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0 Preliminaries and Main Results

1. Let M be a complex manifold with a smooth boundary which will be
denoted bM , dimCM = n. Let us denote M = M ∪ bM and assume
for simplicity that M ⊂ M̃ where M̃ is a complex neighbourhood of M ,
dimC M̃ = n, so that every point z ∈ bM is an interior point of M̃ . Let us
take a C∞-function ρ : M̃ → R such that

M =
{
z | ρ(z) < 0

}
, bM =

{
z | ρ(z) = 0

}
; dρ(z) 6= 0 for all z ∈ bM .

(0.1)
For any z ∈ bM denote by T cz (bM) the complex tangent space to bM : the
maximal complex subspace in the real tangent space Tz(bM), dimC T

c
z (bM)

= n − 1. If z1, . . . , zn are complex local coordinates in M̃ near z ∈ bM ,
then TzM̃ is identified with Cn and

T cz (bM) =
{
w = (w1, . . . , wn)

∣∣∣ n∑
j=1

∂ρ

∂zj
(z)wj = 0

}
. (0.2)

The Levi form is an hermitian form on T cz (bM) defined in the local coor-
dinates as follows:

Lz(w, w̄) =
n∑

j,k=1

∂2ρ

∂zj∂z̄k
(z)wjw̄k . (0.3)

The manifold M is called pseudoconvex if Lz(w, w̄) ≥ 0 for all z ∈ bM
and w ∈ T cz (bM). It is called strongly pseudoconvex if Lz(w, w̄) > 0 for all
z ∈ bM and all w 6= 0, w ∈ T cz (bM). In this case replacing ρ by eλρ − 1
with sufficiently large λ > 0 we can assume that Lz(w, w̄) > 0 for all w 6= 0
(not only for w satisfying the condition in (0.2)).

Equivalently, strongly pseudoconvex manifolds can be described as the
ones which locally, in a neighbourhood of any boundary point, can be
presented as strongly convex domains in Cn.

Denote by O(M) the set of all holomorphic functions on M .
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A point z ∈ bM is called a peak point for O(M) if there exists a function
f ∈ O(M) such that f is unbounded on M but bounded outside U ∩M for
any neighbourhood U of z in M̃ .

A point z ∈ bM is called a local peak point for O(M) if there exists a
neighbourhood U of z in M̃ such that z is a peak point for O(M)|(U ∩M)
which is the space of all restrictions of functions from O(M) to U ∩M . In
other words there exists a function f ∈ O(M) such that f is unbounded in
U∩M for any neighbourhood U of z in M̃ and there exists a neighbourhood
U of z in M̃ such that for any neighbourhood V of z in M̃ the function f
is bounded in U − V .

Note that the pseudoconvexity and strong pseudoconvexity at a point
z ∈ bM are local notions, whereas being a peak point or a local peak point
for O(M) depends on the global structure of M .

The Oka-Grauert theorem ([Gr1], see also [FKo], [He]) states that if M
is strongly pseudoconvex, bM is not empty and M is compact, then every
point z ∈ bM is a peak point for O(M). (Moreover for every z ∈ bM there
exist functions f1, . . . , fn ∈ O(M) which are local complex coordinates in
U ∩M for a neighbourhood U of z in M̃ .) It follows in particular that the
space O(M) is infinite-dimensional. If M is weakly pseudoconvex then the
space O(M) is not necessarily infinite-dimensional (see [Gr2]). But if M is
weakly pseudoconvex, M is compact and, in addition, in the neighbourhood
of bM there exists a strictly plurisubharmonic function (not necessarily
vanishing on bM) then M can be exhausted by strongly pseudoconvex
manifolds (see e.g. (i) in the Lemma 1.10 below). In this case O(M) is
again infinite-dimensional by the Oka-Grauert theory. Note that for the
case of domains in Cn we can even construct the required exhaustion using
a global plurisubharmonic function in M (see e.g. [Hö2]). This is not true
in general case (see e.g. an example in [Gr2]).

One of the goals of this paper is to extend these results to the case when
M is not necessarily compact but admits a free holomorphic action of a dis-
crete group Γ such that the orbit space M/Γ is compact (or in other words
M is a regular covering of a compact complex manifold with a strongly
pseudoconvex boundary). In this case we shall use the von Neumann Γ-
dimension dimΓ to measure Hilbert spaces of holomorphic functions (or
some exterior forms) which are in L2 with respect to a Γ-invariant smooth
measure on M . In case when the group Γ is trivial (i.e. has only one ele-
ment) the Γ-dimension is just the usual dimension dimC. We shall prove
that the space of L2-holomorphic functions on a strongly pseudoconvex



554 M. GROMOV, G. HENKIN AND M. SHUBIN GAFA

regular covering M of a compact manifold with a non-empty boundary has
an infinite Γ-dimension and every point z ∈ bM is a local peak point for
this space.

We shall also prove that dimΓ L
2O(M) = ∞, if covering M is only

weakly pseudoconvex, but with strictly plurisubharmonic Γ-invariant func-
tion existing in a neighbourhood of bM .

The arguments given in the proof can be carried over if instead of the
discrete group Γ we have an arbitrary unimodular Lie group G (not neces-
sarily connected) with free action on M (holomorphic in M) such that the
quotient M/G is compact. The unimodularity is used just to introduce a
von Neumann trace and the corresponding dimension as in [CoMo].

A natural question arises: is the cocompact group action really relevant
for the existence of many holomorphic L2-functions or is it just an artifact
of the chosen methods which require a use of von Neumann algebras? Can
we at least get rid of the unimodularity requirement? In section 3 we give
an example which shows that the answer to the last question is negative.
In this example dimCM = 2, bM is strongly pseudoconvex, G is a solvable
non-unimodular connected Lie group, dimRG = 3, G has a free action on
M which is holomorphic on M , M/G = [−1, 1], but L2O(M) = {0}.

It follows in particular that if we only impose bounded geometry condi-
tions with uniform strong pseudoconvexity, then the space of holomorphic
L2-functions may be trivial. It is not clear how to formulate conditions
assuring that dimL2O(M) =∞ without any group action.

About half of the presented results are contained in [GroHeS] which can
be considered as a preliminary version of this paper.

2. Let us choose a boundary point x for a strongly pseudoconvex mani-
fold M and describe the classical E. Levi construction of a locally defined
holomorphic function on U ∩M (here U is a neighbourhood of x in M̃)
with the peak point x. Let us consider the Taylor expansion of ρ at x:

ρ(z) = ρ(x) + 2 Re f(x, z) + Lx(z − x, z̄ − x̄) +O
(
|z − x|3

)
, (0.4)

where Lx is the Levi form at x and f(x, z) is a complex quadratic polyno-
mial with respect to z:

f(x, z) =
∑

1≤ν≤n

∂ρ

∂zν
(x)(zν − xν) +

1
2

∑
1≤µ,ν≤n

∂2ρ

∂zµ∂zν
(x)(zµ − xµ)(zν − xν) .

The complex quadric hypersurface Sx = {z | f(x, z) = 0} has T cx(bM) as
its tangent plane at x. Therefore the strong pseudoconvexity implies that
ρ(z) > 0 if f(x, z) = 0 and z 6= x is close to x. This means that near x the
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intersection of the hypersurface Sx with M consists of one point x. Hence
the function 1/f(x, ·) is holomorphic in U∩M (where U is a neighbourhood
of x in M̃) and x is its peak point.

The technique which allows to pass from locally defined holomorphic
functions to global ones is ∂̄-cohomology on complex manifolds. For any
integers p, q with 1 ≤ p, q ≤ n denote by Λp,q(M) the space of all C∞

forms of type p, q on M , i.e. forms which can be written in local complex
coordinates as

ω =
∑′

|I|=p,|J |=q
ωI,Jdz

I ∧ dz̄J ,

where dzI = dzi1 ∧ · · · ∧ dzip , dzJ = dz̄j1 ∧ · · · ∧ dz̄jq , I = (i1, . . . , ip),
J = (j1, . . . , jq), i1 < · · · < ip, j1 < · · · < jq, and ωI,J are C∞ functions in
local coordinates. Here and later

∑′ stands for summing over increasing
multiindices. For such a form ω its ∂̄ differential is written as

∂̄ω =
∑′

|I|=p,|J |=q

n∑
k=1

∂ωI,J
∂z̄k

dz̄k ∧ dzI ∧ dz̄J ,

so ∂̄ defines a linear map ∂̄ : Λp,q(M) → Λp,q+1(M). All these maps
constitute a complex of vector spaces

Λp,• : 0 −→ Λp,0 −→ Λp,1 −→ · · · −→ Λp,n −→ 0 .

Its cohomology spaces are denoted Hp,q(M).

An important part of the Grauert theorem is the fact that dimCH
p,q(M)

< ∞ for all p, q with q > 0 provided M is strongly pseudoconvex and M
is compact. A refinement of this fact is used in constructing global holo-
morphic functions on M with a peak point x ∈ bM as follows. We start
with a locally defined function g ∈ O(U ∩ M) (here U is a neighbour-
hood of x in M̃) with a peak point at x, multiply it by a cut-off function
χ ∈ C∞0 (U) which equals 1 in a neighbourhood of x, then solve the equa-
tion ∂̄f = ∂̄(χg) on M in appropriate function spaces consisting of bounded
functions on M . If we can do this then the function χg− f is holomorphic
on M and x is its peak point. The existence of a bounded solution for the
equation ∂̄f = α ∈ Λ0,1(M) for all forms α with ∂̄α = 0 is equivalent to the
vanishing of an appropriate refinement of the cohomology space H0,1(M)
(we should actually consider cohomology Hp,q(M) with estimates). If we
only know that the latter space has a finite dimension then we still can
solve the equation ∂̄f = α for all ∂̄-closed forms α in the space of finite
codimension in the space of all ∂̄-closed forms. This is sufficient to con-
struct holomorphic functions on M with the peak point x because it is
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easy to provide an infinite-dimensional space of holomorphic functions in
a neighbourhood of x having x as its peak point (e.g. we can take a linear
space spanned by all powers of one function with the peak point x).

3. Now we shall give a very brief description of the Γ-dimension. It will
be used to measure Γ-invariant spaces (of functions and forms) which are
infinite-dimensional in the usual sense. It is also convenient to use the Γ-
trace. For more details we refer the reader to [At], [C] and textbooks on
von Neumann algebras (e.g. [D], [N], [Ta]).

We shall denote the Γ-dimension by dimΓ. It is defined on the set of
all (projective) Hilbert Γ-modules and takes values in [0,∞]. The simplest
Hilbert Γ-module is given by a left regular representation of Γ: it is the
Hilbert space L2Γ consisting of all complex-valued L2-functions on Γ. The
group Γ acts unitarily on L2Γ by γ 7→ Lγ where Lγ is defined as follows:

Lγf(x) = f(γ−1x) , x ∈ Γ , f ∈ L2Γ .

By definition dimΓ L
2Γ = 1.

For any (complex) Hilbert space H define a free Hilbert Γ-module
L2Γ⊗H. Its Γ-dimension equals dimCH. The action of Γ in L2Γ ⊗ H
is defined by γ 7→ Lγ ⊗ I.

A general Hilbert Γ-module is a closed Γ-invariant subspace in a free
Hilbert Γ-module. It would be natural to call such subspaces projective
Hilbert modules, but the word “projective” is usually omitted, so only
projective Hilbert modules are considered.

For any Hilbert space H denote by AΓ a von Neumann algebra which
consists of all bounded linear operators in L2Γ ⊗ H which commute with
the action of Γ there. This algebra is in fact generated by the operators
of the form Rγ ⊗ B, B ∈ B(H), γ ∈ Γ, where B(H) is the algebra of all
bounded linear operators in H, Rγ is the operator of the right translation
in L2Γ, i.e.

Rγf(x) = f(xγ) , x ∈ Γ , f ∈ L2Γ .
This means that the algebra AΓ is the weak closure of all finite linear
combinations of the operators of the form Rγ ⊗ B. So in fact AΓ is a
tensor product (in the sense of von Neumann algebras) of RΓ and B(H)
where RΓ is the von Neumann algebra generated by the operators Rγ in
L2Γ (it consists of all operators in L2Γ which commute with all operators
Lγ , γ ∈ Γ).

There is a natural trace on RΓ. It is denoted by trΓ and defined as the
diagonal matrix element (all of them are equal) in the δ-functions basis.
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For example we can define it by

trΓS = (Sδe, δe) , S ∈ RΓ ,

where e is the neutral element of Γ, δe ∈ L2Γ is the “Dirac delta-function”
at e, i.e. δe(x) = 1 if x = e and 0 otherwise. There is also a natural trace
on AΓ too: TrΓ = trΓ ⊗Tr where Tr is the usual trace on B(H).

Now for any Hilbert Γ-module which is a closed Γ-invariant subspace L
in L2Γ⊗H, its Γ-dimension is defined by the natural formula

dimΓ L = TrΓPL ,

where PL is the orthogonal projection on L in L2Γ⊗H.

4. Let us describe the reduced L2 Dolbeault cohomology spaces on a com-
plex (generally non-compact) manifold M with a given hermitian metric.
Denote the Hilbert space of all (measurable) square-integrable (p, q)-forms
on M by L2Λp,q = L2Λp,q(M). The operator

∂̄ : L2Λp,q(M) −→ L2Λp,q+1(M)

is defined as the maximal operator, i.e. its domain Dp,q = Dp,q(∂̄;M) is
the set of all ω ∈ L2Λp,q such that ∂̄ω ∈ L2Λp,q+1 where ∂̄ω is applied in
the sense of distributions. Obviously ∂̄2 = 0 on Dp,q and we can form a
complex

L2Λp,• : 0 −→ Dp,0 −→ Dp,1 −→ · · · −→ Dp,n −→ 0 .

Its cohomology spaces are denoted L2Hp,q(M) and called L2 Dolbeault
cohomology spaces of M :

L2Hp,q(M) = Ker(∂̄ : Dp,q → Dp,q+1)/ Im(∂̄ : Dp,q−1 → Dp,q) .

We actually need reduced L2 Dolbeault cohomology spaces

L2H̄p,q(M) = Ker(∂̄ : Dp,q → Dp,q+1)/Im(∂̄ : Dp,q−1 → Dp,q) ,

where the line over Im ∂̄ means its closure in the corresponding L2 space.
Since Ker ∂̄ is a closed subspace in L2, the reduced cohomology space
L2H̄p,q(M) is a Hilbert space.

Note that the space L2H̄0,0(M) coincides with the space L2O(M) of
all square-integrable holomorphic functions on M .

5. Let us assume now that M is a complex manifold (with boundary)
with a free action of a discrete group Γ on M such that M/Γ is compact
and the action is holomorphic on M . (Here M = M ∪ bM .) Let us assume
that an hermitian Γ-invariant metric is given on M . Then the reduced L2

Dolbeault cohomology spaces become Hilbert Γ-modules. Hence they have
a well defined Γ-dimension (possibly infinity).
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We will also assume for simplicity that M is a closed subset in M̃ where
M̃ is a complex neighbourhood of M with a free holomorphic action of Γ so
that this action and the complex structure on M̃ extend the corresponding
structures of M , and every point of M is an interior point in M̃ .

Now we will formulate our main results.

Theorem 0.1. If M is strongly pseudoconvex, then dimΓ L
2H̄p,q(M) <∞

for all p, q provided q > 0.

Theorem 0.2. If M is strongly pseudoconvex and bM is non-empty, then
dimΓ L

2O(M) =∞ and each point in bM is a local peak point for L2O(M).

Under the same conditions it is also possible to construct holomorphic
functions which have stronger local singularities (not L2) but are in L2 in a
generalized sense. For any s ∈ R denote by W s = W s(M) the uniform (Γ-
invariant) Sobolev space of distributions on M , based on the space W 0 =
L2(M) constructed with the use of a smooth Γ-invariant measure on M
(see e.g. [S1] for the details on the Sobolev spaces). The space W−s for
large s > 0 contains in particular holomorphic functions on M with power
singularities at the boundary. For any s ∈ R the space W s is a Hilbert
Γ-module with respect to the natural action of Γ. Denote by W sO(M)
the space of all elements in W s which are actually holomorphic functions
on M . Now we can formulate another version of Theorem 0.2.

Theorem 0.3. If M is strongly pseudoconvex and bM 6= ∅, then for any
x ∈ bM and any integer N > 0 there exists s > 0 and a closed Γ-invariant
subspace L ⊂W−sO(M) such that

(i) dimΓ L = N ;
(ii) L ∩ L2(M) = {0} but for any f ∈ L and any Γ-invariant neighbour-

hood U of x in M we have f ∈ L2(M − U).

It is also possible to construct L2-holomorphic functions on M which
are in C∞(M):

Theorem 0.4. If M is strongly pseudoconvex and bM 6= ∅, then for any
integer N > 0 there exists a Γ-invariant subspace L ⊂ L2O(M) ∩ C∞(M)
such that dimΓ L̄ = N where L̄ is the closure of L in L2(M).

Examples. 1) Let X be a compact real-analytic manifold with an in-
finite fundamental group Γ = π1(X). Assume that X is imbedded into
its complexification Y and a Riemannian metric is chosen on Y . Let Xε

be a ε-neighbourhood of X in Y where ε > 0 is sufficiently small. It is
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known ([M1], [Gr1]) that then Xε is strongly pseudoconvex. Let M be
the universal covering of Xε. Theorems 0.1–0.4 can be applied to M and
we conclude in particular that there are sufficiently many L2 holomorphic
functions on M .

A particular case: strip {z | | Im z| < 1} in C with the action of Γ = Z
by translations along R. Of course in this case L2 holomorphic functions
can be obtained by the Fourier transform or explicitly (e.g. take 1/(a2 +z2)
where a > 1, or exp(−z2) log(z − i)).

2) Let X be a compact complex manifold with a holomorphic negative
vector line bundle E on X. The negativity means that E is supplied with
an hermitian metric and ε-neighbourhood Xε of X in the total space of E
is strongly pseudoconvex (for some ε > 0 or, equivalently, for any ε > 0).
Denote by M the universal covering of X.

Note that Xε is not a Stein manifold because it has a non-trivial com-
pact complex submanifold X (the zero section of E). But we are again in
the situation of Theorems 0.1–0.4 and these theorems give extensions of
some results of Napier [Na] and Gromov [Gro]. Namely let Mε be the uni-
versal covering of Xε. Theorems 0.2–0.4 guarantee that there are many L2

holomorphic functions on Mε. In particular, dimΓ L
2O(Mε) = ∞. Using

the Taylor expansion of f ∈ L2O(Mε) along the fibers we obtain L2-spaces
with a finite positive Γ-dimension, such that they consist of holomorphic
functions which are polynomial along the fibers. This means that E−k has
many holomorphic L2-sections over M ([Na]). Under the Kähler hyperbol-
icity condition Gromov [Gro] proved that in fact there are sufficiently many
holomorphic L2-forms (of the type (n, 0)) on M .

6. The following results give rather general conditions when the state-
ments of Theorems 0.1, 0.2 are still valid for weakly pseudoconvex (i.e.
pseudoconvex but not necessarily strongly pseudoconvex) manifolds.

Theorem 0.5. Let M be a pseudoconvex manifold with holomorphic ac-
tion of a discrete group Γ on M such that M/Γ is compact. As before we
assume that bM 6= ∅ and M is a closed subset in M̃ where M̃ is a complex
neighbourhood of M with a free holomorphic action of Γ so that this action
and the complex structure on M̃ extend the corresponding structures of M ,
and every point of M is an interior point in M̃ . Let g be a Γ-invariant her-
mitian metric on M . Suppose that in a Γ-invariant neighbourhood U of bM
(in M̃) there exist a Γ-invariant strictly plurisubharmonic function Φ and
a constant δ > 0 such that i∂∂̄Φ ≥ δ · g in U . Then dimΓ L

2H̄p,q(M) <∞
for all p, q with q > 0.
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Remark. The inequality i∂∂̄Φ ≥ δ · g is automatically true in a possi-
bly smaller Γ-invariant neighbourhood of M provided Φ is in C2, strictly
plurisubharmonic and Γ-invariant.

Theorem 0.6. Under the assumptions of Theorem 0.5

(i) dimΓ L
2O(M) =∞;

(ii) each point of strong pseudoconvexity in bM is a local peak point for
L2O(M).

Theorem 0.7. If under the assumptions of Theorem 0.5 M/Γ is a Stein
manifold, then L2Hp,q(M) = 0 for all p, q with q > 0 (i.e. Im ∂̄ exactly
coincides with Ker ∂̄ in the corresponding spaces L2Λp,q), and the functions
from L2O(M) separate all points in M .

Examples. (i) Any pseudoconvex domain X in Cn or CPn is a Stein
manifold ([Hö2], [Fu]). Therefore Theorem 0.7 can be applied to its regular
covering manifolds.

(ii) For any real-analytic manifold X0, dimRX0 = n, we can find its
complex neighbourhood X, dimCX = n, such that X is a Stein manifold
[Gr2] (then X is called a Grauert tube for X0). We can also assume that
X is a manifold with a smooth boundary. If in addition X0 is compact,
Theorem 0.7 can be applied to any regular covering manifold of X.

7. Remarks. 1) If under the assumptions of the theorems aboveM/Γ is a
Stein manifold then Stein [St] proved that M is also a Stein manifold. It fol-
lows from this result that there are sufficiently many holomorphic functions
on M , but it does not follow that there exist non-trivial L2 holomorphic
functions. On the other hand it can happen that M/Γ is not Stein (see
Example 2 above). Then even the existence of any holomorphic function
on M which is not constant along orbits of Γ is not obvious.

2) If bM = ∅ then it follows from the arguments of Atiyah [At] that
dimΓ L

2H̄p,q(M) < ∞ for all p, q (including q = 0). In this case in fact
L2O(M) = {0}. But if E is a positive Γ-invariant holomorphic line bundle,
then the Kodaira imbedding theorem [K] and the Atiyah index theorem
[At] imply that dimΓ L

2O(M,Ek) > 0 for large k; in particular, this again
gives the result of [Na]: the space of all holomorphic sections of Ek is
infinite-dimensional in the usual sense.

3) Theorems 0.2–0.4 remain valid if we replace holomorphic functions
by holomorphic (p, 0)-forms. More generally all Theorems 0.1–0.4 are true
for sections of arbitrary holomorphic vector Γ-bundles over M .
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4) Theorems 0.1–0.4 can be extended to the case when M is strongly
pseudoconvex but with possibly non-smooth boundary, i.e. we can drop the
requirement dρ 6= 0 on bM in (0.1) but require instead that the Levi form
(0.3) is positive for all z ∈ bM and all w 6= 0, w ∈ Cn.

5) Let us assume that the Levi form (0.3) is non-degenerate on T cz (bM)
for all z ∈ bM and the boundary bM is connected. Note that bM will be
automatically connected if M is connected and the Levi form has at least
one plus at every boundary point and there exists at least one non-trivial
holomorphic function on M (in particular this is true if bM is strongly
pseudoconvex). Indeed, J. Kohn and H. Rossi [KoRo] proved that in this
case every CR-function on bM can be extended to a holomorphic function
on M . If we assume that bM is not connected, this leads to a contradiction
if we consider a locally constant CR-function which equals 1 on one of the
connected components of bM and 0 on all others.

Let r be the number of negative eigenvalues of the Levi form in T cz (bM).
Then

dimΓ L
2H̄0,r(M) =∞

and
dimΓ L

2H̄p,q(M) <∞ , q 6= r .

This is a generalization to the covering case of the classical theorems by
Andreotti-Grauert and Andreotti-Norguet (see [AV], [FKo], [Hö1], [AHi]).

6) There are analogues of Theorems 0.1–0.4 for regular coverings of
compact strongly pseudoconvex CR-manifolds. Let N be a strongly pseu-
doconvex CR-manifold with a free action of a discrete group Γ such that
Y = N/Γ is compact, dimRN = 2k − 1.

Assume that k ≥ 3. Let us denote by L2Hp,q
CR(N) and L2H̄p,q

CR(N) the L2

Kohn-Rossi cohomology spaces and reduced cohomology spaces respectively
(see [KoRo] for the usual version of these cohomology spaces on compact
CR-manifolds). They are defined similarly to the Dolbeault cohomology
spaces by using the tangent Cauchy-Riemann operator ∂̄b instead of ∂̄.
Then the following statements are true:

(i) dimΓ L
2H̄p,q

CR(N) <∞ if 1 ≤ q ≤ k − 2.
(ii) dimΓ L

2H̄p,0
CR(N)=∞ and dimΓ L

2H̄p,k−1
CR (N)=∞ for all p with 0≤p≤k.

Note that if k = 2 the statement (i) is empty and (ii) is not true even
in the compact case.

7) First applications of von Neumann algebras to constructions of non-
trivial spaces of L2-holomorphic functions or sections of holomorphic vector
bundles are due to M. Atiyah [At] and A. Connes [Co]. J. Roe proved ex-
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istence of an infinite-dimensional space of L2 holomorphic sections of a
power Ek for a uniformly positive holomorphic line bundle E over a com-
plete Kähler simply connected manifold of non-positive curvature without
any action of a discrete group (see [R] for further results and references).

1 ∂̄-cohomology Spaces of Pseudoconvex Coverings

1. In this section we will prove Theorems 0.1 and 0.5. We will start by
extending the Kohn-Morrey estimates ([FKo], [M2]) to our case. We will
always assume that M is pseudoconvex.

First we will consider a general Γ-invariant analytic situation. Namely
let M be a C∞-manifold (possibly with boundary) with a free action of a
discrete group Γ such that M/Γ is compact. Let E be a (complex) vector
Γ-bundle on M with a Γ-invariant hermitian metric in the fibers of E. We
shall use Γ-invariant Sobolev spaces W s of sections of E over M . The
scale of the Hilbert spaces W s = W s(M,E) is based on the Hilbert space
L2(M,E) which is taken with respect to a smooth positive Γ-invariant
measure on M and the given Γ-invariant hermitian metric on E over M .
Let M̃ be a Γ-invarant complex neighbourhood of M . Assume that E and
the measure on M are extended to M̃ in a smooth Γ-invariant way. For
any s ∈ R the space W s = W s(M,E) is a Hilbert space which consists of
all restrictions to M of finite linear combinations of all sections Au where
u ∈ L2(M̃,E) and A is a properly supported Γ-invariant pseudodifferential
operator of order −s on M̃ (see e.g. [At] or [S1]). The norm in W s is
denoted ‖ · ‖s.

In particular Γ-invariant Sobolev spaces W sΛp,q of (p, q)-differential
forms on M are well defined.

Let us consider ∂̄ as the maximal operator in L2 and let ∂̄∗ be the Hilbert
space adjoint operator. We shall also use the corresponding Laplacian

� = �p,q = ∂̄∂̄∗ + ∂̄∗∂̄ on L2Λp,q(M) .

We shall denote the domain of any operator A by D(A). Let Λ•c(M) denote
the set of all C∞ forms with compact support on M .

The following lemma gives a description of the operators ∂̄∗, � (as well
as their domains D(∂̄∗), D(�)). Let θ be the formal adjoint operator to ∂̄,
σ = σ(θ, ·) its principal symbol.

Lemma 1.1. Let us assume that M is strongly pseudoconvex.

(i) The operator ∂̄∗ can be obtained as the closure of θ from the initial
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domain
D0(∂̄∗) =

{
ω
∣∣ ω ∈ Λ•c(M), σ(θ, dρ)ω = 0 on bM

}
. (1.1)

(ii) The space D0(∂̄∗) is dense in D(∂̄∗) ∩D(∂̄) in the norm(
‖ω‖20 + ‖∂̄∗ω‖20 + ‖∂̄ω‖20

)1/2
, ω ∈ D(∂̄∗) ∩D(∂̄) .

(iii) The operator � = �p,q can be obtained as the closure of the operator
∂̄θ + θ∂̄ from the initial domain

D0(�) =
{
ω | ω, ∂̄ω, θω ∈ Λ•(M) ∩ L2(M) ,
σ(θ, dρ)ω = 0 and σ(θ, dρ)∂̄ω = 0 on bM} .

(1.2)

(iv) For any ω ∈ D(�) def= {ω ∈ D(∂̄)∩D(∂̄∗) : ∂̄ω ∈ D(∂̄∗), ∂̄∗ω ∈ D(∂̄)}
the following integral identity holds

(�ω, ω) = ‖∂̄ω‖20 + ‖∂̄∗ω‖20 . (1.3)
Remark. The boundary conditions on ω in (1.2) are called the ∂̄-
Neumann conditions.

Proof of Lemma 1.1. Assume first that ω is a smooth compactly supported
form, i.e. ω ∈ Λ•c(M). Then integration by parts formulas for ∂̄ (see e.g.
[FKo], [GriH], [Hö1], [T]) show that the inclusion ω ∈ D(∂̄∗) is equivalent
to the boundary condition σ(θ, dρ)ω = 0 on bM . The same is true if instead
of inclusion ω ∈ Λ•c(M) we only require that ω, θω ∈ Λ•(M) ∩ L2Λ•(M).

Note that any Γ-invariant Riemannian metric on M is complete in the
following sense. For any point x0 ∈ M and for any r ∈ R the ball of
the corresponding geodesic metric {x ∈ M : dist(x0, x) < r} is relatively
compact in M . Using this fact we can construct Lipschitz cut-off functions
of the form aε(x) = Aε(dist(x0, x)) on M with the following properties: aε
has values in [0, 1] and a compact support on M , the subsets {x ∈ M :
aε(x) = 1} exhaust M as ε→ 0, and supx∈X |daε(x)| = O(ε) as ε→ 0.

For any form ω ∈ D(∂̄∗)∩D(∂̄) let us consider the form aεω. This form
belongs to D(∂̄∗) ∩D(∂̄) and satisfies the estimates:∥∥∂̄∗(aεω)− aε∂̄∗ω

∥∥
0 = O(ε)‖ω‖0 and∥∥∂̄(aεω)− aε∂̄ω

∥∥
0 = O(ε)‖ω‖0 .

Hence aεω → ω, ∂̄(aεω)→ ∂̄ω, and ∂̄∗(aεω)→ ∂̄∗ω in L2(M) as ε→ 0.
So to prove (i) and (ii) we can start with ω which have compact support

in M . We need to approximate them by smooth forms in appropriate
norms. With the help of partition of unity in the neighbourhood of supp ω
we can reduce the statements (i) and (ii) to the known Friedrichs results [Fr]
asserting the identity of weak and strong extensions of differential operators
(see also Proposition 1.2.4 in [Hö1]).
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The statement (iv) follows directly from definitions of � and D(�).
In order to prove (iii) let us consider the operator I+�. It follows from

the well known functional analysis result that the operator (I+�)−1 exists,
is everywhere defined and bounded (see also [G] and Proposition 1.3.8 in
[FKo]).

Let ω ∈ D(�p,q). Then ω + �ω = α ∈ L2Λp,q(M). Let us choose a
sequence {αj} ⊂ Λp,qc (M) converging to α in L2Λp,q(M) and define ωj =
(I + �)−1αj . Then ωj ∈ D(�) and ωj → ω in L2Λp,q(M). By the Kohn
regularity theorem ωj ∈ Λp,q(M)∩D(�) (see Propositions 3.1.4 and 3.1.10
in [FKo]).

The equalities (�ωj , ωj) = ‖∂̄ωj‖20 + ‖∂̄∗ωj‖20 give us the inclusions
∂̄ωj ∈ Λp,q(M) ∩ L2Λp,q(M) and ∂̄∗ωj ∈ Λp,q(M) ∩ L2Λp,q(M). �

We will use the standard splitting of the complexified tangent bundle
TM ⊗C to (1,0)-part T1,0(M) (“holomorphic” part) and (0,1)-part (“an-
tiholomorphic” part) T0,1(M):

TM ⊗C = T1,0(M)⊕ T0,1(M) .
Here T1,0(M) is generated by the vector fields ∂/∂zj , j = 1, . . . , n, and
T0,1(M) = T1,0(M) is generated by the vector fields ∂/∂z̄j , j = 1, . . . n, at
every point x ∈M .

Let us denote by ∇ the covariant differentiation related with the ∂-
connection by the fixed Γ-invariant hermitian metric in the complexified
tangent bundle [AV]. We will mainly use the complex conjugate operator
∇ which is the covariant differentiation related with the ∂̄-connection:

∇ : Λp,q(M) −→ Λ0,1(M)⊗ Λp,q(M) .
It has the property

∇(fω) = f∇ω + ∂̄f ⊗ ω , f ∈ C∞(M) , ω ∈ Λp,q(M) .
We shall denote by ∂̄p,q the operator ∂̄ restricted to (p, q)-forms, by ∂̄∗p,q

the corresponding adjoint operator (i.e. ∂̄∗ restricted to (p, q + 1)-forms).

Proposition 1.2. Let us assume that M is strongly pseudoconvex.
(i) There exists γ > 0 such that the following Morrey type estimate

holds:
‖∂̄ω‖20 + ‖∂̄∗ω‖20 + ‖ω‖20 ≥ γ

(
‖∇ω‖20 + ‖ω‖20 + ‖ω‖2L2(bM)

)
ω ∈ D(∂̄∗p,q−1) ∩D(∂̄p,q) , q > 0 .

(1.4)

(ii) The domain D(∂̄∗p,q)∩D(∂̄p,q), q > 0, is included into W 1/2 and there
exists γ1 > 0 such that
‖ω‖21/2 ≤ γ1

(
‖∇ω‖20 + ‖ω‖20 + ‖ω‖2L2(bM)

)
, ω ∈ D(∂̄∗p,q−1)∩D(∂̄p,q) .
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(iii) The domain D(�p,q), q > 0, is included into W 1 and there exists a
constant γ2 > 0 such that the Kohn type estimate holds

‖ω‖21 ≤ γ2
(
‖�ω‖20 + ‖ω‖20

)
, ω ∈ D(�p,q) .

Proof. Let us fix a Γ-invariant partition of unity {aν} subordinate to
a Γ-invariant covering of M by contractible neighbourhoods {Uν}. Let
∇1,ν , . . . ,∇n,ν be complex vector fields over Uν ∩M which constitute an
orthonormal basis of T1,0(M) at each point x ∈ Uν ∩M). Let the forms

ϕ1
ν , . . . , ϕ

n
ν ∈ Λ1,0(Uν ∩M)

constitute the dual orthonormal basis at each point x ∈ Uν ∩M . For any
ω ∈ Λp,q(M) we have

aνω =
∑
|I|=p
|J|=q

aνω
(ν)
I,Jϕ

I ∧ ϕJ and

‖∇νω‖20 =
∑
I,J

∥∥∂̄(aνω
(ν)
I,J)
∥∥2

0 +O
(
‖aνω‖20

)
.

For any form aνω ∈ Λp,q(M) with support in Uν we have the following local
Morrey type inequalities (see (3.1.20) in [Hö1] and also [M1,2], [Ko], [AV],
[FKo]) ∥∥∇(aνω)

∥∥2
0 + ‖aνω‖20 + ‖aνω‖2L2(bM)

≤ C0
(
‖∂̄∗(aνω)‖20 + ‖∂̄(aνω)‖20 + ‖aνω‖20

)
.

(1.5)

It follows from compactness of M/Γ and from Γ-invariance of the covering
{Uν} that the constant C0 > 0 in these inequalities can be chosen indepen-
dent of ν.

Summing up these inequalities we obtain the following global Morrey
type inequality
‖∇ω‖20+‖ω‖20+‖ω‖2L2(bM)≤C

(
‖∂̄∗ω‖20+‖∂̄ω‖20+‖ω‖20

)
, ω∈Λp,qc (M)∩D(∂̄∗) .

It follows from Lemma 1.1(ii) that this Morrey inequality is valid for
ω ∈ D(∂̄) ∩D(∂̄∗).

Using further Lemma 1.1(iv) and the Kohn type inequality
‖f‖21/2 ≤ C1

(
‖f‖2L2(bM) + ‖∂̄f‖2L2(M)

)
, f ∈ Λ0,0

c (M) ,
(see e.g. Theorem 2.4.4 in [FKo]) we obtain the statement (ii).

We suppose further that the Γ-invariant covering {Uν} is included in
the bigger Γ-invariant covering {Ũν}, Uν ⊂ Ũν .

Let {aν} and {ãν} be partitions of the unity subordinate respectively
to coverings {Uν} and {Ũν}, such that ãν ≡ 1 on supp aν .

To prove (iii) we use another inequality of Kohn [Ko]
‖aνω‖21 ≤ C2

(
‖ãν�ω‖20 + ‖ãνω‖20

)
, ω ∈ Λp,q(M) ∩D(�p,q) .
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For the same reasoning as above, the constant C2 in this inequality can be
chosen independent of ν.

Summing up these inequalities and using Lemma 1.1 (iii) we obtain the
statement (iii). �

Corollary 1.3. If M is strongly pseudoconvex then there exists a con-
stant γ2 > 0 such that ‖ω‖1 ≤ γ2‖ω‖0, ∀ω ∈ Ker�p,q, q > 0, where
Ker� = {ω | ω ∈ D(�),�ω = 0}.
Remark. Corollary 1.3 follows from Proposition 1.2(iii). Proposition
1.2(ii) gives us a weaker statement which is also sufficient for our ap-
plications: there exists a constant γ1 > 0 such that ‖ω‖1/2 ≤ γ1‖ω‖0,
∀ω ∈ Ker�p,q, q > 0.

The advantage of this weaker inequality is that the constant γ1 in it
depends only on the first two derivatives of the function ρ defining bM . So
the last inequality is valid if we assume that bM has only C2-smoothness
but keep all other assumptions.

Let us formulate the necessary version of the weak Hodge-Kodaira de-
composition (see e.g. [G], [FKo]).

Proposition 1.4. The following orthogonal decomposition holds:
L2Λ•(M) =Im ∂̄ ⊕Ker�⊕ Im ∂̄∗ and

Ker ∂̄ =Im ∂̄ ⊕Ker� .
In particular, we have an isomorphism of Hilbert Γ-modules

L2H̄p,q(M) = Ker�p,q.
Proof. First note that ∂̄2 = 0 implies Im ∂̄⊥ Im ∂̄∗. The orthogonal comple-
ment of Im ∂̄⊕Im ∂̄∗ is Ker ∂̄∩Ker ∂̄∗. From the definition of D(�) we have
Ker� ⊃ Ker ∂̄ ∩ Ker(∂̄∗). Vice versa ω ∈ Ker� implies 0 = (�ω, ω) =
‖∂̄ω‖2 + ‖∂̄∗ω‖2, so ω ∈ Ker ∂̄ ∩Ker ∂̄∗. This gives us the first decomposi-
tion. The decomposition for Ker ∂̄ follows now from the fact that Ker ∂̄ is
the orthogonal complement of Im ∂̄∗. Finally the decomposition for Ker ∂̄
implies the last equality.

2. For the proof of Theorem 0.1 we will need the following general state-
ment where we use notation from the beginning of section 1.

Proposition 1.5. Let L be a closed Γ-invariant subspace in L2(M,E),
L ⊂W ε for some ε > 0 and there exists C > 0 such that

‖u‖ε ≤ C‖u‖0, u ∈ L . (1.6)
Then dimΓ L <∞.
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To prove this proposition we need the following simple statement about
estimates of Sobolev norms on compact manifolds with boundary.

Proposition 1.6. Let X be a compact Riemannian manifold, possibly
with a boundary. Let E be a (complex) vector bundle with an hermitian
metric over X. Denote by (·, ·) the induced hermitian inner product in the
Hilbert space L2(X,E) of square-integrable sections of E over X. Denote
by W s = W s(X,E) the corresponding Sobolev space of sections of E over
X, ‖ · ‖s the norm in this space. Let us choose a complete orthonormal
system {ψj ; j = 1, 2, . . . } in L2(X,E). Then for all ε > 0 and δ > 0 there
exists an integer N > 0 such that

‖u‖0 ≤ δ‖u‖ε provided u ∈W ε and (u, ψj) = 0 , j = 1, . . . ,N .

Proof. Assuming the opposite we conclude that there exist ε > 0 and
δ > 0 such that for every N > 0 there exists uN ∈ W ε with (uN , ψj) = 0,
j = 1, . . . ,N , satisfying the estimate ‖uN‖ε ≤ δ−1‖uN‖0. Normalizing uN
we can assume that ‖uN‖0 = 1, so the previous estimate gives ‖uN‖ε ≤ δ−1

for all N . It follows from the Sobolev compactness theorem that the set
{uN | N = 1, 2, . . . } is compact in L2 = L2(X,E). On the other hand
obviously uN → 0 weakly in L2 as N → ∞. Therefore ‖uN‖0 → 0 as
N →∞ which contradicts to the chosen normalization. �

Proof of Proposition 1.5. Let us choose a Γ-invariant covering of M by
balls γBk, k = 1, . . . ,m, γ ∈ Γ, so that all the balls have smooth boundary
(e.g. have sufficiently small radii). Let us choose a complete orthonormal
system {ψ(k)

j , j = 1, 2, . . . } in L2(Bk, E) for every k = 1, . . . ,m. Then

{(γ−1)∗ψ(k)
j , j = 1, 2, . . . } will be an orthonormal system in γBk (here we

identify the element γ with the corresponding transformation of M).
Given the subspace L satisfying the conditions in the lemma let us define

a map
PN : L −→ L2Γ⊗CmN

u 7→
{

(u, (γ−1)∗ψ(k)
j ) , j = 1, 2, . . . ,N ; k = 1, . . . ,m ; γ ∈ Γ

}
.

Since dimΓ L
2Γ⊗CmN = mN <∞ the desired result will follow if we prove

that PN is injective for large N . Assume that u ∈ L and PNu = 0. Using
Lemma 1.6 we get then

‖u‖20,γBk ≤ δ
2
N‖u‖2ε,γBk , k = 1, . . . ,m ; γ ∈ Γ ,

where δN → 0 as N → ∞ and ‖ · ‖s,γBk means the norm in the Sobolev
space W s over the ball γBk. Summing over all k and γ we get

‖u‖20 ≤ C2
1δ

2
N‖u‖2ε ,
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where C1 > 0 does not depend on N . This clearly contradicts (1.6) unless
u = 0. �

Remark. It is not necessary to require that L is closed in L2 in Proposi-
tion 1.5. For any L satisfying (1.6) we can consider its closure L̄ in L2.
Then obviously L̄ ⊂W ε and Proposition 1.5 implies that dimΓ L̄ <∞.

Proof of Theorem 0.1. Propositions 1.2, 1.4 and 1.5 immediately imply
Theorem 0.1. �

3. To prove Theorem 0.5 we need a refined version of the Hörmander and
Andreotti-Vesentini weighted L2-estimates ([Hö1], [AV]).

Let M be a pseudoconvex manifold with a holomorphic action of the dis-
crete group Γ such that M/Γ is compact, and with a Γ-invariant hermitian
metric.

In what follows Φ will be a Γ-invariant function which is defined in a
complex neighbourhood of M , Φ ∈ C1(M) and Φ is strictly plurisubhar-
monic in a Γ-invariant neighbourhood of bM . In this case we will call Φ an
admissible weight function .

For an admissible weight function Φ we will define weighted Hilbert
spaces L2

ΦΛp,q(M) of (p, q)-forms with a finite norm given by

‖ω‖2Φ =
∫
M
|ω(x)|2e−Φdv(x) ,

where the norm |ω(x)| and the volume element dv(x) are induced by the
given hermitian metric. The cohomology and reduced cohomology of the
corresponding L2 Dolbeault complexes will be denoted L2

ΦH
p,q(M) and

L2
ΦH̄

p,q(M) respectively.
We will consider the operator ∂̄ = ∂̄p,q = ∂̄Φ = ∂̄p,q;Φ as the maximal

operator in L2
ΦΛp,q(M). Though it is given by the standard differential

expression ∂̄, its domain may depend on Φ if Φ is unbounded on M . Denote
the corresponding adjoint operator by ∂̄∗Φ = ∂̄∗p,q;Φ. We will also use the
corresponding Laplacian

�Φ = �p,q;Φ = ∂̄∗Φ∂̄ + ∂̄∂̄∗Φ .

Note that the operator ∂̄∗Φ differs from ∂̄∗ by 0-order terms which are
expressed in terms of Φ and its first derivatives. It follows that the domain
D(∂̄∗Φ) coincides with D(∂̄∗) provided Φ ∈ C1 in a neighbourhood of M .

Proposition 1.7. Let M be a pseudonconvex manifold with a holomor-
phic action of the discrete group Γ such that M/Γ is compact, and with a
Γ-invariant hermitian metric. Suppose that an admissible weight function
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Φ is given which is strictly plurisubharmonic in a Γ-invariant neighbour-
hood U of bM . Then for any Γ-invariant neighbourhood U0 of bM with
Ū0 ⊂ U there exist positive constants γ0, δ0 and δ1 such that the following
inequalities hold

1/3 ‖∇ω‖2tΦ + 2/3 (δ0t− γ0) ‖ω‖2tΦ
≤ ‖∂̄ω‖2tΦ + ‖∂̄∗tΦω‖2tΦ + δ1t‖ω‖2L2

tΦ(M\U0)
(1.7)

for any t > 0, ω ∈ D(∂̄∗p,q−1;tΦ) ∩ D(∂̄p,q;tΦ), q > 0. Here the constant γ0
depends only on M, δ0 depends only on M and the minimal eigenvalue of
i∂∂̄Φ on U0, δ1 depends only on M and the maximal eigenvalue of i∂∂̄Φ on
M\U0.

Corollary 1.8. Under the assumptions of Proposition 1.7 for any ω ∈
Ker�p,q;tΦ, q > 0, the following inequality holds

1/3 ‖∇ω‖2tΦ + 2/3 (δ0t− γ0) ‖ω‖2tΦ ≤ δ1t‖ω‖2L2
tΦ(M\U0) .

Corollary 1.9. If under the assumptions of Proposition 1.7 the function
Φ is strictly plurisubharmonic on M , i.e. on a neighbourhood U of M , then
for any ω ∈ D(∂̄∗p,q−1;tΦ) ∩D(∂̄p,q;tΦ), q > 0, the following inequality holds

2/3 (δ0t− γ0)‖ω‖2tΦ ≤
(
‖∂̄∗tΦω‖2tΦ + ‖∂̄ω‖2tΦ

)
.

In particular this implies vanishing of (non-reduced) L2 Dolbeault coho-
mology spaces of M :

L2
tΦH

p,q(M) = 0 , q > 0 , t > γ0/δ0 .

Proof. We can take U0 such that U0 ⊃M and use (1.7), so the estimate fol-
lows. The vanishing of the cohomology spaces follows from the estimate. �

To prove Proposition 1.7 we shall use the following refined version of
Lemma 1.1.

Lemma 1.10. Under the assumptions of Proposition 1.7
(i) M can be exhausted by strongly pseudoconvex Γ-invariant manifolds

Mj , j = 1, 2, . . . .
(ii) Let D0

Φ(∂̄∗Φ) ∩ D0
Φ(∂̄) be the space of all ω ∈ L2

ΦΛ•(M) such that ω
can be obtained as a weak limit in L2

ΦΛ•(M) of forms ωj such that
ωj
∣∣
M\Mj

= 0, ωj
∣∣
Mj
∈ D0(∂̄∗|Mj), and

‖ωj‖L2
Φ(Mj) + ‖�Φωj‖L2

Φ(Mj) ≤ c .
with a constant c independent of j. Then the space D0

Φ(∂̄∗Φ)∩D0
Φ(∂̄)

is contained in D(∂̄∗Φ)∩D(∂̄Φ) and is dense in this space in the graph
norm (‖ω‖2Φ + ‖∂̄ω‖2Φ + ‖∂̄∗Φω‖2Φ)1/2.
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Proof. If Φ ∈ C2(M), then the statement (ii) of this lemma follows from
Lemma 1.1(ii), because in this case the norms ‖ω‖Φ and ‖ω‖0 are equivalent.

To prove the statement (i) let us denote M/Γ = X. It follows from
assumptions of Proposition 1.7 that X is a pseudoconvex manifold with a
compact boundary bX = {x ∈ X : ρ(x) = 0} and there exists a continuous
function Φ̃ which is a well defined function on X, strictly plurisubharmonic
in a neighbourhood of bX. If we suppose that Φ̃ > 0 and consider the
function ρj(x) = ejρ(x)− 1 + Φ̃(x), then for sufficiently large j the domains
Xj = {x ∈ X : ρj(x) < 0} are strongly pseudoconvex subdomains in X and
Xj exhaust X, when j → ∞. Moreover, for j large enough there exists a
strongly pseudoconvex covering Mj of Xj such that Mj/Γ = Xj .

Now to prove the statement (ii) in full generality, we should modify
the proof of Lemma 1.1. Namely, we can use the classical Friedrichs result
[Fr] only to obtain the density of D0(∂̄∗|Mj) in D(∂̄∗|Mj). After that by
elementary agruments like the ones in [HeI] we can obtain the density of
D0

Φ(∂̄∗) ∩D0
Φ(∂̄) in D(∂̄∗Φ) ∩D(∂̄Φ) in the graph norm. To do this we first

check directly from the definitions that

D0
Φ(∂̄∗Φ) ∩D0

Φ(∂̄) ⊂ D(∂̄∗Φ) ∩D(∂̄Φ) .

To show the density in the graph norm in this inclusion let us consider
ψ ∈ D(∂̄∗Φ) ∩ D(∂̄Φ) such that ψ is orthogonal to D0

Φ(∂̄∗Φ) ∩ D0
Φ(∂̄) in the

graph inner product, i.e.

(ψ,ω)Φ + (∂̄ψ, ∂̄ω)Φ + (∂̄∗Φψ, ∂̄
∗
Φω)Φ = 0

for any ω ∈ D0
Φ(∂̄∗Φ) ∩D0

Φ(∂̄).
We want to show that ψ = 0. To do this let us find gj ∈ L2

Φ(Mj),
j = 1, 2, . . . , such that

ψ|Mj = ∂̄∂̄∗Φgj + ∂̄∗Φ∂̄gj + gj .

Clearly
supj

(
‖gj‖2L2

Φ(Mj)
+ ‖�Φgj‖2L2

Φ(Mj)

)
<∞ .

Replacing {gj} by a subsequence we can assume that gj → g in L2
Φ(M)

where g ∈ D0
Φ(∂̄∗Φ) ∩D0

Φ(∂̄). Therefore

(ψ,ψ)Φ = lim
j→∞

[
(ψ, gj)L2

Φ(Mj) + (ψ, ∂̄∂̄∗Φgj)L2
Φ(Mj) + (ψ, ∂̄∗Φ∂̄gj)L2

Φ(Mj)
]

= (ψ, g)Φ + (∂̄∗Φψ, ∂̄
∗
Φg)Φ + (∂̄ψ, ∂̄g)Φ = 0 .

Hence ψ = 0 as required. �

Proof of Proposition 1.7. Let Mj be as in Lemma 1.10. We fix on M a Γ-
invariant partition of unity {aν} subordinate to a Γ-invariant covering of M
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by coordinate neighbourhoods {Uν}. So, for any ω ∈ Λp,q(M j)∩D(∂̄∗p,q|Mj)
and any ν we have inclusions aνω∈Λp,q(M j)∩D(∂̄∗p,q|Mj) and supp aνω⊂Uν .

Using in Uν ∩Mj the inequality (3.1.20) from [Hö1] we obtain the fol-
lowing estimate

1/2
∥∥e−tΦ∇(aνω)

∥∥2
L2(Mj)

+
∑
I,K

′∑
j,l

t

∫
Uν∩Mj

∂2Φ
∂ zj∂ z̄l

e−2tΦ(aνωI,jK) · (aνωI,lK)dV

+ 1/2
∑
I,K

′∑
j,l

∫
Uν∩bMj

∂2ρ

∂ zj∂ z̄l
(aνωI,jK) · (aνωI,lK)e−2tΦdV

≤ 3/2
(
‖e−tΦ∂̄∗tΦ(aνω)‖2L2(Mj) + ‖e−tΦ∂̄(aνω)‖2L2(Mj)

)
+ γ0‖e−tΦaνω‖2L2(Mj) ,

(1.8)

where ρj is a defining function for bMj in Uν ∩M j ; the constant γ0 does
not depend on Φ and j.

In the case ρj = Φ such inequality was obtained also in [AV]. The term
with ρ in (1.8) is non-negative due to the pseudoconvexity of bMj and the
boundary condition for ω. Now using strict plurisubharmonicity of Φ in
the neighbourhood U of bM , we obtain for any neighbourhood U0 of bM
with Ū0 ⊂ U and any ω ∈ Λp,q(M j) ∩D(∂̄p,q|Mj)

1/2
∥∥e−tΦ∇(aνω)

∥∥2
L2(Mj)

+ δ0t‖e−tΦaνω‖L2(U0∩Mj)

≤ 3/2
(
‖e−tΦ∂̄(aνω)‖2L2(Mj) + ‖e−tΦ∂̄∗tΦ(aνω)‖2L2(Mj)

)
+ γ0‖e−tΦaνω‖2L2(Mj) + t · δ1 ‖e−tΦaνω‖2L2(Mj\U0) ,

where δ0 depends only on M and the minimal eigenvalue of i∂∂̄Φ on U0
and δ1 depends only on M and the maximal eigenvalue of i∂∂̄Φ on M\U0.

It follows from compactness ofM j/Γ and from Γ-invariance of the neigh-
bourhood U and of the covering {Uν}, that the constant γ0 in the last in-
equalities can be chosen independent of ν. We shall use also the obvious
estimates∥∥e−tΦL(aνω)− e−tΦaνLω

∥∥
L2(Mj)

≤ C sup | grad aν | ‖e−tΦω‖L2(Mj)

where L = ∂̄, ∂̄∗tΦ or ∇ on Uν ∩M j .
Using these estimates and summing the above inequalities we obtain
1/2‖e−tΦ∇ω‖2L2(Mj) + δ̃0t‖e−tΦω‖2L2(U0∩Mj)

≤ 3/2
(
‖e−tΦ∂̄ω‖2L2(Mj) + ‖e−tΦ∂̄∗tΦω‖2L2(Mj)

)
+ γ̃0‖e−tΦω‖L2(Mj)

+ δ̃1 · t‖e−tΦω‖L2(Mj\U0)
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with constants γ̃0, δ̃0 and γ̃1 depending only on the corresponding constants
γ0, δ0, δ1 and the partition of unity {aν}.

Inequality (1.7) follows if we take j →∞ and use Lemma 1.10 (ii). �

We shall also use the following statement similar to Proposition 1.5.

Proposition 1.11. Let Φ be as in Proposition 1.7 and L be a Γ-invariant
subspace in L2Λp,qΦ (M), q > 0 such that for a Γ-invariant neighbourhood
U0 ⊂ U of bM and for some constant γ > 0 the following estimate holds

‖∇ω‖2L2
Φ(M) + ‖ω‖2L2

Φ(M) ≤ γ‖ω‖
2
L2(M\U0) , ω ∈ L . (1.9)

Then dimΓ L <∞.

The proof of Proposition 1.11 is a copy of the proof of Proposition 1.5,
where instead of Proposition 1.6 the following Proposition 1.12 must be
used.

Proposition 1.12. Let M and Φ be as in Proposition 1.7. Let B0 be a
geodesic ball in M with sufficiently small radius. Let {ψj} be a complete
orthonormal system in L2

ΦΛp,q(B0). Let L0 be a subspace in L2
ΦΛp,q(B)

such that for some neighbourhood U0 ⊂ U of bB0 and for some γ0 > 0 we
have

‖∇ω‖L2
Φ(B0) + ‖ω‖L2

Φ(B0) ≤ γ0‖ω‖L2
Φ(B0\U0) .

Then for all δ > 0 there exists N > 0 such that

‖ω‖L2
Φ(B0\U0) ≤ δ

(
‖∇ω‖L2

Φ(B0) + ‖ω‖L2
Φ(B0)

)
provided ω ∈ L0 and (ω,ψj) = 0, j = 1, 2, . . . ,N .

Proof of Theorem 0.5. It follows from the assumptions of Theorem 0.5
that in a neighbourhood of M there exists a Γ-invariant function Φ̃ ∈ C2

which is strictly plurisubharmonic in a Γ-invariant neighbourhood U0 ⊂ U
of bM . We note further that for such Φ̃ all the norms ‖ω‖tΦ, t ≥ 0 are
equivalent. Hence, Proposition 1.4, Corollary 1.8 and Proposition 1.11
imply Theorem 0.5. �

2 L2 Holomorphic Functions

1. We shall use some simple linear algebra and Γ-Fredholm operators in
Hilbert Γ-modules. Necessary background and similar arguments can be
found in [Br] and [S2].

Lemma 2.1. Let L be a Hilbert Γ-module, L1, L2 its Hilbert Γ-submodules
such that dimΓ L1 > codimΓL2 where codimΓL2 means the Γ-dimension
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of the orthogonal complement of L2 in L. Then L1 ∩ L2 6= {0}. Moreover
dimΓ L1 ∩ L2 ≥ dimΓ L1 − codimΓL2 . (2.1)

Proof. Denote by L1 	 L2 the orthogonal complement of L1 ∩ L2 in L1.
Clearly dimΓ L1 	 L2 ≤ codimΓL2. Therefore if (2.1) is not true, then we
get
dimΓ L1= dimΓ L1∩L2+ dimΓ L1	L2≤dimΓ L1∩L2+codimΓL2<dimΓ L1

which is a contradiction. �
We will use unbounded Γ-Fredholm operators. The corresponding defi-

nition slightly extends the corresponding definition for bounded operators
given by M. Breuer [Br] (see also [S2]).
Definition 2.2. Let L1, L2 be Hilbert Γ-modules, A : L1 → L2 a closed
densely defined linear operator (with the domain D(A)) which commutes
with the action of Γ in L1 and L2. The operator A is called Γ-Fredholm if
the following conditions are satisfied:

(i) dimΓ KerA <∞;
(ii) there exists a closed Γ-invariant subspace Q ⊂ L2 such that Q ⊂ ImA

and codimΓQ(= dimΓ(L2 	Q)) <∞.
Let us also recall the following definition from [S2]:

Definition 2.3. Let L be a Hilbert Γ-module, Q ⊂ L is a Γ-invariant
subspace (not necessarily closed). Then

(i) Q is called Γ-dense in L if for every ε > 0 there exists a Γ-invariant
subspace Qε ⊂ Q such that Qε is closed in L and codimΓQε < ε in L.

(ii) Q is called almost closed if Q is Γ-dense in its closure Q̄.
If Q is Γ-dense in L then it is also dense in L in the usual sense, i.e.

Q̄ = L (see Lemma 1.8 in [S2]). Note also that if Γ is trivial (or finite)
then Q is Γ-dense in L if and only if Q = L (in particular in this case Q is
almost closed if and only if it is closed).

Lemma 2.4. If A : L1 → L2 is a Γ-Fredholm operator then ImA is almost
closed.

Proof. This statement can be reduced to the case when A is bounded by
replacing L1 by D(A) with the graph norm. Then the statement is due to
M. Breuer [Br] (see also Lemma 1.15 in [S2]). �

Lemma 2.5 ([S2]). Let L be a Hilbert Γ-module, L1 ⊂ L and Q ⊂ L its
Γ-invariant subspaces in L such that L1 is closed and Q is Γ-dense in L.
Then Q ∩ L1 is Γ-dense in L1. More generally, if Q is almost closed then
Q ∩ L1 is almost closed and its closure equals Q̄ ∩ L1.
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Corollary 2.6. Let A : L1 → L2 be a Γ-Fredholm operator, L3 ⊂ L2
is a closed Γ-invariant subspace such that L3 ⊂ ImA. Then L3 ∩ ImA is
Γ-dense in L3.

Now let us return to the analytic situation described above. For proving
Theorems 0.2–0.4 we will have need of the following

Proposition 2.7. Let A be a self-adjoint linear operator in L2(M,E) such
that A commutes with the action of Γ, D(A) ⊂W ε where ε > 0 and

‖u‖2ε ≤ C
(
‖Au‖2 + ‖u‖20

)
, u ∈ D(A) . (2.2)

Then A is Γ-Fredholm.

Proof. It follows from (2.2) that the estimate (1.6) is satisfied on L = KerA.
Therefore Proposition 1.5 implies that dimΓ KerA <∞.

Let Ẽδ be the spectral projection of A corresponding to the interval
(−δ, δ). Then again dimΓ Im Ẽδ < ∞ by Proposition 1.5. On the other
hand

Im(I − Ẽδ) = (Im Ẽδ)⊥ ⊂ ImA ,
which immediately implies that A is Γ-Fredholm. �

For the proof of Theorem 0.6 we will need the following

Proposition 2.8. Under the assumptions of Proposition 1.7 the operator
�tΦ = ∂̄∂̄∗tΦ + ∂̄∗tΦ∂̄ in L2

tΦΛp,q(M), q > 0, is Γ-Fredholm for t > γ0/δ0.

Proof. It follows from (1.7) that the estimate (1.9) is satisfied on L =
Ker�tΦ in L2Λp,qtΦ (M), q > 0, for t > γ0/δ0 with constant γ =
δ1t/min(1/3, 2/3(δ0t − γ0)). Therefore, Proposition 1.9 implies that
dimΓ Ker�tΦ < ∞. Let Ẽδ be the spectral projection of � corresponding
to the interval (−δ, δ). If δ < 2/3(δ0t−γ0) then from (1.7) we obtain the es-
timate (1.9) for all ω ∈ Im Ẽδ with the constant γ̃ = δ1t/min(1/3, 2/3(δ0t−
γ0) − δ). Hence, by Proposition 1.9 we have dimΓ Im Ẽδ < ∞. The inclu-
sion Im(I − Ẽδ) = (Im Ẽδ)⊥ ⊂ Im�tΦ implies that �tΦ is Γ-Fredholm in
L2
tΦΛp,q(M), q > 0, for all t > γ0/δ0. �

2. Now using Propositions 1.2, 2.7 and 2.8 we will be able to provide
the complete proofs of Theorems 0.2–0.4, 0.6, 0.7. We shall start with the
following elementary

Lemma 2.9. Let U be an arbitrary set, g : U → C an unbounded function.
Then for any integer N > 0 the functions g, g2, . . . , gN are linearly inde-
pendent modulo bounded functions, i.e. if B(U) is the space of all bounded
functions on U and

c1g + c2g
2 + · · ·+ cNg

N ∈ B(U) , (2.3)
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then c1 = . . . cN = 0.

Proof. Assuming that (2.3) is fulfilled consider the polynomial

p(t) = c1t+ c2t
2 + . . . cN t

N , t ∈ C.

Then (2.3) implies that this polynomial is bounded along an unbounded se-
quence of complex values of t. Clearly this is only possible if the polynomial
p is identically 0. �

Proof of Theorem 0.2. We shall use the notation from the introduction to
this paper.

Let us choose a defining function ρ of the manifold M (see (0.1)) so
that the Levi form (0.3) is positive for all w ∈ Cn − {0} (and not only
for w ∈ T cz (bM) − {0}) at all points z ∈ bM . Using (0.4) we see that
Re f(x, z) < 0 if x ∈ bM and z ∈ M is sufficiently close to x. It follows
that we can choose a branch of log f(x, z) so that gx(z) = log f(x, z) is
a holomorphic function in z ∈ M ∩ Ux where Ux is a sufficiently small
neighbourhood of x in M . Note that we can (and will) choose Uγx = γUx.

Let us fix x ∈ bM . Clearly gmx ∈ L2(M ∩ Ux) for all m = 1, 2, . . . , and
all functions gmx have a peak point at x. Besides all these functions are
linearly independent modulo bounded functions by Lemma 2.9.

Let us choose a cut-off function χ ∈ C∞c (Ux), so that χ = 1 in a
neighbourhood of x. We shall identify χ with its extension by 0 to M , so
it becomes a function from C∞c (M). The translation of χ by γ ∈ Γ is a
function γ∗χ which is supported in a small neighbourhood of γx: γ∗χ(z) =
χ(γ−1z).

Denote by L the closed Γ-invariant subspace in L2(M) generated by all
functions χgmx ; m = 1, . . . ,N . Clearly

L =
{
f
∣∣∣ f =

∑
γ∈Γ

N∑
m=1

cm,γγ
∗(χgmx ) ;

∑
m,γ

|cm,γ |2 <∞
}
, (2.4)

where cm,γ are complex constants. It follows that L has the form L2Γ⊗CN ,
hence dimΓ L = N .

Let us consider the set of (0,1)-forms (which are smooth on M and have
compact support):

∂̄(χgmx ) ; m = 1, 2, . . . ,N . (2.5)

They are linearly independent for any integer N > 0. Indeed, assuming
that

c1∂̄(χgx) + c2∂̄(χg2
x) + cN ∂̄(χgNx ) = 0
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with some complex constants c1, . . . , cN , we see that
c1χgx + c2χg

2
x + · · ·+ cNχg

N
x

is holomorphic on M and has a compact support, hence it is identically 0,
which implies that c1 = · · · = cN = 0 due to Lemma 2.9.

Let L1 be a closed Γ-invariant subspace in L2Λ0,1(M) generated by the
set of forms (2.5). Then again

L1 =
{
ω
∣∣∣ ω =

∑
γ∈Γ

N∑
m=1

cm,γ ∂̄
(
γ∗(χgmx )

)
,
∑
m,γ

|cm,γ |2 <∞
}
,

where cm,γ are complex constants, and dimΓ L1 = N . Clearly L1 ⊂
C∞Λ0,1(M), i.e. all elements of L1 are C∞ forms of type (0,1) on M .
Also L1 ⊂ Im ∂̄, hence L1 ⊂ Im� due to the orthogonal decomposi-
tion (1.3).

Now we can apply Proposition 1.2, Proposition 2.7 and Corollary 2.6
to conclude that Im� ∩ L1 is Γ-dense in L1. Hence for any δ > 0 there
exists a closed Γ-invariant subspace Q1 ⊂ L1 such that Q1 ⊂ Im� and
dimΓQ1 > N−δ. Solving the equation �ω = α with α ∈ Q1 we can assume
that ω ⊥ Ker� and in this case the solution ω will be unique. Denote the
space of all such solutions by K. Then dimΓK = dimΓQ1 > N − δ.

Applying ∂̄ to both sides of the equation �ω = α we see that ∂̄∂̄∗∂̄ω = 0,
hence ∂̄∗∂̄ω = 0 and ∂̄ω = 0. Therefore ∂̄∂̄∗ω = α. Also ω ∈ Λ0,1(M) (i.e.
ω ∈ C∞ on M) for any such solution ω due to the local regularity theorem
for the ∂̄ Neumann problem (see [FKo]).

Now denote
Q =

{
f
∣∣ |f ∈ L , ∂̄f = α ∈ Q1

}
.

As we have seen earlier ∂̄ is injective on L, hence dimΓQ = dimΓQ1 >
N−δ. If f ∈ Q then we can find a (unique) solution ω ∈ K of the equation
�ω = α = ∂̄f and then h = f − ∂̄∗ω ∈ L2O(M). All these functions h
form a closed Γ-invariant subspace H ⊂ L2O(M) with dimΓH > N − δ.
Hence dimΓ L

2O(M) =∞. Besides using the Γ-invariance of H we see that
we can always find a function h ∈ H such that one of the coefficients cm,e;
m = 1, . . . ,N , in the expansion (2.4) (for the corresponding function f)
does not vanish. The point x will be a local peak point for this function.
This completes the proof of Theorem 0.2. �

Proof of Theorem 0.3. We should modify the proof of Theorem 0.2 by
another choice of locally given holomorphic functions with singularities at
a point x ∈ bM . Namely, if f is a holomorphic polynomial from (0.4), then
we should use {f−k, f−2k, . . . , f−kN} with sufficiently large integer k > 0
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instead of {log f, . . . , (log f)N} as we did in the proof of Theorem 0.2. It
is easy to check that all functions χf−k are in appropriate Sobolev spaces.
Then we should apply Lemma 2.1 to evaluate the Γ-dimension of the inter-
section L1∩L2 where L1 is the Γ-invariant subspace generated by all forms
∂̄(χf−km), m = 1, . . . ,N , and L2 = Im ∂̄ in L2Λ0,1(M).

All other arguments are similar to the ones used in the proof of Theo-
rem 0.2. �

Remark. An interesting feature of Theorem 0.3 is that its proof does not
use the regularity results for the ∂̄-Neumann problem and so this theorem
can be extended to a number of less regular situations.

Proof of Theorem 0.4. We should apply the arguments given in the proof
of Theorem 0.3 to a strongly pseudoconvex Γ-invariant neighbourhood M̂
of M , find a sufficiently large space H of holomorphic functions on M̂ with
singularities on the boundary of M̂ and then take the space L of restrictions
of all functions from H to M . Since the restriction operator is injective the
closure of L will have the same Γ-dimension as H. �

Proof of Theorem 0.6. The statement (ii) can be proved exactly as the
statement of Theorem 0.2. So, if there exists on bM a point of strong
pseudoconvexity then the statement (i) is also valid. Let us prove (i) with-
out this assumption.

We can suppose, further, that in a neighbourhood of M we have a
Γ-invariant function Φ ∈ C2 which is strictly plurisubharmonic in a Γ-
invariant neighbourhood U of bM .

Let us fix a sufficiently small ball B in U so that B ∩ bM 6= ∅ and
γ B ∩ B = ∅ for any γ ∈ Γ, γ 6= 1. Let x1, . . . , xN be different points in
B∩bM and a1(x), . . . , aN (x) be non-negative cut-off functions from C∞c (B)
such that am = 1 in a neighbourhood of xm, and am = 0 in a neighbourhood
of xk, k 6= m, m = 1, 2, . . . ,N .

Let us consider the following function

Φ̃(x) = AΦ(x) +
∑
γ,m

γ∗
(
am(x) · ln dist(x, xm)

)
. (2.6)

For any sufficiently large A the function Φ̃ is Γ-invariant and strictly pluri-
subharmonic in a neighbourhood U0 ⊂ U of bM . With this choice of Φ̃ we
will have γ∗am /∈ L2

tΦ̃
(M) for any γ ∈ Γ m = 1, 2, . . . ,N and t ≥ n, where

n = dimCM .
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Denote by L the following closed Γ-invariant subspace in L2(M)

L =
{
f
∣∣∣ f(x) =

∑
γ,m

cm,γγ
∗am(x) ;

∑
m,γ

|cm,γ |2 <∞
}
.

The subspace L has the form L2Γ⊗CN and hence dimΓ L = N .
Let L1 be the following closed Γ-invariant subspace in L2

tΦ̃
Λ0,1(M) ∩

L2Λ0,1(M)

L1 =
{
ω
∣∣∣ ω ∈∑

γ,m

cm,γ ∂̄γ
∗am(x) ,

∑
m,γ

|cm,γ |2 <∞
}
.

We have again dimΓ L1 = N . Applying Proposition 1.7, Proposition 2.8
and Corollary 2.6 we conclude that Im�tΦ̃ ∩ L1 is Γ-dense in L1. Hence,
for any δ > 0 there exists a closed Γ-invariant subspace Q1 ⊂ L1 such that
Q1 ⊂ Im�tΦ̃ and dimΓQ1 > N − δ.

Denote Q = {f | f ∈ L, ∂̄ f = α ∈ Q1}. Since ∂̄ is injective on
L we have dimΓ Q = dimΓ Q1 > N − δ. If f ∈ Q then we can find a
solution ω, ω ∈ L2

tΦ̃
Λ0,1(M), of the equation α = �tΦ̃ ω, hence a solution

β = ∂̄∗
tΦ̃
ω ∈ L2

tΦ̃
(M) for the equation ∂̄ f = α = ∂̄β. Hence the functions

h = f − ∂̄∗
tΦ̃
ω form a closed Γ-invariant subspace H ⊂ L2O(M). It follows

from the construction of Φ̃ in the form (2.6) that H ∩ L2
tΦ̃
O(M) = {0}, if

t ≥ n. Hence dimΓH = dimΓQ > N − δ and dimΓ L
2O(M) =∞. �

Proof of Theorem 0.7. The proof of this theorem does not use Γ-dimensions
and is based only on the Hörmander type estimate from Corollary 1.9. The
idea of the construction below goes back to Bombieri [B].

Under the assumptions of Corollary 1.9 it follows that for any t > γ0/δ0
the equation ∂̄β = α, ∂̄α = 0 has a solution with the estimate

‖β‖tΦ ≤
1√

2/3(δ0t− γ0)
‖α‖tΦ . (2.7)

Since the constant in (2.7) depends only on M and the minimal eigenvalue
of i∂∂̄Φ on M , this result is valid for a singular strictly plurisubharmonic
function Φ̃ of the form (2.6) (see [B]).

Let us fix points x1, . . . , xN on M and complex numbers c1, . . . , cN and
find h ∈ L2O(M) such that h(xm) = cm, m = 1, . . . ,N . To this end let us
take cut-off functions a1(x), . . . , aN (x) from C∞c (M) such that am = 1 in
a neighbourhood of xm, supp am ∩ supp ak = ∅ for m 6= k and all suppam
are sufficiently small.

We can assume that Φ is continuous on M . Let us introduce a sin-
gular strictly plurisubharmonic function Φ̃ of the form (2.6). Let α =
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m=1 cm∂̄ am(x), where {cm} are any complex numbers. We have α ∈

L2
tΦ̃

Λ0,1(M) and α = ∂̄ f , where f =
∑
cmam(x) ∈ L2(M).

Applying (2.7) we can find β ∈ L2
tΦ̃

Λ0,1(M) such that ∂̄β = α. The
function β is holomorphic in a neighbourhood of any {xm} because α = 0
in such a neighbourhood.

It follows from the inclusion β ∈ L2
tΦ̃

Λ0,1(M) that β(xm) = 0, m =
1, . . . ,N , if t ≥ n. Then h = f − β ∈ L2O(M) and h(xm) = cm, m =
1, . . . ,N . �

3 An Example

1. In this section we will give an example which shows that the action of
a discrete group Γ in the previous results is important: just bounded geom-
etry with uniformity of all conditions is not sufficient even for the existence
of a single non-trivial holomorphic L2 function. In fact our manifold M will
have a free holomorphic action of a solvable Lie group G such that the quo-
tient M/G is the closed interval [−1, 1]. Also M will be a Stein manifold.
Its non-compact boundary will be strongly pseudoconvex. Therefore the
uniformity of all the local conditions will be guaranteed. The only thing
which is missing is the free action of a discrete (or in fact any unimodular)
group with a compact quotient. In particular the group G itself does not
have any discrete cocompact subgroups.

Let B be the unit ball in C2:

B =
{

(w1, w2) ∈ C2 ∣∣ |w1|2 + |w2|2 < 1
}
.

We will consider it as a homogeneous complex manifold with the Bergman
metric. The holomorphic automorphisms of B preserve the metric. Our
manifold M will be a subdomain in B.

It is more convenient to work with a different representation of the
classical domain B: we prefer to present it as a Siegel domain of the second
kind:

Ω =
{

(z1, z2) ∈ C2 ∣∣ Im z2 > |z1|2
}
.

The isomorphism of B and Ω is given by the formulas:

w1 = 2z1(z2 + i)−1 , w2 = (z2 − i)(z2 + i)−1 . (3.1)

The manifold M will be a δ-neighbourhood of the hyperplane section Im z1
= 0 in the Bergman metric on Ω, for some δ > 0.

We shall always use the notation z1 = x1 + iy1, z2 = x2 + iy2. Then

Ω =
{

(x1 + iy1, x2 + iy2)
∣∣ y2 > x2

1 + x2
2
}
.
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The linear automorphisms of Ω are given by the formulas

(z1, z2) 7→
(
ρz1 + ξ, |ρ|2z2 + t+ 2iρz1ξ̄ + i|ξ|2

)
, (3.2)

where ρ, ξ ∈ C, t ∈ R.
Now let us consider a subdomain M in Ω given by

M = Mε =
{

(z1, z2)
∣∣∣ y2 > x2

1 +
y2

1
ε2

}
,

where 0 < ε < 1. As a limit case we will also use

M0 = Ω ∩ {y1 = 0} =
{

(z1, z2)
∣∣ y2 > x2

1 + y2
1 , y1 = 0

}
.

Let us consider a subgroup G of the group of automorphisms of Ω which
is given by the restrictions ρ = λ > 0 and ξ ∈ R in (3.2). Clearly this will
be a Lie group with dimRG = 3. It is easy to see that G consists of all
transformations of the form Tξ,tHλ (or, equivalently, of the form HλTξ,t),
where λ > 0, ξ, t ∈ R, Hλ is a “similarity”, Tξ,t is a “translation” given by
the formulas

Hλ(z1, z2) = (λz1, λ
2z2) , Tξ,t(z1, z2) = (z1 + ξ, z2 + t+ 2iz1ξ + iξ2) .

The presentation of g in each of the forms Tξ,tHλ,HλTξ,t is unique. The
transformations {Tξ,t | ξ, t ∈ R} form an abelian subgroup of the Heisen-
berg group acting on the boundary of Ω.

If follows from (3.2) that the group G can be represented as the group
of matrices

g =

λ2 2iλξ t+ iξ2

0 λ ξ
0 0 1


where ξ, t ∈ R, λ > 0.

Lemma 3.1. The action of G on Ω has the following properties:

(i) This action preserves M and M .
(ii) It is free on M .
(iii) The space of orbits on M is the closed interval [−1, 1].

Proof. The proofs of (i) and (ii) are straightforward. To prove (iii) we can
do the following. For any point (z1, z2) ∈M (here and below the closure is
always understood in the Bergman metric), adjusting parameters ξ, t, λ we
can find a (unique) transformation from G which maps (z1, z2) to a point
with x1 = x2 = 0 and y2 = 1, i.e. a point of the form (iτ, i). A simple
calculation shows that in fact τ = y1/

√
y2 − x2

1. It is easy to see that the
formula for τ defines τ as a continuous function on M . The range of this
function is in fact [−ε, ε], where the endpoints −ε and ε correspond to the
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two connected components of bM (bM ∩ {y1 < 0} and bM ∩ {y1 > 0}) so
that G acts transitively on each of these components. Therefore the map
ε−1τ : M → [−1, 1] identifies the space of orbits with [−1, 1]. �

A straightforward calculation shows that M is strongly pseudoconvex.
(This follows basically from the fact that the function (x1, y1) 7→ (x2

1 +
ε−2y2

1) is convex.)
Also uniformity of all the metric conditions is obvious because of the

free cocompact action of G as a group of isometries of M .

2. Here we will prove

Proposition 3.2. There is no nontrivial holomorphic L2-functions on M ,
i.e. L2O(M) = {0}.

Here L2 is understood with respect to the measure dv which corresponds
to the restriction of the Bergman metric to M .

We will start with the following

Lemma 3.3. If f ∈ L2O(M) then f |M0 ∈ L2(M0, dv0), where dv0 is the
volume element on M0 corresponding to the restriction of the Bergman
metric to M0.

Proof. Let us use the standard elliptic estimate

|f(x)|2 ≤ Cδ
∫
B(x,δ)

|f(z)|2dv(z) , x ∈M0 ,

where B(x, δ) is the ball with the center x and the radius δ with respect
to the Bergman metric, and δ is chosen so that these balls belong to M .
Integrating this estimate over M0 we arrive to the desired result.

In more detail we can first choose a small δ > 0 and integrate over a
small ball in M0 which gives the estimate∫

B(x,δ)∩M0

|f(x)|2dv0(x) ≤ Cδ
∫
B(x,2δ)

|f(z)|2dv(z) .

Then using the bounded geometry property of M we can find a covering
of M0 by the balls B(xj , δ), j = 1, 2, . . . , such that the balls B(xj , 2δ)
have bounded multiplicity of intersections. Summing over all j we get the
estimate ∫

M0

|f(x)|2dv0(x) ≤ C
∫
M
|f(z)|2dv(z) . �

Proof of Proposition 3.2. Let us recall that the Bergman metric on the
unit ball B ⊂ C2 has the form

ds2 = 3
[ 2∑
j=1

dwjdw̄j
(1− |w1|2 − |w2|2)

+
2∑

j,k=1

w̄kwjdwkdw̄j
(1− |w1|2 − |w2|2)2

]
.
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The change of variables (3.1) transforms it to the Bergman metric on Ω
which is given by the formula
ds2 = 3

(
Im z2−|z1|2

)−2( Im z2 dz1dz̄1 + 1
4dz2dz̄2 + i

2z1dz2dz̄1− i
2 z̄1dz1dz̄2

)
.

(3.3)
The corresponding volume element has the form

dv = 9
4(y2 − x2

1 − y2
1)−3dx1dy1dx2dy2 .

Taking y1 = 0 in (3.3) we get the induced metric on M0:
ds2

0 = 3(y2 − x2
1)−2(y2dx

2
1 + 1

4dx
2
2 + 1

4dy
2
2 − x1dx1dy2

)
.

The corresponding volume element is

dv0 =
3
√

3
4

(y2 − x2
1)−5/2dx1dx2dy2 .

Consider the foliation of M0 by half-planes

Ha = M0 ∩ {z1 = a} =
{

(a, z2)
∣∣ Im z2 > |a|2

}
,

where a ∈ R. The restriction of the metric (3.3) to Ha is the Poincaré
metric

3
4(y2 − a2)−2(dx2

2 + dy2
2) ,

with the volume element
dv0,a = 3

4(y2 − x2
1)−2dx2dy2 .

Let f ∈ L2O(M). Denote f0 = f |M0 = f0(x1, z2) = f0(x1, x2, y2)
and f0,a = f0|Ha = f0(a, z2) = f0(a, x2, y2). Then f0 ∈ L2(M0, dv0) by
Lemma 3.3. Comparing the expressions of dv0 and dv0,a and applying the
Fubini theorem we see that the condition f0 ∈ L2(M0, dv0) implies that

f0,a(y2 − a2)−1/4 ∈ L2(Ha, dv0,a)
for almost all a ∈ R. Let us consider only values of a which have this
property.

Note that for any fixed a we have (y2 − a2)−1/4 → ∞ as z2 tends to
any finite boundary point z2 ∈ Ha (i.e. to a point z2 ∈ C such that
Im z2 = a2). Therefore f0,a ∈ L2(U, dv0,a) in a neighbourhood U of such
a point. Note that f0,a is harmonic with respect to the Poincaré metric.
Again using the standard elliptic estimate for the Laplacian of the Poincaré
metric, we see that f0,a(z2) → 0 as z2 tends to any finite boundary point
of Ha. Since f is also holomorphic it should be identically 0 on Ha. (If we
map Ha biholomorphically to the unit disc D, then f will be transformed
to a holomorphic function in D such that f vanishes on the boundary of
D with a possible exception of one point which is the image of ∞ in Ha).
Since this is true for almost all a we see that f |M0 = 0. It follows that f
is identically 0 on M . �
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Remark. Under the same conditions it may happen that G is not unimod-
ular but there are plenty of L2 holomorphic functions on M . For example
this is possible for the simplest non-unimodular group: the group G of the
matrices

g =
[
1 t
0 2n

]
where t ∈ R, n ∈ Z. Indeed, consider M which consists of all matrices

h =
[
1 z
0 2m

]
where m ∈ Z, z ∈ C, | Im z| < 1. Then M is a disjoint countable union of
strips {z | z ∈ C, | Im z| < 1}. Consider M as a (non connected) complex
manifold with boundary with M obtained by taking closure of each strip, so
that M consists of the matrices of the same form with | Im z| ≤ 1. Clearly
M is strongly pseudoconvex.

The action of G on M is obtained by left multiplication of the matrices:
g · h = gh. It amounts to interchanging the strips with extra translations
by real numbers (depending on the number of the strip). This action is
obviously holomorphic and free. Introducing the standard Euclidean metric
on every strip (the metric induced by the standard metric on C), we obtain
an invariant metric. There are plenty L2 holomorphic functions on each
strip, and they can be extended to M by 0. On the other hand it is easy
to see that M/G = [−1, 1].

4 Open Questions

Here we give a list of open questions of various difficulty. It is assumed in
all questions that we are in the situation of Theorems 0.1–0.5.

Let M be strongly pseudoconvex.
1. Does there exist a finite number of functions in L2O(M) ∩ C(M)

which separate all points in bM?
2. Assume that dimCM = 2. Does there exist f ∈ L2O(M) ∩ C(M)

such that f(x) 6= 0 for all x ∈ bM?
3. Is it true that for every CR-function f ∈ L2(bM)∩C(bM) (∂̄bf = 0)

there exists F ∈ L2O(M) ∩ C(M) such that F |bM = f?
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