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Abstract

This talk presents a Morse-theoretic overview of some well known results and less
known problems in spectral geometry and approximation theory.

§0 Motivation: Various Descriptions of the linear spectrum

The main object of the classical spectral theory is a linear operator A on a Hilbert space
X. We assume A is a self-adjoint possibly unbounded (e.g., differential) operator and then

consider the normalized energy
E(z) = (Az,7)/(z,2) ,
which is defined for all non-zero z in the domain of A. Since the energy 2 is homogeneous,
E(az) = E(z) forall a€ R*,

it defines a function on the projective space P consisting of the lines in the domain XA C X of
A,
P =P(Xa) = Xa\{O}/R™ .

This function on P is also called the energy and denoted by E : P — IR. Notice that since A is
a linear operator the function E on P is quadratic, that is the ratio of two quadratic functions
on the underlying linear space.

Now, the spectrum of A can be defined in terms of the energy E on P. To simplify the
matter we assume below that A is a positive operator with discrete spectrum and then we have
the following three ways to characterise the spectrum of A, that is the set of the eigenvalues

Ao € A; <...of A appearing with due multiplicities.
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0.1 The Morse-theoretic description of the spectrum. Denote by & = Z(E) C P the
eritical set of E where the differential (or gradient) of £ on P vanishes. A trivial (and well
known) argument identifies ¥ with the union of the 1-dimensional eigenspaces of A. In other
words, if z € X is a non-zero vector from the line in X representing a point p € P, thenpc I

if and only if Az = Az for some real A. Then
E(z) ={Az,z)/{z,z) = A

and so E(p) = X as well. It follows that the spectrum of A equals the set of critical values
of the energy E : P — IR. It is equally clear that the critical point of E corresponding to a
simple eigenvalue A, is nondegenerate and has Morse index i. More generally, the multiplicity
of A; equals dimX; + 1 for the component £; C ¥ on which E equals A;, since I; consists of
the lines in the eigenspace L; C X associated to A;.

Notice that the definition of critical values of E is purely topological and applies to not
necessarily quadratic functions on P. In fact, the set of critical values serves as a nice substitute
for the spectrum for some non-quadratic energy functions (e.g., for the energy on the loop space
in a compact symmetric space). But the essentially local nature of the critical values and non-
stability of these under small perturbations {(every point can be made critical by an arbitrary
small C°-perturbation of the energy function) forces us to look for another candidate for the

non-linear spectrum.

0.2 Characterization of the spectrum by linear subspaces contained in the level
sets X, = {z € X | E(z) < A}. Denote by L, C X the linear subspace spanned by the

eigenvectors corresponding to the first 7 + 1 eigenvalues Ap, Ay,...,A; of A and observe that
L; C X,\‘. .

This signifies the inequality
{(Az,z) < Az, T)

for all z € Ly, as E(z) = (Az,z)/(z, 7).

The following extremal property of X, is more interesting. If A < A;, then X, contains
no linear subspace of dimension ¢ + 1. In fact, let L C X be a linear subspace of dimension
i+ 1. Then there is a non-zero vector z € L which is orthogonal to the subspace L;_; C X.
That is (z,z;) = O for the first ¢ eigenvectors zo,...,%;,...,2;—1 of A. It is trivial to prove
that this x satisfies

(Az,z) > Ai(z, ) ,



134

which shows L ¢ X for A < A;.
Let us summarize this discussion in terms of the projective space P = P(Xa) and the
energy of E on P.

The eigenvalue A; is the minimal number, such that the level
Py=E '0,\={z€P|E(z)<A}CP

eontains a projective subspace of dimension 1.

Remark. (a) The above characterization of ); is geometrical rather then topological as it
makes use of the projective (linear) structure of P. On the other hand this projective definition
of the spectrum obviously generalizes to non-quadratic energies £ on P.

(b) An advantage of the projective definition of A; over the Morse-theoretic one (see 0.1)
is the stability under small perturbations of the energy. Besides, the above existence proof of
a “X;-hot” vector z in an arbitrary subspace L C X of (asymptotically large) dimension ¢ + 1
gives a glimpse of general methods used for obtaining lower bounds for A;.

{c) An interesting generalization of the projective view on ); consists in replacing P by
another geometrically signficant (homogeneous) space with a distinguished class of subspaces.
The most obvious candidate for such a space is the Grassmann manifold G = Gg(X) of
the k-dimensional subspaces on X. Distinguished subspaces in G are Grassman manifolds
Gi(L) € G = Gi(X) for all linear subspaces L ¢ X. (If k = 1, then G = P.) Now “the lower
bound for A;” (see the above (b)) takes the following shape: any linear subspace L C X contains
“an interestingly hot” k-dimensional subspace K C L, where K becomes hotter and hotter as

dim L — oo for £ = dim K being kept fixed. (Compare Dvoretzky’s theorem discussed in 1.2.)

0.3 Topological characterization of the eigenlevels P,, C P. If we denote pro Py the
maximal dimension of projective subspaces contained in P, then we can say that the spectrum
points A; are exactly those (see 0.2) where the function pro Py is strictly increasing in A. In
fact if A; is an eigenvalue of multiplicity m;, then pro Py jumps up at A; by m;,.

Now we want to replace pro P, by a purely topological invariant of P,.

0.3.A Essential dimension. Consider a subset 4 in a topological space P and define
the essential dimension of A in P,

ess A = essp A

as the smallest integer 7, such that A is contractible in P onto an i-dimensional subset 4’ ¢ P.

This means there exists a continuous map (homotopy) h : 4 [0,1] — P, such that h on 4 at
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t = 0 is the identity map,
h|Ax0:4 CP
1d

and such that
dimh(Ax1) <7,

that is the image h(A x 1) C P admits arbitrarily fine coverings by open subsets where no 7+ 2
among these subsets intersect.

0.3.B Basic example. If P is a projective space and A is a projective subspace, then
ess A =dimA . (%)

Notice that the inequality ess A < dim A is trivial while the opposite inequality essA > dim A
amounts to the following (simple but not totally trivial).

0.3.C Topological fact. The dimension of a projective subspace A C P cannot be
decreased by a homotopy of A in P. (See 4.1 for the proof and further discussion.)

0.3.D. Now we return to our positive quadratic energy function E on P and observe that
the level Py = {z € P | E(z) < A} can be contracted in P onto the projective subspace
corresponding to the linear span of the eigenvectors belonging to the eigenvalues A; < A. (This
is more or less obvious.) This property combined with 0.3.C and the discussion in 0.2 implies

that

ess Py, = pro Py

for all A. Therefore the definition of A; for quadratic functions on P can be formulated purely
topologically, the eigenvalue A; is the minimal number X, such that the level P, C P has
ess Py > i, which means P cannot be contracted onto an (i — 1)-dimenstonal subset in P.
0.3.D Remarks. (a) The notion of ess makes sense for subsets in an arbitrary topological
space @ and therefore one can speak of the ess-spectrum of an energy E on Q.
(b) If an energy E on @ is amenable to Morse theory, then the number M(A) of A-cold
etgenpoints of E, that are critical points ¢ of E where E(g) < A, can be bounded from below

in terms of the ess-spectrum by

M()\) > N()) = essE71[0,}] .

(See [Gr]; for another estimate of this nature for spaces of closed curves in Riemannian mani-

folds.)
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0.4 Definitions of “dim”-spectrum for any “dimension”. Let “dim” be a monotone

increasing function on subsets A of a given space P, that is
Ay C Ay = “dim"A; < “dim"A; .

If such a “dimension” is originally defined only on a certain class of admissible subsets, we
agree to extend “dim” to all subsets A in P by taking all admissible subsets A’ C A and by
setting

“dim” A = sup “dim” A4’ .
Al

For example, the ordinary dimension on linear {or projective) subspaces extends in this way to
all subsets of a linear {projective) space.

Now, with a given “dim” we define the “dim”-spectrum {A;} of an energy E : P — [0, c0],
as follows, )i is the upper bound of those A € IR, for which the level E=1[0, A} has “dim” < 1.

In “physical” terms, every 4 C P with “dim” A > ¢ contains a A-hot point (a € A, where
E(a) = A) for every A < A; and JA; is the maximal number with this property.

The spectrum {)\;} can be more conveniently defined via the spectral function which,
roughly speaking, counts the number of eigenvalues {or rather, of energy levels) of E below

for all A > 0. More precisely, this number N()) is defined by
N(XA) = “dim”E "o, ] .

0.4.A Remarks on the range of E. (a) We allow infinite values for the energy in order
not to bother with the domain of definition of E' (and A as in §0.1). Namely, if E is originally
defined on a dense subset Py C P we extend F to P by

E(p) =limsup E | U N P,

u—p

over a fundamental system of neighbourhoods U of p.
(b) There is no reason to restrict oneself to [0, co]-valued energies. In fact, for an arbitrary

map E : P — T one can define the spectral function on the subsets S C T' by
N(S) = “dim”E~!(S) .

(According to the physical terminology such an F should be called observable. The standard

example of this is the position P — IR® of a particle in }R3.)
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Example. Let ||z||1,...,|/z]lm be norms on a linear space X. These naturally define a
map E of the projective space P = P(X) to the (m — 1)-simplex A™ = IR} /IR}. A typical
case of interest is ||z||; = ||D,-z||LP‘_ for some differential operators D; on a function space X.

0.4.B Dimension-like properties of pro and ess. Let us axiomatize certain common
features of the “dimensions” pro and ess by calling a function “dim” on subsets in a projective
space P dimension-like if it has the following six properties.

(i) INTEGRALITY AND POSITIVITY. If A C P is a non-empty subset, then “dim” A
may assume values 0,1,2,...,00. If A is empty then “dim”= —co.

{(ii) MONOTONICITY. If A C B then “dim A< “dim” B for all A and B in P.

(i) PROJECTIVE INVARIANCE. If f : P — @ is a projective embedding between
projective spaces, then

“dim” f(A) = “dim” A4
forall A C P.

(iv) INTERSECTION PROPERTY. If P’ C P 45 a projective subspace of codimension k,

then
dimAN P >dimA -k
foral AC P.

{v} NORMALIZATION PROPERTY. If A is a projective subspace in P then “dimA4”
equals the ordinary dimension dim A.

{vi) THE «-ADDITIVITY. Let A; * Ay C P denote the union of the projective lines
meeting given subsets A; and A; in P. Then

“dim” Ay * Ay = “dim” 4, + “dim” A, + 1,
provided A; and A, are projectively disjoint. This means the projective spans PA, and PA;
do not intersect, where the projective span PA indicates the minimal projective subspace in
P containing A. (Notice that this additivity implies the above normalization property, as
pmintl - pmy pn)

Remark. It is obvious that pro satisfies (i)-{vi) and that ess satisfies (i} and (ii). The
properties {iii)-{vi} for ess follow from

0.4.B; Subadditivity of ess. The following property makes the “dimension” ess espe-
cially useful,

essAUB <essA+essB+1

for all subsets A and B in P. See 4.1 for the proof.
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0.5 Codimension and width. Define the projective codimension copro A for A in P as
the minimum of the codimensions of projective subspaces P’ contained in P. Then define the
coprojective dimension by

pro* A = copro P\ 4 .

Observe that pro’ satisfies the “dimension” properties (i)-(vi) in 0.4.B. In fact (essentially
because of (iv)) this pro® is the mazimal set function on P satisfying (i)-(vi). (Notice that pro
is the minimal such function.)

0.5.A Definition of {-width. Let B be a subset in a Banach space X and define the
width function of B on the dual space X’ by

Wid(B,y) = supy — infy
B B
for all linear functions y on X. Then define the i-width of B by
Wid; B = (M),
where A] is the i-th prot-eigenvalue of the energy
E'=| |I'/Wid(B, ):P(X')—[0,00].

For example,

Wido B = (min E) ! = maxWid(B, )/| |'=DiamB .

In the special case, where B is a centrally symmetric subset in X our definition is equivalent
to the usual one,
Wid; B equals the lower bound of those § > O for which there exists an i-dimensional linear

subspace L in X whose {6/2)-neighbourhood contains B, that is
dist(b, L) < 6/2

for all b € B.
0.5.B Coprojective dimension and width. Recall the duality correspondence D which
maps subsets Y ¢ X' to those in X by

D(v)={J Py,
y<€Y
for
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D(y) = {z € X | ly(z)| = lull'll=]} -

We use the same notation D for the associated correspondence on the projective spaces,
P(X") ~— P(X), and call a subset @ C P(X) an i-coplane if it is the D-image of an i-
codimensional projective subspace in P(X’). Then we define coprotA for all A C P(X) as
the maximal 7 such that the complement P{X)\A contains no i-coplaine. In other words
coprot A < i <= A meets every i-coplane in P({X). One easily sees with Bezout’s theorem
{compare §4 } that

essANQ >essAd—1

for all A C P{X) and all i-coplanes Q. In particular, if ess 4 > ¢, then A meets every i-coplane
in P{(X), which is equivalent to

coproL A>essA
for all A. It follows that

copro® A > pro A. (%)
Notice that (*) is a reformulation of the following

Tichomirov Ball Theorem. Let B**'(c) C X be the e-ball in some linear (i+1)-dimensional

subspace of X and let L be a linear i-dimensional subspace in X. Then there exists a point

b € B, such that dist(b,L) = e.

In fact, the projectivization of the subset L* of non-zero vectors £ € X for which

is an s-coplane in P(X), and every i-coplane comes from some L. Now, both (*) and the ball
theorem claim that L* meets every {7 + 1)-dimensional linear subspace in X.

Coming back to the width of B, where B is the unit ball of some (semi)norm || |jo on X,
we see that

Wid; B = 2(0\#) 7!

for the copro®-spectrum {A}} of E = | ||/ |lo and the above discussion relates these AF

to the ess and prot-spectra by the inequalities
A< g <A (x%)

Remark. The number (AP™) =% is called in [I-T| the Bernstein i-width of the unit ball of
I lloin (XG0 1.
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0.6 Complementary dimensions and {A,;}. Let d bea “dimension” function on subsets
A C P and taket =0,1,.... Represent A as the difference of subsets, A = B\C, and let

d*A = sup(i — dC + 1)
B,C

over all B and C, where dB = 1. If d is subadditive (as ess, see 0.4.B;). That is, if
dB <dA+dC +1,

then d* < d (and usually d*A = dA, for dA < t) but in general d® can be greater than d.
Next, for a given energy we define X;; for all j < ¢ as the (¢ — j)-th d*-eigenvalue of E.
In other words A;; is the upper bound of those A for which every i-dimensional subset B C P

contains a A-hot subset C C B of dimension > j, where “A-hot” signifies £ | B > A.

0.7 Generalized dimension.  There are many interesting situations, where the ordinary
(pro or ess) “dimension” of the levels of E is infinite, but there is some additional structure
which allows a “renormalization”. Here are two examples.

(a) Suppose E is a perturbation of Eo for
Eo = Eo(z) = {Apz,z)/(z,2) ,

where Ag is a selfadjoint operator with discrete spectrum which is not assumed positive any-
more. If Ao has infinitely many negative eigenvalues (e.g., A is the Dirac operator), then

pro E~1(—o00,A] = oo for all A. Yet one can define a finite difference
pro E~!(~o0,A] — pro E™}(—o0, X']

(representing the number of eigenvalues between A and A') as the index of an appropriate
Fredholm correspondence between maximal linear subspaces in E~!(—o00, ) and E~*(—00,A’).
This kind of situation arises, for example, in the symplectic Morse theory, where E is a per-
turbation of the action (see [Z], [Fl]) and also in the recent unpublished work by Floer on
3-dimensional gauge theory.

(b) VON-NEUMANN DIMENSION. This is defined, for example, on I'-invariant linear
subspaces of a Hilbert space X, where I' is a given subgroup of unitary operators acﬁing on X.
The classical spectral theory does generalize to the Von-Neumann (algebras) framework but

one does not know yet if there are suitable delinearization and de-Hilbertization of this theory.
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§1 The spectrum of the ratio {L,-norm}/(Lg,-norm)

and the concentration phenomenon for measurable functions

Consider the measure space (V, u) and let

E = Epjq(z) = ||zllp/ll2llq »

where |/z|}, is ordinary Lp-norm on functions z on V,

lellp = ([ 12",
v
and where 1 < ¢ < p < co. It is well known that every “sufficiently large” space L of functions
on V contains a function z “concentrated near a single point” in V', where the concentration
is measured by the energy E(z). We shall prove in this section the simplest {and the oldest)
result of this kind, and refer to [Pi] for deeper theorems.

We assume below that (V,u) is a probability space, that is u(V) = 1. Then we define
the projective eigenvalue X\; = A\(L,/Ly) of E = E,;, as the minimal A, such that proPy >
t+ (compare 0.3). Notice that here the inequality pro Py > 1 is equivalent to the following
property: there exists on (i + 1)-dimensional linear space L' of Ly-functions on V, such that

llzllp < Allzllq for all z & L. Observe that 1 = Xo < Ay <... < X; <...and let Ao = lim A;.

3k OO

1.1 Theorem. The number Ao = Aso(Lp/Ly) is bounded from below by

et b (22 /()

for the Euler I'-function. Furthermore, if the measure u is continuous (i.e., without atoms)

then also the opposite inequality holds true,

Aoo(Lp/Lq} < '700(?7: Q) 3 (**)

and thus Aco = Yoo-

Proof: For a finite dimensional linear space L of functions of V we consider its dual L’ and
interpret functions £ € L on V as linear functions on L.

For a measure v on L’ we denote by I,(£,v) the integral

I(¢v) :/|Z|pdu
Ll



142

for all £ € L and write

E,/q(t,v) = I} (6,0) /T3 (6,0) .

for £ € L\{0}.

Then we observe that (almost) every point v € V defines a linear function # on L that
is £/(¢) = £(v) for all £ € L. This gives us a canonical map V — L', such that every function
£€ L onV “extends” to a linear function on L. We denote by g’ the probability measure
on L' which is the push-forward of u under this map and observe that the Ly-norms in L are

recaptured by u. Namely

[ 16w Pan = 16,4
v

for all £ € L and all p and accordingly
Ep/q(&) = Epjq(t,u')

If the measure 4 on V is continuous, then obviously, for every ¢ and every probability
measure v on IR*T! there exists an (t+1)-dimensional space L of functions on V such that the
measure 4’ on L' is linearly isomorphic to v. That is u’ goes to v by some linear isomorphism

between L’ and R'*!. In particular, such an L exists for the normalized Gauss measure

i
dV:dto...dtieXpZt?/ﬂ'%i .
=0

A straight forward computation shows for this v that

Ep/q(e) V) = Woo(pa Q)

forall: =0,1,...,1< ¢ < p< oo, and all £€ L\{0}. Since Ep/q(8) = Epjq(,v) for v = 4/,
we obtain with the definition of A; the inequality

M{Lp/Lg) < voo(p,g) for 1=0,1,...,

which is equivalent to inequality () of the theorem.
Now we turn to the proof of (*) and start with the case where either p or ¢ equals two and
whers we shall give a sharp bound for each ;. To do this we need the normalized measure v,

on the sphere S’; C R'™! of radius p. In other words v, is the probability measure on R
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which is invariant under the orthogonal group O(i + 1) and has support S;. The O(i + 1)-
invariance of u, implies that E,/(¢,v,) is constant in p > 0 and in £ for all non-zero linear

functions £ on RHI, which allows us to define

Yi(p, @) = Ep/q(t,vp)

This agrees with our v, defined earlier as v;(p,q) — Yoo (;, q) for ¢ — oo by a straightforward
computation.
Now, observe that the proof of (%) also yields the following

1.1.A Trivial Proposition. If the measure u is continuous then

Yi(Lp/Lq) < ¥i(p,q) (++)

forallt=0,1,...,and 1< ¢ < p<oo.
Notice that (++) is stronger than (#*) as v; < 7Yoo for ¢ < co.
A more interesting fact is that (++) is sharp if either p or ¢ equals two.
1.1.B Theorem. If p or q equals two then

/\i(Lp/Lq) > 'Yi(pa Q) B (+)

for all+ = 0,1,....

Proof: Let L be an arbitrary (7 + 1)-dimensional linear space of functions on V. To prove

(+) we must show that

E(L) f sup Ep/q(e) > vi(p,q) .
Le L\ {0}

First we recall (L', 4’} and observe that
E(L)= sup E, (¢u').
L€ L\ {0}
Then we invoke the group G of linear isometries of L with the Ls-norm (induced from
L;(V,v) D L) and consider the natural action of G on L' and on measures on L'. Notice
that the dual Ly-norm on L’ turns L’ into a Euclidean space and G becomes the orthogonal
group O(7 + 1) acting on R'*t! = I’ in the usual way. Then we average u' over G and set
= / gu'dg
G
for the normalized Haar measure dg on G. Notice, that 7 is a O(¢ + 1)-invariant measure on

R'*! = L' and so the energy E,/4(¢, /@) is independent on £ for all £ € L\{0}.
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1.1.B; Basic Lemma. If p or ¢ equals 2, then
E(L) 2 Epq(6,7) (*)

for £ € L\{0}.

Proof: Recall that F_,, is the ratio

r/q
Ep{tv) = IMP(6,0)/1}/9(¢,v)

for

L(tw) = / Py .

To be specific let p = 2. Then the integral I,(¢,v') is invariant under the action of G on 4

that is I,(€, ¢u’} is constant in g as follows from the definition of G. Thus
Epq(t,gu’) = CIZ (L, qu")

for a = —-% and some C' > 0. This implies that

where

Now, by the linearity of I(¢,v) in v,

and by the transitivity of G on the sphere §* ¢ R'*! = I/,
E(L) = sup Ep/q(l, gr') .
geG

This all together yields (%) for p = 2 and the same argument works for ¢ = 2.
Now, the proof of {+) follows from () and the following simple lemma applied to the
measure v = I,
1.1.B;. Let v be a rotationally invariant (i.e., O(i + 1)-invariant) probability measure in
R**!. Then
Epjq(b,v) = Epe(v,) = %i(p,q)
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for all non-zero linear functions £ on m““, allp>0andalll < ¢g<p<oo.
Proof: We shall need the following trivial

1.1.B% Calculus lemma. Let 4;(t) = a1t + by and A3(t) = aat + by be linear functions
in t whose derivatives A} are non-zero of same sign, that is aja; > 0, and let A (to) and Ax(to)
be positive at some point to. If 0 < q < p < oo, then tg is not a local minimum point of the
ratio A% /Az‘l’_ .

We are going to apply this lemma to E,/; = Ipl; (u)/Iq;_ {v) keeping in mind that I, and
1, are linear in v. We observe that every extremal point v in the space of O{¢ + 1}-invariant
measures on JR*! is a measure supported on a single sphere S; c R**? for some p > 0, that
is ¥ = v,. We also notice that the derivatives in p

I(v,) and I(v,)

are strictly positive. Now, 1.1.B} shows that E,/, has no local minimum point apart from

r/q

{v,} and so by an obvious compactness argument E,/_ assumes the minimum exactly on the

p/q
set {Vp}p>o0. Q.E.D.
1.1.B3; Example. The best known and most useful case of Theorem 1.1.B is that where
p= oo and ¢ = 2. In this case ~; = v/7 + 1 and so 1.1.B amounts to the following property.
Let L be an (i + 1)-dimensional linear space of functions on a probability space (V, u).
Then there extsts a non-zero L€ L, such that
sup ¢(0)] 2 VT T( [ Je(o) i) (+)
v
v
Besides the case where (V, u) = (R, i) the equality is achieved for the finite measure
space V consisting of 1 + 1 equal atomes. This suggests that the averaging is not indispensible
for the proof and the following (standard) argument gives a confirmation.
Let £y,..., % be an Ly-orthonormal basis in L. Then every L?-unit vector £ € L is a linear

combination
i
£: E a;f,-
1=0

for 3_a? = 1. Therefore the inequality |£(v)| < A(v) for a given v € V and all unit vectors

£ € L is equivalent to the inequality

> () <A (v) .

i=1
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Hence,
/Az(v) 2/2(?(1}):1’—{-1,
v \4

which implies the required inequality

sup [A(v)| > Vi+1.

vEVY

1.1.B3 The above (+) frequently applies to spaces of solutions z of an elliptic equation
Az = 0 (see [Ka], [Me], |G-M]). For example, if V is a Riemannian manifold of bounded {local)

geometry and A on V is invariantly related to the geometry of V, then
Izlloo < comstllzlls ,

where the constant depends only on the implied bound on the geometry. Then the above (+)

applied to the normalized Riemannian volume of V, yields
dimKerA < const? VolV .

If V is complete non-compact of tnfinite volume and L is an infinite dimension space of
solutions z of Az = 0, then one can sometimes make sense of the inequality dim L/ VolV > 0
and use (+) to prove the existence of a non-zero Ly -solution = on V. (For example, see [Ka).)

1.1.C The proof of 1.1 for all p and g. The basic averaging argument {see 1.1.B;)
applies, in principle, to the linear isometry group of (L,|| |i,) for all p, but for p # 2 this
group is usually two small to be useful. However, by Dvoretzky theorem (see 1.2), there exists
a j-dimensional subspace M C L whose L,-norm is ¢ invariant under the L, isometry group
G =0(j) of (M,|||l2),

(1 —e)lizllp < llgzll, < (1 +€)llzllp
for all z € M and g € G, where £ admits an universal bound in terms of j = dim M and
t=dim/L -1,
€ <eolthg)
such that for every fixed j,

eoft,7) — 0 for ¢— o0

Now the Ls-argument applies up to an e-error to (M,|| ||,) and the error goes to zero for

1 — 00. Q.E.D.
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1.1.D Remarks. (a} The above argument using Dvoretzky theorem also applies to the

spectrum {A;;} (see 0.6) and shows that for every fixed 5

Im Ay 2 veolp,q) -
T OO

In other words, every i-dimensional subspace L C Lg(V, i) contains a j-dimensional subspace

M C L, such that

Epg | M > (1= &)%00(p,9)

where g;; — 0 for 1 — oo.

{b} To prove 1.1 one actually needs only the weak Dvoretzky theorem (see 1.2.C) whose
proof is obtained by an integration argument similar to that used in 1.1.B;. (See §9.3 of [Gr1]
for yet another application of this argument.)

(¢} Theorems 1.1 and {especially) 1.1.B lock a century old but I made no effort to find
early references. (The earliest frequently cited papers I know of are [Ru] and [Ste].) A very
interesting use of 1.1.B3 appears in [Ka|] and the averaging argument of 1.1.B; can also be
found in [G-M].

(d) If the measure space V in question is finite and consists of N atoms, then the ¢-th
eigenvalue A; of L,/ L, is related to the (N — 1)-width of the unit ball By C Ly with respect
to the Ly-norm by

(N —d)-width(By, Ly) = 2277,

where p’ and ¢’ are determined by

1
+ 31, —7+ :1.
q

3o
Q|

1
g
In the case where N = A{ and the atoms of the underlying measure space V have unit

mass the width, and hence A;, were estimated by Kasin (see [Pi}) as follows

1 forp>12>2

A < iiT3 forg<2<p
3

T forg<p<2

where a; =< b; signifies that a;/b; is pinched between two positive constants for ¢ — co. Similar
(but more difficult) estimates for all N are due to Gluskin (see [Pi] and [Ka3]).
{e}) Question. Let H be a homogeneous function in £ variables of degree zero. Then for

a given k-tuple (p1,...,px) one defines the energy

E(z) = H(l|zllp.»- - ll2llpe) 5
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and asks what the spectrum of this F is. If £ = 2, the question reduces to L,/Lq. If k = 3,
the simplest energy is {|z||,, H:z:l[m/llar:H?)3

In fact one is interested in the spectrum of the multi-parametric “energy”

z— ([[=llpe - llzllp)
as it is defined in 0.4.

1.2 Dvoretzky theorem. We state below for reader’s convenience several versions of
Dvoretsky thoerem and we refer to [Mi-Sh] for the proofs.

The classical version of the theorem claims that the ratio E(z) = ||z||'/||z|| of two norms
on a linear space L becomes “nearly constant” when restricted to an “appropriate” subspace
M C L, provided dim L is sufficiently large. Here the non-constancy of E is measured by the
logarithmic oscillation

los E = log(sup E/ inf E)

and the precise statement is as follows.
1.2.A. Forevery § <1 = dim L there exists a linear subspace M C L of dimension j, such
that
losE | M <e(i,5), (%)

where (7, j) is a universal constant depending on 1 and j, such that for every fixed j, e{i,5) — 0

for 1 — oo.
1.2.B Remark. The most important special case of 1.2.A is where L = IR' and || | is
the Euclidean norm on IR'. In this case the theorem applied to £ = || ||/ restricted to the

unit sphere in IR'. Notice that this special case (applied first to L and then to M) yields the
general case.

1.2.C Weak Dvoretzky. In this version of the theorem the constant ¢ is allowed to
depend on C = losE | L. Namely, one assumes losE | L = C < oo and only claims the

existence of an M C L, such that
losE | M <e{d,5,C),

where € — 0 for 1 — oo and j and C fixed. Here again the most important case is (L,]| ||} =
IR'. This Euclidean Dvoretzky is equivalent {this is easy, see [Mi-Sh]} to the following subaddi-
tivity of the function pro X for X C P, which is, we recall, the maximal dimension of projective

subspaces contained in X,

pro(X UY) < A(pro X,pro(Y +¢),e7') ,
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where X and Y are subsets in P, where Y + £ C P denotes the e-neighbourhood of ¥ with
respect to the standard {Euclidean) metric in P, and where A is some function in three real

variables. This is worth comparing with the subadditivity of the essential dimension,
ess(XUY) <essX +essY +1,

(see 0.4.B4).

1.2.D Non-symmetric Dvoretzky. The Dvoretzky theorem remains true if we drop
the symmetry requirement for the norms || || and || [|. This is possible due to the following
version of Bezout (Borsuk-Ulam) theorem (compare §4).

Let E : IR' — IR be a continuous function and z,, ...,z be some vectorsin IR*. Ifk < i,

then there exist an orthogonal transformation g of IR', such that

EQ(JEV} = E( - g(xu))

forallv =1,...,k.

1.2.E Dualization. Dvoretzky theorem can be stated as the existence of an e-round
j-dimensional section of a convex subset K in IR'. This yields, by duality, the existence of
e-round projections of K. Since projections commute with taking convex hulls one can drop
the convexity assumption on K and arrive at the following proposition.

Let K be a compact subset in IR* which linearly spans IR'. Then for every j < ¢ there
exists a surjective linear map A : IR* — IR’, such that K goes into the unit Euclidean ball in
R,

AK)C B ={ze R’ |||z <1},

and A(K) is e-dense in B{, where as earlier, for each j,
e=¢{i,j)— 0 as i— 0.

{Recall, that a subset of a metric space is called e-dense in B if its e-neighbourhood contains
B.) Moreover, one can find the above A of form \p, where p : IR' - IR’ C IR' is an orthogonal
projection onto a subspace and ) is the multiplication by a scalar A > 0.

1.2.F Projection of measures. With little extra effort the above discussion applies to
projection of measure on IR rather than of subsets. Namely, let u; be a probability measure
on ', forall i = 1,2,..., such that the support of u; linearly spans R

Then for every j = 1,2,..., there exists an orthogonally invariant measure i on IR and

a sequence of linear maps A, : IR® — IR’, such that the push-forward measures A.(u;) on



150

R’ weakly converge to .. Moreover one can choose A; = A;p; as in 1.2.E. {This version of

Dvoretzky theorem nicely fits the fixed-point philosophy of Furstenberg, see |Gr-Mi].)

1.3 On the topological version of the E,  -spectra. If the measure space (V,u) is
infinite then the Ess-spectrum for E,/; collapses to the single point Ao = 1. This is immediate
with the following.

Trivial observation. Let C, C P be the subset of (the projective classes of ) functions = on

V, such that |z(v)| <1 forallv € V and
p{veV |jz(v)|=1}>1-¢.

Then essC, = oo for all € > 0. {Notice that proC, = 0 for all € > 0.)
Now let us compute the topological spectrum of E,;q on the finite measure space (V, u)
consisting of n equal atoms of mass 1/n.

1.3.A. The ess-spectrum of E,;q on V is

A= (";")%_‘l" . (+)

Proof: A trivial computation shows that the critical points of the function E of index ¢

are the baricenters of ¢-codimensional faces (which are (n — i — 1)-dimensional simplices) of
the Ly-sphere {||z[|; = 1} C L;(V,u) and E,/, equals the above A; (given by (x)) at these
baricenters. Hence (%) follows by the Morse theory.

Remark. One can avoid using Morse theory by applying the following simple topological

facts (A) and (B) to the unit L;- and L,-balls

1 ¢ "
{HIHl = ;Zhh‘i < 1} CRR

i=1
and

{Hz”oo =sup|z;| < 1} c IR™ .
1

(A) Let Q € P = P(IR") satisfy essQ > ¢ and let B C IR" be a convex centrally
symmetric polyhedron with non-empty interior. Then the cone é C IR"™ over Q meets some
(n — ¢ — 1)-dimensional face of B.

Notice that a similar fact for pro@ > ¢ holds true without assuming B is symmetric. In
fact the meeting points of an (¢ + 1)-plane L C IR™ with the (n —{ — 1)-faces of B are exactly

the extremal points of BN L.
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(B) Let B; C P be the projection to P of the union of i-faces of B. Then
essB; =1

Notice that pro_g‘ = 0 for the Loo-ball B and 1 < n—2 (this is the case for our ess-spectral

discussion), which explains the sharp discrepency between the ess- and pro-spectra.

§2 Variation, oscillation and ess-spectra for spaces of continuous maps

The measure theoretic conentration phenomenon of the previous section has the following
topological counterpart.

A “large” subspace in the space of continuous maps between topological spaces V and W
must contain a “topologically complicated” map z:V — W,

If W = IR and V is connected, then the complexity of a function z : V' — IR can be

measured by the variation of X,

Varz = /bo(z_l(t))dt

R

where by is the zero Betti number, that is the number of connected components of the pull-back

z71(t) for all t € IR.
z

Notice that every map z: V — IR can be uniquely factorized as follows, V' I 7 I\ R,
where V is a 1-dimensional space {graph) and T is a connected map of V onto V, that is

z7Y%) C V is connected for all 7€ V. Then
Varz = Vary ,
where Vary may be thought of as the “total length” of V with the metric induced from IRR.

For example, if V = [0,1], then V =V, z = y and

1
Varz = / |z’ (v)|dv .
)

Remarks. (a) The variation of z : V — IR is not an especially good measure of complexity
as it is unstable under small perturbations of z. But one can stabilize Varz by introducing for
every 0 <e <1,

Var .z = inf Var(z + y)
y
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over all continuous functions y : V — IR satisfying

l¥lloo < €llzlloo
for the norm

lzllco = sup [z(v)] .
vEV

(b) We are mainly concerned here with functions on [0,1], but we have presented the

definitions keeping an eye on possible generalizations. (Compare §2.1.3.B in [Gr]3).

2.1. The number of oscillations of a function. For a function z ;: V — IR we write

Oscz = — inf
scx 528 z(v) Inf z(v)

and then for every positive v < 1 define the number of y-oscillations of z as follows. First we
say that subsets V; nd V; and V are z-independent if there exists no connected subset U C V
on which z is constant and which meets both subsets V; and V,. Then we define #+ Osc z as
the maximal integer k for which there exists z-independent subsets V,cViforj=1,...,k,
such that

Oscz | V; >~0scz

for y = 1,...,k. We abbreviate # Osc = #, Osc and call this the number of full oscillations of
z. If V = [0,1] then # Osc z equals the maximal number k such that [0,1] can be partitioned
into k subintervals with equal z-images.
Also notice that
Varz 2> (v# Oscz) Oscz

and that #., Osc z enjoys an obvious kind of stability under perturbations of z.

2.2 Theorem. Let @ be a subset in the projectivized space P of continuous functions on [0, 1].

Then there exists a function = € @, such that

#oscz > essQ .

Proof: Apply 4.3 A and A, to the space T of partitions of [0, 1] into k+1 = ess @ subintervals.
k

This gives us a partition [0,1] = | I;, and an = € Q, such that
=0

1=

oscz | I; =oscz

fort=0,...,k. Q.E.D.
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2.2.A Remarks and corollaries. {a) The above theorem applies, in particular to every
(k' + 2)-dimensional linear (sub)space L of functions on [0,1] and claims the existence of a
non-zero z € L having

H#oscx>k+1.

(b) One easily sees with 2.2 that the ess-spectrum (as well as the pro-spectrum) of the
energy E(z) = varz/||z]loo is A\ =i forall 1 = 0,1,.. ..

(¢) The divergence A; — oo of the pro-spectrum can also be derived from the Dvoretzky
theorem (see 1.2.E) as follows. Given an (¢ + 1)-dimensional space L of functions on [0,1}], we
have a continuous map of [0,1] into the dual L/, such that the functions from L appear as the
restrictions of linear functions on L’ to [0,1] {see the proof of 1.1}. As ¢ — oo, we can find
a k-dimensional subspace Lo C L, such that £ — oo and the corresponding image of {0,1] is
e-dense in the unit ball of L} for some Euclidean metric in L}, where £ — 0 for i — co. Then
obviously E(z) — oo for all z € Lo and ¢ — oo.

(d) Theorem 2.2 and its corollaries must be as old as the Bezout-Borsuk-Ulam theorem,

but I have not checked the literature.

§3 Asymptotic additivity and homogeneity of Dirichlet energies

3.1 Examples of Dirichlet energies.  The classical Dirichlet energy is defined on functions

z on a bounded Euclidean domain V by
E(z) = |ldz]2/||z]l

where d denotes the differential of a function and where the Lg-norms of dz and z are taken
with the ordinary Lebesgue measure in V. A more general class of integro-differential energies
can be defined as follows. Let X and Y be smooth vector bundles over a manifold V and
D :z — y a linear {(or non-linear) differential operator between the sections of X and Y. In

order to define what we call the L,D/Lg-energy

E(z) = [|Dzll/ll=llq »

we need the following additional structures (a} and (b).
(a) norms in the vector bundles X and Y. With these we have the point-wise norms {|z(v)||

and ||y(v)| of sections of X and Y on V.
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{b) A measure p on V which is also denoted dv. With this we have the L,-norm on

sections of X and Y,
i/p

fellp = | [ 1) Pas

Notice that for the LooD/Loc-energy one only needs the measure class of p rather than the
measure itself.

Remarks. (a) if the operator D has infinite dimensional kernel, then, in order to have an
“interesting” spectrum, one should either restrict D to a subspace of sections where the kernel
is finite dimensional or to pass to an appropriate quotient space. For example, if D is the
exterior differential on forms (rather than on functions), then one should work modulo closed
(sometimes exact) forms.

{b) It is sometimes interesting to use different measures in defining the norms of z and Dz.
For example, one may bring into the picture some measure u’ concentrated on a “subvariety”
V’ CV and then to look at £ = L,D/Lg(n)).

Let us look more closely at the case were D = d is the exterior differential on functions z
on V. Here X = V x IR — V is the trivial bundle and ¥ = T*(V) is the cotangent bundle.
We do not have to worry about a norm on X as we already have one, [[z{v}]] = |z{v}|, for the
ordinary absolute value on JR. On the other hand there is no canonical norm on T* (V) and so

we have to choose one. If V' is connected, such a norm defines a metric on V by
dist(vy,ve) = stip |z(v1) — z(v2)]
over all C!-functions z on V, such that
ldzllee = sup ldz(v)|| <1

This distance (and sometimes the norm itself) is called a Finsler metric on V. A Finsler metric
is called Riemannian, if the norm in each fiber T;{V), v € V is Euclidean.

Remark. Usually one starts with a (dual) norm in the tangent bundle and define the
distance as the length of the shortest path p : [0,1] — V between v; and v;. Namely, the
norm in T(V) allows one to measure the tangent vectors é%%ﬂ € Typy{V) and thus to define

the mazimal stretch of p,

ITpl| = sup
telo,1]

Tl

Then one gets dist{vy,v;) as inf || Tp|| over all paths p with p(C) = v, and p(1} = v,.
P
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To conclude the definition of the L,d/Lg-energy on a Finsler manifold V we need a measure
on V. Usually one uses the Finsler norm on T*(V) to provide V with a measure as follows. One
considers the determinant bundle A(V') that is the top exterior power AT* (V) for n = dimV.
There are many (unfortunately too many) natural ways to define 2 norm on A(V) starting
from our norm on T*(V'). Since A(V) is one-dimensional, a norm on A(V) is |section| of A(V),
that is a density on V which integrates to a measure on V.

3.1.A Dirichlet on metric spaces. For a function z on a metric space V we define
the Lipschitz constant Lip z as the supremum of |z(v;) — z(v2)]/ dist{v;, v2) over all pairs of
distinct points vy and v, in V. Then for a point v € V we restrict z to the e-balls B, C V
around v and set

|dz{v)]| = |Lip yz| = limsup Lipz | B, ,
£—0
and [[dz| = 528 |dz(v})]. Notice that ||dz|| < Lipz and state the following

Trivial Lemma. The following two conditions are equivalent
(i) ||dz|| = Lipz for all functionsz on V.
(ii) For every two points v, and vy with some distance d in V and every € > 0 there exists a

(e-middle) point v, € V, such that dist(v;,v.) < €+ —;—d fori=1,2.

Metrics satisfying (ii) are called geodesic. (They are also called inner metrics, length
metrics and local metrics.) Observe that Finsler metrics are geodesic.

Now, with a measure on V' we have the L,d/Lg-energy

1/p
B(z) = V/ |/ V[ 2]

I V is a Finsler space this agrees with the earlier definition. The same can be said for Carnot

1/q

spaces defined below
3.1.B. Carnot spaces. Consider a first order differential operator D on functions z on

V', where the range bundle ¥ is equipped with a norm. The issuing seminorm on C!-functions,
z— || Dzflo

is called a Carnot structure on V, provided D(const) = 0, that is D = h o d for some ho-
momorphism h : T*(V} — Y. If h has a constant rank k, then the Carnot structure is
uniquely determined by the image bundle of the adjoint homomorphism 2* : Y* — T{V},
called 8 = Imh* C T(V), and 2 norm on 4.
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Define Carnot’s (semi)metric on V by
dist{vy,ve) = sup|z{v;) — z(v2)}]
z

over all z with ||Dz||o, < 1. One can equivalently define this “dist” with paths in V' tangent
to . Thus one sees, in particular, that dist is an honest metric, i.e., everywhere < oo, if and
only if every two points v; and v2 in V can be joined by a path in V tangent to 6.

Remark. Carnot metrics are sometimes called Carnot-Caratheodary (see {G-L-P]) or
subelliptic (see [St]). Here we reserve the word “sub-Riemannian” for the case where the above
norm on & is Euclidean.

3.1.C Alternative definitions of ||dz||,. Let us recall that the coboundary 6z of a

function z on V is the function on V' x V defined by
Sz{vy,v2) = z{v1) — z{va) .

Next consider the following function K, on V x V,

_Jo if dist(vy,v9) > ¢
Ke(vr,v2) = {6_1 if dist(vy,vz) <€
and let 6,z be the product K 6z. In other words we restrict 6z to the s-neighbourhood of the
diagonal in V' x V and then divide it by . Notice that

limsup [|8ezloo = f|dz]loo -

Denote by ' the measure ux g on V x V and let u. denote the measure of the e-neighbourhood

of the diagonal, that is
b= [ K,

and let

Nzl = lim sup 6e2(lp/ e -

Notice that for sufficiently smooth Riemannian (and sub-Riemannian) spaces V, [zl =
const, || z||p, where n is the dimension of V (which should be properly defined in the sub-
Riemannian case). An advantage of [zl|}, over ||z|[, for non-smooth spaces is clearly seen for
p = 2 as the norm ||z]}} is always Hilbertian and the deviation of ||dz}|; from being Hilbertian
(as well as non-constancy of the norm ratios ||dz||,/||dz||},) measures non-smoothness of V. If

V is a Finsler manifold (e.g., 2 domain in a finite dimensional Banach space) this measures how
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far V is from a Riemannian space. The picture is less clear for nowhere smoth (e.g., fractal)
spaces V.

One can generalize the definition of K, by taking any function e(t) and by letting
K, = e(dist(vl,vg))

A classical choice of ¢ is

e(t) = exp—e~ ¢

which for € — 0 gives us (after a normalization) a regularized version of the above ||dz||},
Finally observe that the functions K (vy,vs) = e(dist(vy, v2)) define integral operators on
v,
z— K*z= /K(vl,vg):r:(vl)dvl .
v

Spectra of such operators are similar to those of the energies ||dz{|},/||z||-

Example. Let + K2 x r be the averaging of z over the e-balls B(v,¢) in V, that is
0 for dist(vy,v2) > €
K = - ~
e (v1,v2) { [uB(vz,e)] ! for dist(vy,v2) < €
(Notice that this K2 is not of the form e(dist), unless the measure u(B(v,¢)) is constant in

v). If V is “sufficiently smooth” then the operator
A, = e %(Id - K?)

converges for € — 0 to the Laplace operator A = d*d on V. In particular, the eigenvalues of the
operator |AfA.|'/* converge to those of the energy ||dz||z/||z]|2. This suggests the definition
of the norms ||Az||, = limsup ||A.z||, for an arbitrary metric space V. Probably, the existence
of sufficiently many z wit?ﬁ] Azl||p, < oo implies certain smoothness of X. Otherwise one may
try norms associated to more regular operators, for example e~ (Id — K?) for p < 2.

3.1.D. The above relation between metrics in V and norms on function spaces is of quite
general nature. Namely, every seminorm on the space X of (say, continuous) functions z on
V defines a norm in the dual X’. As V is canonically mapped into X’ by Dirac’s v — §,, we
get an induced (Caratheadory) metric on V. More generally, if X is the space of sections of a
k-dimensional vector bundle over V, then V is naturally mapped into the Grassmanian of the
k-planes in X', which again induces a (Bergman) metric in V' from a seminorm in X.

The major problem of the geometric spectral theory is to relate the properties of such

metrics on V with the spectra of the (ratios between) norms in question.
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Remark. The above metric on V may degenerate. For example if we use the norm || L,d||
on an n-dimensional manifold V, then the resulting metric on V is degenerate for n > p. In
such a case it is useful to consider the following distance between subsets (rather than points)
inV,

dist(Vy,Vy) = sup lizl| ™!,
z

where z sums over all functions which are equal zero on V] and one on V,. Notice that dist™*
is called the capacity (associated to the norm || ||) and it has been extensively studied for the

above norm ||L,d|| (see [M-H]).

3.2 Dirichlet energy under cutting and pasting.  Start with the simplest case where
V is the disjoint union of ¥ and V; and canonically decompose each function z on V into the
sum z; + z2 where z; [V, = 0 and 2, | V1 = 0. One trivially has

3.2.A Lemma. Ifp < q then the energy E(z) = ||Dz||,/||z|lq satisfies
E(z) > min (E(z,), E(z2)) . (x)
On the contrary, if p > q, then
E(z) < max (E(z1), E{z2)) . (%%)
In particular, if p = q and say E(z,) < E(z;), then

E(zy) < E(z) < E(z2) .

This implies the following sub-additivity of the number N(X) of the eigenvalues < A, that
is

N(A) = “dim"E~(—o00,A] + 1

for a given “dim” (see 0.4).
3.2.A;. If p > q then N(A) > Ni(X) + No()\) where N;(A) = N(\, E | V;) fori = 1,2.

Proof: The inequality (x%) shows that the +-product (see 0.4) of EJ*(—o00,)) * E; ' (—00,])
is contained in E~(—0c0, ) for all A (here E; = E; | V;), and 3.2.A, follows.

3.2.A,. Suppose our “dim” is sub-additive,

“dim”" AU B < “dim” A4 + “dim”"B +1 .
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Then for p < gq,
N(X) < Ni(A) + N2())

as

E~'0,A\] Cc E{Y[0,\ U E; [0, .

Remind, that ess and prol are subadditive which implies the above inequality for the
respective N(A).

3.2.A3 Remark. If “dim” is not subadditive one can bound the {\;;}-spectrum (see
0.6) rather than {);} as follows. Let M (X, N) be the maximal number, such that every N-

“dimensional” subset A in P (where the energy E lives) satisfies
“dim” (AN E~ ')\, 00)) > M .

(Notice that this M can be obviously expressed in terms of Aij.) Then for p < ¢ one trivially
has

M()\, N) > Mz(), My (X, N))

for all N and A, where My and M; refer to E | V; and E | V2 correspondingly
Let us summarize the previous discussion for p = ¢ and “dim” = ess.
3.2.B Additivity of the spectrum for the energy E(z) = |Dz||,/||z||,. IfV is the

disjoint union of Vy and V, then the number
N(A) = essE " (—0o,A] +1
is the sum of those for Vy and V;,

N(A) = N (3) + Na())

Remarks. (a) According to our notation this includes the case E(z) = ||dz||p/||z|lp on
an arbitrary metric space V.

(b) The above additivity property trivially generalizes to the case where the measure p
underlying E(z) is decomposed into a sum of measures, p = p; + p2, such that the supports
of uy and p- are disjoint.

3.2.C Monotonicity of E(z). Let f : V' — V be a locally homeomorphic map. Then

vector bundles on V induce those on V' and a given operator D on V lifts to D' on V'. Now,
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if our measure p on V is the push-forward of some ' on V', then the pull-back map r— z/ =
f*(z) preserves £ = L,D/L, for E'(z') = E{z), and this remains valid for E = L,d/L; on
metric spaces.

3.2.C; Corollary. Let {V;}, j=1,...,k be an open cover of V and functions p; : V; —
IR, form a partition of unity. Then the counting function N(X) for E = L,D/Lg on (V,p) is
bounded by the functions N;(A} on (V;, p;u),

NQ) <N,

j=1
provided p < ¢ and “dim” is subadditive {compare 3.1.A.).

3.2.D Energy and N(}) on V/V,. Denote by P; C P the space of functions (or sections)
vanishing on a given subset V5 C V. An important example is where Vg = oo and then P by
definition of this oo consists of functions with compact supports. The energy FE restricted to
P, is also called F on V//V, and the corresponding counting function is denoted N (A, V/Vy) or
just N°(X). If V; is not specified then N°(}) refers to N(A,V/oo).

It is obvious that

NO(X) < N(X)
and that
N(X,U/oo) < N(\,V/oo)

for all open subsets U < V. It follows (see ()} in 3.2.A) that for p > ¢
k
o) 2 30N
j=1

where N_? = NO(V;) for disjoint open subsets Vi,...,V;,...,Vx in V.
3.2.E A bound on the counting function N(}) on V by those on V/V, and V.
Let V, C V denote the e-neighbourhood of Vy,

V, = {v eV | dist(v,Vp) < E} ,

and ||z||5 denote the Ly-norm of the restriction = | V,. Let E.(z) = || Dzl,/||z||; and denote
by N.(X) the corresponding counting function. Notice that E.(z) > E.(z | V,) and N.(}\) <
N(A V).

Next we recall N°(}) = N{X,V/V;) and we assume that D = d and p = ¢. Thus the
functions N(A), N°()) and N.()) count the energy levels for L,d/L,.
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3.2.E; Lemma. If the implied dimension is subadditive then

NQA) < N°(X) + N(X")
for

A= AI}‘H/(}\H_}_ /\i —{—6”1)
and for all positive X', " and e.
Proof: Let a.{v) = e~} dist{v,V;) for v € V, and a.(v) = 1 outside V,. Then

ld(aez)llp < | Dzllp + izl -
Now the inequalities
ld(acz)llp 2 X'llaczlp »
ldzllp = A"llzll7

and

laezllp + llellz = ll=ll»

imply
lldzll, > Alizl»

for A= XX"/(A + X' + £~!) and the proof follows.
3.2.F Asymptotic additivity of the function N{})). Call a subset Vo C V thin if for
every C > 0 there exist € > 0 and Ay > 0, such that N, defined in 3.1.E satisfies for all A > Aq,

CN(CA) < N(M) .
We call N{)) asymptotically equivalent to M (A} and write
N(A) ~ M(})

if
N(CX) > M()) > N(C™1X)
for every C > 1 and all sufficiently large (depending on C) A.
3.2.F Weyl additivity theorem. Let the metric space V be decomposed into the union

of closed subsets V. = Vy U Vs, where the intersection Vo = V; N Vq is thin. Then the implied

counting function N(X) for the energy E = L,d/L, and “dim” = ess satisfies

N(A) ~ Ni(A) + Nz(3)
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where N; for 1 = 1,2 are the corresponding functions for Vi and V.
Proof: This follows from 3.2.E; and 3.2.B.
Remark. Instead of using the specific cut-off function a, = £~ ! dist, one could postulate
the existence of such a function with an appropriate notion of capacity of V5 {(compare 3.1.D).
Thus one would obtain a more general (and more conceptual) version of the additivity theorem.
3.3 The function N(A) and the covering numbers. For a metric space V' we consider
the numbers COV{e), which is the minimal number of ¢-balls needed to cover V, and the

number IN(¢), which is the maximal number of disjoint e-balls in V. Notice that
COV(e) > IN(e) > COV(2¢)

for all e > 0.

Also notice that these numbers asymptotically for € — 0 are additive as N(A) and in some
cases N(A) can be roughly estimated in terms of COV{A™!). First we give such estimates in
the easiest case E = Lood/ L.

3.3.A Observation. The function N(X) = “dim”E~!(~o0, A]+1 for E(z) = ||dz||co /|| %] 0

on a geodesic {see 3.1) metric space V satisfies for all A > 0,
IN(2X™H) < N()) < cov(aTl).

Proof: Given disjoint e-balls By,..., By in V we consider the linear space L of functions
generated by the constants and the functions dist(v,V\B;), 7 = 1,...,N. Then the {obvious)
inequality

2|zllLe > elldz]loo

for all z € L yields the lower bound on N(A).
To get the upper bound we observe that every “N-dimensional” subspace in the projective
space P of functions on V contains {see 0.4) a function z vanishing on a given subset § C V

consisting of N-points. Since V is geodesic, such an z is bounded by
llzfloo < lldz{|oo sup dist(v, S) ,
veV

which trivially yields the desired upper bound on N{}).

3.3.B The p-regularity constant and an upper bound on N(A) for E = L,d/L,.
Denote by § = §(V, 1) the minimal number such that every two concentric balls on V of radii
R and 2R satisfy

#(B(2R)) < 2°u(B(R))
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for the given measure y on V.
Example. If V = IR™ then § = n. Moreover, if V is a complete Riemannian manifold
with non-negative Ricci curvature then also § = dim V.

3.3 B, Observation. The function N(X) for E = L,d/L, satisfies
N(A) > IN(CA™TY)

for

C =2%to/r

Proof:  Consider the linear space L of functions on V generated by constants and the func-

tions dist(v, V\ B;) for disjoint e-balls B; in V. Every z € L obviously satisfies
ldzll, < Ce™ |z,

which immediately yields what we want.
3.3.C Local and global lower bounds on the spectrum. Let V be p-partitioned
into closed subsets V;, j = 1,...,k, that is V = (JV; and doubly covered points in V have

j
measure zero. If “dim” is subadditive and p = ¢, then, as we know,

NAV) <Y N (*)

7

In particular, if

A= min, (V;) (+)

then N(A) < k + 1. More generally, if
A= IIl_il’l Ai]' (V]) )
j

then

NO) <D i+, (%)
7
Remark. The presence of constant functions makes Ao = 0 which forces us to use A;, (V;)
for i; > 1. On the other hand the number A;(V;) for “nice” small subsets V; is expected to be

~ (diamV;)~!. For example, smooth domains in /R", and more generally, compact Riemannian

manifolds do admit arbitrarily fine “nice” partitions. Unfortunately, the construction of “nice”
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partitions may be quite difficult (if at all possible) for general spaces X. (A trivial obstruction
to the “niceness” is disconnectedness. In fact, a set with m + 1 connected components have
Ao = Ay = ...= A, =0.) To alleviate this problem we introduce the following.

3.3.C; Mollified spectrum. Take a neighbourhood U C V of a subset V5, C V and let

T denote extensions to U O V; of functions z on V. Then we define
[z, = inf || 2],
z

and study the corresponding E(z) = llg;}fp/ﬂxllq and N()) for functions z on Vo.

Remark. This E is a special case of an energy E where one uses two different measures
for the definition of ||dz||, and ||z|;. The properties of such energies are quite similar to those
where there is only one measure. In fact one can often reduce two measures to one by modifying
the operator D in question.

Now, consider a covering V = |JV; and let U; D V; be neighbourhoods such that the
7
multiplicity of the covering of V' by Uy is at most m. Then the function N(A,V) for E = L,d/L,
and “dim”= ess satisfies

N(m™ %)) <k+1

where

A = min X1 (V5) (%)

for the mollified A; of V; in U;. This is proven the same way as above (x) and (xx) also

generalizes to
N(m™ sy <) i;+1 (+%)
3
for A = min X, (V; C U;).
3.3.(J32 Corollary. Let the p-constant §(V) < oo (see 3.3.B) and let for every e-ball B(¢)
in V the mollified eigenvalue X, (B(e) C B(pe)), for the concentric pe-ball satisfies X >re!

for given constants p > 1 and 7 > 0 and for all ¢ > 0. Then
N(A) £ aCOV(ATY

for some constant ¢ = a(6,p,7) > 0.

Proof: The inequality § < oo gives us a control over multiplicities of coverings of V by

pe-balls, where V is already covered by the concentric e-balls.
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Besides, § controls the growth of COV{(e) which is sufficient for our purpose. We leave the
{trivial} details to the reader.

3.3.C3 Remarks. (a) If V satisfies the assumptions of 3.3.C, then 3.3.B; also applies,
which shows that N(A) has the same order of magnitude for A — oo as COV(A™!). In

particular, a subset Vj is thin (see 3.2.F) if and only if its covering number satisfies
COV(e,Vp}/COV(e,V) -0 for € —0.

Another consequence of the above discussion is the existence of constants d = d(V) > 0

and b; = b;(V) > O for ¢ = 1,2, such that
At < N(A) < badd .

We shall see later on that for A — oo one can take by — by, provided the space V is “infinites-
imally renormalizable” (see 3.4).

(b) The conclusion of 3.3.C2 remains valid if the bound X1 > 7e~!isreplaced by X_?' > re~1
for a fixed j > 1 and if one uses a = a{8, p,7, 7).

{¢) Lower bounds on A; often come under the name of Poincaré-Sobolev inequalities. By
Cheeger’s theorem, the first eigenvalue of E(z) = ||dz||2/||z||2 on a Riemannian manifold can
be bounded from below by the isoperimetric constant {see below) and Cheeger's argument
{based on the coarea formula) can be generalized to non-Riemannian geodesic spaces. Let us
indicate several examples where X; > const DiamV.

(e1) V is the interval with the standard metric and measure. The lower bounds on all A;
are immediate here.

{c2) V is the Euclidean ball or cube. Then the inequality X; > const, Diam follows from

the following multiplicativity of Ay
Al(Vl X Vz) > const min (/\1(V1),)\1(V2)) .

In fact A; of certain “fibered spaces” V can be bounded from below by those of the base and
the fibers. We shall show this in another paper where we shall generalize Kato’s inequality to
non-linear spectra.

(ca) Recall that a (geodesic) segment [vy,ve] C V for vy and vz in V is the image of an
isometric map [0,d] — V for d = dist(v;,vs) which sends —1 — v; and 1 — vz. A subset
Vo C V is called a d-cone from vo € V if it is a union of segments of length d issuing from vo.

If V; is a cone, one naturally defines ad-cones aVo C V for € [0, 1].
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For a p-measureable cone V;, we consider the function p{a) = u{aVp) which is monotone
in o and so almost everywhere differentiable. Divide the measure of the complement Vp\aVs
by the derivative of u{a} and let

b(Vo) = sup u(Vo\aVo)/w () .

Then take the supremum over all d-cones V; in V,

bg = bg{V) = sup b(V) .
Vo
1t is shown in [Grl4, for Riemannian manifoids V, that X1 of B(c) C B(10¢) can be bounded

from below by A; > Ce where C' > 0 depends only on sup bg. In fact the argument in [Grlg
d<20¢e

extends to all metric spaces and (as we shall prove elsewhere) yields the following more general
(and especially useful for Carnot spaces) lower bound on Xl.

(ca) Instead of joining points by segments we join them by random paths. Namely, to
each pair of points {vy,v2) € V x V we assign a probability measure %y, o, in the space of
continuous maps [0,1] — V joining v; and v,. By integrating this measure over V x V we get
a measure on the space of maps |0,1] — V, called {i. Similarly, for each vo € V we have the
integrated measure j,, in the space P, of paths issuing from vg.

Next consider a “hypersurface” in V that is a subset H whose e-neighbourhoods H, satisfy

A(H) v limsupe ™t u{H,) < oo

e £—0

and denote by P, (H) C P,, the subset of path p: {0,1] — V, such that p(t) € H for some
t> % Define
b= sup B(Py, (H))/A(H) .

;Yo
Notice that this b {as well as by of the previous section) is an essentially local invariant in the
space of paths.

It is nearly obvious (compare [Gr]4) that the inequality b= Z(u) < oo for some @I = py, v,
gives us the following.

Isoperimetric inequality. Let V be a compact metric space and let V1 and V,; be
compact subsets in V separated by a hypersurface H in V (i.e., Vi and V; lie in different
components of V\H). Then min (u(V1), u(V2)) < 4bA(H).

By Cheege’s theorem this suffices to bound Ay {and Xl) from below.
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Notice that the “geodesic cone” set-up (see {(Cz)) corresponds to the Dirac §-mass sup-
ported on a geodesic segment between v; and v, (at least for those v; and v, where such a
segment is unique).

3.3.C4 Reduction of the (isoperimetric) Sobolev inequality to Poincaré inequal-
ity. Let every ball B C V satisfy the following two conditions
(1) POINCARE PROPERTY. Every hypersurface H in B dividing B into two pieces of equal

measure satisfies

A(H) > C[u(B)]*

for some constant C > 0and 0 < @ < 1.
{2) UNIFORM COMPACTNESS. There are at most k points in B whose mutual distances
are all > radius of B.

IfV is a geodesic space, then the boundary of every subset W with u(W) < %u(V) satisfies

A@W) 2 K~1C(u(w)™. (+)

Proof: Tosimplify the matter, assume that u(W NnB, (r)) is continuous in the radius r of the
ball around each point w € W. Then there exists a ball of maximal radius say Bj, such that
p(Bi NW) = -;-;I,(W) Then we take the second such largest ball By with center outside By,
then B3 with center outside the union B; U By and so on. Thus we obtain balls By,...,B;,...
covering W. If some of these balls intersect at w € W, then their centers, say vy,..., v¢, satisfy
foralll<i<j<¢

dist(vi, v;) > max ( dist(v, w), dist(vj, w)) .
Since V is a geodesic space, there exist points v € By, such that
- 1 — - . . .
dist(vi,w) = § lrgged}st(v,,w)

and

dist{v}, v;) = dist(v;, w) — § .

Clearly,

dist(v{,v}) > 6

and so £ < k. (This argument reproduces the standard proof of Besicovic covering lemma.)
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Now, we apply (1) to H; = B; N W and obtain
A(H,) > C;},(B,' N W)

and then (*) by adding these inequalities over all 1 = 1,2,....

Application to A;. By Mazia-Cheeger inequality our (*) implies
lzllz, < const||dz|.,

for const = const(k~!C, a), for ¢ = &~ ! and all functions z on V whose both levels V. where
z > 0 and V.. have measures > %p(V). It follows, that the first eigenvalue A; of £ = Lid/L,
for ¢ = o™ is > const™! > 0. (Notice that the inquality (1) we started with expresses a kind
of lower bound on the first eigenvalue of L1d/L; on the ball B.)

3.3.D Spectra of disjoint unions V = |JV) for p # ¢q. As we have seen earlier, the
spectral function N(A) = “dim”E~1[0,A] of V is ’:;he sum of the corresponding functions Ni(A)
of Vi, provided “dim” is subadditive {e.g., “dim” = ess) and E = L,d/L, for p=¢q. f p # g,
then the determination of best bounds on N{A} in terms of Ni(A) is a non-trivial problem
which is closely related to the spectrum of L,/L, (compare §1. ). To see this relation we
consider several examples, where we assume for simplicity’s sake that all pieces Vi, k = 1,...,¢,
have the same measure u(Vy) = £71.

3.3.D,. Let Ni(o) > 1 for some o >0 and all k = 1,...,€ and let N'(}X) be the spectral
function for the energy E'(y) = |lyllz,/llvllL, on the measure space consisting of £ atoms of
mass €71, Then

N(X) > N'(B\),
for B=a~'¢5 "7,
Proof: Take functions zx on Vi for k = 1,...,¢, such that E(zi) < a, and observe that the
restriction of E to the span of these z; is bounded by SE’.

3.8.D;. Let us apply the above to the spectrum of L,d/L, on a metric space V, which
satisfied the following strong regularity assumption. Every two (not necessarily) concentric

balls By and B; in V of radii R and 2R satisfy
C™' < u(By)/u(B) < C

for all R > 0 and a fixed C = C(V) > 0. We recall the maximal number IN{e)} of disjoint
e-balls in V and look at linear combinations of standard functions supported in such balls.

Then for the ess-spectral function N°*°()) we obtain with the following lower bound

Ne=(X) > bIN(A™Y)
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Jor some constant b > 0 depending only on C.

Remark. If one wants to estimate the pro-spectrum of L,d/L, one should invoke estimates
by Kagin and Gluskin of the pro-spectrum of L,/L, (see [Pi]).

3.3.D3. Suppose that the (mollified if necessary) spectral function of every e-ball satisfles
for given p and g,

. L
q

Ne(Xq, B,) < conste_l(u(Bc))';" ,

for some fixed Ay > 0 and all £ > 0. Then for p > q the function N**(}) of V s bounded by
N (X)) < cIN(ATH),
by the earlier additivity argument. Thus

Ne=*(\) < IN(A71) .

To grasp the meaning of this asymptotic relation, let ¢; be the maximal number for which
there are ¢ disjoint g;-balls B;, By,...,B; in V and let z; denote the distance function to the
complement of these balls,

i
z:(v) = dist (v, V'\ U B;) .
i=1
Then the above discussion amounts to saying that z; approximately equals the i-th “eigen-

function” of the energy E(z) = ||dz||z,/||z||L,, that is
A?SS = E(Z,) .

3.3.E Pro-spectra for p > ¢. Let us show that pro-spectrum in most cases grows faster

P!’O

POIAE® — oo for ¢ — oo.

than the ess-spectrum for p > ¢q. Namely A
Start with the simplest case, where p = co and ¢ = 2. Assume that V can be covered by

1 balls of radius £ = ¢; and show that
/\’z’i.ro > Vg

provided u(V) = 1. In fact, let L be a 2i-dimensional linear space of functionsonVand L’ C L
an i-dimensional subspace of the functions vanishing at the centers of the covering balls. Then
every z € L' has ||z||1., <€} dz| 1., and our claim follows from 1.1.B.

This argument applies to all ¢ < oo and yields the relation A?™/A$*® — oo under the

regularity assumptionon V.
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3.3.E;. In order to make the above argument work for p < oo we must first project
our L to some finite dimensional L,-space, and then apply the results of Kadin and Gluskin
cited earlier. Such a projection is customarily constructed either with spline approrimations
{discretization) or with smoothing operators. Recall that the set S of functions on V is called
an (e, d)-spline if the restriction of S on each e-ball in V is at most d-dimensional. In what
follows we shall only use very primitive piece-wise constant splines which correspond to the
smoothing with the kernel K, in 3.1.C. (A discussion on deep smoothing of Nash can be found
in [Grls.)

Let us assume every e-ball B, C V satisfies the following:

Mollified Poincaré L,-lemma. If a function z on B, has f zdv = 0, then the Ly-norm

B,
B, of z on the concentric ball Bs is bounded by the Ly-norm of dz on B, as follows

Iz | Bl < Ce™ldzlz

p ?

for a fixed C > 0 and all é satisfying
§<C e

Let us also assume V is regular as earlier and prove the following:
Theorem. If ¢ < p then

APT® > const1?Age
for some positive const and 0, and all t = 1,2,....

Proof: Let L be a 2i-dimensional linear space of functions on V. Take the minimal ¢ = ¢;,
such that some §-balls for § < C'e, say By(6),..., B:(6) cover V. Notice that we may assume
the covering by the concentric e-balls has bounded {independent of 7) multiplicity. Denote by

L' ¢ L the i-dimensional subspace defined by the equations
zdv=20, 71=1,...,1,
B, ()

and let

p; = sup [dz|lp/llzfp -
z€L’

Notice that

uh > const 6;1 )

by the earlier discussion.
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Now we take
&= el = (O
for large (but independent of i) constant, and consider a covering of V by ¢’ balls of radius
&' = C~'¢'. We may assume (slightly changing the covering if necessary), that there exists a
partition of V into ¢’ subsets V; of equal mass = u{(V)/{’, such that each subset is contained
in a §-ball of the covering.
Let z — T be the linear operator, which averages z over each V;, 7 = 1,...,7". Namely Z

is constant and equal [ z/u(V;) on every V;. Now we see that
Vi

AZET > X
where A] is the i-the eigenvalue of E' = L,/L, on the 7-dimensional space, and the theorem
easily follows from the known bound on X! (see [Ka§] and [P1i]).

3.4 Selfsimilarity and asymptotics N{A) ~ constA%.  This signifies the existence of the
limit,

const = /\lir{‘lo N())/ad,
and one is most happy when 0 < const < oo. Notice that the relation N(A) ~ const A is

equivalent to the asymptotic homogeneity of N(}), that is
N{a)) ~ a®N(})

for every fixed @ > 0 and A — co. We shall see below that in certain cases this asymptotics
follows from (infinitesimal) homogeneity of the energy.

3.4.A Example. Let V, denote the e-cube [0,¢]" and
aV, =V, for a>0.

We also denote by a : V, — aV, the obvious (scaling) map which transforms functions z on V;
to those on aV,. Namely z(v) + z{a~'v), that is z > z o a~!. It is obvious that the energy

E(z) = ||dz|lp/ ||zl is homogeneous
E(zoa ') =a 'E(z) .

Next we observe that for every k = 1,2,..., the cube V. can be partitioned into k™ cubes
k~1V,. Then the asymptotic additivity of N(X) (see 3.1.F;) implies for “dim” = ess that
N{kX) ~ k" N(X) for all integers k> 0.
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3.4.B Asymptotic homogeneity of N°(A) for domain V C R". Recall that
NO(A, V) = N()\,V/eo) refers to E on functions with compact supports in V, where V is
an open subset in JR". We denote by aV C IR" the homothety {scaling) of V by a € IR and

write
k

dav <w,

i=1
if there exist vectors b; € IR™, such that the translates a;V; + b; C IR"™ do not intersect and are
all contained in W. Now the homogeneity of E{z) together with the obvious superadditivity
of N°(X) imply the following property of N°(A) = “dim”E~!(—o0,A) for E = L,d/L,, and
p > ¢, and for all “dim” satisfying (i)-(vi) in 0.4.

{*) The relation
k

ZakV < W

1=1

implies the inequality
3

> N%a), V) < N°(L W),

i=1
for all open subsets V and W in IR" and all strings of real numbers a;.
Now we recall the following
Trivial Lemma. Let V be a bounded open supset in R™ and N()) a positive function

in A € (0, 00), such that
k

)" N(a;3) < N(aoh)

t=1

for all strings of real numbers a; satisfying

k
EaiV < agV .
i=t
Then
limsup A" N(A) = liminf AT"N (A},
A—o00 Ao
that is

N(}) ~CA™

for some C € [0, 00|, provided the boundary 3V C IR™ has measure zero.
3.4.B;. On Positivity and finiteness of constant C. The above discussion shows

that the spectral function N°(A) = N°(A,V/oo) for E = Lpd/L, and p > g satisfies Weil’s
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relation N°(A) ~ CA™, where C < oo for all “dim” and p > ¢ by Poincaré’s Lemma. It is
obvious that C > 0 for p = ¢ and all “dim”. Furthermore, if “dim” = ess, then C > 0 for all

p > g, as it follows from 3.3. On the other hand if p > ¢ and “dim” = pro then C = 0. In fact
NO(A) =< An—?

for some @ > 0 which can be explicitly determined by the standard approximation techniques,
(see [Ka§] and [Pi]). Probably, the ~asymptotics also follows by those techniques.

3.4.B;. Determination of Cq = C/VolV. It is clear from the previous discussion
that C = Cp VolV where Cg = Cy{n,p,q) a universal constant. If p = ¢ = 2 one known this
Cyo from the spectrum of the Laplace operator A = d*d, but apart from this case the exact
determination of Cy (or of the asymptotics for n — oco) seems to run into the same problem
as for the covering constant of IR" by equal balls.

3.4.C. Asymptotics N(A) ~ CA" for Riemannian manifolds V. Small balls in V

are almost isometric to those in IR” for n = dimV. It follows that
N(A) ~ Co(Vol VA"

for the above Cp and under the same conditions as p and ¢ as for domains in JR". Notice,
that for p = ¢ = 2 one obtains much sharper asymptotics using heat and {or) wave equations.
One might try to extend the heat equation method to other p and ¢ by using some functional
integral of exp —tE(z).

3.4.D Homogeneous Lie groups. Let V be a Lie group with a left invariant geodesic
metric, such that for every a > 0, V admits an a-selfsimilarity, that is a mapa : V — V, such
that

dist{av;, ave) = adist{vy, v2)

for all vy and vy in V. It is well known that such a V is a nilpotent Lie group of Hausdorff
dimension d > n = dimg,p V', where d = n iff V = IR™. The argument of 3.4.B immediately
yields Weyl’s relation

N()) ~Cx¢

for p > ¢q. Furthermore, one knows (see [F-S|, [Pa], [Var]) that this C behaves as that in 3.4.B;.
3.4.E Smooth metric spaces. For metric spaces V; and V> one defines the Hausdorff
distance, called |V; — V3|y, by the condition:
[Vi — Valg < € <=> their exists a metric on the disjoint union V; UV3, which extend those

on Vi and on V3, and such that the ordinary Hausdorff distance between the subsets V) and
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Voin ViuV, is < €. A more invariant but somewhat less convenient definition consists of
mapping the Cartesian power V" into R™ for M = N(N - 1)/2 by {v;} +> dist(v;,v;) and
then by measuring the Hausdorf distances of the images in IRM of V; and V, for all N.

If Vi and V, carry some measures, we can incorporate these into the definition of the
Hausdorff distance by either looking at the pushforward of the measures to IR™, or with the
following additional requirement on the metric in Vy U V5!

Every e-ball B in V; UV, has pi(B) — uy(B) < ¢, where py and p, are the measures on
Vi and on Vs respectively.

Now, for every metric space V = (V, dist) we write
aV = (V,adist) ,

for all @ > 0, and we call V (uniformly) Ci-smooth, if every two balls B,, {v;) and B,,(vs) in

V satisfy
lex ' Be, (v1) — €5 ' Be, (v2)|a < 6 (#)

where 6 depends only on dist(vy,v2) and § — 0 for dist(vy,vz) — O.
It is easy to show that every smooth geodesic space admits a tangent cone T, (V) at all
v € V, that is a homogeneous Lie group as in 3.4.D, such that ¢~! B.(v) Hausdorff converges

to the unit ball By C T,(V),
|B1 — € 'Be(v)|g — 0 for €—0.

Next we say that V' is p-smooth for a given measure u on V if (+) incorporates the measure,
where the ball e~ B, is given the measure of total mass one obtained by the normalization of
@ | Be. In this case eB.{v) converges to B; C T, together with u and one can see that
the spectrum D of Lyd/ Ly is semicontinuous that is N{X,7,} < Iigri}éfo(A,s_’Bs(v)). Fur-
thermore, if the (mollified} first eigenvalue of each ball B, in V is bounded from below by
const s_lp{B)%_;‘, then the spectrum in continuous. It easily follows (under the same condi-
tions as in 3.4.B) that

N(A V) ~ )¢

where d is the Hausdorff dimension is constant in v) and

C= /CO(T,,(V))du.

1%
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Remarks. {a) The asymptotics N{1) ~ CA¢ remains valid under milder {non-uniform)
smoothness condition, where the tangent cone may not exist on some “thin” subset of V. In
fact one can even replace the Hausdorff distance by another one which is concerned with the
measure-images of V¥ in IR™ rather than the set-images. It would be interesting to find
meaningful examples to justify such generalizations.

{b) The previous discussion has the following discrete counterpart, where D is a difference
operator on a discrete set V. For example, we may consider the coboundary operator on 0-
cochains on the set V of vertices of some graph. Then we consider an exhaustion of V' by finite
subsets V; and study the asymptotics of the spectrum of D | V; for 1 — oo. The standard
example is that of V = Z™ < IR"™ where V; is a ball of radius ¢ around the origin. The
smoothness of V must be now expressed in terms of the tangent cone at infinity, (which for
metric spaces V refers to the Hausdorff limit of (diam V;)~!V; for ¢ —— oo) and the spectral
asymptotics are closely related to the thermodynamics limit in statistical mechanics. The
existence of such limits in IR"™ is easy by the non-Abelian nilpotent case is non-trivial {see
[Pal2).

3.4.F Remarks on the case p < ¢. If dimV = 1, then the energy E = L,d/L, satisfies

N(A) <A

for all p and q as it follows from 2.2. In general, if for example V is a domain in IR", one asks

what happens for p and ¢ in the range of the Sobolev embedding theorem, that is for
n n
§=1——+-2>0.
P ¢
Notice that the energy E(z) = ||dzll,/]|zllq is scale homogeneous of degree s,
B(zoa) = a*El2) ,

and so the spectrum of E accumulates at zero for s < 0. On the other hand, by the embedding
theorem the spectrum is discrete for s > 0 but the asymptotics (say for “dim” = ess} seems
to be unknown for p < g. The most interesting case is that of p= 1 and ¢ = n/n — 1 where
s = 0 and the (non-compact) embedding theorem is still valid. This theorem bounds A; away
from zero {for all “dim”) but I do not know if the spectrum is discrete (i.e., A; — oo}, say for
“dim” = ess.

3.4.G The asymptotics N°(A) ~ CA™ for operators D of order r. Let D be a differential

operator of pure order r on IR™ with constant coefficients. In other words D is invariant under
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translations and

D(zoa) =a"D(z) .

Then the previous argument implies that the corresponding N°(A) for E = L,D/Lg and p > ¢
is asymptotic to CAF where 0 < ¢ < oco. If D = 8", where 8"z denotes the string of the
partial derivatives of z of order r {e.g., 8! = d) then C < oo by Poincaré’s lemma.

The inequality C < oo remains true for all elliptic operators D and 1 < ¢ < p < o0 as
187x|l, < const{| Dz,

for functions z with compact support in IR". In fact this is even true for pseudo-differential
operators of order r which may be any real number, e.g., for (\/Z)' where A is the Laplace
operator. On the other hand if one wishes to keep p = o0, one should require that D has
finite dimensional kernel on every open subset in JR™ which is much stronger than ellipticity.
Properties of such D are identical in most respects to those of 3". (If r = 1 then 8! = d
essentially is the only example, but for r > 2 there are plenty of such D. For example
D:zr+—— (ﬁ gz—z i2—1—;)
oud’oul’ T dul )
3.4.G. The above discussion extends to homogeneous {nilpotent} Lie groups in place of

IR"™. Here we look at left invariant operators of order r such that
D(zoa) =a"D(z).

Then the corresponding energy E = L,D/L, is a-homogeneous of degree s = r — %+ §> where d
is the Hausdorff dimension of some (and hence any) left invariant and a-homogeneous geodesic
metric on our group. Such homogeneity insures, as earlier, the asymptotics N(A) ~ const N/
What is less trivial is the bound const < oco and, more generally, the discreteness of the
spectrum for s > 0. For this we need some (hypo)-ellipticity of D. Probably, if D everywhere
{formally as well as locally) has finite dimensional kernel, then the above spectrum is discrete.
In fact this finiteness condition makes any mentioning of the group structure unnecessary but
nilpotent groups enter through the back door anyway.

3.4.G,. Another generalization consists of allowing polylinear operators on IR" of pure
degree r, which means D{z o a) = a"D{z). Instead of the finite kernel condition, one should
now postulate the discreteness of the spectrum of LooD/Loo (on all domains in IR™). More
interesting examples are provided by (elliptic) Monge-Ampere operators and the Yang-Mills

operator.
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3.4.G;. Let us indicate some (very) non-elliptic operators D on JR™ with (spectrally)

interesting energy E = L,,D/Lq. First, let
"z

Dr= —- "
* Bul,...,aun

)
and restrict E to functions with compact support in a bounded domain in JR™. This is especially
attractive for p = 1 and ¢ = co where the problem is non-trivial even for ) = 9.

Another example is D = 5‘%— + aai:g on IR? for some real a with the periodic boundary
conditions. (Which means passing to the torus R* | Z 2). Here the spectrum of E is intimately
related to arithmetic properties of «. For example the discreteness of the spectrum for a = 2

and E = L2 D/L, is a non-trivial theorem of Thue.

§4 Bezout intersection theory in P,A and P x A

4.1 Cohomological definition of ess.  Recall that the Zz-cohomology of the projective
space P is multiplicatively generated by a single 1-dimensional element, say «, such that
o' # 0 for 1 < k {and, of course o = 0 fori > k = dim P*). With this one sees that
ess PF = k, since the cohomology is homotopy invariant. In fact, one knows (and the proof is
very easy) that for all locally closed (i.e., open N closed) subsets @ C P*, the “dimension” ess Q
equals the greatest 7, such that the class o* does not vanish on Q. Now the subadditivity of ess
follows from the fact that cohomology classes multiply like functions. Namely, if a vanishes
an A and 3 on B then the cup-product a vV 3 vanishes on AU B, where A and B are locally
closed subsets in a topological space and «, and § are some cohomology classes of this space.

Here is another immediate corollary of the cohomological definition of “dimension” ess.

4.1.A. Let S be a connected topological space with a continuous involution called s «+—
—s, and let f be a symmetric continuous map of S into the sphere S*, where symmetric means
f(—s) = —f{(s). If the Z,-cohomology of § vanish in the dimensions 1,2,...,1 — 1, then the
image in P* = §*/Z, of the induced map f = f/Z satisfies

essf(S/Zy) > 1.

Remark. The vanishing assumption is satisfied for example, for the sphere S? for j > 1,
since every (i — 1)-dimensional subset is contactible in S7 for § > 4. In particular, the existence
of a symmetric map f : 87 — S* implies that 5 < k. This fact is often called the Borsuk-Ulam

theorem.
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4.2 Bezout theorem. The Poincaré-Lefschetz duality between the cup-product and inter-
section shows that

coess AN B < coess A + coess B, (%)

where the coessence of a subset in P* is k — ess, and where A and B are locally closed subsets
in P*,
Here is another form of Bezout theorem. Let f : §¥ — S* be a symmetric continuous map

and [ : P* — P* be the induced map. Then
coess f 1(A) > coess A (x%)

for all A C P*.
Example. Let ¢ : $* — IR’ be a continuous map and A C P* consists of the pairs (s, —s)
such that ¢(s) = ¢(—s). Then

coessA > i—7. (% * %)

In fact, let [ : P* — P*ti—1 be defined by

fi(s0ynes8) == (S0y--,86,01(8) — @1(=$),...,0;(s) — p;(~s))
where sg,...,5; are the coordinates of a {one out of two) point in S* over 5 € P* and where
©1,...,; are the components of . Then A equals the pullback of the obvious j-codimensional
subspace in P*+7*! and Bezout theorem applies because f is covered by some f.

Remarks. (a) If £ > j, then (* x ) says that A is non-empty. This is another formulation
of the Borsuk-Ulam theorem.

{b} Let us define coess’ of a subset A in a {possibly infinite dimensional} projective space
P as the minimal 7 such that there exists a continuous map of P into another projective space,
say f : P — P’, such that f can be covered by a symmetric map of the (spherical) double-
coverings of P and P’ and such that A contains the pull-back of a projective subspace in P’
of codimension 7. This coess’ satisfies (+) and (x#) (almost) by definition. Moreover, by the
Poincaré Lefschetz duality

coess’ > coess = dim P — ess

if P is finite dimensional.
Example. (a) Every i-coplane (see 0.5.B) obviously has coess’ = ¢. Hence, it meets every

i-plane by the above discussion.
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(b) Let P be the projective space of continuous functions on V and U C V be a measurable
subset. Denote by P, C P the subset of functions z equidividing U, that is the subsets
z7}(—00,0]NU and £71{0,00) NU have measure at least 2u(U). (If the zero level z71(0) C V
of X has measure zero, then these equal %u(U)) Obviously coess’ P, < 1.

4.2.A Corollary (Borsuk-Ulam again). Let a subset A C P haveess4A > 1 {e.g., A is
projective of dimension 1) and Uy,...,U; are subsets in V. Then there exists a functionz € A
equidividing all ¢ subsets.

4.2.B An archetypical spectral application. Let V be a compact n-dimensional
Riemannian manifold and E(z) denotes the (n—1)-dimensional volume of the zero set £}(0) C

V. Then the spectrum {A;} of this E satisfies

EEe

)\,‘Xi

Proof: To bound )\; from below partition V into ¢ subsets U; which are roughly isometric

to the Euclidean ball of radius € = i~ %. Then the above equidividing function z satisfies

according to the {isoperimetric) Poincaré lemma,

1
"

E(z) > constic™ ! = const

Next, for the upper bound, first let V be a domain in IR™, Then the space Py of polynomials
of degree < d has ¢ = dim Py =< d™. Since the zero set X of a polynomial of degree < d meets

every line at no more than d points,
Vol -1 (ENV) < d(Diam V)",

which provides the required upper bound on A; for V C IR™. In the general case, one may
apply a similar argument to an algebraic realization (due to J. Nash) of V' in some Euclidean
space RN,
Question. Let P be the space of maps x: V — IR™ for some m < n and
E(z) = Vol ,_mE"1(0) .
Then the above polynomial example shows that

A; < constt

But I do not even know how to prove that A; — oo for m > 2.
Tt OO
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4.3 Z,-simplices. . Consider a topological space S and a continuous map # of S into a
{finite or infinite dimensional) simplex. A k-face, say Sy C S by definition is the pull-back
of a k-face Ar in A and the boundary 35, is the pull-back of the boundary of Ag. Recall
that the Z;-cohomology of the pair {Ax,dA) equals Z; in dimension k and say that § is
a Zs-stmplez if the generator of this cohomology group, say A{A), goes by 7 to a non-zero
element in H*(Sx,dSk; Z1), say to h(Sy), for all finite dimensional faces S of S.

Examples. {a} If S contains a subset §', such that 7 : §' — A is a homeomorphism,
then S is a Z,-simplex.

(b) Let 7 : A — A, where = sends every face of A into itself. Such a map is homotopic
to the identity (by an obvious linear homotopy) and so this is a Zz—simplex. hence, the map
T necessarily 1s surjective.

In fact, one has the following obvious (modulo elementary homology theory):

4.3.A Proposition, Let#': § — A be a continuous map sending each face Sy = 7~ 1(Ak)
of S to Ay. Then 7' is onto.

4.3.B Basic example. Let S be the space of sequences s = sg, 81,...,8k,... of non-

negative L,-functions on V', such that the sum

o= Z;/sk(v)dv

satisfies

0<o <o,

and define 7 : § — A by

s (fsofo, [s1/oy...,[sx]o...).

If the implied measure u on V is continuous, as we shall always assume below, then this is a
Z 4-simplex. Important subsimplices in S are:

{a} Sy C S, where every sx equals O or 1, i.e., si is the characteristic function of the set
where s, = 1.

{(b) Sco C Sy, where the implied subsets cover V.

(c) Spa C Sco, where the subsets partition V, that is ) s = 1.

Denote by S(k) the set of sequences with s; = 0 f(l)cr J > k and look at the induced

Z o-simplex structure over Ak c A,
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4.3.B, Proposition. Let T ¢ S(k) be Z,-subsimplex (over A¥) and z a bounded

function on V. Then there exists s = (sg,...,sk) € T, such that

/SoI:/SI.’II:"':/Sk.ﬂ.

\4 v \4

Proof: We may assume 7 is compact which provides a constant C, such that

o, =C+ /six >0
v
forall i = 0,...,k and s € T. Then 4.2.B applies to the map T — AF defined by s —

k
{60/0y...,0]a), for o= 3 0.
=0

4.4 Z,-simplices in P x A. Let f: P¥ x A — P be a continuous map which admits a lift
to a continuous map S*¥ x A — S, where S* and § are the spheres double covering P%and P
respectively. Then by the elementary homology theory the pull-back T = f~1(P') C P* x A
of every k-coessential subset P/ C P (i.e., coess P’ < k) is a Zy-simplex for the projection
T — A. In fact the same conclusion remains valid for every k-essential subset @ C P instead
of P*. This leads to the following unification of 4.2.A and 4.3.B;.

4.4.A. Let T C S(k) be a Z,-simplex (over A¥) in the space of sequences of subsets
Vo,...,Vk inV and let Q be a (k + 1)-essential (i.e., ess@ > k -+ 1) set of continuous functions
on V. Then there exist a function € @ and a sequence (Uy,...,Ux) € T, such that
(1) the zero level z=1(0) C V equidivides all Up,...,Ux (in the sense of 4.2.A).

[1elr=[1elr == [
Uyg U; Uy

4.4.A; Remarks. (a} one can replace (1) by the following

(2) For a given p < oo

(11 sup z{v) = — inf z(v) for 7=0,...,k.
vel; veU;

In fact one can require any “equidivision property” in-so-far as the “division” is continuous
inze@.
(b) Suppose each open subset U;(t) is continuous in ¢ € T for the Hausdorfl metric is the

space of subsets and assume that

p(U;j(t)) = 0 <=> DiamU;(t) = 0
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forallt € T and y =0,...,k. Then the condition (2) can be replaced by

sup z(v) = sup z(v) = ... = sup z(v) .
veUo vel, vel;

In fact, one can use here any notion of size of x on Uj, satisfying an obvious continuity
condition.

4.4.B Spectra for A-dim. We have seen in 2.2 and 3.4.F how the above proposition is
used to bound from below the spectrum of Lid/Ls on the unit interval. To obtain a similar
bound for a domain V C IR™ (say for L1d/L, and ¢ = =5 or for L10"/Le) one needs a
Z o-simplex of partitions into “sufficiently round” subsets. One can also us coverings rather
than partitions if one controls the multiplicity.

To be able to use our spectral language we say that a set @ of coverings of V by k + 1

subsets Vj,..., Vi has A-dim Q > k if it contains (and hence is) a Z3-simplex over A*. Now

for every energy E = E(s) we can define the A-dim-spectrum of E. Here are some interesting

energies.

(a) E°(s) = sup (DiamV;)/(VolV;)}/"
0<5<k

(b) E*s) = sup A (Vy)7h,
0<j<k

where A; is the first eigenvalue of a pertinent energy on V;, say of L;8” /Lo on V. (One can
generalize this by using any A; for ¢ > 1.)
(¢) E*#(s) = the measure theoretic multiplicity of the covering, that is the L°°-norm of the
sum of the characteristic functions of Uj;.

Questions. What are the spectra of E° + E* and of E* + E#? What are the spectra of
E° and E* on the space of partitions (i.e., for E# = 1)?

Example. For every compact smooth domain V C IR? one can easily construct a k-
simplex of partitions for all k = 1,2,... such that E°(s) < k. It is unlikely that one can make
E° <1, (i.e, bounded) but something like E°(s) < k'/2 might be possible.

Remark. The energy E* + E# (or E* on partitions) is designed to bound from below the
spectrum of a pertinent energy on functions z on V but it is unclear how sharp such a bound
might be. In other words we want to know how close E? is to the dual of E from where Ay (or

A;) comes.
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