the product of n linear
(through not necessarily exact) forms.
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If the form o is not degenerate and the manifold M is open, then this condition is also sufficient
(which follows from case 3) of Proposition 1.2.2). On the contrary, in the degenerate case this condition is
far from sufficient, as follows from Proposition 1.3.3. -

1.3.2. We agree to call the dimensionality of the set Z< M the smallest number k for which there is
a smooth k-dimensional manifold A and a smooth mapping A — M such that its image contains Z.

1.3.3. Let o and wbe smooth n-forms on'n-dimensional manifolds M and N, the form w being nonde~
generate, and the form ¢ having a compact set of zeros which does not intersect the boundary of the mani-
fold M, this set having a dimensionality less than n/2. If n = 6, then any smooth mapping f: M — N with
f¥w) = ¢ can be €% approximated by continuous, locally homeomorphic mappings M — N,

Remark 1. In most cases Proposition 1.3.3 does not apply to the manifold M itself, but applies only
to those of its open parts where the zeros of the form o have the appropriate dimensionality.

Remark 2. The dimensionality n/2 cannot be replaced by a larger one; on every closed k-connection
(k < n/2) it is easy to find a form with an (n — k — 1)dimensional set of zeros which can be induced by a map-
ping in the sphere S1 with a nondegenerate form.

Remark 3. If Poincaré's hypothesis is taken to be valid in a dimensionality of four, then the condition
n = 6 can be weakened ton = 4.

Remark 4. From Proposition 1.3.3 it follows that a mapping f induces corresponding classes in M
from Shtiefel classes and rational Pontryagin classes of the manifold N without the need of making the as
sumption n = §, since in these cases Lemma 2.5.2 can be used in place of Proposition 1.3.3.

§2. PROOFS

2.1. Nondegenerate Forms

2.1.1. With reference to a set AS M the term "near A" means "in some neighborhood of the set A."

2.1.2, Let M be a connected, compact, n-dimensional manifold with the boundary B, and let w, and
wy be nondegenerate n-forms on M whose values coincide near B. If 1& w, = BS m, » then there exists a dif-
feomorphism f: M — M, joined with the identity diffeotopy and fixed near B, such that f*(w,) = w;.

For the proof see [7] and [2].

2.1.3. Let M be a connected n-dimensional manifold that factors info the direct product M = M, x [0,
1], and let w, and w, be nondegenerate n-forms on M whose values coincide near My x 0. If n> 1, then
there exists an imbedding f: M — M with f*(w() = w; that is joined with the identity by a regular homotopy
fixed near M, x 0,

This obviously follows from 2.1.2.,

2.2. Short Fibrations

2.2.1. A one-dimensional fibration L on a compact manifold M with boundary B is called short if
every fiber ! is a segment having its ends on B. Tangency of I and B in internal points of the segment ] is
not excluded. The set of points of tangency between fibers of the fibration and B is denote by Z = Z(L)& B.

The one-dimensional subfibration of a tangential fibration T(M) consisting of vectors that are tangent
to the fiber of the fibration L is denoted by T(L). The factor fibration T(M)/T(L) is denoted by S(L).

If L is a short fibration fiber of the fibration S(L) lying on one fiber ! of the fibration L can be identi-
fied by means of a holonomy along !. The result of the identification is an (n ~ I)-dimensional (n = dim M)
vector space, which we denote by S;. By R; we denote the (one~dimensional) vector space of the (n — 1)-vec~
tors of the space S;, i.e., Ry is the external degree An'isl.

2.2.2. For an n=form o on a manifold M with a short fibration L, having a fiber ! and an (n — 1)-vector
A € Ry, we denote by Ac the linear form on ] defined (properly, as can be seen) by the formula Ag(x) = (A AX),
where x is a vector tangent to /.
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For an orientable segment 1,1 we denote by S s an{a—=1)-form in.§; whose value on A €R;
o

is equal to the integral S As.
L

2.2.3. A manifold M with boundary B is conveniently represented as part of a larger manifold M with
boundary B,which is obtained by affixing to B the cylinder B x [0, 1]. A short fibration I. on M can be ex-
tended to some short fibration L on M.

. 2.2.4.: Consider smooth n-forms o on M and.w on ﬁ, the second being nondegenerate.
- a) We call o and w.congruent along L if for any segment I;, lying-entirely in one layer and having its
ends on B, the identity “ 6= S"’ is fulfilled. .
I I8

_ b) We say that the form ¢ is dominated along L b_y the form w if,for any fiber T of the fibration 'i". the
intersectionl =1 N M, and any segment f;,c T'having one end on B and the other on 'ﬁ.the inequality Sis\<
. 1

(o] is satisfied.
I

2.2.5. A mapping of part of a manifold having a fibration is called laminar in the entire manifold if
every fiber goes over into itself.

2.2.6. Let the forms o and w coincide near £ = Z(L) and suppose that conditions a) and b) of 2.2.4 are
fulfilled. Then there exists a unique, smooth, laminar mapping f: M - M with f¥(w) = o, which is fixed on
B and joined with the identity homotopy fixed on B. .

Proof. Take any fiber I of the fibration L, its extension to the fiber T of the fibration f, and a vector
A € Ry. - Construct the mapping f, : 17 with f; (M@) = Ao, fixed in points of I' N B. Evidently such a map-
ping exists, is unique, and among the aggregate of mappings f1; defines the required f.

2.2.7. We call a form o on an orientable manifold M with a short fibration L laminarly positive if for

any segment l,, lying in one fiber and having its ends on B, the inequality g o >0 is fulfilled.
s

2.2.8. Let M be a connected, compact, orientable manifold with the short fibration 1 and the form

o, which is positive near Z(L). If ‘a > 0, there exists a diffeomorphism f: M — M, associated with the
M

id_entity diffeotopy, fixed near the boundary B, such that the form f*(0) is laminarly positive.
Proof. Let Uy, ..., Uk be connected components of a region where the form ¢ has positive values

such that their union U contains Z(L), and SG> \ |s|. As a distance from the boundary B select a tube

v M\

TS M, i.e., a set smoothly developed as the direct product of a sphere D1 and the segment [0, 1], so that
every segment d x [0, 1] TE M (d ¢ D™} lies entirely in one fiber of the fibration L. We assume that

each segment of the tube intersects each of the sets U; and the inequality § ja]< ( s(i=1,...,k Iis
MN\T U,

1

fulfilled. This is easily verified if o is subjected to the effect of an appropriate dviffeom,orphism. Under the
-assumptions made,it is possible to construct a laminarly positive form o' which is positive in U, coincides

with ¢ near B U (M\U), and is of such a character that the equality S' d—o=0(=1,.. .,'k) is satisfied.
From 2.1.2 it follows that the required diffeomorphism converting o' to ¢ (in addition to being fixed near
M\U) exists.

2.2.9, ‘Let M and L be the same as in.2.2.8, let o be a: laminarly positive form, and let » be a posi-
tive form onM that-coincides with o-near Z(L).: Then there.exists a positive form w, on M which is con-
gruent to o (see a) of 2.2.4) along L and-which coincides with w near B.

For the proof one-must cover the complement up.to a small neighborhood of the set £(L) in an appro-
priate way with a finite number of tubes, then achieve the required positive character of the form by chang-
ing it sequentially in each of the tubes.
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2.3. Induction of Forms

2.3.1. Consider the M and M of paragraph 2.2.3 and provide M with a smooth Riemann metric. We
call the mapping f: M — M normal if the following two conditions are fulfilled:

1) the mapping f is fixed on the boundary B and is joined with the identity homotopy that is fixed on B;

2) for every point x € M lying near B the image f(x) € M is located on the geodesic that passes through
x and is normal to B.

2.3.2. Fundamental Lemma. Let M be a compact, connected, n-dimensional manifold with n > 1 and
let ¢ be a smooth n-form on M. Moreover, let the manifold M be provided with a Riemann metric and a

nondegenerate n-form w such that Sw = Scs . Then there exists a normal mapping f: M — M with f*w) =
i M
o that is uniquely determined near B.

Proof. We fix an orientation in M relative to which the form w is positive. Without loss of generality
we assume that near some smooth, closed sphere D' < Int M the forms w and ¢ coincide, and we denote by
M, the manifold M\ Int D™ with boundary B U 8D". We construct a short fibration L, on M, with extens ion
Lo, which, near B, consists of geodesics normal to B. By virtue of 2.2.8 the form o can be considered
laminarly positive, and, according to 2.2.9, there exists a positive form w; on M0 that is congruent to o
along L. Augmenting w, outside of M,, one can obtain a dominance (see 2.2.4),and so, applymg 2.2.6, con-
s!:kructfo My ~ M, with fy(wy) = ¢. According to 2.1.2 and 2.1.3 there exists a mapping f: MO ~ M with
f1{w) = w,, so that one can take the composition f » f; as the desired f on M, and extend it onto D™ by the
identity transformation, this being possible since f, and f, were constructed so as to be fixed near 9DU.

2.3.3. Proof of Theorem 1.2.2, Without loss of generality we assume that M has no boundary. Using
(8] or [4], we deform f, into a continuous mappingfo: M - N, for which there exist n-dimensional, con-
nected, compact manifolds My, My, . . ., Mj, . . . (whose number is finite or denumerable, depending on
whether M is compact or not) that cover M, no pair having interesecting interiors, such that the contrac-
tions fojMi are smooth imbeddings. Simple addifional considerations enable one to assume that the equality

S s § ()" (w) holds. We enlarge each M; to 1\7[1 and extend the imbeddingfolMi to the imbedding fi:

Un
M — N. We fix 2 smooth Riemann metric in N and assume smoothness of the normal (with respect to the
metric generated in M upon affixing the manifolds M; with Riemann metrics induced by the mapping 1% de-
composition of the tubular neighborhood of the manifold {JM; — M. This can be done with a slight modi-

fication of £,

We provide each Ml with an induced metric and an mduced form wi = (fI) * (w). Applying Lemma
2.3.2, we construct normal mappings fi: M — M; thhf1 (wi) = 0. The mappings f1 °fi: Mj — N deter-
mine, in the aggregate, the required f.

2.4. Folds

2.4.1. In addition to the hypotheses in 1.2.6 it will be supposed that the manifold M is closed,and we
denote by M, ... M,c M,; M, ..., M, = M_ connected components of the complement M/Z. More-
over, we fix an integer d and limit the term admissible to admissible (in the sense of 1.2.6) mappings of
degree d.

2.4.2. ByH< R! we shall denote the hyperplane given by the equation in - 2 =, by HtcH

i=1 f==s-1
the set of vectors with nonnegative compqnents, and by ZH' < H' the set of vectors with integer components.

The following fact is obvious.
2.4.3. The convex hull of the set ZH" is H*.

2.4.4. For an admissible mapping g: M — N we denote by N;; = Ny(g) © N, where 1 Su<v = p(g =
«, the connected components of the complement N\g(Z and by hy(g € ZH* the vector whose i~th (i= 1,
., t) component is equal to the number of points in the intersection g~4g) N M;, where g is some point of
Ny. By H(@< ZH™ we denote the union :<U<u T (g)-

i
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2.4.5. For any finite set AS ZH' and any admissible mapping M — N there exists an admissible
mapping g with H(g) > A that is homotopic to it.

This follows from Theorem 2.2 of [4}.

2.4.6. For an n-form w on N and an admissible g we denote by h(w, g} € Rt the vector whose i-th com~
ponent is equal to the absolute magnitude of the integral i g" (®) . We denote by Q the set of smooth nonde~
generate forms w for which 7§(o =1 , and by Q8< H the u;‘l‘iibn m‘Lejnh(m, g).

The following fact is obvious.

2.4.7. The set QF coincides with the interior of the convex hull of the set H{g) < H.

2.4.8. Letw€Q and let ¢ be an admissible (see 1.2.6) form on M. Then for any exact, admissible
mapping M — N there is an admissible mapping g that is homotopic to it, such that § g (o) = S‘ s fori=

M, AL
,...,t.

1

Proof. We denote by y € H' the vector with components y; =I \' s|. Using Propositions 2.4.3 and

2.4.5, we first construct a g;: M — N for which the convex hull of the set H(gy contains the vector y within
itself. By virtue of 2.4.7 there exists a form f: N — N with f*(w) = w such that f - g, is the required map-~
ping.

2.4.9. Proof of Theorem 1.2.7, If M is closed, Theorem 1.2.7 follows immediately from 2.4.8 and
2.1.2. If M is open, one requires an analog of Lemma 2.4.8, which is easily derived from the Smale-Hirsch
immersion theory (see 5, 6]).

2.5. Mappings with Small Singularities

2.5.1. For a smooth mapping f: M — N we denote by Z(f)< M the set of zeros of its jacobian and
by BZ(f) the intersection of the boundary of the manifold M with Z(f).

2.5.2. Let M and N, be compact, connected, n-dimensional manifolds and let f,: M — N; be 2 smooth
mapping, converting the boundary of the manifold M into the boundary of the manifold N;, such that the in-
verse images f;(x) with x € N, are connected and dim Z(f,) < n/2, dim BZ(f,) < (n/2) — 1 (dimensionality
is understood to be in conformity with 1.3.2). Then f, is a homotopic equivalence.

Proof. The contraction of the mapping f, on M\Z(f) maps the set M\Z(f) onto its image diffeomor-
phically and induces an isomorphism in all homotopies and homologs. Consequently, the same is true of
the f itself and homologs with dimensions up to half that possessed by M and for all reqmred homologs, in
virtue of the Poincaré-Lefshetz duality.

2.5.3. If the inequality n = 6 is satisfied under the conditions of Proposition 2.5.2, then the mapping
fo can be approximated by the homeomorphism M — N;.

Proof. We choose a sufficiently fine smooth triangulation on Ny, this being in a common position with
‘respectto f,. It suffices to show that the inverse image of every k-dimensional simplex of this triangula-
tion is homeomorphic to a k~dimensional simplex. For k = (n/2) + 1 the homeomorphism is realized by f,
itself, since the mapping f, on k-dimensional simplices has, in view of the common position, no more than
zero-dimensional singularities. On the remaining simplices the mapping f, is a homotopic equivalence in
virtue of 2.5.2, but for n = 6 the inequality (n/2) + 2 = 5, holds, and this guarantees the applicability of
Smale's theorem (see [3]), according to which, for k = 5, a homotopic k-dimensional sphere is a topological
sphere.

2.5.4. Proof of Theorem 1.3.3. We subdivide M into connected components of the inverse images
F4x) (x €N). The corresponding factor space N, is evidently an n-dimensional manifold, which is of course
imbedded in N, and Lemma 2.5.3 applies to the factor mapping f,: M — N,.
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