
Mathematical Physics, Analysis and Geometry2: 323–415, 1999.
© 2000Kluwer Academic Publishers. Printed in the Netherlands.

323

Topological Invariants of Dynamical Systems
and Spaces of Holomorphic Maps: I

MISHA GROMOV
Department of Mathematics, Institut Hautes Études Scientifiques, 35 Route de Chartres,
91440 Bures sur Yvette, France. e-mail: gromov@ihes.fr and Courant Institute, NYU, New York,
U.S.A.

(Received: 13 August 1999)

Abstract. Departing from the symbolic dynamics, we study natural group action on spaces of
holomorphic maps and complex subvarieties.

Mathematics Subject Classifications (1991):32Hxx, 58C10.

Key words: symbolic dynamics, mean dimension, holomorphic maps, complex subvarieties.

0. Introduction

0.1. FROM X TO X0

Start from some category of spacesX and the maps between them. These can be
bare sets with no additional structure and all maps, topological spaces and con-
tinuous maps, smooth manifolds, algebraic varieties, linear or affine spaces, etc.
Then, given a group0, we have a functionally defined0-spaceX, i.e. a space with
a 0-action, namely the Cartesian powerX0 thought of as the space ofX-valued
functions on0. Here the action of0 onX0 is induced by the left action0 on0,

γ ′x(γ ) = x(γ ′γ ).
This action is called theshift andX0 is called the (full) shift space over0 with the
alphabetX, where the basic example is0 = Z andX consisting of finitely many
elements calledletters.

0.1.1. Maps of Finite Type

There are by far more0-maps, i.e. 0-equivariant mapsX0 → Y0, than those
coming from mapsX→ Y if our category admitsfiniteCartesian products. In fact,
every mapϕ from the finite Cartesian powerX ×X × · · · ×X︸ ︷︷ ︸

d

to Y defines a0-

mapX0 → Y0 determined by the choice of a finite subsetD = {δ1, δ2, . . . , δd} ⊂
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0 as follows: each functionx(γ ) goes toy(γ ), γ ∈ 0, by the usual ‘finite differ-
ence operator’ recipe,

y(γ ) = ϕ(x(γ δ1), x(γ δ2), . . . , x(γ δd)
)
.

In other words,y(γ ) for eachγ ∈ 0 is determined by the value ofϕ on the
restriction ofx to theγ -translate ofD,

y(γ ) = ϕ(x|γD),
whereϕ is interpreted as a map fromXγD = Xd to Y . In this case, we say that our
mapx 7→ y is based onD and/ordefined byϕ.

Notice that this construction can be used as adefinitionof 0-morphismsf over
categories of certain spacesX, e.g., for algebraic varieties. But for the topological
category, there are additionalcontinuous0-mapsX0 → Y0, not coming by the
way of ϕ: XD → Y . In fact, every continuous mapϕ: X0 → Y (which may
essentially depend on infinitely manyx(γ ), γ ∈ 0) definesf = fϕ: X0 → Y0 by
the same rulef : x → y for y(γ ) = ϕ(γ x).

0.2. SUBSPACES INX0

The simplest0-invariant subset inX0 consists of thefixed point setFix0 ⊂ X0

which obviously identifies withX itself, realized by the construct maps0→ X.
More interesting subspaces inX = X0 appear as pull-backs of fixed points inY

by 0-mapsf : X→ Y . One can think of such a subspaceX0 = f −1(y0), y0 ∈ Y ,
as the set of solutions to the ‘difference’ equationf (x) = y0 and if f = fϕ for
ϕ: XD → Y with D = {δ1, . . . , δd} as earlier, then this equation turns into the
following system of algebraic equations denoted(ϕγ ), γ ∈ 0,

ϕ
(
x(γ δ1), x(γ δ2), . . . , x(γ δd)

) = y
0
∈ Y . (ϕγ )

In fact, one can dropY from this definition and start with an arbitrary subsetL ⊂
XD = Xd , d = cardD (corresponding toϕ−1(y

0
) in the previous setting). Then

X0 = X0(L) ⊂ X0 is defined as the space of functionsx: 0 → X such that the
restriction ofx to each translateγD is contained inL, where we identifyXγD with
XD via the correspondenceγ δ ↔ δ, δ ∈ D, and where we viewXγD as the space
of functionsγD→ X. TheseX0 = X0(L) ⊂ X0 are calledsubshifts of finite type
inX0 (where ‘finite’ refers to the finiteness ofD ⊂ 0) andL is regarded as a ‘law’
distinguishing ‘legal’ function on0.

0.2.1. Remark on Quotient Spaces

Besides taking subspaces, one may consider various0-equivariant quotient spaces
of X0 and of the aboveX0 ⊂ X0 where the most attractive ones are defined by0-
invariant equivalence relations onX0 (or onX0 ⊂ X0) of finite type. The simplest
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example is the quotient spaceX0/Fix0, where the fixed point set Fix0 ⊂ X0 is
shrunk to a single (fixed) point. Finding more interesting0-equivariant equivalence
relations

R ⊂ X0×X0 ⊂ X0 ×X0 = (X ×X)0

of finite typeis a nontrivial matter which we will not discuss at this stage.

0.3. FROM GEOMETRY TO DYNAMICS

Given our category of spacesX, take an invariant (property, theory) in this category
and try to extend it to a class of0-spaces includingX0 and subshifts of finite
type inX0. Our extension must satisfy Inv0 X0 = InvX and the essential (formal
functorial) properties of Inv0 must be similar to those of Inv. Besides, we want
our new invariant Inv0 to be ‘dynamical’ which expresses a vague idea of Inv0

depending on the overall behavior of the0-orbits. For example, we wish

Inv0(X
0/Fix0) = Inv0 X

0,

so that the ‘few’ fixed points of0 should not matter.
Here is a specific example indicating what we have in mind.

0.3.1. EMBEDDING PROBLEM. LetX andY be topological spaces where we
have a nontrivial obstruction for the existence of a topological embeddingX→ Y ,
e.g.,S1 6⊂ R1 or RP 2 6⊂ R3. Does this obstruction translate to a dynamical lan-
guage and yield a nonembedding result for the0-spacesX0 andY0 with their
respective product topologies and the shift actions of0?

Of course, every0-embeddingX0 → Y0 automatically embedsX = Fix0 ⊂
X0 to Y0 = Fix0 ⊂ Y0 and so we have a trivial ‘yes’ to our question. But if we
takeX• = X0/Fix0 andY• = Y0/Fix0, then the nonexistence of a0-equivariant
embeddingX• → Y• does not (seem to) immediately follow from what we know
for mapsX→ Y . And, truly, what we want to show is that every continuous0-map
X0 → Y0 identifies ‘many’ pairs of points (and thus of0-orbits) inX0.

0.3.2. SUBEXAMPLE. Let0 = Z and observe that everyZ-embedding between
Z-spaces, sayf : X → Y , sends theperiodic pointsof X to those ofY , i.e. the
subset Pern(X) =def Fix(nZ) ⊂ X goes to Pern(Y ) = Fix(nZ) ⊂ Y for each
n ∈ N where, obviously,all periodic points are dense inXZ. In particular, there
is no0-embedding fromX• = X0/Fix0 to Y• = Y0/Fix0. All this is obvious
and trivially extend to allresidually finite(see 1.3) groups0 but more general0
provide many challenging problems as we shall see later on.

0.3.3. Among0-embeddingsX → Y one distinguishes0-homeomorphismsand,
actually, when we speak of0-invariants, one means invariance under0-homeo-
morphisms. Here one may have an extra structure on our spaces (e.g., a measure,
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symplectic structure, complex structure, etc.) and one wishes to study (groups of)
0-homeomorphisms preserving such a structure.

0.3.4. The0-topology can be naturally relaxed to0-homotopywith many standard
invariants (such as homology) passing fromX toX = X0. For example, the global
homological dimension becomes Fildim(X : 0) within this framework (see 1.1.6).

0.4. MEAN ENTROPY AND MEAN DIMENSIONS

The simplest nonembedding theorem is thepigeon hole principle: there is no em-
beddingX → Y if cardX > cardY for finite setsX and Y . The dynamical
version of the cardinality, or rather of the entropy=def log(cardinality), is the
mean topological entropydefined for arbitrary compact (and sometimes noncom-
pact) topological0-spacesX (i.e. with continuous actions of groups0) denoted
ent(X : 0) (see 1.7 for a definition). If0 is anamenablegroup (see 1.3), then, not
surprisingly,

ent(X0 : 0) = entX0/Fix0 = entX (ent=)

for all finite setsX. This is a common knowledge. (Probably, something like this
must be true for setsX of infinite cardinalitywhere the interesting0’s are those
with card0 > cardX.) Also, one knows that

ent(X : 0) 6 ent(Y : 0) (ent6)

if X admits a topological0-embedding toY or, more generally, if there is afinite-
to-one0-map f : X → Y , (i.e. cardf −1(y) < ∞ for all y ∈ Y ). It follows
that there is no finite-to-one (not even countable to one) mapf : X0 → Y0 if
cardX > cardY and the group0 is amenable. (It is clear for all0 that there is no0-
embeddingf : X0 → Y0 as this would embedX = Fix0 ⊂ X0 toY = Fix0 ⊂ Y0
but I do not see how to exclude0-embeddingsX0/Fix0→ Y0/Fix0 for general
groups0.)

Now, let us replace the cardinality by thetopological dimensionof underlying
spaceX which we assume at the moment being a compact metric space withfinite
topological dimension. One can mimic the way one goes from entX to
ent(X : 0) and define themean dimensiondim(X : 0) in the spirit of Lebesgue
(with the Lebesgue number of anε-covering replacing log card (covering) appear-
ing with the entropy) for all topological0-spaces (see 1.5). Here again

dim(X0 : 0) = dim(X0/Fix0 : 0) = dimX (dim=)

for most reasonable (see 1.1.5) spacesX and amenable groups0. Furthermore,

dim(X : 0) 6 dim(Y : 0) (dim6)
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if X admits a0-embedding toY or, more generally, a0-mapf : X → Y with
dimf −1(y) 6 d < ∞ for all y ∈ Y . This leads to the nonexistence of such a
mapf from X0 to Y0 if dimX > dimY and0 is amenable. Also, one sees in
this way that if dimX > dimY , thenX0/Fix0 does not0-embed toY0/Fix0 for
amenable groups0 where the case of general0 remains unclear.

0.5. SMOOTH SUBSHIFTS OF FINITE TYPE

LetX be a smooth manifold andL ⊂ XD,D ⊂ 0, a smooth submanifold or, more
generally, a stratified subset, e.g. an analytic subvariety inXD. One thinks of suchL
as the zero set ofr = codimL (sufficiently generic) equationsϕj(x1, . . . , xd) = 0,
d = cardD, j = 1, . . . , r and thenX0 = X0(L) is given byr 0-invariant systems
of equations. So theexpectedmean dimension of thisX0 is

dim(X0 : 0) ?= dimX − codimL. (?)

PROBLEM. Find specific sufficient conditions onL which would guarantee the
above equality.

EXAMPLE. Let X be the complex projective spaceCPn andL ⊂ (CPn)D =
(CPn)d , whereD = {δ1, . . . , δd} ⊂ 0, be a complex algebraic subvariety. We
shall show in 2.6.6 (using positivity of the cycle represented byL) that

dim
(
X0(L) : 0

)
> dimX − codimL (>)

for allL. Then we prove that the equality holds for (suitably understood)genericL.

Remark.Evaluating dim(X0 : 0) and, in particular, verifying (?) is not a trivial
matter even forX = Rs and linear lawsL ⊂ (Rs)D since theγ -translates of the
linear equations

ϕj
(
x(δ1), . . . , x(δd )

) = 0, j = 1, . . . , r,

may develop unexpected linear relations. These are easy to control for such groups
as0 = Z for instance and, to some extent, for more generalunique productgroups
(see 2.2.2) but the general case seems rather subtle.

0.6. SPACES OF HARMONIC MAPS AND MINIMAL VARIETIES

The most interesting spaces from our point of view appear as solutions of elliptic
differential equations over manifoldsV with groups0 acting onV . A basic ex-
ample is the space ofharmonic mapsV → X between Riemannian manifoldsV
andX, whereV is noncompact,X is compact and whereV comes along with an
isometry group0, such thatV/0 is compact. For instance, one may takeV = Rn,
where0 is either taken to be allRn or some lattice3 ⊂ Rn.
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The full space of the harmonic mapV → X is too big and usually has infi-
nite mean dimension but it has interesting0-invariant subspaces where the mean
dimension is finite and, sometimes, different from zero. A particular space of this
kind, denotedXc, is distinguished by the pointwise bound on the differential of
such mapsx: V → X, namely

‖Dx‖ 6 c <∞. (∗)c

0.6.1. Upper Bound on the Mean Dimension ofXc (see 3.4)

If 0 is amenable then

dim(Xc : 0) <∞ (?)

for all c > 0. Furthermore, ifc is sufficiently large,c > c0(V,X), then

dim(Xc : 0) 6 bcn (?)∞

for n = dimV and some constantb = b(V,X,0), whereb = a(V,X) vol(V /0)
for discrete groups0. Moreover,

dim(Xc: 0)→ 0 for c→ 0. (?)◦

Remark.If V = Rn, then(?)∞ holds true forall c > 0 as follows by an obvious
scaling argument. Probably, this remains valid for nonflat metrics onRn invariant
underZn but, in general, the asymptotics of dim(Xc : 0) for c→ 0 should depend
on the growth rate of the group0.

0.6.2. Nonvanishing ofdim(Xc : 0) and Instantons

We shall prove in 3.6 the following:

THEOREM. Let V be a complex manifold, where an amenable group0 acts
discretely by complex analytic transformations, such that the quotientV/0 is a
projective algebraic variety. Then the spaceXc of complex analytic mapsx: V →
CPN with ‖Dx‖ 6 c satisfies for allN > dimC V , and allc > c0 = c0(V,X)>0,

dim(Xc : 0) > b′cn, (??)

for n = dimR V and some positive constantb′ = b′(V,X,0), which is of the form
a′(V,X) vol(V /0) for discrete0.

Remarks. (a) If V is Kähler, then holomorphic maps are harmonic and so
dimc(X : 0) is also bounded from above according to(?)∞ and(?)0. In fact, these
bounds remain valid withoutV being Káhler as we shall see in 3.4.
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(b) It seems that the strict inequality dim(Xc : 0) > 0 manifesting the abun-
dance of our mapsV → X is intimately linked to thebubbling phenomenon, i.e.
the presence ofinstantons, highly localized solutions of our elliptic equations. Here
is a specific conjecture:

0.6.3. CONJECTURE. LetX be a complex projective manifold and look at the
spaceXc of holomorphic mapsx: C → X with derivatives bounded by some
c > 0. Thendim(Xc : C) > 0, if and only ifX contains a rational curve.

Here (for holomorphic maps ofC) the ‘if’ part of the conjecture follows from
above and also can be derived by a simple interpolation argument. On the other
hand, the ‘only if’ claim (which parallels Lang’s conjecture on hyperbolicity ofX)
requires a study of ‘normal’ deformations of holomorphic curves inX which we
postpone till the second part of this paper. (At the moment, I worked out the proof
only under rather unpleasant technical assumptions.)

Remark on continuity ofdim(Xc : 0). It is easy to see in many cases that the
mean dimension dim(Xc : 0) is continuous inc ∈ R+ and whenever it is positive, it
is alsononconstantas a function ofc. Thus we get0-spaces with mean dimension
taking continuous spectra of values. To see it clearer, take the case ofmeromorphic
functions, i.e. holomorphic mapsx: C → P 1 where we bound the (spherical)
derivative by one, i.e. takeX = X1 = {x | ‖Dx‖ 6 1}. Then consider a lattice
3 = λZ2 ⊂ C, for λ ∈ C×, and observe (this is nearly obvious) that

dim(X : 3) = |λ|2 dim(X : C), (+)

as|λ|2 equals the volume (area in this case) of the fundamental domain of3 in C.
Thus, by varying3 with λ we get a continuum of mean dimensions of3-spaces.

Next we observe that the restriction mapρλ: X → (P 1)3, where we evaluate
our mapsx: C → P 1 at the pointsz ∈ 3, is injectivefor all sufficiently smallλ.
In fact this follows from the Cauchy inequality and yields the finiteness property
(?) for the present case as

dim(X1 : C) = |λ|−2 dim(X : 3) 6 |λ|−2 dim
(
(P 1)3 : 3) = 2|λ|−2

(see 3.4). Now, our spaceX is embedded into the shift space(P 1)3 = (P 1)Z
2
,

where3 = λZ2 andλ ∈ C× is small, with a continuously varying mean dimension
of the imageXλ = ρλ(X1) ⊂ (P 1)3 = (P 1)Z

2
. Actually, dim(Xλ : Z2) varies in

the interval(0,2], since for largeλ, where the lattice3 = λZ2 is sufficiently
rare, the restriction mapρλ: X1 → 3 becomesonto as every map3 → P 1 can
be extended (interpolated) to a holomorphic mapX: C → P 1 with ‖Dx‖ 6 1
(see 3.6, where such an interpolation is used to show that dim(X1 : C) > 0).

Remark on the bound‖Dx‖ 6 1. This may look quite restrictive but, in fact,
harmonic (holomorphic) mapsx with ‖Dx‖ 6 1 often give a fair representation



330 MISHA GROMOV

of all harmonic (holomorphic) maps. For example, if we deal with holomorphic
(or pseudoholomorphic) mapsx of C, then the AffC-orbit of everyx0: C → X

for compactX contains, in its closure, a nonconstant holomorphic mapx with
‖Dx0‖ 6 1, where AffC, where the group of transformationsz 7→ λz + µ of C
naturally acts on the spaces of holomorphic maps ofC. This simple remarkable
dynamical property of spaces of holomorphic maps, calledBloch–Brody principle,
will be expanded further in the second part of this paper.

0.6.4. About Residual Dimension

Let 0i ⊂ 0, i = 1, . . ., be a decreasing sequence of subgroups of finite index→
∞, where we emphasize the case

⋂
i 0i = {id} (which makes0 residually finite).

Then we consider subspacesXi ⊂ X of 0i-invariant (holomorphic, harmonic etc.)
mapsV → X which correspond to maps fromVi = V/0i toX. In our case (when
we deal with harmonic maps, holomorphic maps, etc.), the ordinary dimensions
of theseXi are finite and, moreover, are bounded by const card(0/0i) (see 3.4.3),
but it is unclear when the limit limi→∞ dimXi/ card(0/0i) exists. If it does, it can
be called theresidual dimensionresdim(X : 0) and it is tempting to conjecture it
equals the mean dimension dim(X : 0) in many interesting cases.

EXAMPLE. LetV = Cn,0i = iZ2n, i = 1,2, . . ., andX be a projective algebraic
variety, e.g.X = CPN ,N > n. If X = Xc consists of holomorphic mapsx: Cn→
X with ‖Dx‖ 6 c, thenXi = Xc,i are made of such mapsxi from the toriCn/iZ2n

to X. The bound‖Dx‖ 6 c obviously implies that the volumes of the images of
these maps counted with multiplicities (as well as the volumes of their graphs in
Cn/iZ2n × X) are bounded byd = const(X)(ci)2n. With this in mind, we define
the spaceAnd of ‘Abelian subvarieties inX of degree6 d ’, i.e. of pairs(A, x) where
A is ann-dimensional Abelian variety andx: A→ X is a holomorphic map with
n-dimensional image whose volume counted with multiplicity is bounded byd. It
is rather obvious (see 3.4.3) that dimAnd 6 d const(X) and probably it is not hard
to prove the existence of the limitan = an(X) = limi→∞ d−1 dimAnd . Then we
define the corresponding spaceYd of holomorphic mapsx: Cn → X by requiring
that their graphsGx : Cn→ Cn ×X have

volGx(B) 6 d volB

for all unit ballsB ⊂ Cn. (Actually, it would be more logical to require Volx(B) 6
d but then one must be more careful in compactifying the resulting space of maps.)
The spaceYd admits a naturalCn-invariant compactification, sayYd with the mean
dimension bounded byd const(X). (This bound follows from the first main the-
orem of the Nevanlinna theory as was pointed out to me by Alex Eremenko.) It
is not hard to show that the limit limd→∞ d−1 dim(Yd : Cn) exists but it appears
more difficult to show this limit equals the above numberan(X). Observe that a
rough bound on dim(Yd : Cn) in terms ofan for n = 1 would solve conjecture
0.6.2. On the other hand, 0.6.2 is vacuous for such spaces asX = CPN , for
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instance, but theequalitybetween the two dimensions, one referring to all maps
C → CPN and the other toiZ2-invariant maps, does not seem obvious even for
N = 1. (Actually, the easiest case concerns not maps ofC but rather ofC/Z versus
maps ofC/Z⊕ i√−1Z, i = 1,2, . . . , toCP 1.)

0.6.5. Spaces of Subvarieties

Take a Riemannian manifoldW and consider the spaceX of all closed subsets
M ⊂ W with the Hausdorff convergence topology on compact parts ofW . Clearly,
X is compact. Notice that each isometry group0 of W continuously acts onX,
where, obviously, dim(X : 0) = ∞ unlessX/0 is finite.

The subsets inW worth looking at are those coming from some class ofn-
dimensional subvarietiesM ⊂ W which satisfy an elliptic equation (e.g. being
minimal, complex analytic, etc.) and, furthermore, are locally bounded in a suitable
sense. Then the spaceM of suchM ’s is expected to have dim(M : 0) < ∞, for
a cocompact amenable isometry group ofW and this dimension should be positive
in significantly many examples. Here is a specific

THEOREM. LetW be a Hermitian manifold isometrically acted upon by a co-
compact amenable group0. Denote byM̃d the space ofn-dimensional complex
subvarietiesM ⊂ W , such that the intersection ofM with every unit ballB in W
satisfies

Vol2n(M ∩ B) 6 d
for a givend > 0. Then

dim(M̃d : 0) 6 const<∞
for someconst= const(W,0, d). Furthermore, if0 is discrete and the quotient
spaceW/0 is projective algebraic, then, for0 6 n = dimCM < dimCW , one
has

dim(M̃d : 0) > const′ dn+1,

for all sufficiently larged > d0(W) and some positive constantconst′ =
const′(W,0) > 0.

EXAMPLE. The above applies to complex subvarietiesM ⊂ CN with 0 = Z2N

and implies, for instance, that there isnoZ2N -equivariant topological embedding
from Md to Md ′ if d is much (?) larger thand ′.

Remark.This example should be taken with a pinch of salt as our proof of the
lower bound on dim(M̃d : 0) is based on a0-embedding ofM̃d to ([0,1]N1)0

while the lower bound exploits an embedding([0,1]N2)0 → M̃d .
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0.6.6. Subvarieties in Compact Spaces and Residual Dimension

Along with the mean dimension, one considers the residual dimension ofX refer-
ing, for example, to subvarieties in the toriRn/i3 for a lattice3 ⊂ Rn andi→∞
(see 4.2).

0.7. ABOUT THIS PAPER

The present notion of mean dimension(s) arose from my attempts to geometrize
the algebraic and model theoretic conception of dimension over difference fields.
It was gratifying to see that the mean dimension distinguishes certain spaces of
holomorphic maps, thus rekindling my hopes of setting some branches of the
Nevanlinna theory into a dynamical casting. I could not trace this definition in the
literature and, apparently, this did not come up in the dynamical systems, as was
confirmed to me by Benjy Weiss with whom I was fortunate enough to discuss the
subject matter. Benjy encouraged me by showing his interest in the mean dimen-
sion (actually, it was Benjy who suggested the ‘mean dimension’ terminology) and
he immediately generated a flow of dynamical ideas, including several conjectures
relating the mean dimension and entropy. Many of his conjectures have already
turned into theorems which appear along with many other results in [Lin-Wei]
and [Lin]. Then I had an opportunity to discuss the holomorphic part of this paper
with Mario Bonk and Alex Eremento. Alex explained to me several essential points
on normal spaces and professionally sharpened the inequalities on the dimension of
the spaces of meromorphic maps (see his survey paper [Ere]). More recently, I had
a pleasure of talking to Michael McQuillan about the problems related to Lang’s
conjecture which made me more confident in my mean-dimensional version of it.

Part I of our paper focuses on elementary properties of the mean dimension and
on illustrative examples. More technical discussion is postponed until Part II.

1. Mean Dimension in Various Categories of0-Spaces

1.1. WIDTH AND DIMENSION

A mapf : X→ P , whereX is a metric space, is called anε-embeddingif f does
not identify points inX with distances> ε. In other words,

Diamf −1(p) 6 ε for all p ∈ P.
Then, following Uryson, we define Widimε X as the minimal numberk, such that
X admits a continuousε-embedding to ak-dimensional polyhedronP . Clearly,
Widimε is monotone decreasing inε.

1.1.1. The basic example of evaluation of thisε-dimension is the following:

LEBESGUE LEMMA. The unit cube[0,1]N ⊂ RN has

Widimε[0,1]N = N for all ε < 1.
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Consequently,

Widimε RN = N for all ε > 0.

Here is a more general (and slightly less precise) Widim inequality:

1.1.2. Widim Inequality

LetB be the unit ball in anN-dimensional Banach space. Then

Widimε B = N for all ε < 1. (∗)
Proof. The inequality Widimε B 6 N − 1 trivially implies that FilRad(∂B) 6

ε/2 (compare App. 1 in [GroFRM]). On the other hand, the boundary sphereSN−1 =
∂B with the induced metric has FilRadSN−1 > 1/2 by the argument in 1.2.3
of [GroFRM] since everyk-tuple of points in thisSN−1 with mutual distances< 1
canonically (and obviously) spans a(k − 1)-simplex inSN−1. 2

Remark. The above will be used in 2.4 for evaluating the mean dimension of
(sub)-linear subshiftsY ⊂ B0 ⊂ (Rs)0, where we shall need another lemma:

1.1.3. TRIVIAL LEMMA. LetY be a closed subset in a Banach spaceX and let
p: X→ RN be a bounded linear operator. Then, for arbitrary metrics onY and on
p(Y ) ⊂ RN compatible with their topologies, one hasWidimε Y > Widimε p(Y )

for all ε > 0.
Proof.As the fibers of the mapp: Y → p(Y ) are all nonempty convex, there is

a continuous section, i.e. a mapq: p(Y )→ Y such thatp ◦ q = Id: Y → Y . Thus
one has Widimε Y >Widimε qp(Y ) >Widimε p(Y ). 2
1.1.4. OPEN QUESTIONS. The Widim inequality allows a lower bound on Widimε

of the intersection of a linear subspaceY in a Banach spaceX with the unit ball,

Widimε Y ∩ B > dimY for ε < 1 (∗)
(compare 2.6). Then we wish to have a similar inequality for nonlinear subvarieties
Y ⊂ X. For example:

Does(∗) hold true forX = CN andY being acomplex analyticsubvariety
passing through the origin?

We would not mind(∗) with a slightly smallerε > 0 but the answer is not
even known forε = εN > 0. On the other hand, it is not hard to prove(∗) with
ε depending on the degree ofY in the caseY is complex algebraic. In fact,(∗)
holds true withε = ε(Vold(Y ∩ 2B)), d = dimR Y for all minimal subvarieties
in R2N by the usual compactness argument. It would be interesting to make such
an argument work uniformly for all dimensions and thus applicable for evaluating
of the mean dimension of (local) algebraic subvarieties in(C1)0 (compare 2.5).
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On the other hand, one may ask on the possible range of Widimε for givenε on a
given class of subvarieties and then one is tempted to extend this question to other
‘slicing invariants’ ofY ∩ B defined in App. 1 of [GroFRM].

It seems Widimε has not been evaluated even for simple convex subsets inRn,
e.g. for the simplex1n−1 = {xi > 0,6xi = 1}, where one expects (maybe too
navely) that

Widimε 1
n ∼ constε n.

Another interesting example is the Euclidean ballB`2 = {
∑n

i=1 x
2
i 6 1} whose

Widimε is to be measured with respect to the sup-product metric (with the corre-
sponding norm‖x‖`∞ = supi=1,...,n |Xi |). More generally, one asks what is
Widimε B`p with respect to thèq-norm inRn?

1.1.5. It is clear that Widimε X <∞ for all compactmetric spacesX and allε > 0
but it may become infinite for noncompact spacesX (where, in fact, the definition
must be modified by replacing Diamf −1(p) by lim supU→p Diamf −1(U) where
U runs over the neighbourhoods ofU in P ) and this inequality isstrict. It is also
clear that Cartesian productX1×X2 with thesup-product metric, that is

dist
(
(x1, x2), (x

′
1, x
′
2)
) = max

(
dist(x1, x

′
1),dist(x2, x

′
2)
)
,

satisfiesthe product inequality

Widimε(X1×X2) 6Widimε X1+Widimε X2.

It follows, that Widimε is also subadditive for taking maxima of metrics on the
same spaceX,

Widimε(X,dist) 6Widimε(X,dist1)+Widimε(X,dist2)

for dist= max(dist1,dist2).

Warning. One should be careful with the additivity of Widimε for Cartesian
products. In fact, even the Lebesgue dimension is not always additive, but the extent
of the nonadditivity is completely clarified by the work of Dranishnikov (see [Dra])
who kindly explained this to me.

1.1.6. Remarks oncovε and Fildimε. The ε-dimension Widimε X, as a function
of ε carries the same information about the geometry ofX as the totality of its
Uryson’s widths(see [GroNLS]). A more traditional and essentially equivalent defi-
nition of ε-dimension is theLebesgue covering numberLebε X, that is the minimal
intersection multiplicity of theε-covers ofX minus one. We prefer Widimε as this
leads to interesting variations of the theme in the spirit of metric geometry such as
the globalε-dimension Fildimε X. The latter is defined as the maximal dimension
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of cyclesC ⊂ X with FilRadC > ε, i.e. nonbounding in any metric extension
Y ⊃ X with supy∈Y dist(y,X) 6 ε (compare[GroFRM]).

1.2. DEFINITION OF Widimε(X : {�i }) AND Widimε(X : 0)
Let X be a metric space and a group0 act onX. We assume0 is given aproper
left invariant metric, where ‘proper’ means that the ballsB(γ,R) = {γ ′ ∈ 0 |
dist(γ ′, γ ) 6 R} are compact for allR < ∞. Also, we fix a left invariant (Haar)
measure on0, denote|�| = measure(�) and observe that|�| < ∞ for all
bounded (with respect to the metric) domains� in 0.

Our basic examples are Lie groups, such as0 = Rn with the usual metric
and measure, as well as discrete finitely generated groups0 with given generators,
γj , . . . , γi, . . . , γk where theword metricis defined by setting dist(id, γ ) equal to
the length of the shortest words inγi representingγ and where|�| = card�.

We denote by|x − x′|γ the γ -translate of the original metric onX, denoted
|x − x′|, and assume that the identity map(X, |x − x′|γ1) → (X, |x − x′|γ2) is
uniformly continuous for allγ1, γ2 ∈ 0 where the implied continuity modulus
depends only on dist(γ1, γ2). In other words, the action of0 is assumed uniformly
continuous onX. We define the metrics|x − x′|� onX for all bounded� ⊂ X

as |x − x′|� = supγ∈� |x − x′|γ and letX� = (X, |x − x′|�). Then we look at
Widimε X� as a function on bounded subsets� ⊂ 0 and observe that this function
is subadditiveaccording to the inequalities in 1.1.5. This implies, for amenable (see
below) sequences�i ⊂ 0, that the limit

Widimε(X : {�i}) = lim |�i|−1 Widimε �i

exists and does not depend on a sequence�i (see 1.3.5), exactly as it happens to the
entropy (see [Orn-Weis]). Then we use this limit for the definition of Widimε(X :
0) (see 1.4).

1.3. AMENABILITY

Given a subset� ⊂ 0 we define itsρ-boundary∂ρ� ⊂ 0 for all ρ > 0 as
the set of thoseγ ∈ 0 for which the ballB(γ, ρ) intersects� as well as the
complement0\�. Then a sequence�i ⊂ 0 is called amenable (or Fölner), if
|∂ρ�i|/|�i| → 0 for i → ∞ and eachρ > 0. In other words, theρ-boundary of
�i is ‘asymptotically negligible’. Notice that, on the one hand, this definition uses
no group structure but rather the metric and the measure on0. On the other hand,
the amenability of a sequence does not depend on the choice of a Haar measure
and of (proper left invariant) metric on0.

A group0 is calledamenableif it admits an amenable sequence�i ⊂ 0. (If 0
is discrete or, more generally, unimodular, this equivalent to the classical definition
of amenability where every continuous action of0 on a compact space is required
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to have an invariant measure. Actually all amenable groups we consider in this
paper may be assumed to be unimodular and so one should not be bothered by the
discrepancy between the two definitions.)

1.3.1. Ornstein–Weiss Lemma(see [Orn-Weis])

Leth(�) be a positive function defined on bounded subsets� ⊂ 0 such that

(a) h is subadditive, i.e.

h(�1 ∪�2) 6 h(�1)+ h(�2) (∗)
for all pairs of bounded subsets�1 and�2 in 0.

(b) h is invariant under0,

h(γ�) = h(�), for all γ ∈ 0.
Then the limit

lim
i→∞ h(�i)/|�i| (?)

exists for every amenable sequence�i ⊂ 0.

Remark. (a) Clearly, the existence of the limit forall amenable sequences
implies its independence of a choice of a sequence.

(b) if h(�) is monotone increasing for�′ ⊃ �, then it suffices to assume(∗)
only for disjoint subsets�1 and�2.

Sketch of the Proof.Take two subsets�0 and� in 0, where�will be eventually
taken much larger than�0, and consider some translatesγi�0 ⊂ 0, i = 1,2, . . . ,
such that:

(a) allγi�0 are contained in�;
(b) the intersection ofγi(�0) with the unionUi−1

0 =⋃i−1
j=1 γj�0 satisfies∣∣(γi�0) ∩ Ui−1

0

∣∣ 6 ε|�0| (∗)ε
for a givenε > 0.

We take amaximalsequence of translatesγi�0, i = 1, . . . , k, satisfying theε-
packing conditions(∗)ε for all i and estimate from below the measure of the result-
ing unionUk

0 ⊂ � as follows. Denote byρ0 the diameter of�0, i.e. sup dist(δ, δ′)
for δ, δ′ ∈ �0 and letα denote the relative amenability constant, i.e.α0 = α(�,�0)

= |∂ρ0�|/|�|.We claim that

|Uk
0 |/|�| > ε(1− 2α0). (+)ε

To see this, let�+ ⊂ 0 consist of thoseγ for which the intersectionγ�0∩� is
nonempty and�− ⊂ 0 consist ofγ , whereγ�0 ⊂ �. It is convenient to assume
at this point that id∈ �0. Then�+ is containedin theρ0-neighbourhood of�, i.e.
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in �∪ ∂ρ0�, while�− containstheρ0-interior of�, i.e. the complement�\∂ρ0�.
Thus|�−|/|�+| > 1− 2α0.

On the other hand, obviously,∫
�+
|Uk

0 ∩ γ�0|dγ = |Uk
0 | |�0|

and so

|�−|−1
∫
�−
|Uk

0 ∩ γ�0|dγ 6 |Uk
0 | |�0| |�+|−1(1− 2α)−1

6 |Uk
0 | |�0| |�|−1(1− 2α0)

−1. (1)

Next, by the maximality ofk, (∗)ε must be violated for allγ ∈ �−, i.e.

|Uk
0 ∩ γ�0| > ε|�0|

for all γ ∈ �− and thus

|�−|−1
∫
�−
|Uk

0 ∩ γ�0|dγ > ε|�0|.

Hence,

ε 6 |Uk
0 | |�|−1(1− 2α|−1

and(+)ε is proven.
Now we are ready to prove the existence of the limit(?) by adopting the clas-

sical (and trivial) argument establishing convergence ofh(t)/t for sublinear func-
tionsh(t). Denote bỳ − the lower limit

lim inf
i→∞

h(�i)/|�i|,
and take some�i1,�i2, . . . , �is among�i such that

(a) the ratiosh(�i)/�i are all close tò −, say

h(�i)/|�i| 6 `− + ε
for a givenε > 0;

(b) the relative amenability constantsα(�iµ,�iν ) are very small compared toεs

for all iµ < iν ;
(c) the numbers is very large.

Then we bound the ratioh(�)/� for all sufficiently large� where the relative
amenability constantsα(�,�iµ) are small. To do this we start with the above ‘ε-
packing’ of� by�is (playing the role of�0). The remaining part�′ = �\∪γi�is
has measure≈ (1− ε)� and itsρ-boundary equals the union of these of� and the
translatesγi�is . Thus, the relative amenability constantsα(�′,�iµ) remain small
for µ < s and we can ‘ε-pack’�′ by translates of�is−1. We keep doing this and
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finally cover much of� by translates of�iµ , namely the union of all these translates
has total measure at least(1−(1−ε)s)(1−2α)s|�|, whereα is the upper bound on
the relative amenability constants. Since (we may assume)α is much smaller than
εs, we cover almost all of�. On the other hand, our covering is(1− ε)-efficient,
i.e. the total measure of our translates does not exceed(1+ ε)� according to(∗)ε.
Thus, the union of all our translates sayU ⊂ � hash(U) bounded by something
of the order̀ + + 2ε. On the other hand, the complement�\U has small measure
and retains some ‘amenability’ having|(�\U) ∪ ∂1(�\U)| also small, say6 ε. It
follows, by subadditivity ofh, thath(�\U) is bounded by something of the order
of ε|�| andh(�) is bounded bỳ −|�| +O(ε)|�|. This yields the Ornstein–Weiss
lemma.

1.3.2. Euclidean Example

Let 0 = Rn and�i be Euclideani-balls for i = 1,2, . . . . Then the above some-
what simplifies as large balls can be efficiently packed by smaller oneswithoutany
overlaps at all. (This is especially useful when we deal with superadditive functions
such as maximal degrees of 1-Lipschitz maps�i → Sn, see [G-L-P], § 2.)

1.4. EXISTENCE OFWidimε(X : 0) FOR AMENABLE AND NONAMENABLE 0

We continue 1.1.6 and 1.3.1 and define

Widimε(X : 0) = lim
i→∞Widimε(X : {�i})

with any amenable sequence�i ⊂ 0.
In general, if we do not assume amenability, we set

Widimε(X : {�i}) def= lim inf
i→∞ |�c|

−1 Widimε X�i

for all sequences�i ⊂ 0 with µ(�i)→ ∞. And if we want to eliminate�i, we
consider all exhaustions{�i} of 0 and take the infimum of Widimε(X : {�i}) over
all exhaustions. This can be regarded as Widimε(X : 0)which is equal to the above
if 0 is amenable, as a simple reasoning shows. But we are not seriously concerned
with keeping our definition independent of�i as all our considerations are as good
for one sequence of�’s as for another.

1.5. LETTING ε→ 0 AND DEFINING dim(X : 0)
The above meanε-dimensions Widimε(X : {�i}) and Widimε(X : 0) are monotone
decreasing inε. Thus, we can go to the limit and set

dim(X : {�i}) =Widim(X : {�i}) = lim
ε→0

Widimε(X : {�i})
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and

dim(X : 0) =Widim(X : 0) = lim
ε→0

Widimε(X : 0)

if we want to be�i-free.
Also, we observe that this definition makes sense for every (not necessarily

invariant) subsetY ⊂ X (as we may work with the metrics|x − x′|� restricted to
Y ) and we shall be using this forcompactsubsetsY ⊂ X.

If X is itself acompactmetric space, then the above definition of Widim does
not depend on the original metric|x − x′| in X. In general, one could make things
invariant by first taking supY Widim(Y : {�i}) over all compactY ⊂ X and then
taking infimum over all metrics|x − x′| onX compatible with the topology ofX
and such that the action of0 onX is uniformlycontinuous. (We shall return to this
later on when it becomes relevant.)

1.5.1. Topological Invariance of Mean Dimension

If X is a compact space then, clearly, the mean dimension Widim(X : {�i}) does
not depend on the choice of the original metric|x − x′| in X. In fact, continuity of
the identity map(X, |x− x′|old)→ (X, |x− x′|new) implies uniform continuity for
the metrics|x−x′|old

γ and|x−x′|new
γ simultaneously for allγ ∈ 0 and consequently

for |x−x′|old
� and|x−x′|new

� . This gives a bound on Widimnew
ε in terms of Widimold

δ

for someδ = δ(ε) and asε→ 0 we arrive at the equality Widimnew=Widimold in
the limit, sinceδ(ε)→ ε for ε→ 0.

1.5.2. Monotonicity ofWidim

Clearly every0-invariant subspaceY ⊂ X has Widim(Y : {�i}) 6 Widim(X :
{�i}). In fact, as we mentioned earlier, Widim(Y : {�i})makes sense for arbitrary,
not necessarily invariant, subsetsY ⊂ X as all we need are our metrics|y − y′|γ
onY and these come by just restricting the metrics|x − x′|γ fromX to Y ⊂ X for
all γ ∈ 0. Then obviously,

Widim(Y1 : {�i}) 6Widim(Y2 : {�i})
for all Y1 ⊂ Y2 ⊂ X and all sequences�i ⊂ 0. In particular,

dim(Y : 0) 6 dim(X : 0)
if Y admits a0-equivariant embedding to0.

1.6. ON ISOMETRIC ACTIONS ON BANACH SPACES

There are certain topological spacesX, which admitweak compactification, i.e. a
compact topological spaceX• along with a bijective continuous mape: X→ X•.
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For example, the unit ball{‖X‖ 6 1} in each Banach space is like that. Clearly, if
X• exists it is unique up to homeomorphism.

Now, letX come along with an action of0 and let weak compactification refer
to a compact0-spaceX• with a bijective continuous0-equivariant mapX→ X•.
This (X•, 0) is also (obviously) unique, if it exists, and its0-invariants, such as
dim(X• : 0) can be regarded as invariants of(X,0).

BASIC EXAMPLE. Let0 isometrically act on a Banach space and thus on the unit
ballX in this space. A0-invariant weak compactification is obvious for reflexible
spaces and it also exists for some (all?) other examples, such as`∞(0). Then one
may speak of

dim(X : 0) def= dim(X• : 0).
It is clear, that

dim(X : 0) = s
for X being the unit ball in thè∞-space of bounded functions0 → Rs (0 is
discrete here) and that this dimension6 n for all other `p-spaces. But I could
not decide if it is actually positive forp < ∞ (where the problem is related to
evaluation of̀ ∞-width of `p-balls, compare 1.1.4) and nontrivially depends onp.
(If so, this would imply the spaces(X,0) are mutually0-nonhomeomorphic for
differentp, which, I guess, is unknown for infinite groups0.) This problem, on the
one hand, and the idea of the Von Neumann dimension, on the other hand, lead to
the following modification of our dim(X : 0) (see 1.12 – 1.12 3).

1.6.1. Definition ofdim(X : 0)`p
Let us replace the sup-product distance|x − x′|� from . . . by the`p-distance,

|x − x′|�,`p =
(∫

�

|x − x′|pγ dγ
)1/p

and then repeat everything with|x − x′|�,`p instead of|x − x′|�. Notice that the
resulting dimension isnot a topological0-invariant, it is only a Lipschitz invariant
(and Hölder ‘covariant’ in an obvious sense). This is not so bad if we speak of
isometric actions on (balls in) Banach spaces (where even the linear Lipschitz in-
variance is a nontrivial issue) but our definition needs an adjustment to this case. It
seems reasonable to consider all compactconvexmetric0-spacesX• admitting bi-
jective (surjective?) Lipschitzlinear 0-mapsX→ X•, and take sup dim(X• : 0)`p
over all suchX• ‘under’ X. (And as the discussion became linear, one might try
more manageable linear widths instead of the topological one.)
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1.7. REMARKS ABOUT ENTROPY, COVERINGS, ETC.

Our definition of the mean dimension mimics that of the topological entropy where,
instead of our Widimε X, one uses entε X = log covε X, where covε is the minimal
number of the open subsets inX of diameter6 ε needed to coverX. In fact,
one can avoid any metric in the definition of both invariants ent(X : {�i}) and
dim(X : {�i}) by a direct appeal to (sufficiently fine) finite open covers ofX, say
X =⋃ν Uν and the associated covers by the intersections

⋂
γ∈� γ (Uν). This defin-

ition of the mean dimension has an advantage of being applicable to nonmetrizable
spaces and it is adopted in [Lin-Wei]. We choose here Widim as it is easier on
the level of notations and also more flexible when it comes to generalizations. For
example, our definition does not truly need any action: every family1 of metrics
|x − x′|δ, δ ∈ 1, onX will do. Such a situation naturally comes up in the study of
spacesX of X-valued functions over a givenbackground space1 replacing0 in
the example ofX = X0. Here each pointδ ∈ 1 gives rise to a metric on functions
x(δ) via someweight functionw(δ, δ1) on1×1 by the formula

|x − x′|δ = sup
δ1∈1

w(δ, δ1)|x(δ1)− x′(δ1)|X,
where|x − x′|X refers to a preassigned metric onX. Typically,1 itself is a metric
space (e.g. a graph as in [Gro]ESAV), and

w(δ, δ1) = exp−β dist1(δ, δ1).

‘Microscopic’ observations.One can think of a subset� ⊂ 0 (or more generally
� ⊂ 1) as a ‘microscope’ applied to the metric spaceX = (X, |x − x′|) and en-
larging its visual image to the greater sizeX� = (X, |x−x′|�), where the resolving
power of� depends on the presence of transformationsγ : X→ X, γ ∈ �, which
expand the original metric inX. This expansion brings invisibly small geometric
details ofX = (X, |x − x′|) to the observable scaleε where we have a vari-
ety of ‘macroscopic’ geometric techniques at our disposal (see [GroFRM, GroAI ]
and [GroPCMD]). The magnification may be highly nonuniform in different direc-
tions and so when we eventually sendε → 0 we arrive at a new ‘non-isotropic’
image ofX quite different from the original(X, |x − x′|) (compare § 4.10 in
[GroCC]). Thus various ‘macroscopic’ invariants discussed in the above-cited pa-
pers (e.g. Widimε X, Fildimε X, etc.) are getting transported from the geometric
realm to the domain of topological dynamics.

1.8. MEAN MINKOWSKI DIMENSION

This dimension is defined for invariant sub-spacesY of a topological0-spaceX
with a Borel measureµ onX as follows.

Let U ⊃ Y be a (noninvariant!) neighbourhood ofY in X and consider the
intersection of theγ -translates ofU , sayU�i =

⋂
γ∈�i γU . Then pass to the limit

MU = lim sup
i→∞

(
µ(U�i )

)1/|�i |
(∗)
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and finally let

Min dim(Y : {�i}) = inf
U
MU,

whereU ⊂ X runs over all neighbourhoods ofY ⊂ X.

1.8.1. Motivating Example.Let (X1, µ0) be a compact probability space and
Y ⊂ X be a closed subset. Then the subsetY = Y0 ⊂ X = X0 has Min dim(Y :
{�i}) = µ0(Y ) for amenable sequences�i. This directly follows from the defini-
tions.

1.8.2. Measuring Noninvariant SubsetsY ⊂ X. Instead of translatingU we
may transport a given metric|x − x′| onX and defineUε

�i
as the intersection of

theε-neighbourhoods ofY with respect to the metrics|x − x′|γ for γ ∈ �i. Then
we take the limitMε with Uε

�i
substitutingU�i in (∗) and finally letε → 0. The

resulting version of the Minkowski dimension (obviously) reduces to the above
Min dim for closedinvariant subsets incompactprobability spacesX.

1.8.3. Variation.Rather than intersecting theε-neighbourhoods for the metrics
|x−x′|γ , one could take theε-neighbourhood with respect to the metric|x−x′|�i =
supγ∈�i |x−x′|γ . This may be only smaller thanUε

�i
and so the resulting dimension

is smaller than Min dim. (Probably, there are easy examples where it isstrictly
smaller.)

1.8.4. Smooth Remark.If X is a compact smooth manifold with a0-action then
one can apply the above to a smooth (not necessarily invariant) measureµ onX. In
particular, one may speak of Min dim({x} : {�i}) for all pointsx ∈ X and observe
that the topological entropy is (obviously) constrained by the numbers

M+ = sup
x∈X

Min dim({x} : {�i}) and

M− = inf
x∈XMin dim({x} : {�i}) as follows,

− logM+ 6 topent(X : {�i}) 6 − logM−.

1.8.5. Minkowski Dimension and Coentropy.In many examples whereµ is an
invariant measure of themaximalentropy and the topological entropy is finite,
the Minkowski dimension equals exp(topent(X : 0) − topent(X : 0)). Further-
more, there are easy examples where topent(X : 0) = ∞ but (X, Y, 0) can be
approximated by actions with bounded entropy, say(Xi, Yi, 0), such that

exp
(
topent(Yi : 0)− topent(Xi : 0)

)→ Min dim
i→∞

(Y : 0),

where the notation Min dim(Y : 0) refers to a suitable exhaustion{�i} of 0.
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1.8.6. About Examples.The mean Minkowski dimension is invariant under
measure preserving continuous maps, e.g. homeomorphisms,α: X′ → X where
Y ′ = α−1(Y ). Constructing such maps is an interesting problem which makes
sense in every geometric category ofX’s, where one is especially interested in
the structure of the group AutX0 consisting of invertible mapsX0 → X0 of
finite type with inverse also being of finite type. Besides right translations by0

and automorphism in AutX acting onX0 in an obvious way, one has two general
possibilities.

I. Triangular maps.The simplest instance of this appears whereX is split,
sayX = Y × Z. Here every mapϕ: Z0 → (Aut Y)0 of finite type defines an
automorphism ofX0 by (y, z) 7→ (ϕ(z)(y), z).

II. Markers.The idea is similar to the above with AutY replaced by AutYD for a
finite subsetD ⊂ 0 (or a finite collection of these). SuchD, as well as its translates
in 0, are distinguished by insisting on certain values ofz on theseD’s. If theseD’s
happen to be mutually disjoint, then suitable automorphisms ofYD parametrized
by z give us automorphisms ofX0. All this has been carefully studied for shiftsSZ

and finiteS (see [Hed]) and we shall return to the general case in the second part
of this paper.

III. Sometimes one can ensure invertibility of a map by an implicit function
argument but then the resulting inversion is, typically, of infinite type.

IV. If X is a smooth manifold, one may speak of0-invariant vector fields on
X0 of finite type and study the corresponding flows (which may be only partially
defined). For instance, ifX is a symplectic manifold, then every function (local
Hamiltonian)h: XD → R defines such a flow. (We shall return to this and will
study the corresponding symplectic geometry in the second part of the paper.)

1.9. PROJECTIVE AND LEGAL DIMENSION INX0

Consider a subspaceY ⊂ X = X0 and define its dimension using natural pro-
jectionsX0 → X� � ⊂ 0, (corresponding to restriction of functions from0 to
subsets� ⊂ 0) as follows. LetY |�i denote the image ofY under our projection
X0 → X�i and set

prodim(Y : {�i}) = lim inf
i→∞

dim(Y |�i)/|�i|

for every sequence of bounded subsets�i ⊂ 0 with |�i| → ∞.
This projective dimension looks more approachable than dim(Y : 0) =

Widim(Y : 0) and sometimes the two dimensions are known to be equal. In any
case, we have the following:
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1.9.1. PRO-MEAN INEQUALITY. If X is compact, then every closed(not
necessarily invariant) subsetY ⊂ X0 satisfies

dim(Y : {�i}) 6 prodim(Y |{�i})
for every amenable sequence�i ⊂ 0.

Proof. The projection fromY to theX�i+ρ (where�i + ρ ⊂ 0 denotes the
ρ-neighbourhood of�i) is anε-embedding withε = ε(ρ)→ 0 for ρ → ∞ and,
clearly,

dimY | �i > (dimY | �i + ρ)− |∂ρ�i|dimX. 2
1.9.2. Legal Dimension.Let Y ⊂ X0 be an invariant subset of finite type

defined by a lawL ⊂ XD,D ⊂ 0. Consider all translatesγD in 0 which are
contained in a given subset� and letL� ⊂ X� consist ofL-legal functions on�,
i.e. of thosex: �→ X where the restriction ofx to eachγD ⊂ � is contained in
L (where, as earlier,γD is identified withD andXγD with XD). Then define

legdim(Y : {�i};L) = lim inf
i→∞

dimL�i/|�i|,

where�i is a sequence of subsets in0 (which is assumed amenable in most
applications).

1.9.3. On Nontopological Spaces.If 0 is a discrete group where bounded sub-
setsD are finite, then the definition of legdim makes sense in every category with
(finite!) Cartesian products and a notion of dimension (or rank). For example, this
applies to linear and affine spaces over an arbitrary field and up to a certain extent
to moduli over more general (commutative and noncommutative) rings. Also, one
may use this definition for (pro)-algebraic varieties over an arbitrary field and also
for analytic varieties over a local field.

1.9.4. On SubspacesY ⊂ X0 of Infinite Type for Metric SpacesX. If Y is a
subshift of infinite type, the projectionsY → X� may be easilyonto (an open
subset inX�) even for relatively smallY (e.g. forX = Rs andY being a generic
infinite-dimensional linear subspace) and so the ordinary dimensions of the images
do not tell us much. It is more useful to take the Widimε of these imagesY | �
which works well for example, for the space`p(0,Rs) andY = B ∩ Y0, whereY0

is a0-invariant linear subspace in our`p andB is the unit`p-ball. Here it seems
reasonable to evaluate Widimε Y | � with respect to thè p-norm on`p(�,Rs)
as is suggested by thè2-case where this leads to theVon Neumann dimension
(see 1.12).

1.9.5. On Invariance oflegdimand Introduction ofstablegdim. The definition
of legdim depends not only onY = Y (L) but also on the defining lawL ⊂ XD

although in most cases the dependence onL is illusory.
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In fact legdim= prodim in many cases (see Section 2) and it is useful to bring
in an intermediate notion ofstable legal dimension, denoted stablegdim(Y : {�i}),
where�i is increasing sequence of subsets in0. To define this we projectL�j to
X�i for all j > i and letLij ⊂ X�i denote the images of these projections. Then
we set stablegdim(Y : {�i};L) = lim inf i→∞ limj→∞ dimLij /|�ij |. Observe
that this stablegdim extends to nontopological categories in most cases where it
is possible for legdim and this sometimes allows such an extension for prodim (see
below).

1.9.6. Elementary Inequalities.It is clear that

prodim6 stablegdim6 legdim

(where, recall, meandim6 prodim for compactY ).
Also observe that the intersectionLi∞ =def

⋂
j>i Lij equals the projectionY |

�i of Y to�i for compact subspacesY ⊂ X0. Hence,

prodimY = stablegdimY, (∗)
provided the dimension is stable under countable intersections of subsets in our
category. This is so, for instance, forcompact complex analytic varietiesby the
Noether intersection property:every decreasing family of compact complex spaces
stabilizes.

Thus we have the following simple

PROPOSITION.LetX be a complex analytic variety andL ⊂ XD be a compact
subvariety. ThenY = Y (L) ⊂ X0 satisfies the above equality(∗).

Remark. The point of this is our evaluation of some dimension of a ‘trans-
cendental’ object, ourY , in terms of ‘elementary’ ones, i.e.Lij .

On Extension of Prodim to Nontopological Categories.The equalityY | � =
Li∞ remains valid in many algebraic categories, (e.g. for complex algebraic va-
rieties and saturated models of first order theories in general) and if we have a
notion of dimension in our category which passes to countable intersections of
varieties (as it happens, for instance, to countable intersections of constructible
subsets inKN for an uncountable algebraically closed fieldK), then we can define
prodimY (L) for lawsL ⊂ XD in our category.

1.9.7. On Stable Laws.A law L ⊂ XD is calledstableif there existsρ0, such
that the image of the projection fromL�+ρ toL� does not depend onρ for all ρ >
ρ0 and all bounded� ⊂ 0, where, recall,�+ρ ⊂ 0 denotes theρ-neighbourhood
of � in 0. Clearly, ifL is stable, then

prodim(Y : {�i}) = legdim(Y : {�i};L) = stablegdim(Y : {�i};L)
for all amenable sequences�i ⊂ 0.
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PROBLEM. Find less restrictive conditions ensuring the above equalities between
different dimensions. (See Section 2 for practical results in this direction.)

1.10. RESIDUAL DIMENSION

Given a discrete subgroup00 ⊂ 0, we consider the fixed point set Fix00 ⊂ X in a
given0-spaceX. For example, ifX = X0, this Fix00 consists of all00-invariant
functions0→ X which can be identified with functions0/00→ X.

We are especially interested in the case where00 is of finite covolume, i.e. when
the Haar measure|0/00| is finite. In this case we may expect dim Fix00 <∞ and
so we set

resdimX/0i = lim inf
i→∞ (dim Fix0i)/|0/0i|

for every sequence of discrete subgroups0i ⊂ 0 of finite covolumes with|0/0i|
→ ∞.

The most interesting case is where the spaces0/0i convergeto 0, i.e. if for
each bounded subset� ⊂ 0 the intersection� ∩ 0i consists of{id} for all
i > i0 = i0(�). Recall that adiscretegroup0 admitting such a sequence of
0i is calledresidually finite, and many residual finite groups are far from being
amenable. Such are the free groups and most finitely generated subgroups in the
linear groupGLnR.

What may limit the applicability of the residual dimension is absence of a
sufficient amount of periodic (i.e.0i-fixed) points. However, ifL ⊂ XD is a
strongly stablelaw (see 7.E.′′′ in [GroESAV] and below)then periodic points are
dense inY (L) ⊂ X for residually finite groups0 andresdim= prodim if 0 is also
amenable. This follows by the argument in 7.E.′′ in [GroESAV].

Definition of Strong Stability.CallL strongly stable if there existsρ0 > 0, such
that the following condition(locρ0) is sufficient for extendability of a function
X0: �0→ X to ourx: 0→ X belonging toY (L) ⊂ X0,

(locρ0) For everyρ0-ball B ⊂ 0 the restrictionx0 | � ∩ B is extendable to an
L-legal function x1 on B, i.e. the restriction ofxi to each translate ofD
insideB must be inL.

Remarks(a). Besides the limit of dim Fix0i/(0/0i) the totality of the numbers
dim Fix0i for all lattices0i ⊂ 0 carries an interesting information about(X,0).
For example, if0 = Z and0i = iZ, this information is encoded in the generating
function

∑
i t
i dim Fix0i which we shall study in the second part of this paper.

(b) One can make the above definition of resdim more robust by usingδ-fixed
points Fixδ 0i , i.e. moved by judiciously chosen generators of0i by at mostδ.
Also, one may use Widimε Fix0i for the metric supγ∈0 |x − x′|γ on Fix0i instead
of dim Fix0i , where eventuallyδ, ε→ 0.
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1.10.1. Residual Amenability

This signifies the existence of a decreasing sequence of normal subgroups0i ⊂ 0
with amenable quotient groups1i and with trivial intersections,

⋂
i 0i = {id}.

Now, for each1i, we may have some notion of mean (legal, projective, etc.)
dimension which passes to0 as we apply it1i acting on Fix0i and leti → ∞.
Alternatively, one may take an amenable sequence�i ⊂ 1i and use Fixδ 0i with
respect to the metric supγ |x − x′| for γ ∈ 0 summing over the pull-back of�i
under the quotient map0→ 1i.

In fact, the natural class of groups where this idea works consists of allinitially
subamenable groups(essentially introduced in [Ve-Go] and used in [GroESAV])
generalizing residually amenable groups.

1.11. LINEAR LAWS AND MEAN DIMENSION OVER AMENABLE ALGEBRAS

Given an arbitrary fieldK, one may take a vector spaceX overK, e.g.X = Ks ,
and speak of linear laws (i.e. subspaces)L ⊂ XD. Then, if0 is an amenable group,
we have our (mean) projective dimension

prodim(Y : 0) for Y = Y (L) ⊂ X0

defined with an amenable exhaustion of0.

Remark on finite fieldsK. If K is finite, thenX = X0 is compact (totally dis-
connected) for the product topology andY ⊂ X is a closed (and so also compact)
subspace inX. Then the basic topological invariant of the action of0 on Y , the
topological entropy, is (obviously) related to the mean dimension by the equality

topent(Y : 0) = prodim(Y : 0) log |K|,
for |K| =def cardK. (See Section 2 for continuation of this discussion.)

Replacing(Ks)0 by Ks(0) and passing to (group) algebras.Instead of the
space(Ks)0 of all functions0 → Ks one can look at the dual space denoted
Ks(0) which can be identified with the space of functions with finite support on
0. Then each linear lawL ⊂ (Ks)D defines a subspaceY0 = Y0(L) ⊂ Ks , namely
Y0 = Y (L) ∩ Ks(0) for the obvious embeddingKs(0) ⊂ (Ks)0 and, clearly,
prodimY0 = prodimY . Then we observe thatKs(0) can be identified with the free
module of ranks over thegroup algebraK(0) where the (0-invariant!) subspaces
Y0 ⊂ Ks(0) are just submoduli inKs(0).

Now we generalize everything to an arbitraryK-algebraA in place ofK(0).
We sayA is amenableif it admits an amenable exhaustionbyK-linear subspaces
Ai ⊂ A, i = 1,2, . . ., where amenability of{Ai} signifies thatAi, for largei are
‘almost invariant’ under right multiplication inA, i.e.

(dimK Ai +Aia)/dimK Ai −−→
i→∞ 1

for eacha ∈ A.
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Next, given a finitely generatedleft moduleB overA, we define its dimension
relative to{Ai} as follows. Take some finiteK-dimensional linear subspaceB0 ⊂
B generatingB overA and set

dimA B | {Ai} = lim inf
i→∞ dimAiB0/dimAi .

Clearly, this dimension does not depend on the choice ofB0 and it gives the ‘right’
number for free moduli: dimA As = s for all amenable exhaustions. Furthermore,
if A equals the group ringK(0) of some0, this reduces to the notion of le-
gal (or stable) dimension over0, but I do not know if the existence of the limit
limi→∞AiB0/dimAi holds in full generality.

Remark(made by Ofer Gabber). Since lim inf is nonadditive, we cannot claim
the additivity

dimA B1⊕ B2 = dimA B1⊕ dimA B2

prior to proving the existence of the limit. Yet we always can take some general-
ized limit (the best here, I think, is an ultralimit) and thus recapture the additivity.
Eventually we shall be interested in additivity of dimA for exact sequences, 0→
B1→ B → B2→ 0, where some extra problems arise (as was also pointed out to
me by Ofer).

Let us relax the assumption ofB being finitely generated overA by giving
B a topology where the action ofA is continuous and such thatB admits a dense
finitely generated submoduleB ′. (For example, ifA = K(0), one can takeB equal
the space of all functions0 → Ks with the product topology in thisB = (Ks)0,
whereKs comes with the discrete topology. Clearly, the finitely generated module
B ′ = Ks(0) densely embeds to thisB.) Then we can define dimB as dimB ′ or
(which is essentially equivalent) by approximating the aboveB0 by someBε and
taking

lim inf
ε→0

lim
i→∞

AiBε/dimAi .

The major drawback of all this is the amenability assumption onA. This can
be overcome in the context of theVon Neumann algebras, e.g. for the ringsR(0)
for arbitrary countable groups0. HereK = R and the relevant modules are those
of `2-functions0 → Rs as well as their submodules and factor modules (com-
pare 1.12.1. below). The resultingVon Neumann dimensiondim`2 B is well defined
for all 0 and if0 is amenable it equals the above dimA B as an easy argument shows
(explained to me by Alain Connes about 20 years ago and exposed in the case of
`2-cohomology in [Dod-Mat]).
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1.12. VON NEUMANN DIMENSION

Let Y ⊂ (Rs)0`2
⊂ (Rs)0 be a0-invariant Hilbert space inside(Rs)0`2

= `2(0,Rs),
the space of the square summable functions0 → Rs . Then for every subset� we
define the restriction operator (map)R�: Y → (Rs)�`2

for R�(x) = x|� and let
R∗�: (Rs)�`2

→ Y be the adjoint operator. The0-invariance ofY (trivially) implies
that

traceR�R∗�
traceR�′R∗�′

= card�

card�′

for all nonempty finite subsets� and�′ ⊂ 0 (where(Rs)�`2
= (Rs)�) and one

defines the Von Neumann dimension ofY as

dim`2(Y : 0) def= |�−1
i | traceR�R

∗
� (+)

for some (and so for each) finite subset� ⊂ 0, where|�| =def card� (see [Con],
[GroAI ] and references therein).

Remark. In what follows we use standard embeddings(Rs)� → (Rs)�′ for all
�′ ⊃ � where we just extend functions by zero outside�. In particular, we embed
(Rs)� ⊂ (Rs)0 and observe thatR∗� = R∗0|(Rs)�, and so we abbreviateR∗� to
simpleR∗ for all � ⊂ 0.

To see this more geometrically in the case of an amenable group0 we indicate
the following (well known, I believe)

1.12.1. PROPOSITION.Let�i ⊂ 0, i = 1, . . . , be an amenable exhaustion of
0 by finite subsets�i and letni[a, b] denote the number of the eigenvalues of the
operatorR�iR

∗ in the interval[a, b]. Then, if0< a 6 b < 1,

ni[a, b]/|�i | → 0 for i →∞,
(while ni[0,1] = s|�i |, of course).In other words the majority of eigenvalues is
concentrated near the ends of theα-interval [0,1].

Proof. Let x: � → Rs be anapproximateλ-eigenfunctionof R�R∗ for some
λ ∈ [0,1] in the sense that

‖R�R∗(x)− λx‖ 6 αx (α)

and assume that the restriction ofR∗(x) to the complement of� is β-small, i.e.

‖R∗(x)|0\�‖ 6 β‖x‖. (β)0\�

We claim that for smallα andβ the numberλmust be close to zero or one. Namely

λ(1− λ) 6 2α + β. (?)
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Indeed, write(β)0\� as∥∥R∗(x)− R�R∗(x)∥∥ 6 β‖x|
and obtain with(α),

‖R∗(x)− λx‖ 6 (α + β)‖α‖.
Since‖R∗‖ 6 1 andR∗R∗ = R∗, we have

‖R∗(x)− λR∗(x)‖ 6 (α + β)‖x‖
and ∥∥R�R∗(x)− λR�Rxx (ẋ)∥∥ 6 (α + β)‖x‖,
i.e.

(1− λ)∥∥R�R∗�(x)∥∥ 6 (α + β)‖x‖.
Now use(α) again and conclude

λ(1− λ)‖x‖ 6 (α + β + α(1− λ))‖x‖
and, finally,

λ(1− λ) 6 α + β + α(1− λ).
In particular we get(?) as well as the relations,

λ(1− λ) = 0(α + β)
and

1− λ = 0
(
α + β
λ

)
.

Next let�−ρ < � be theρ-interior of�, i.e.γ ∈ �−ρ iff the ρ-ballB(γ, ρ) ⊂
� for a givenρ > 0. We claim that the majority of functionsx: �−ρ → Rs satisfy
(β)0\� with someβ = β(ρ) → 0 for ρ → ∞, at least forfinite subsets� ⊂ 0.
To say it precisely, we denote bySρ: (Rs)�

−ρ → (Rs)0\� the operatorR0\�R∗ on
(Rs)�−ρ ⊂ (Rs)� and show that

traceS∗ρSρ 6 β(ρ)|�−ρ | (β)ρ

whereβ(ρ) = β(ρ, 0, s) → 0 for ρ → ∞ and whereS∗ρ: (Rs)0\� → (Rs)�0 is
the adjoint toSρ.

In fact everyδ-function x = xγ on 0 concentrated at someγ ∈ 0 satisfies
‖R∗xγ ‖ ∈ 1 since‖R∗‖ 6 1. It follows, that the restriction of‖R∗xγ ‖ to the
complement of the ballB(γ, ρ) has norm6 β(ρ) for β(ρ)−−→

ρ→∞ 0. Therefore,
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‖Sρ(xγ )‖ 6 β(ρ) for all γ ∈ �−ρ as well, because0\� is contained in the
complement of the ballsB(γ, ρ) for γ ∈ �−ρ. Then the same inequality is clearly
satisfied byS∗ρSρ: (Rs)�

−ρ → (Rs)�−ρ ,∥∥S∗ρSρ(xγ )∥∥ 6 β(ρ)
that implies(β)ρ , since theδ-function make an orthonormal basis in(Rs)�−ρ .

Now we prove our proposition by first evaluatingni[a, b] for small intervals
[a, b], namely for those where|a − b| = α for someα > 0 specified later on.
We denote byXi = Xi,a,b ⊂ (Rs)�i the span of theλ-eigenfunctions ofR�iR

∗
for λ ∈ [a, b] and observe that allx ∈ Xi areα-approximateλ-eigenfunctions for
everyλ ∈ [a, b].

Next we consider thosex ∈ Xi which vanish on theρ-boundary of�i, i.e.
x ∈ Xρ

i =def Xi ∩ (Rs)�−ρi and observe that∣∣ dimXρ

i − dimXi
∣∣/|�i| −−→

i→∞
0

for every fixedρ, a andb by the amenability of{�i}. Thus the estimate for dimXi
reduces to that forXρ

i . Then we take the intersection ofX−ρi with the span of the
eigenfunctions ofS∗ρSρ, (with �i in place of�) corresponding to the eigenvalues

6 β2. We denote this byXρ,β

i ⊂ Xρ

i and notice that the operatorSρ: (Rs)�
−ρ
i →

(Rs)0\�i has norm6 β onXρ,β

i . Furthermore, according to(β)ρ , the dimension of
X
ρ,β

i is rather close to that ofXρ

i for largei andρ. Namely,∀β > 0, ε > 0∃ρ, s.t.

lim sup
i→∞

(
dimX

ρ

i − dimX
ρ,β

i

)
/|�| 6 ε.

Thus all we need is to estimate the dimension ofX
ρ,β

i . To do this we invoke(?),
and apply it toλ = a ∈ [a, b] with a − b = α and get

a(1− a) 6 2(a − b)+ β,
provided some spaceXρ,β

i has positive dimension. In other words, the inequality

|a − b| < (
a(1− a)− β)/2

forces dimXρ,β

i = 0; consequently

lim sup
i→∞

dimXρ

i /|�i| 6 ε

for sufficiently largeρ = ρ(β, ε) and then also

lim sup
i→∞

Xi/|�i| = 0

sinceε→ 0 for ρ →∞. Thus we proved our propositions for all intervals[a, b],
where

|a − b| < a(1− a)/2, (∗)
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sinceβ > 0 can be chosen arbitrarily small. Finally, we cover an arbitrary interval
lying strictly within [0,1] by those satisfying(∗) and thus conclude the proof.2
1.12.2. COROLLARY.LetEi ⊂ (Rs)�i`2

be the image of the unit̀2-ball in a 0-
invariant Hilbert subspaceY ⊂ (Rs)0`2

under the restriction mapR�i . Then

lim(Widimε Bi)/|�i| → dim`2(Y : 0)
for eachε in the interval0< ε < 1.

In fact,Ei is a full ellipsoid in the Euclidean space(Rs)�i`2
where the majority

of the principal semiaxesλν , λ = 1, . . . , |�i|, is concentrated at zero or at one.
It follows, the average ofλν, eventually defining the Von Neumann dimension
dim`2(Y : 0), is essentially determined byλ’s close to one and our claim follows
since Widimε of an ellipsoidE with semiaxesλν equals the number ofλν ’s greater
thanε′ for someε′ in the intervalε 6 ε′ 6 2ε.

Remark. It is obvious that the numbern(ε′) of λν > ε′ satisfies

n(ε′) >Widimε E for ε′ = 2ε

while the inequality

n(ε) 6Widimε E

trivially follows from 1.1.2. Probably, it is not hard to evaluate the criticalε′ for
whichn(ε′) =Widimε E.

1.12.3. The restriction mapsR�i : Y → (Rs)�i arise from the evaluation map
Re: Y → Rs for y 7→ y(e) for the identity elemente ∈ 0. Now, letR: Y → RN
be an arbitrary bounded operator and letRi: Y → (RN)�i be the orthogonal sum
of theγ -translates ofR for γ ranging over�i. We defineEi ⊂ (RN)�i as above
with Ri in place ofR�i and let

dR = lim
ε→0

lim
i→∞Widimε Ei.

Then a straightforward generalization of the above arguments shows that the supre-
mum ofdR over all operatorsR: Y → RN ,N = 1,2, . . ., equals the Von Neumann
dimension dim̀2(Y : 0).
`p-Remark.The above definition of dim̀2(Y : 0) via dR makes sense for an

arbitrary Banach spaceY with a0-action. Here one can make some modifications,
e.g. by using thèp-norm in the Cartesian power(RN)�i for p 6= 2 (compare 1.6.1)
and/or to allow more general (linear and nonlinear) mapsR from Y to suitable
spaces. Eventually this line of thought converges to the discussion in 1.6.1.
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QUESTION. What is dim̀
p
(Rs)0`q for amenable groups0? One may (?) expect

that dim̀
p
(Rs)0`p = s for all p in the interval 1< p <∞, where the major issue is

the inequality dim̀
p
R0`p < ∞. This would imply, in particular, that thèp-spaces

(Rs1)0`p and(Rs2)0`p are not0-isomorphic fors1 6= s2, at least for amenable groups
0. This seems to be unknown even for0 = Z.

1.12.4. Nonlinear Von Neuman

The classical definition of the Von Neumann dimension extends to certain infinite
dimensional smooth manifolds with invariant measures where the tangent bundles
admit0-invariant Hilbert structures. More generally, let0 act on a compact space
X with a probability measureµ and letT → X be a Hilbert bundle, such that
the action of0 lifts to T and preserves the Hilbert norm in the fibersTx ⊂ T ,
x ∈ X. Then we take the spaceX of L2(µ)-sectionss: X→ T acted upon by the
Von NeumannalgebraA generated by allγ ∈ 0 acting on the sections and by the
operatorss 7→ f s for all continuous functionsf : X → R. With all this, one has
a bona fide Von Neumann dimension dimA X. (If the measure is concentrated at a
single fixed pointx0 ∈ X, then dimA X = dim`2(Tx0 : 0).) And if 0 is trivial the
above becomes the ordinary rank ofT , i.e. dimTx .

Remark.While our mean dimension parallels the topological entropy, the above
Von Neumann dimension is reminiscent of the metric entropy. This may suggest the
following questions. Which (infinite-dimensional)0-manifoldsX have dimA χ 6
dim(X : 0) and when does supµ dimA χ = dim(X : 0) for µ running over
all invariant probability measures onX? However, we do not expect the positive
answer, unless the definitions are modified in some (?) way (compare 2.1).

1.13. TRANSCENDENCE DEGREE FOR0-FIELDS

Let F be an extension of a given fieldK and let0 act by automorphisms ofF
fixing K, i.e. we are given a homomorphism0→ Gal(F/K).

BASIC EXAMPLE. Consider independent variablesxγ associated to allγ ∈ 0
and takeF equal the field of rationalK-fractions (functions) in these variables. In
other words,F equals the field of rational functions onK0 viewed as a proalgebraic
variety.

In general, we assume thatF is finitely 0-generated overK, i.e. there exists a
subfieldF0 ⊂ F whose0-translates generateF (as the aboveK(xid) 0-generates
F = K{xγ }) and then define0-transcendence degreeof F overK with a given
amenable exhaustion{�i} of 0 as follows. LetFi ⊂ F be generated byγF0 for all
γ ∈ �i and a givenF0 0-generatingF . Then

trandeg(F : {�i}) def= lim inf
i→∞

|�i|−1 trandegFi/K.
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We shall not pursue this algebraic line of thinking anymore but shall return to
proalgebraic varietiesY in 2.7 where their dimension will be studied within a
topological framework. (IfY is irreducible then we can pass to the function fieldF
and define dim(Y : 0) as trandeg(F : 0). But isolating an irreducible component
in (reducible)Y may cause a problem as this may be not0-invariant.)

1.14. 0-SPACES WITH SLOWLY GROWINGdimY | �i
If our Y ⊂ X0 is given by abalanced(or determined) lawL ⊂ XD, i.e.L has
codimL = dimX, then we expect that the spacesL� of L-legal functions on
� ⊂ 0 (see 0.2) have dimensions much smaller than|�| and this is even more
likely to happen for theoverdeterminedcase where codimL > dimX (here we
deal with discrete groups0 and finite subsetsD ⊂ 0) for ‘sufficiently amenable’
�, i.e. having relatively small boundary∂ρ�. For example, if0 = Zn and�i
are thei-balls in0, then we expect that dimL�i is asymptotic toin−1(≈ |�i | n−1

n )

rather than toin(≈ |�i|), since solutions of balanced difference equation should
be determined by their values on a suitably ‘Cauchy (hyper)surface’ inZn, e.g., on
Zn−1 ⊂ Zn.

The above suggests a modification of our definitions of various dimensions(X :
{�i}) where the cardinality|�i| is replaced by|�i|β for someβ < 1 or by a
more general functionα(|�i|). Then one can speak of thecritical exponent, that
is the maximal (or, rather supremal)β, such that theβ-dimension is infinite for
all sequences�i ⊂ 0 with |�i| → ∞. Next, one may try to compute theβcrit -
dimension with some ‘most amenable’ exhaustion{�i} of 0. This will be done
for some examples in the second part of this paper. Here we only observe that for
linear lawsL the following three conditions are equivalent:

(1) prodim(Y : {�i}) > 0, i.e. lim infi→∞ dimL�i/|�i| > 0;
(2) lim infi→∞ dimL�i/|∂ρ�i| = ∞ for all ρ > 0;
(3) there exists a nonzero functiony: 0→ X from Y = Y (L) with finite support.

Indeed, obviously,(1)⇒ (2)⇒ (3)⇒ (1) for all amenable sequences{�i} in 0.
Notice that (3) says in effect that the implied homomorphismKs(0)→ Kr(0)

(for Ks = X, compare 1.11) is noninjective. Also, one can replace ‘with finite
support’ in (3) byy ∈ `2(0) in the caseK = R.

1.15. MEAN POINCARÉ POLYNOMIAL

Next topological invariant coming after dimension is thePoincaré polynomialof a
metric spaceX encoding its Betti numbers. This can be modified to PoincarεX

by factoring awayε-fillable classes inH∗(X), i.e. realizable by cyclesC with
FilRadC 6 ε for the metric onC induced fromX (compare [GroFRM]). Thus
the degree of PoincarεX equals the filling dimension mentioned in 1.1.6. Then we
enlarge the metric|x − x′| in a0-spaceX to |x − x′|� for � ⊂ 0 (see 1.2) and
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define the mean Poincaré polynomial as a limit of suitably normalized polynomials
Poincarε X�i , for X�i =def (X, |x − x′|�i ). Namely, we take

lim lim
ε→0 i→∞

(PoincaréεX�i )
1/|�i |. (∗)

For example, the zero degree term of this limit equals exp(topextent(compY :
{�i}) where compY denotes the space of connected components ofY .

Remark. The above ‘normalization’ by the|�i|−1 exponent is motivated by
the exponential bound on the Poincaré polynomial for algebraic laws. Namely, if
L ⊂ (Rk)D is an algebraic variety, then the Poincaré polynomialP�(t) of the space
L� of L-legal functions on� is bounded by expCt |�| as follows from Petrovski-
Thom-Milnor inequality. But the behavior of coefficients of fixed degree (i.e. of
individual Betti numbers) (as well as the convergence in(∗) for i → ∞ with
suitable�i) is a more delicate matter which we do not study in this part of the
paper.

2. Evaluation of the Mean Dimension for Subshifts of Finite Type

We exhibit in this section a variety of examples, where the dimension of a subshift
Y ⊂ X0 equals dimX minus the number of (difference) equations definingY .

2.1. PRODIM AND LEGDIM IN THE LINEAR CATEGORY

Let X be a finite dimensional vector space over a fieldK, sayX = Ks (e.g.,
K = R), and take a subshiftY = Y (L) ⊂ X0 defined by a linear lawL ⊂ XD,
D ⊂ 0 (see 1.8.2). We observe thatthe projective dimension of such a linearY
equals its legal dimension, i.e.

prodim
(
Y | {�i}

) = legdim
(
Y : {�i}

)
(◦)

for all amenable sequences�i ⊂ 0. (See Section 0 and 1.9 for notations.)
Proof. Let L� ⊂ X� be the space of legalKs-valued functions on�, denote

byMρ
� ⊂ L� the subspace of functions�→ Ks vanishing on theρ-boundary of

�, i.e. on� ∩ ∂ρ�, and observe that dimMρ
� > dimL� − card∂ρ�. On the other

hand, ifρ is sufficiently large, i.e. if theρ-ball in0 around the identity contains our
D ⊂ 0, thenMρ

� naturally embeds intoY = Y (L), where each functionx: �→
Ks extends by the identical zero on0\� and where the inclusionD ⊂ ρ-ball
ensures theL-legality of such extension. Now, if�i is an amenable sequence, then
(card�i)−1 dimM

ρ
�i

and(card�i)−1 dimL�i have the same asymptotice behavior
for i →∞ by the above inequality and our claim follows. 2

2.1.1. Remarks.(a)Nonlinearity.If L is a nonlinear law it makes little sense to
makey ∈ Y = Y (L) ⊂ X0 vanish at infinity but instead of this one can look at the
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pairs(y1, y2). yi ∈ Y , i = 1,2, such thaty1(γ ) = y2(γ ) for all but finitely many
γ ∈ 0. Then one can easily show for many nonlinear subshifts offinite typethat
such pairs are abundant inY × Y if a suitable mean dimension ofY is positive.

(b) Summability.A more interesting generalization concerns the linear case
whereX = Rs andY ⊂ X0 is aweakly closedlinear subspace, i.e. it is closed for
the weak convergence inX0 wherexi → x iff xi(γ )→ x(γ ) for eachγ ∈ 0. Here
one cannot guarantee that the inequality prodim(Y {�i}) > 0 implies the existence
of nonzeroy ∈ Y with finite support in0, but one can ensure the existence of a
square summabley: 0→ R in Y . In fact, for everyp > 2,

prodim
(
Y`p | {�i}

) = prodim
(
Y | {�i}

)
,

whereY is a weakly closed linear subspace inX0 = (Rs)0, whereY`p =def Y ∩
`p(0,Rs) and�i ⊂ 0 is an amenable sequence.

Idea of the proof.If a linear space of functions on a finite set�, e.g. ourY |� has
dimension close to card�, then it contains many sharply localized (concentrated)
functionsy where(

∑
w∈� y

2(w))1/2 is of the order supw∈�|y(w)|. Furthermore,
one can find many, about dim(our space), suchy’s, which vanish on a given subset
in � provided this subset has relatively small cardinality (such as∂ρ�i in �i for
large i). All this follows by simple-minded linear algebra and, when applied to
Y |�i, yields in the limit fori → ∞ ‘many’ nonzero functionsy ∈ Y`2 and thus
in all Y`p for p > 2. Actually there is the following standard trick of doing this
very quickly. LetPi denote the normal projection from̀2(0;Rs) to the space of
functionsY | �i extended by zero outside�i ⊂ 0. We think of these operators on
`2(0;Rs) as matrices indexed by0 with entries inGLsR, writtenPi(γ, γ ′), and
observe that

dimY | �i =
∑
γ∈�i

tracePi(γ, γ ).

Next we observe that the functionsPi(γ, γ ′) on0×0 weakly converge fori→∞
to someP = P(γ, γ ′) which is invariant under the diagonal action of0 on0×0.
Clearly, the imageP(`2(Y ;Rs)) is contained inY`2 and its projective dimension
with respect to{�i} equals that ofY . In fact, this argument shows that theVon
Neumann dimens ionof Y`2 equals the projective dimension ofY .

Notice that̀ 2-functions produced by this method appear as normal projections
of δ-functions toY`2,

δ(γ ) =
{

1 at a givenγ ∈ 0,
0 for γ ′ 6= γ

and of more general functionsρ with compact supports on0. Such a projection can
be obtained in certain cases as the limit(t →∞) of the heat flow which suggests a
possible (not the only one) nonlinear generalization of the`2-story and which shall
be discussed further in the second part of this paper.
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2.1.2. Comparison betweendim`1, dim`2 anddim`∞

The above suggests that the mean dimension ofY`∞=defY ∩ `∞(0;Rs) minorizes
the Von Neumann dimension ofY`2. Here`∞(0;Rs) denotes the space of bounded
functions on0 with the sup-norm and the mean dimension refers to that ofY`∞∩B0
for a ballB ⊂ Rs. I do not know if this actually is true but a similar result is valid
with our topological widimε replaced by its linear counterpart, denoted dim−ε A.
This is defined for (centrally symmetric) subsetsA in a Banach spaceL as the
maximal dimensionn of a linear subspaceL0 ⊂ L, such that the intersection
A∩L0 contains theε-ball inL0 around the origin. Notice that dim−ε A 6 widimε A

according to 1.1.2 but it remains unclear when dim−ε A > widimε′ A.
Next, given a0-invariant subspaceX ⊂ `∞(0;Rs), we take its intersection

with the unit ball in`∞(0;Rs), call thisX1 ⊂ X and project it to the spaces
`∞(�i;Rs) by just restricting functions from0 to �i ⊂ 0 as we always do. We
look at the images ofX1, call themX1|�i ⊂ `∞(�i;Rs), and set

dim`∞(X : {�i}) = lim
ε→0

lim
i→∞ sup dim−ε (X1 | �i)/|�i|.

Now, the argument in 1.12 shows thatif the spaceX1 is weakly closed iǹ∞(0;Rs),
then

dim`2(X`2 : 0) > dim`∞(X : {�i}) (∗)
for every amenable exhaustion{�i} of 0. In particular, ifX1 is weakly closed
and dim̀∞(X : {�i} > 0 for some amenable exhaustion{�i} thenX contains a
nonzerò 2-function0→ Rs.

2.1.3. Remarks.(a) The present condition of weak closeness is by far less
demanding than the one in 2.1. In particular, the above(∗) applies to the spaces
coming from solutions of linear elliptic PDE.

(b) Every`2-function on0 is bounded. Furthermore every nonzerox ∈ X ∩
`2(0;Rs) gives rise to many functions inX ⊂ `∞(0 : Rs) by taking sums∑

γ∈0 cγ γ x for square summable(i.e. `2) functionsγ 7→ cγ ∈ R on 0. But it
is unclear if

dim`2(X`2 : 0) > dim`∞(X : {�i}).
It is not even clear what kind of̀2-condition ensures the positivity of dim`∞ and/or
of the mean dimension. On the other hand,if X contains a single nonzerò1-
function, thendim`∞(X : {�i}) is positivefor every amenableexhaustion{�i} of
0. In fact, given anx ∈ X ∩ `1(0;Rs), we get lots of bounded functions inX by
taking sums

∑
γ∈0 eγ λ(x) for boundedfunctionsγ 7→ cγ ∈ R on0. These suffice

to prove that dim̀∞ > 0 and, probably, to show that dimł1 6 dim`∞ for a suitably
defined dimension dim̀1 = dim`1(X`1 : {�i}).



358 MISHA GROMOV

Squaring`2-functions.Suppose we are given a bilinear mapRs ⊗ Rs → Rs ′,
denoted(x, y) 7→ x • y and observe that so defined product of`2-function0 →
Rs lands in`1(0,Rs

′
). Denote byX2

`2
⊂ `1(0,Rs

′
) the set of the products of all

x, y ∈ X2
`2

, take the linear span ofX`2 and let`∞(X2
`2
) be the closure of this span

in `∞(0 : Rs ′). If our product is sufficiently nondegenerate, then

dim`2

(
X`2 : 0

) 6= 0⇒ dim
(
`∞
(
X2
`2

) : 0) 6= 0.

QUESTION. When does one have the inequality

dim
(
`∞
(
X2
`2

) : 0) > dim`2

(
X`2 : 0

)
?

For example, is this true forCs-valued functions with the component-wise
productCs ⊗ Cs → Cs?

2.2. GENERICITY AND 0-TRANSVERSALITY

Denote by�÷D the set ofγ ∈ 0, such thatγD ⊂ �. In other words,�÷D is
the maximal subset�− in 0 such that�−D ⊂ �. Clearly, the cardinality of this
subset�÷D in 0 satisfies

|�÷D| 6 |�| and |�i ÷D|/|�i| → 1

for every finite subsetD and each amenable sequence�i ⊂ 0. (Notice that if0
has no torsion, then|�÷D| 6 |�| − |D|+1.) It is equally clear that the subspace
L� ⊂ X� of L-legal functions on� (i.e. thosex: � → X whose restriction to
every translateγD ⊂ � is contained inL) has

codimL� 6 |�÷D| codimL

and so

legdim(Y : {�i}) > dimX − codimL (+)
for all amenable�i in 0.

�-Transversality.Denote byL̃ ⊂ X0 the pull-back ofL ⊂ XD under the
restriction map (projection)X0 → XD and say thatL is�-transversal, for a given
subset� ⊂ 0, if the translatesγ L̃ ⊂ X0 are all simultaneously transversal forγ
running over� ÷ D. This makes sense, strictly speaking, only for finite subsets
� ⊂ 0; if � is infinite this is understood as�0-transversality for all finite subsets
�0 ⊂ �.

It is clear that

L� =
⋂
γ L̃

γ∈�÷D
and Y (L) =

⋂
γ∈0

γ L̃.
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Thus�-transversality implies that

codimL� = |�÷D| codimL

and0-transversality yields the ‘expected’ identity

legdim(Y : {�i}) = dimX − codimL (=)
for all amenable�i ⊂ 0.

Now we want to decide how generic is the0-transversality assumption. To do
this we representL ⊂ XD by r independent linear equations withr = codimL,
i.e. we makeL = Kerα for some linear mapα: XD → Kr , let α: X0 → (Kr)0

be the corresponding difference operator andα′: Kr(0) → Ks(0) be the dual
K(0)-morphism fors = dimX (andKs = X). It is obvious that

the morphismα′ is one-to-one if and only ifL is0-transversal.

Thus the0-transversality problem and issuing relation(=) reduce to deciding
whenα′ is injective.

2.2.1. It is notationally convenient to interchanger ands and look at mapsα from
Kr(0) ⊂ (Kr)0 to Ks(0) ⊂ (Ks)0 defined byα ∈ Maps((Kr)D → Ks). We
denote by In� ⊂ Maps((Kr)D → Ks), � ∈ 0 the subset of thoseα for which
the kernel ofα: Kr(0) → Ks(0) containsno function x: 0 → X = Ks with
support in� (where we view elements inKs(0) asKs-valued functions on0 with
finite supports). Clearly, if� is finite, this is a Zariski open subset and ifs > r

it is nonemptyas it contains an injectiveα: Kr(0) → Ks(0) corresponding to
an embeddingKr → Ks . The subset we really want to understand is In=def In0
corresponding toinjectiveα and this equals intersection of InD over all finiteD ⊂
0. We see from the above that this In⊂Maps((Kr)D → Ks) = Krs|D| equals the
intersection of a countable family of Zariski open subsets and therefore it is rather
large, at least for uncountable fieldsK. In fact, it is clear that

if s > r, then everyα, whose allsr|D| components are algebraically inde-
pendent over the prime fieldK0 ⊂ K, gives rise to an injectiveα, where the
corresponding(dual) L satisfies(=).
2.2.2. SupposeK = R and show that

In ⊂ Rsr|D| contains a nonempty open subset fors > r.

To see this let firsts = r and observe that every operator of the form1 +
ε: Rs(0) → Rs(0) is injective if the sup-norm ofε is < 1, since the equation
ε(x) = x has no nontrivial solution for‖ε‖ < 1 (where one may allow nonlinear
operatorsε as well). Now, ifε comes fromε: Rs|D| → Rs, then the condition
‖ε′‖ < 1 is ensured by the inequality‖ε‖ < 1, where the norm ofε can be taken
relative to an arbitrary norm onRs and the corresponding sup-norm onRs|D| =
(Rs)|D|. This yields our claim fors = r and the cases > r trivially follows.
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(a) One can relax the condition‖ε‖ < 1 to ‖ε‖ 6 1 provided the equality
‖ε(x)‖ = ‖(x)‖, for x = (x1, x2, . . . , x|D|), xi ∈ Rs , is possible only forx1 =
x2 = . . . x|D|. This situation arises, for example, for diffusion operators onR(0).

Remarks.(b) The above applies to every normed fieldK, e.g. toQ with ap-
adic norm. For example, ifε is given by an(s|D| × s) matrix with integer entries
divisible by a prime number, thenthe corresponding morphism1+ ε: Qs(0)→
Q(0) is injective.

In fact,1 + ε remains injective if we replaceQ by an arbitrary field of char-
acteristic zero. More generally, letλ be an arbitrary complex number and let all
entries of the above matrixε be integer polynomials inλ without constant terms
(i.e. divisible byλ). Thenthe corresponding morphism1+ ε: Cs(0)→ Cs(0) is
injective, provided eitherλ is transcendental or an algebraic integer which is not
a root of unity.

In fact, the fieldQ(λ) obviously admits a norm making‖ε‖ < 1 under the above
assumptions.

(c) Our (implicite function) argument, shows that an injective morphismα:
Kr(0) → Ks(0) remains injective under small perturbations if it admits a right
inverse, i.e. a morphismβ: Ks(0)→ Kr(0), such thatβ ◦ α: Kr(0) → Kr(0)

equals1. Suchβ obviously exists (and this was used above) forα induced by
an embeddingKr → Ks , but it is unclear how typical such invertibility is for
generalα. To get a perspective, let0 = Zn andK = C. ThenK(0) = C(Zn)
identifies with the ring of regular functions on the torus(C×)n and morphisms
Cr(Zn) → Cs(Zn) become homomorphisms from the trivial vector bundle of
rank r over this torus to such bundle of ranks. Then injectivity ofα translates
to injectivity of the vector bundle homomorphism onsomefiber, while invertibility
of α amounts to injectivity onall fibers. Thus we see that thoseα for which α is
injective (i.e. those from In) constitute anonempty Zariski open subset inCsr|D| for
s > r and all finite subsetsD ⊂ Zn, while α corresponding to invertibleα have a
similar property only fors > r + n.

(d) If one replaces the spaceRs(0) by its dual(Rs)0, then the corresponding
implicit function argument yieldssurjectivityof maps1+ε for suitably contracting
(possibly nonlinear) mapsε: (Rs)0 ←↩ of finite type (i.e. defined viaε: (Rs)D →
Rs for finite D ⊂ 0). In fact, such an argument yieldsbounded(and alsò p for
p < ∞) solutions to the equationx + ε(x) = y for y ∈ Rs(0) ⊂ `∞(0;Rs) ⊂
(Rs)0 and then one uses density ofRs(0) in (Rs)0. Notice that all this applies
to (Ks)0 for all complete normed fieldsK as well as some subvarieties in these
(Ks)0.

(e) Another class of injective examples is provided by positive selfadjoint oper-
atorsRs(0)←↩. For example, ifβ: Rs(0)→ Rt (0) is injective, thenβ∗β : Rs(0)
is positive selfadjoint and so injective.

2.2.3. Let us give a combinatorial condition onD ⊂ 0 which provides anonempty
Zariski opensubset in In= In0 ⊂ Maps((Kr)D → Ks).
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DEFINITION. A collectionE of nonempty subsetsE ⊂ D is called anextremal
family if for every nonempty finite subset� ⊂ 0 there existsγ ∈ 0, such that
(γ�) ∩D ∈ E .

EXAMPLES. (a) IfD ⊂ Zn ⊂ Rn, then the collection of the extremal points of
the convex hull ofD makes an extremal family as an obvious argument shows. The
same is true for free groups realized as vertex sets in trees, where the convex hulls
are defined as the spanning subtrees.

Next, for an arbitrary collectionE of subsets inD define InE ⊂ Maps((Kr)D →
Ks) as the set of thoseα: (Ks)D → Kr which are injective on the subspaces(Ks)E

for all E ∈ E , where(Ks)E embeds to(Ks)D by extending functions by zero on
D\E. Clearly, InE is Zariski open and it is nonempty if supE∈E cardE 6 s/r. On
the other hand, ifE is an extremal family, then InE ⊂ In0. In fact, if α(x) = 0,
then the support� ⊂ 0 of x: 0 → Kr must be empty as trivially follows from
the above definitions. Thus we obtain a nonempty open subset in In0, providedD
admits an extremal family with sup cardE 6 s/r.

EXAMPLE. A group 0 is calledD-uncoiled if D admits an extremal system
E with sup cardE = 1. We say0 is uncoiled (traditionally, a unique product
group) if it is D-uncoiled for all finite subsetsD ⊂ 0. (Notice that free groups
are uncoiled by the above remark and extensions of uncoiled groups by uncoiled
are, obviously, uncoiled. All this is well known, see [Pass].) For such groupswe
have our nonempty Zariski open subset inIn for all D, provideds > r (which
extend the solution of theKaplansky problemfor these groups, i.e. nonvanishing
of α for s = r = 1 andα 6= 0, see [Pass]).

Next we want to make examples of injectiveα for s < r, i.e. we want to embed
Kr(0) toKs(0) for s < r.

DEFINITION. Call a subsetD ⊂ 0 tree-like if for every finite subset�, there
existγ andγ ′ 6= γ in 0 andw ∈ �, such that

γ� ∩D = {γw} and γ ′� ∩D = {γ ′w}.

BASIC EXAMPLE. Leta, b ∈ 0 be freely independent. Then the subset{a, b,
a−1} ⊂ 0 is tree-like. Indeed this reduces to the free case for0 = F(a, b), where
everything is clear withw ∈ � being an extremal point of the spanning tree (convex
hull) of �.

Now, define a subsetT2 ⊂ Maps((Rr)D → 0s) as follows. For a pair of points
δ, δ′ ∈ D, consider the subspacesRrδ,Rrδ′ ⊂ (Rr)D consisting of functionsD→ Rr
concentrated atδ andδ′ correspondingly and identify them with the standardRr .
Then each mapα: (Rr)D → Rs restricted toδ andδ′, gives us a map of thisRr to
R2s and we declareα ∈ T2 if this map is injective for every pair of distinct points in
D. ClearlyT2 is Zariski open and it is nonempty for 2s > r. On the other hand, our
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previous argument shows that ifD is star-like, thenT2 ⊂ In and so we obtain, in
particular, aninjectiveK(0)-morphism fromK2(0) toK1(0), provided0 admits
a star-like subset,e.g.,if 0 contains a free nonAbelian subgroup.

Remark. If the group0 is amenable, then an easy argument shows that there is
no injective morphismKr(0)→ Ks(0) for r > s. On the other hand, such maps
may exist forall nonamenable goups. Also one can ask which nonamenable groups
admit star-like subsets where the picture is unclear, for example, for torsion groups
with sufficiently rare sets of relations. (It is easy to construct anon0-invariant
embeddingK2(0) → K1(0) of finite type for every nonamenable group using a
bounded measure contracting ‘vector field’ or such0.)

Application to the entropy.Let0 be amenable and the subset In⊂ Maps((Kr)D

→ Ks) be nonempty Zariski open, e.g.,0 is polycyclic torsion free,D ⊂ 0 is an
arbitrary finite subset andr 6 s. If the fieldK is finite, this Inmay be still rather
small but it increases as we pass to finite extensionsK• of K. In fact it covers
almost all spaceKrs|D|• = Maps((Kr• )D → Ks•) for largeK•, i.e.

card(In(K•))/ cardKrs|D|
• → 1

for cardK• → ∞.
Next we observe that the topological entropy of the spaceY = Y (L(K ′•)) for

a given lawL ⊂ (K•)D obviously equals prodim(Y : 0) log cardK•. Thus we
obtain many examples of subshifts of finite type where we know what the entropy
is,

topent(Y : 0) = (s − r) log |K•|.
Observe that topent(Y : 0) is notoriously difficult to compute for subshifts of finite
type over0 noncommensurable toZ and the above algebraic systems constitute the
bulk of available examples (compare [Schm]). We conclude by noticing that the
above applies to uncoiled groups and it seems harder to generate such examples
for groups which contain coils or where uncoilness is unknown.

2.3. STABILITY AND TRANSVERSALITY

A (possibly nonlinear) lawL ⊂ XD is calledρ-stableon � ⊂ 0 if the legal
extendability of functionsx from�0 ⊂ � (i.e. ofx ∈ (X)�0) to�, i.e. to functions
y ∈ L� ⊂ (X)�, is equivalent to legal extendability to theρ-neighbourhood�0+ρ
of �0, where we require this property for all�0 in �, such that�0 + ρ ⊂ �

(compare [GroESAV]). It is easy to see that linear lawsL ∈ Grr (Ks)D which are
ρ-stable on a finite subset�make a constructible subset in Grr (K

s)D (i.e. a union
of intersections of Zariski closed and Zariski open subsets). Also, if�0+3ρ ⊂ �,
andL is ρ-stable on�, then every legal functionx on�0+ 3ρ can be modified to
x0, such thatx0 | �0 = x | �0 and such thatx0 vanishes outside�0 + 2ρ. Thus,
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for ρ > DiamD, one can extend suchx0 to a legal function on all of0 vanishing
outside�0+ 2ρ.

LEMMA. If L is ρ-stable on10ρ-ball �ρ in 0 for ρ > DiamD andL is �ρ-
transversal, then it is0-transversal.

Proof.SupposeL is�-transversal and prove it is�1-transversal for�1 = � ∪
{γ1} and someγ1 ∈ 0\�. Denote byL⊥1 ⊂ (Ks)�1 the intersection of thoseLγ ⊂
(Ks)�1 for which γ1 ∈ γD ∈ �1 and observe that all we need to prove is the
transversality ofL⊥1 with L�. Then we take the 2ρ-ball B1 = B(γ1,2ρ) aroundγ1

and project(Ks)�1 to (Ks)B1∩�1. We denote byL⊥1 andL� the images ofL⊥1 and
of L� under this projection and observe that the transversality of these images is
equivalent to the transversality of the original spacesL� andL⊥1 . But in the stable
case these images are the same for smaller�, namely for�′ = � ∩ B(γ1,5ρ),
where the transversality follows from our assumptions. Thus, the proof follows by
induction on card�. 2
COROLLARY. The intersection of the subsetTran0 ⊂ Gr(Ks)D with the set of
ρ-stable laws on�ρ, sayTran0 ∩Stρ , is Zariski open inStρ .

QUESTION. Under which assumptions on0,D, ρ doesStρ ⊂ Grr(Ks)D contain
a nonempty Zariski open subset?

2.3.1. Disjoint Transversality

This property is very close to the above stability and it expresses the idea of
noninteraction between subsets in0 separated by distances> ρ, where the space
Y = L0 ⊂ X = (Ks)0 serves as the medium of such intersection. Namely, we
say that the spaceY ⊂ X is ρ-disjointly transversalif for every finite system of
finite subsets�1, . . . , �i, . . . ,�m in 0 with dist(�i,�j) > ρ, 1 6 i < j 6 m,
them subspacesYi consisting ofy ∈ Y satisfyingy | �i = 0, i = 1,2, . . . ,m,
are transversal inY . Thendisjoint transversalitymeansρ-disjoint transversality
for someρ > 0.

It is clear that

stability ⇒ disjoint transversality

(where ‘stability’ means ‘ρ-stability on0 for someρ’) and in many cases (e.g. for
groups with bounded asymptotic dimensions, see [GroESAV]) the disjoint transver-
sality implies the existence of astablesublawL′ ⊂ LD′ ⊂ (Ks)D

′
for some finite

subsetD′ ⊂ 0, such thatL′0 = Y = L0. On the other hand, disjoint transversality
of the spacesL� for all finite� ⊂ 0 (with an obvious modification of the definition
where� takes the role of0) is equivalent to the stability as an easy argument
shows.
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2.3.2. Open Problem

The old unsolved question concerns the possible values of prodim(Y : 0). The
above considerations indicate many examples, where this prodim is aninteger for
certain (torsion free) groups and it is quite easy to make examples where it takes
rational values for groups with torsion. (See [Lúck] for further discussion of this
problem for the Von Neumann dimension.)

As we have seen above, the integrality of prodim follows from the0-transversa-
lity of a given presentation (i.e. a lawL) of our Y ⊂ (Ks)0, and one may ask for
which 0 everyY ⊂ (Ks)0 of finite type admits a presentation (possibly in some
(Ks ′)0 for s′ > s) with 0-transversalL. This can be, probably, expressed with a
suitable Grothendieck groupK0(0) = K0(K(0)) of finitely generated moduli over
K(0) (or a given amenable algebraA in general). Our prodim should give us a
homomorphism, sayd: K0(0)→ R, and we also have a homeomorphismi: Z→
K0(0) where eachs ∈ Z goes to[Ks(0)] ∈ K0(0). Now the basic questions read:
What is the image ofd? When does it equal toZ ⊂ R or is contained inQ? What
is there inK0(0)/i(Z)? Do the subgroupsi(Z) and kerd generateK0(0)?

Apparently, all this is well known forpolycyclicand, moreover, forelementary
amenablegroups, whereK0(0) tends to be quite small (as was pointed out to me
by Ofer Gabber, also see [Lück]).

Another kind of a transversality question is as follows.
Given submoduliY ⊂ Ks(0) andY0 ⊂ Ks0(0), can one find aK(0)-morphism

ρ: Ks(0)→ Ks0(0), such that

prodim(Y ∩ ρ−1(Y0)) 6 δ
for a givenδ > 0? More specifically, when is this possible withδ = prodimY−s0+
prodimY0? Or, even better, when can one findρ mappingY 0-transversally (in an
obvious sense) toY0? For example, when does, for a givenY ⊂ Ks(0), there exist
ρ: Ks(0)→ K(0), such that the kernel ofρ is0-transversal toY? Also, observe
that the dimension type invariants of moduli lead to norms onK0(0) andK0(0)/iZ
(see [Gro]PCMD). Finally, notice that theK-theoretic point of view does not do
justice to such moduli asKs(0)/ρKs(0) for embeddingsρ: Ks(0) → Ks(0)

(describing determined systems of independent difference equations).

2.4. MEAN DIMENSION OF SUB-LINEAR SUBSHIFTS

Take a linear subshiftY0 ⊂ X0 for X = Rs and letB ⊂ Rs be a compact subset
containing the origin in its interior. Then,Y = Y0 ∩ B0 ⊂ B0 makes a closed
0-invariant subshift (which can be called ‘sublinear’) in the compact (full shift)
spaceB0 where one may speak of our mean dimension dim(Y : {�i}).
2.4.1. PROPOSITION.The mean dimension ofY = Y (L) ⊂ B0 equals the pro-
jective dimension ofY0 ⊂ X0

dim(Y : {�i}) = prodim(Y0 | {�i})
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for all amenable sequences�i ⊂ 0. Consequently,

dim(Y : {�i}) = legdim(Y0 : {�i}).
Proof.The upper bound on dim(Y : {�i}) follows from 1.9 and we concentrate

on the lower bound. We observe that the projectionp: B0 → B� is distance
decreasing for the metric|x − x′|� onB0 and the sup-product metric onB�. Then
we assume, without loss of generality, thatB equals a small ball inRs around the
origin and then, by applying 1.1.2, obtain the following inequality for the image
Y | � =def p(Y ) ⊂ B� with the sup-product metric

Widimε Y� >Widimε Y | �
whereY� = (Y, |x − x′|�) as earlier. 2

Now the proposition is reduced to the following

LEMMA. There existsε = ε(X) > 0, such that

Widimε(B
� ∩M) = dimM

for all finite subsets� ⊂ 0 and every linear subspaceM ⊂ (Rs)� ⊃ B� (where,
we use the sup-product metric inB�).

Proof. Everything trivially reduces toB being a ball inRh around the origin
and thenB� ∩M appears as the unit ball with respect to the Banach norm inM

induced from the norm in(Rs)� with the unit ballB�. Then 1.1.2 applies and the
proof follows. 2
2.4.2. COROLLARY.If s > r, then the subset of the lawsL’s in Grr(Rs)D giving
Y of mean dimensions−r is residual. Furthermore, it always contains a nonempty
open subset and, if0 is uncoiled, then ‘open’ can be strengthened to ‘Zariski open’.

2.5. ON LOCAL DIMENSION OF0-SUBVARIETIES

Let X be an algebraic variety (over some field, e.g.R or C) or an analytic space
(overR or overC) or a smooth manifold (where, more generally, we may allow
stratified spaces, e.g. polyhedra). We are interested in subsetsY ⊂ X = X0 defined
by a law which is a subvarietyL ⊂ XD in our category. Here, as earlier, one may
first look at the legal and projective dimensions and then try to prove that the mean
dimension ofY intersected with a bounded (and weakly compact) partB ⊂ X0

equals the projective dimension.
Conjecture.If Y is defined by a generic lawL ⊂ XD of codimensionr, then

legdim(Y : 0) = prodim(Y : 0) = dim(Y ∩ B : 0) = s − r (=)
for s = dimX andB = B0, whereB ⊂ X is a sufficiently large compact subset.
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Notice that the major difficulty in proving that

dim(Y ∩ B : 0) > prodim(Y : 0) (∗)
stems from the problem of bounding from below Widimε Y ∩ B in the finite-
dimensional case (see 1.1.4). Yet, even without resolving the finite-dimensional
problem from 1.1.4, one expects(∗) in many cases, e.g., forY = Y (L) where
L ⊂ XD is real analytic.

Another (rather technical) issue, which comes about in the smooth category, is
a possible bad behaviour of the singularities ofY = Y (L) and of the intermediate
finite-dimensional spacesL� ⊂ X�, � ⊂ 0. It is unclear ifL� can be as bad as
any other closed subset but, in any case, one can rule out major (?) pathologies by
imposing genericity assumptions onL, making allL� stratified subsets (and often
just smooth submanifolds) inX� (compare 2.7).

2.5.1. Many examples ofY = Y (L) ⊂ XD, where dim(Y : 0) = s − r, e.g., for
X = Rs, can be obtained with the implicit function theorem (see 2.2.2). Namely,
we start with someL0 ⊂ X0, where the equality dim(Y (L0) : 0) = s− r is known
for some reason (e.g.L0 ⊂ (Rs)D is a generic linear law of codimensionr) and
then apply a difference operatorA: X0 → X0 which is sufficiently close to the
identity, e.g.A = Id+ε: (Rs)0 → (Rs)0, where the impliedε: (Rs)D → Rs

is bounded and has small differential. ThenY = A−1(Y (L0)) ⊂ X0 will have
the same mean dimension asY0 by the discussion in 2.2. For example, if we start
with L0 ⊂ (Rs)D of codimensionr 6 s represented as the kernel of a linear map
(Rs)D → Rr factoring through a coordinate projection(Rs)D → Rs, then every
small smoothC1-perturbationLε of L0 in (Rs)D gives usYε = Y (Lε) ⊂ (Rs)0
with dim(Yε : 0) = s − r.
QUESTION. LetL ⊂ (Rs)D be a smooth submanifold of codimensionr con-
taining the origin 0∈ (Rs)D and denote byL0 the tangent spaceT0(L) of L.
What property ofL0 ensures thatL is 0-transversal near the origin and thus every
L� ⊂ (Rs)� is smooth of codimensionr|� ÷ D| near the origin, i.e. when in-
tersected withB�ε , whereBε ⊂ Rs is a ε-ball with ε > 0 independentof �?
Moreover, we want dim(Y (L) ∩ B0ε ) : 0 = s − r under a suitable assumption
onL0. (Apparently, what we need is some kind ofuniform0-transversality ofL0

meaning, for example, that the corresponding mapRr (0) → Rs(0) is not only
injective, but is left invertible in thè1-topology.) Also, we wish a more general
result of this type applicable to an arbitrary (non0-fixed) pointy0 ∈ Y (rather than
y = 0), where the corresponding tangent spaceTy0(Y ) is not0-invariant.

2.6. GLOBAL LOWER BOUNDS ONdim(Y (L) : 0) FOR NONLINEAR LAWSL ⊂ XD

Although we have no general result at the moment for ‘local’ mean dimension it is
possible to obtain some lower bounds for ‘global’ infinite dimensional varieties.
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An appealing example is whereX is the complex projective space andL is
a complex algebraic subvariety, i.e.L ⊂ (CPm)d , d = cardD. We shall show
for suchL that thecorresponding subspaceY ⊂ (CPm)0 of L-legal functions
0→ CPm (see 2.6.14 and 2.7)has the expected mean dimension

dim(Y : 0) = 2m− codimRL, (∗)
providedL is generic in a suitable sense(see 2.7).

In fact the upper bound on dim(Y : 0) follows from that for the legal dimension

legdimY 6 dimX − codimL (∗)6
which holds true in all categories whenever one has a reasonable notion of gener-
icity for L (i.e. whenL appears as a member of a sufficiently ample family of
subvarieties, see 2.7). On the other hand, the lower bound

dim(Y : 0) > dimX − codimL (∗)>
does not need genericity but rather homological nondegeneracy ofL (see below)
which, in the case ofX = CPn, is satisfied byall algebraic subvarietiesL ⊂
(CPm)d . In fact this nondegeneracy is satisfied for many (e.g., sufficiently mobile)
L ⊂ Xd , whereX is any complex projective variety but (see 2.7) it is unclear if
(∗)> holds true for all algebraicL ⊂ Xd .

2.6.1. Homological Lower Bound on the Mean Dimension

Let X be a compact finite-dimensional locally contractible metric space, take a
Cartesian powerXM = X ×X · · · ×X︸ ︷︷ ︸

M

with the sup-product metric and con-

sider aλ-Lipschitz map from a compact metric space intoXM , sayα: Y →
XM . We denote byN the maximal integer such that the inducedhomomorphism
HN

Čech
(XM)→ HN

Čech
(Y0) does not vanish.

2.6.2. TOPOLOGICAL LEMMA.There exists a positiveε = ε(X) > 0, such that
theε′-dimension ofY for ε′ = ε/2 satisfies

Widimε′(Y ) > N,

where thisε does not depend onM, Y , α andN .
Proof. If Y admits anε-embedding to a polyhedronP then the cylinder of this

map, sayZ ⊃ Y admits a metric extending this ofY , such that dist(z, Y ) 6 ε/2 for
all z ∈ Z (compare 2.5). Next we consider theM projections ofXM toX, compose
them withα and observe that the resulting mapsY → X extend to continuous maps
P → X for ε′ 6 ε0 = ε0(X) > 0. In factX embeds into some Euclidean space,
sayX ⊂ Rn, where we may assume our original metric inX is induced by this
embedding. Since our map fromY toX ⊂ Rn is λ-Lipschitz, it extends to aλδn-
Lipschitz map fromZ ⊃ Y to Rn ⊃ X. Now, as all ofZ is ε′/2-close toY , for
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ε′ = ε/2, ourZ landsδ-close toX ⊂ Rn for δ 6 ε
2δn. But theδ-neighbourhood

of X in Rn, for small δ 6 δ0(X ⊂ Rn) > 0, retracts toX, sinceX is locally
contractible. This gives us the desired mapZ → X extendingY → X and all
theseM maps together extend the original embeddingY ⊂ XM to a continuous
mapZ→ XM .

Finally, if dimP 6 N−1, the above extension allows a homotopy of the embed-
dingY ⊂ XM to a map which factors through a(N − 1)-dimensional polyhedron.
This makes the induced homomorphism onHN zero. 2

2.6.3. Homological Dimension

GivenY ⊂ X0 we define itsprojective homological dimensionrelative to a given
exhaustion�i of 0 by projectingY toX�i , denoting byNi the maximal dimension
where the corresponding cohomological mapH ∗

Čech
(X�i ) → H ∗

Čech
(Y ) does not

vanish and then by setting

prohomdim(Y : {�i}) = lim inf
i→∞ Ni/ card�i.

Next define a similar stable legal dimension forY = Y (L) ⊂ X0 coming from
L ⊂ XD by

stlehodim(Y : {�i}) = lim inf
i→∞

lim
j→∞

Nij/ card�i,

whereNij denotes the maximal dimension of nonvanishing of the cohomology
homomorphism corresponding to the projectionLij : L�j → L�i , j > i.

It follows from the continuity of theČech cohomology under the projective
limits that

stlehodim= prohomdim

in the category of compact metric spaces. This combines with the above topological
lemma and leads to the following

2.6.4. Practical Lower Bound on the Mean Dimension

If X is as in 2.6.A, thenY = Y (L) ⊂ X0 satisfies

dim(Y : {�i}) > stlehodim(Y : {�i})
for all compact lawsL ⊂ XD.

Proof.All one has to add to the above discussion is the following obvious com-
parison between the sup-product metric inX� and|x − x′| in X0: the projection
(X0, |x − x′|�) to (X�, sup-metric) is 1-Lipschitz. 2
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Remark.The dimension stlehodim (despite the ugly notation) is a computable
quantity and so the above lower bound on the mean dimension is practically useful.

2.6.5. Evaluation of Stlehodim in Manifolds

Given a subspaceB in a compact spaceA we denote by3(B) ⊂ H ∗(A) the part
of the cohomology ofA which can be represented by̌Cech cocycles supported
arbitrarily nearB, where the cohomology is taken with coefficients in a fixed field
K. Notice thatλ ∈ H ∗(A) belongs to3(B) iff its restriction toA\B vanishes.
This is obvious. Furthermore, ifA is a closed manifold, then3(B) equals the
Poincaré dual of the image ofH∗(B) inH∗(A). This is a (small) part of the standard
‘Poincaré duality package’ which is attached to allhomology manifoldsand also
applies (with some precaution) to generalPoincaré duality spaces. Here is another
obvious property of3(B),

(?) if someα ∈ H ∗(A) restricts to a trivial class onB ⊂ A, thenα ^ λ = 0 for
all λ ∈ 3(B).

This will be used below in the following way. Define corankλ, λ ∈ H`(A),
as the maximalk, such thatλ ^ α 6= 0 for someα ∈ Hk(A). Notice that ifA
is ann-dimensional manifold (or a general Poincaré duality space), then corank
λ = n − ` for all nonzeroλ in H`(A). More generally, given a mapA → C,
define corankCλ by means of thoseα ∈ Hk(A) which come fromHk(C). Clearly,
corankC 6 corankA = corank.

Next, set

corankC B
def= corankC 3(B)

def= sup
λ∈3(B)

corankC λ

for a givenB ⊂ A. Clearly,(?) implies thatthe latter corank bounds from below
the maximal dimensionk where the homomorphismHk(C)→ Hk(B) (induced by
B ⊂ A→ C| ↑ ) does not vanish.

Finally we observe that

3(B1 ∩ B2) ⊃ 3(B1) ^ 3(B2) (∩)
for all pairs of compact subsetsB1 andB2 in A.

Now we return to our power spaceX0 andY = Y (L) ⊂ X0 for a lawL ⊂ XD,
D ⊂ 0. Recall that

Y (L) =
⋂
γ∈0

γ YL, (∩G)

for YL ⊂ X0 being the pull-back ofL under the projectionX0 → XD. We denote
by3∗ ⊂ H ∗(X0) the pull-back of3(L) ⊂ XD under this projection and we want
to apply(∩) to theinfinite intersection(∩0).
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DEFINITION OFH×. Given a commutative (or, skewcommutative) algebraH

we denote byH× the set of formal finite and infinite products,

H× =
{
h× =

∏
i

hi

}
, hi ∈ H,

wherei may run over an arbitrary index setI . We say (and this is all we care about)
that some suchh× ∈ H× does not vanish, writtenh× 6= 0, if

∏
i∈J hi 6= 0 for all

finite subsetsJ ⊂ I .

We shall apply the above convention toH = H ∗(X0) and denote the corre-
spondingH× by H×(X0). Here the most interesting infinite products are of the
form

h× =
⋃
γ∈0

γ h

for someh ∈ H ∗(X0) and we want to decide when such anh× does not vanish.
More specifically, we define3×(Y ) ⊂ H×(X0) as the set of the products

^γ∈0 γ λγ for all assignmentsγ 7→ λγ ∈ 3∗ and we introduce the following

DEFINITION. Given a finite subset� ⊂ 0, consider anα in the image of
HN(X�) in HN(X0) (for the projectionX0 → X�) andλ× ∈ 3×(Y ), such that
α ^ λ× 6= 0 and letN be the largest integer where suchα andλ× exist. Then set

corank(Y : �) def= corank(3×(Y ) : �) def= N/ card�.

2.6.6. PROPOSITION.The above corank bounds from below the stable legal ho-
mological dimension ofY = Y (L) for compact lawsL ⊂ XD,

stlehodim(Y : {�i} > lim inf
i→∞

corank(Y : �i).

The proof is clear with the preceding discussion. Also, the following corollary
is now obvious.

2.6.7. If X is a closed manifold(or a general Poincaré duality space) and λ ∈
3(L) ∩ Hk(XD) is a class such that its liftλ toH ∗(X0) satisfieŝ γ∈0 γ λ 6= 0,
thenstlehodim(Y : 0) > k and consequentlydim(Y : 0) > k.
2.6.8. EXAMPLE: UNTANGLED LAWS AND MONOMIALS. SupposeL0 ⊂
XD is given byd untangled(systems of) equations in the (groups of) variablesxi ,
i = 1, . . . , d = cardD, namely byf 0

i (xi) = 0, i = 1, . . . , d. In other words,
L0 equals the intersection ofd-subsetsL0

i coming from someL0
i ⊂ X via thed

projectionsXD → X (where eachL0
i ⊂ X may be given by the equationf 0(xi) =

0). Then take someλi ∈ 3(L0
i ) and observe that their tensor product (monomial)

λ1⊗ λ2⊗ · · · ⊗ λd is contained in3(L0).
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Denote byλ the cup-product ofλ1, . . . , λd in H ∗(X) and suppose there exists
α ∈ Hk(X) such thatλ ^ α 6= 0, i.e. corankλ > k. For example, ifX is a closed
manifold (or a general Poincaré duality space) of dimensions andλ ∈ Hr(X), then
there always exists such anα ∈ Hk(X) for k = s − r.

Next, we consider theγ -translates of the monomialλ1⊗ · · · ⊗ λd for all γ ∈ 0
and formally cup-multiply them over0. The resulting0-monomialclearly equals
the tensor product of0 copies (translates) ofλ, oneλ assigned to eachγ ∈ 0.
Denote this0-product byλ0 and observe that, formally,

λ0 ^ α0 = (λ ^ α)0 6= 0

for the aboveα ∈ H×(X).
2.6.9. COROLLARY.LetL ⊂ Xd be homologous toL0, and so3(L) contains the
above monomialλ1⊗λ2⊗· · ·⊗λd . Thendim(Y (L) : 0) > k. In particular, ifX is
ans-dimensional manifold andL is homologous to intersection ofd cycles coming
from some cyclesLi in X (via thed projectionsXD → X, d = cardD), where∑d

i=1 codimLi = r and the homology class represented by their intersection in
Hs−r(X) does not vanish, then

dim(Y (L) : 0) > s − r. (>)

2.6.10. Remarks.(a) This corollary is most powerful if applied to the coho-
mology with finite (e.g.Z/2Z) coefficients where the monomial condition is not
so restrictive. Thus starting with a monomialµ0 in H ∗(XD;Z) nondivisible by an
integerp, one gets nonmonomial classes of the formµ0+pµ′ where the corollary
may apply.

(b) If we work with real coefficients, then the nonvanishing of an (infinite)
integer monomialµ0 obviously yields this forµ0 + 2µ′ for an integerµ′ and all
transcendental2 ∈ R. Unfortunately it is not useful as the cohomologyH ∗(L) ⊂
H ∗(XD) lives overZ but it suggests that nonvanishing of products of the form
^γ∈0 γ λ and issuing lower bound on the mean dimension are generic phenomena.
This is also confirmed by the examples we study below.

2.6.11. Nonvanishing Products over Uncoiled Groups0

LetH be a (skew)commutative algebra with unit, e.g.,H = H ∗(X;K) andH =
H⊗0 (i.e.H equals the tensor product of0 copies ofH , say ofHγ = H , where
the basic example isH = H ∗(X0)).

Nonvanishing problem.Given anh ∈ H . Decide when the formal product∏
γ∈0 γ h does not vanish, where we use the obvious action of0 onH .
The simplest case, and the only one we address here, is whereh is ‘linear’, i.e.

h = ∑γ∈D hγ for hγ ∈ Hγ , whereD ⊂ 0 is a finite subset and where allhγ are
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assumed6= 0. (This is somewhat opposite to the monomial case,h =⊗γ∈D hγ we
studied earlier.)

2.6.12. PROPOSITION.Let h = ∑
δ∈D hδ. If 0 is D-uncoiled (e.g., uncoiled,

see2.2.3)then
∏
γ∈0 γ h 6= 0.

COROLLARY. LetX be a closed(r − 1)-connected manifold(i.e. its homotopy
groups up toπr−1(X) vanish) andL ⊂ XD be a cycle of codimension nonhomolo-
gous to zero. Then

dim(Y (L) : 0) > dimX − r
for all uncoiled amenable groups0, e.g., for all nilpotent and polycyclic groups
without torsion.

Proof.We must show thatπ = ∏γ∈� γ h 6= 0 for all finite subsets� ⊂ 0. We
proceed by induction on card�. Chooseω0 ∈ � andδ0 ∈ D such thatω0δ0 = γ0

has a unique solution, let�− = �\{ω0} and assume thatπ− = ∏
γ∈�− γ h 6=

0. Then, our full�-productπ = ∏
γ∈� γ h equals the product ofπ− by theω0-

translateh• of h = hδ0 +
∑

δ 6=δ0 hδ. This translate can be written as

h• = ω0h = hγ0 +
∑
γ 6=γ0

hγ .

Also, observe that no monomial inπ− includes a factor coming fromHγ0, since
�−D does not containγ0. Thusπ = π−h• = π− ⊗ hγ0 + ε, where noε-term
includeshγ0 as a factor. Hence, no cancellation is possible andπ 6= 0. 2

2.6.13. Remark on the Kaplansky problem.This refers to the following ques-
tion. Let0 have no torsion. Can then the group ringK(0) have zero divisors? The
above generalizes the standard argument showing there is no zero divisor inK(0)

if 0 is uncoiled (see Section 2.2 and [Pass]).

2.6.14. Positivity and Noncancellation in Complex Manifolds

Suppose we have anordered(graded skewcommutative) algebraH where the order
is given, by definition, by a subsetH+ ⊂ H consisting of what we callpositive
elements, such thatH+ is closed under addition and multiplication inH andH+ ∩
−H+ = {0}.
EXAMPLE. Let H be the real cohomology algebra ofCPm, i.e. the algebra of
polynomials in a variablet truncated by the relationtm = 0. Then, nonvanishing
polynomials withpositivecoefficients define an order in the above sense. Notice
that theintegral positive elements in this

H = H ∗(CPm,R) ⊃ H ∗(CPm;Z)



TOPOLOGICAL INVARIANTS OF DYNAMICAL SYSTEMS: I 373

are exactly the Poincaré duals of fundamental classes ofcomplex subvarietiesin
CPm.

An order onH induces a natural order on every tensorial powerH of H where
H+ is defined as the set of sums of tensor products of positive elements inH .
For example, ifH = H ∗(CPm) then its tensor powerH⊗d consists of truncated
polynomials ind variables with the obvious notion of positivity. It is not hard to
show that the Poincaré duals of complex subvarieties in(CPm)d are positive in this
sense.

Now, if we look atH = H⊗0 for a group0 and take some positive element
h 6= 0 there, (i.e.h ∈ H+\{0} for H+ defined with some order inH given by
H+ ⊂ H ), then the formal infinite product

∏
γ∈0 γ h does not vanish. This applies,

for example, to the classes inH ∗(CPm)D,D ⊂ 0, dual to complex subvarieties in
(CPm)D = (CPm)d , d = cardD, and lead to the following

COROLLARY. LetL ⊂ (CPm)D be a cycle of codimensionr homologous to a
complex algebraic one. Thendim(Y (L) : 0) > 2m− r for all amenable groups0.

Standard order onH ∗(X;R). The space of real exterior forms onCn has a nat-
ural (minimal in some sense) order wherepositive2k-forms are defined as positive
combinations of pull-backs of the standard (positive!) volume from anCk under
nonsingularC-linear mapsCn → Ck. (This is the onlyGLnC-invariant order on
32
R(Cn) but it seems unclear what are other orders on32k

R (Cn) for k > 2.) Observe
that our positive form lies in the subspace of32k

R consisting of the form invariant
under the actionz 7→ √−1z on Cn, where they constitute a convex cone with
nonempty interior. Forms in the interior are then calledstrictly positive.

Next, given a complex manifoldX, a classh ∈ H ∗(X;R) is called (strictly)
positive if it can be represented by a form which is (strictly) positive on the tangent
spacesTx(X) for x ranging over an open dense subset inX. Clearly, this is a bona
fide order onH ∗(X) in our sense.

CLASSICAL EXAMPLE. EmbedX into someCPN and intersect it with a generic
hyperplane. Then the Poincaré dual of this intersection is strictly positive inH 2 (X)
assuming dimX > 0.

This shows that positive elements always exist. Moreover, the Hodge theory
says that every complex cycle can be ‘moved’ to the dual of a positive cocycle.
Namely, letHC ⊂ H ∗(X;R) be the span of the Poincaré duals of the fundamental
classes of complex subvarieties inX.

THEOREM (See [Gri-Ha]).If X is a complex projective manifold, then the strictly
positive elements constitute a cone with nonempty interior inHC. Thus, for every
h ∈ HC, there exists a strictly positiveh+ ∈ H ∗, such thath + h+ is strictly
positive.
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Remark.Our interest in positivity is motivated by the nonvanishing problem for
productsπ = ∏

γ∈0 γ h for someh ∈ H ∗(X0) = (H ∗(X))⊗0 which eventually
come fromh ∈ H ∗(XD),D ⊂ 0. We know thatπ 6= 0 if h is positive for the order
relation inH ∗(XD) = (H ∗(X))⊗d , d = cardD, induced by the above order in
H ∗(X) associated to the complex structure inX. But the order inH ∗(XD) coming
directly from the complex structure inXD usually has more positive elements than
those coming fromH ∗(X) (as some algebraic cycles inXd do not come from
products of such cycles inX’s. For example, graphs of ‘interesting’ automorphisms
of X give us such cycles inX ×X).

QUESTIONS. Leth be positive with respect to the complex structure inXD. Does
thenπ nonvanish? LetL ⊂ XD be a complex subvariety of real codimensionr.
Does the mean dimension ofY = Y (L) satisfy

dim(Y : 0) > dimRX − r?
What can be said about ‘positivity’ of the cohomology classes inX and inXD

which are positive on all algebraic cycles?

2.6.15. Representing Infinite Products by Measures

It is hard to make sense of an infinite productπ = ∏
γ∈0 γ h for generalh ∈ H ,

but if h is positive for a suitable order on the algebraH this can be done.

EXAMPLE. Let X = CP∞ and soH = H ∗(X0,R) equals the algebra of
polynomials in the variablesxγ , γ ∈ 0, with the natural action of0, and with the
standard notion of positivity. If0 is finite, then monomials are marked by functions
0→ Z+ indicating the degree of the letterxγ in a given monomial. Thus each real
polynomial becomes a functionp: Z0+ → R telling the values of coefficients of a
polynomial at all monomials.

Next, look from this angle at the product over an infinite group0, h 7→ π =
π0 = ∏

γ∈0 γ h, whereh ∈ H ∗(X0), X = CP∞ is induced fromh ∈ H ∗(XD)
as earlier. The set of monomials in the polynomialsγ h, γ ∈ 0, is given by the
double power set(ZD+)0, that is mapped by the above product over0 toZ0+, denoted
t: (ZD+)0 → Z0+. This map sends each0-family of monomials{mγ ∈ ZD+, γ ∈ 0}
to the product

∏
0 γmγ ∈ Z0+. Next, suppose we have functionspγ : ZD+ → R,

γ ∈ D, representing polynomials inxγ , γ ∈ D and we want to multiply them
over0. To do this we limit ourselves topositivefunctions on the (countable!) set
ZD+ which are viewed asmeasuresonZD+. Now we can multiply the measurespγ ,
where the result, denotedp×0 = ×0pγ , is a measure on(ZD+)0. Of course, this
measure looks rather unruly unless allpγ are probability measures. And ifpγ have
finite total masses they can be normalized to have mass one.

Finally, we push forward the product measurep×0 to (Z+)0 via our mapt: (ZD+)0→ Z0+ and declare this to be our infinite product over0. Notice, that forpγ = γp0
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the resulting measure is0-invariant. Also notice that forX = CPm with m <∞,
we deal with smaller spaces, namely, thefinite set{0, . . . ,m−1}D (instead ofZD+)
and the Cantor set{0, . . . ,m− 1}0 (instead ofZ0+).

Summing up, we see thatthe ‘fundamental cohomology class’ of the infinite
intersection⋂

γ∈0
γ YL, L ⊂ (CPm)D, D ⊂ 0,

whereL is a complex algebraic subvariety andYL ⊂ (CPm)0 is the full pull-back
of L under the projectionX0 → XD, is representable by a0-invariant probability
measure on the(Cantor) set of maps0→ {0, . . . ,m− 1} (where the ‘probability’
property is achieved with an obvious normalization).

The above generalizes to arbitrary ordered real algebrasH , where we have to
deal with vector valued measures. The reader may enjoy persuing this more closely.

QUESTIONS. Is there a deeper relation between the algebra-geometric idea of
positivity on 0-varieties (such asX0) and (0-invariant) measures on associated
compact0-spaces? What is the nature of the space of proalgebraic cycles in such
varieties asX0 andY (L) ⊂ XL where we keep track of the moduli of the cycles
as well as of their ‘homology classes’ expressed by measures onZ0+? Is there a
formalism of this kind associated to the Von Neumann algebra of0?

2.7. GENERIC LAWSL ⊂ XD AND UPPER BOUNDS ONdim(Y (L) : 0)
We want to extend the results of 2.2 to nonlinear lawsL ⊂ XD and show that
genericallythe mean dimension ofY = Y (L) is bounded by what one may expect,

dim(Y : 0) 6 dimX − codimL.

Intuitively, we think that theγ -translates of the equations definingL remain essen-
tially independent for generic lawsL ⊂ XD.

2.7.1. Monomial Laws

LetL be the product of subvarietiesLδ ⊂ Xδ = X, δ ∈ D, where we think ofXD

as the Cartesian product ofXδ = X, overδ ∈ D. If Lδ = Xδ for all but a single
δ, e.g. if codimL = 1, then, clearly, the translates ofL by γ ∈ 0 are mutually
transversal and thus the legal dimension ofY (L) is bounded by dimX − codimL.
But this may fail in general. Take, for instance,0 = Z/2Z andL = L1 × L2

whereL1 = L2 ⊂ X. ThenY (L) = L and codimY = codimL instead of the
expected value codimY = 2 codimL. However, the order of things is recovered if
L1 is transversal toL2 inX. Then, clearly,L1×L2 is transversal toL2×L1 and so
the resultingY (L), being the (transversal!) intersection,(L1×L2) ∩ (L2×L1) =
(L1× L2)

2, has right codimension(= 2 codimL).
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The above reasoning applies to all groups0, where mutual transversality of
all Li ⊂ X (trivially, compare 2.2) implies that the legal codimension ofY (L) is
> codimL.

2.7.2. Polynomial Laws

Let L be a union of finitely many monomial laws,L = ∪ki=1Li. Here a simple
example is where0 = Z, andL defined inRD for D = {0,1} by the equation
x0x1 = 0. A sequence{xi ∈ R}i∈Z belongs toY = Y (L) if and only if xixi = 0 for
all i ∈ Z, i.e. out of two consecutivex’s one must be zero. Thus dim(Y : Z) = 1/2
rather than zero. Yet, if we perturbe the equation tox0(x1− ε) = 0 for ε 6= 0, then
every sequence{xi} ∈ Y (L) looks like . . .0,0,0, x, ε, ε, ε, . . ., wherex is a free
variable and thus dim(Y (L)) = 0. This trivially generalizes to all0 and polynomial
lawsL ⊂ XD, where it yields the expected bound on the dimension ofY (L) ⊂ X0

for genericpolynomial laws (where all factors of all irreducible components are
mutually transveral inX or at least meet across subvarieties of proper dimensions).

2.7.3. Polynomial Reduction of Algebraic Laws

Suppose we have an algebraic subvarietyL = L0 ⊂ XD whichis included in
algebraic family, sayLε ⊂ XD, ε ∈ E , such that some limitLε→∞ becomes
polynomial in the above sense, i.e. becomes the union of monomial (i.e. product)
varieties with factors inX, where all these factors are mutuallydimensionally
transversal, i.e. all intersectionsLi ∩ Lj ∩ Lk, etc., have codimL1 ∩ Lj ∩ Lk 6
codimLi + codimLj + codimLk. Then, if we work in the category of projective
varieties over an algebraically closed field, we come to the following

CONCLUSION.

legdim(Y (Lε) : 0) 6 dimX − codimLε (?)

for genericε ∈ E , where ‘generic’ means away from a countable union of proper
subvarieties inE .

Indeed, the dimension of our intersection is semicontinuous inε ∈ E and if it is
small for some (possibly asymptotic) value ofε, then it is generically small.

2.7.4. Examples of ‘Polynomial’ Reduction of Algebraic Cycles

The above reduction works very well ifX is a projective variety homogeneous
under an action of a linear reductive groupA. For example,X may be a manifold
of flags inCn (e.g., the Grassmann manifold Grn−k(Cn)) acted upon bySLnCn.
Then, the Cartesian power of the group,Ad , acts onXd and every algebraic cycle
L ⊂ Xd is included into the familyLε = aεL, aε ∈ Ad .
LEMMA. There is a degeneration(reduction) of L to a ‘prodynamical cycle’
within this family.
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Proof. A generic transformationa ∈ A hasisolatedfixed points inX as fol-
lows from Thom’s transversality theorem (yielding this property for homogeneous
spaces of all connected Lie groups). It follows in the reductive case that there is
a multiplicative 1-parameter subgroup inA, sayC× ⊂ A (we work overC here,
to be specific) which acts onX with isolatedfixed points. Then, by the complex
Morse theory, such an action must necessarily have a repulsive fixed point, say
x+ ∈ X, such that the eigenvalues of 2∈ C× acting on the tangent spaceTx+(X)
have|eigenvalues| > 1. (This was explained to me by Iiosik Bernstein.)

Now let us apply such an action to one componentX ofXd and see what it does
toL. For example, letX = P 1, d = 2, andL is the diagonal. Our action ofC× on
P 1 has two fixed points,x+ andx− andaL obviously converges to(P 1 × x−) ∪
(x+ × PL) ⊂ P 1 × P 1, for z → ∞, a ∈ C×. The same eventually happens to
everyL ⊂ Xd where we must apply expanding action along variousX-factors of
Xd at some points inL. (To see it clearly, we must order all cycles6niCi in Xd as
follows. First we use6ini, i.e. the number of irreducible components counted with
multiplicities, which increasein the course of reduction and which is obviously
bounded. Then, we use the dimensions of projections ofLε to the subproducts

X × · · · ×X︸ ︷︷ ︸
d−δ

which may onlydecreasein the course of reduction.
When we arrive at a cycle with a maximal number of components where each

of them has minimal dimensions of projections, then this cycle is ‘polynomial’.)
Now we can use the above(?) and conclude to the inequality

legdimY (aL) 6 dimX − codimL (?•)

for a generic perturbation ofL ⊂ XD = Xd , d = cardD by a ∈ Ad . 2

2.7.5. Real Case

The above argument does not work directly overR. For example, the North
Pole – South Pole action ofR× on Sn may collapse all ofL to a single point with
all information irrevocably lost. However, we may pass to the complexification
X(C) = A(C)/A0(C) whereA0 is the isotropy subgroup of somex0 ∈ X and
if X(C) is projective, then our conclusion (including(?•)) applies toX = X(R)
acted upon byA = A(R). For example, this works for the aboveSn acted upon by
SO(n,1) as the corresponding subgroupA0(C) is parabolic in this case. But if you
takeSn with the SO(n + 1)-action the complexification trick does not work, but
our conclusion may hold true all the same.

QUESTION. Which (homogeneous) spacesX acted byA satisfy(?•)? What about
Rn acted upon by parallel translations and similarity transformations?
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2.7.6. Analytic and Smooth Cases

Since the required genericity ofL is essentially an algebraic condition, one expects
(?•) to be valid for complex (and real) analytic subvarietiesL ⊂ XD (which may be
noncompact and/or have boundaries). In fact, the required transversality (express-
ing genericity) concerns the behavior ofL ⊂ XD at several pointsx1, . . . , xN ∈ L
where the lifts ofL to X� meet. If we could deform the germs atL by Ad inde-
pendently at these points, we could easily arrive at(?•) in the analytic category. In
fact, such independence is achieved in thereal analytic category if we use the group
A of all real analytic transformations ofX, whereX is an arbitrary real analytic
manifold, and if we work overC, we may admitL’s ⊂ XD which are images of
holomorphic mapsf : L̃ → XD whereL̃ is aSteinmanifold. Then, by allowing
Lε = fε(L̃) for all holomorphic deformations off , we again recapture(?•), at
least in the case of a homogeneousX, by a rather standard argument. Yet, I could
not rigorously prove(?•) as it stands for complex analyticL ⊂ XD.

Finally, the above should work in the smooth category withA = Diff X where
one, probably, needs some equisingularity lemma in the spirit of Thom (compare
1.3.2.(E1) in [GroPDR]) but I did not check the details (appearing rather straightfor-
ward to a casual eye).

2.7.7. Algebraic LawsL ⊂ XD for NonhomogeneousX

Start with a projective embeddingX ⊂ PM = CPM and then embedXd →
PN for N = (M + 1)d − 1 in the usual way. (For example, ifd = 2, a pair
(x0, x1, . . . , xM), (y0, y1, . . . , yM) goes to((z00= x0y0, . . . , zij = xiyj , . . . , zN =
xMyM).) We look at the familyLS ⊂ Xd obtained by intersectingXd ⊂ PN

with a linear (i.e. projective) subspaceS ⊂ PN of a given codimensioǹ. Among
theseLS there exist‘most degenerate’ones which are polynomial in our sense
and satisfy the transversality assumptions of 2.7.1. These come by intersecting
Xd ⊂ PN with ‘tensor products’ of subspaces inPM . (For example, the hyperplane
zij = 0 in PM for N = 2(M + 1) − 1 intersectX2 ⊂ PN across the union
(Xi ×X) ∪ (X ×Xj) whereXi denotes the intersection ofX with the hyperplane
xi = 0 in PM .) Therefore,genericL = LS ⊂ XD = Xd , d = cardD, give rise to
Y = Y (L) with the expected legal and mean dimensions,

dim(Y : 0) = legdim(Y : 0) = dimX − codimL. (??)

In fact the upper bound on legdim follows by the above reduction argument
while the lower bound depends on the homological positivity argument in 2.6.

QUESTION. Does this conclusion (or at least the upper bound on legdim(Y : 0))
remain valid forall projective embeddingsXd ⊂ PN?
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3. Harmonic Maps and Related Spaces

We prove here the results stated in Section 0.6 concerning the mean dimension of
spaces of harmonic maps and of solutions of more general elliptic PDE. We start
with a recollection of the standard properties of linear PDE.

3.1. CAUCHY–GÅRDING INEQUALITY

Consider a homogeneous, uniformly elliptic system of linear PDE imposed on
Rs-valued functionsx in the standard unit ballB ⊂ Rn, sayEx = 0. If the co-
efficients of the equations are smooth, then the classical regularity theorem ensures
the smoothness ofx. Moreover, all derivatives ofx at the origin 0∈ B are bounded
in terms of the sup-norm ofx onB. Here we are mainly concerned with the first
derivative (differential)Dx where the Cauchy–Gårding inequality reads

‖Dx(0)‖ 6 C sup
v∈B
‖x(v)‖ (∗)

for some constantC = C(E).
Next supposeE is defined over allRn, where it is assumed uniformely elliptic

and with all coefficients and their derivatives bounded. Then we apply(∗) to each
unit ballB = B(v,1) ⊂ Rn and obtain a bound on‖Dx‖ everywhere onRn,

sup
v∈Rn
‖Dx(v)‖ 6 C sup

v∈Rn
‖x(v)‖. (∗∗)

3.1.1. VANISHING COROLLARY.Let x be a bounded solutionx of the system
Ex = 0. If x vanishes on anε-net6 ⊂ Rn with ε < C−1, thenx = 0.

Proof. If x|6 = 0, then, obviously,‖x(v)‖ 6 ε supv∈Rn ‖Dx(v)‖ for all v ∈ V .
This and(∗∗) imply that

sup
v∈Rn
‖x(v)‖ 6 C−1ε sup

v∈Rn
‖x(v)‖

and so‖x(v)| must vanish ifC−1
ε < 1. 2

3.1.2. Denote byXE = XE
L∞ the space ofboundedsolutionsx of the systemEx =

0 and restate the above vanishing result as the following

EMBEDDING PROPERTY.The restriction mapR6: XE → `∞(6;Rs) ⊂ (Rs)6
is one-to-one.

In fact the above argument implies thatR6 is a topological embedding (i.e.
R−1
6 : R6(XE) → XE is aboundedoperator for the uniform topologies) and that

the intersection ofR6(XE) with the unit ball in`∞(0;Rs) is weakly closed in
`∞(0;Rs).
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3.1.3. Estimate on the Mean Dimension ofXE

Take concentrici-balls B(i) ⊂ Rs of radii i = 1,2, . . ., and letXE(i) ⊂ XE

consist of mapsRn → B(i) satisfyingE . Clearly, all spacesXE(i) are mutually
isomorphic via the mapsx 7→ ij−1x sendingXE(j) → XE (i), and the union of
XE(i) equalsXE . Furthermore, theseXE(i) arecompactspaces and one may speak
of their mean dimensions for actions of lattices0 onRn compatible withE . Thus
we set

dim(XE : 0) def= dim(XE(i) : 0),
where the latter dimension does not depend oni.

Finiteness ofdim(XE : 0). Let E be invariant under a lattice0 acting onRn.
Then

dim(XE : 0) 6 constE volRn/0.

Proof.Use a0-invariant net6 ⊂ Rn and observe that the above embedding be-
comes equivariant and sendsXE to (Rds)0 whered denotes the number of elements
from6 contained in a fundamental domain of0. Thus

dim(XE : 0) 6 ds. 2

3.2. LINEAR PDE ON RIEMANNIAN MANIFOLDS

Let V be a complete Riemannian manifold and consider an elliptic operatorE in
some vector bundle overV . If the ‘coefficients’ ofE and its ‘ellipticity’ are uni-
formel y controlled by the Riemannian metric, then(∗∗) generalizes toV , provided
the curvature tensor ofV isC1-bounded (probablyC0 suffices) onV . (Notice, that
we donotneed a lower bound on the injectivity radius ofV , but we have it anyway
in our applications where(V,E) is invariant under a cocompact group0.)

3.2.1. The basic examples of suchE are as follows:

(A) The ordinary Laplace operator onV .
(B) The Hodge Laplace operator on differential forms.
(C) Various Dirac operators (where one adds sometimes the spin conditions on

V ).
(D) The∂-operator, in the case whereV is Hermitian.
(E) All of the above twisted with an auxiliary vector bundleE over V , with a

Euclidean connection.

Here the inequality(∗) applies to the coordinate charts inV (or in the unit balls
Bv(1) in the tangent spacesTv(V ), v ∈ V mapped toV by the exponential maps)
and shows that

sup
v∈V
‖Dx(v)‖ 6 C sup

v∈V
‖x(v)‖, (∗∗)V
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where the constantC depends only on the curvature ofV , i.e. on supv∈V ‖Kv(V )‖,
and on the curvature of the implied vector bundle. In particular, we always have
(∗∗)V with someC <∞ if (V,E) is acted upon by a cocompact (isometry) group.
Then we have the vanishing corollary and embedding property provided(V,E)

has bounded curvature. Furthermore, if(V,E) is invariant under a cocompact
amenable group0, then, clearly,

dim(XE : 0) 6 constV,E vol(V /0).

3.2.2. Remarks and generalizations.(a) The vanishing corollary trivially extends
to manifolds with unbounded curvature if the densityε of a net1 is allowed to
depend onv. Essentially, we needε(v) 6 constn ‖K(v)‖−1/2, whereK incorpo-
rates the curvatures ofV andE and their first derivatives if so needed. Similarly,
one may admit unbounded sectionx with ε(v) ≈ (supv∈Bv ‖x(v)‖)−1 for Bv ⊂ V
being the unit ball aroundv ∈ V .

In fact, one expects here a more generous density bound on6 in the spirit of
the first main theorem of the Nevanlinna theory.

(b) The above have an obvious version in a general setting whereV is an arbi-
trary metric space andXE is replaced by a subspaceY in the space of bounded maps
x: V → Rs. All one needs is uniform compactness of the restriction operators from
Y to functions on the ballsB(v,1) ⊂ V , for all v ∈ V . Actually, one needs even
less: ifX is a linear space of bounded functionsx: V → Rs where allx ∈ X with
supv∈V ‖x(v)‖ 6 1 are uniformly continuous with a given modulus of continuity
then dim(X : 0) <∞.

EXAMPLE. LetX : X(λ) be a linear space of functions on a Riemannian manifold
V where eachx ∈ Y satisfies supv∈V ‖Dx(v)‖ 6 λ supv∈V ‖x(v)‖ for a given
constantλ. Then dim(X : 0) < ∞ and it may be interesting to find more specific
bounds on this dimension in terms ofλ and the geometry ofV .

(c) The situation similar to the above example arises in theL2-framework,
where one studies theL2-spacesXE (λ) ⊂ L2(V,Rs) (or sectionsX → E, in
general) corresponding to the spectrum ofE inside theλ-disk in the complex plane.
Here one knows that the von Neumann dimension dim`2(X

E(λ) : 0) < ∞ for
all 0 (cocompact onV ) andλ < ∞. There are several candidates for the`∞-
counterpart of this space. For example, one may take the weak closure of the above
XE(λ) in L∞(X;Rs). Or one may look at some0-invariant spaceY (λ) of bounded
functions, such thatE(Yλ) ⊂ Yλ and supv∈V ‖E(y)‖ 6 λ supv∈V ‖y‖ for all y ∈ Y .
One wonders whether dim(Y (λ) : 0) <∞ for such spacesY (λ).

(d) Let E be the ordinary Laplace operator1 on functionsV → X. Then one
has the following geometric bound on the von Neumann dimension of the space
X1(λ) of L2-functions belonging to the spectrum of1 belowλ. Suppose the Ricci
curvature ofV is bounded from below by−1 and letN(ε) denote the minimal
number ofε-balls needed to cover ofε-balls needed to cover the quotient space
V/0. Then
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C1N(λ
−1/2) 6 dim`2

(
X1(λ) : 0) 6 C2N(λ

−1/2)

where the positive constantsC1 andC2 depend only onn = dimV .
This easily follows from the Paul Levy isoperimetric inequality (see Ap. C in

[G-L-P]). Notice in this regard that forconnectedV/0 the bound Ricci> −1 im-
plies, by Bishop inequality, the following bound onN(ε) in terms of the diameter
of V/0,

N(ε) 6 max
(
1, ε−n exp(nDiamV/0)

)
whereV/0 is assumedconnectedand thus

dim`2(X
1(λ) : 0) 6 const′n max

(
1, λn/2 exp(nDiamV/0)

)
(?)

for connectedV/0 (see [G-L-P]).
Notice that the above inequality is very far from being sharp forinfinite groups

0, where the following is well known.
(i) Every L2-harmonic function onV vanishes (as is true for all connected

complete noncompact manifoldsV ), by a standard ‘integration by parts’ argument,

(ii) dimL2(X
1(λ) : 0)→ 0 for λ→ 0,

where the rate of convergence depends on0. For example, dim̀2(X
1(λ) : 0)

vanishes for smallλ 6 λ(V ) > 0, if and only if the group0 is nonamenable.

QUESTION. What are theL∞-counterparts of the above properties? For example,
does the mean dimension of the space of bounded harmonic functions vanish for
all amenable groups0? (It is clear that dim− introduced in 2.1.2 does vanish.)

(e) LetE → V be a0-equivariant Euclidean vector bundle of ranks and let
1E be the (Bochner) Laplace operator on sectionsV . Then the functionϕE(λ) =
dimL2(X

1E(λ) : 0) is related to the aboveϕ(λ) = dimL2(X
D(λ) : 0) by the

following classical

KATO INEQUALITY.∫ ∞
0

e−λδϕ′E(λ)dλ 6 s
∫ ∞

0
e−λδϕ′(λ)dλ

for all δ > 0, where, observe, the derivativesϕ′E andϕ′ are positive (measures)
since our functions are monotone increasing.

COROLLARY.

ϕE(λ) 6 s eλϕ(λ). (+)
(f) If E is a ‘geometric’ selfadjoint operator of second order inE then it is

related to1E by a Boehner formulaE = 1E + BE , whereBE is a symmetric
endomorphism of the bundleE. Then one can bound the spectral function ofE by
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that of1E and the spectrum ofBE . Namely, if all eigenvalues ofBE in all fibers of
E are bounded from below by−ρ then, clearly,

ϕE (λ) 6 ϕE(λ+ ρ) 6 s eλ+ρϕ(λ+ ρ). (∗∗)
For example, ifE = 1k is the Hodge–Laplace operator onk-forms (wheres =
(n/k), n = dimV ), then the aboveBE is minorized by the so-calledcurvature
operatorR = R(V ) and then(?) and (∗∗) give us a spectral bound on1k in
terms ofR (which includes Ricci) and diamV/0. This applies, in particular, to the
L2-Betti numberbk(V : 0), that is the Von Neumann dimension of the space of
harmonicL2-forms onV of rankk,

bk(V : 0) 6
(
n

k

)
exp(nv DiamV/0) (◦)

providedρ(R) > −1. (This was pointed out by Gallot and Meyer for0 = {e}
in [Gal-Mey].)

QUESTIONS. (a) Can one improve over theeλ-factor in (+)? (Here one may be
willing or unwilling to bring the curvature ofE into play.) Can one bound the mean
dimension of the space ofboundedharmonick-form in the spirit of(◦)?

Notice that a bound similar(◦) (but with a poorer dependence onn) holds
true under less restrictive assumption of thesectional curvaturesof V (rather than
R(V )) being bounded from below by−1. This is shown in [GroCDB] for 0 =
{e} but the argument equally applies to all0. Furthermore, that argument ap-
plies to the homologyHk(V ;K) for an arbitrary fieldK and yields a bound on
prodim(Hk(V ;K) : 0) for amenable groups0.

(b) What is the relation between prodim(Hk(V ;R) : 0) and the mean dimen-
sion of the space of bounded harmonick-forms onV ? (If one had a full-fledged
Hodge theory forboundedforms one could immediately claim the equality of the
two dimensions.)

3.2.3. Harmonic Functions and the Maximum Principle

Let E satisfy the maximum principle, e.g.,E equals the ordinary Laplacian1 on
functionsV → R. We claim that

if a bounded solutionx of E vanishes on some net6 ⊂ V (i.e. an ε-net with some
ε < ∞), thenx = 0. Consequentlydim(XE : 0) = 0 for every amenable group
cocompactly acting on(V,E).

Proof.Let a bounded solutionx of E vanish on some net6 and take a sequence
of pointsvi ∈ V , i = 1, . . . , such that‖x(vi)‖ → a = supv∈V ‖x(v)‖ for i →∞.
If V is cocompactly acted by0, we translate allvi by suitableγi ∈ 0 to a fixed
compact subsetV0 ⊂ V and then (after taking a subsequence if necessary) pass
to the limit x∞ = limi→∞ γix. This x∞ vanishes on some (nonempty!) net, say
6∞ ⊂ V , and‖x∞‖ achieves its maximum at some pointv0 ∈ V0. Hencex∞(v) =
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x∞(v0) for all v ∈ V and sincex∞|6∞ = 0 this x∞ vanishes everywhere. This
yields the vanishing ofx as sup‖x‖ = ‖x(v0)‖.

Next, forget about0 and just suppose(V,E) has locally bounded geometry.
Then, instead of translatingV , we move ourselves to the pointsvi and pass to the
(pointed Hausdorff) limit manifoldV∞ = limi→∞(V, vi) with the limit operator
E∞ on V∞. Then the maximum principle applies tox∞ on V∞ and the proof
follows. 2
EXAMPLE. If E = 1 and we deal with harmonic functions, then the ‘bounded
local geometry’ refers to a bound on the curvature and the lower bound on the
injectivity radius. In fact, the above argument can be easily carried through with
the assumption|K(V )| 6 const alone, without any bound on the injectivity radius.
(Probably, one needs even less, something likeK(V ) > − const or Ricci(V ) >
− const.)

Remarks.(a) The above argument, does not use the linearity ofE and applies to
all equations satisfying the maximum principle or the convex hull property. (This
includes harmonic and minimal maps into Riemannian manifolds without focal
points.) On the other hand, when we want to evaluate the dimension dim(XE : 0)
we compare two solutions and the linearity is used in an essential way.

(b) Quantitative maximum principle.The maximum principle can be expressed
as follows.

If the value‖x(v0)‖ is close tosup‖x(v)‖, then the ratiox(v)/x(v0) is almost
constant on a large ball aroundv0.

More precisely, let‖x(v0)‖ > (1− ε)‖x(v)‖, for all v in theR-ball B(v0, R) ⊂
V aroundv0. Then‖x(v)‖ > (1− δ)‖x(v0)‖ for all v ∈ B(v, r), whereδ and r
depend onR, ε (as well as on(V,E), but not onv0) andδ→ 0, r →∞ for ε→ 0
andR→∞.

Notice, that this quantitative maximal principle is equivalent to the previously
used one as an obvious limit argument shows. Also observe that the quantification,
i.e. the dependence ofδ and r on ε andR, can be made explicit and rather pre-
cise. For example, one can use in the case of harmonic functions and maps, the
mean value theorem expressingx(v0) by a weighted average ofx(v) on theR-ball.
(Ultimately, one may appeal to the Harnack inequality.)

(b′) Notice, that the functionx(v) in question need be only defined on the ball
B(v0, R), not on all ofV . Also the almost constancy conclusion remains valid if
the equationE(x) = 0 is satisfied only approximately,‖E(x)‖ 6 ε‖x‖, where
the norm in question is the sup-norm onB(v0, R) and where we assume that our
x satisfies the Cauchy–Gårding inequality with the constantC independent of the
aboveε.
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3.3. EQUATIONS WHEREdim(XE : 0) > 0

TheL2-index theorem provides many instances where dimL2(X
E : 0) does not

vanish but it is unclear if this implies nonvanishing of the mean dimension. On
the other hand, the presence of a nonzeroL1-solution of the equationEx = 0
(trivially) yields sufficiently manyboundedsolutions to ensure nonvanishing of
the mean dimension dim(XE : 0). An obvious way to go fromL2 to L1 is by
taking ‘squares’ ofx’s (compare), but this is usually incompatible with the equation
Ex = 0. A happy exception is the Cauchy Riemann∂ operator as the square of a
holomorphic function is holomorphic. More generally, ifV is a complex manifold
andE → V is a holomorphic vector bundle, then one can take, for instance, the
symmetric square ofE, denotedE2, and observe that the symmetric square of a
holomorphic section is holomorphic. Thus

dimL2(X
∂
L2
: 0) > 0⇒ dimL∞(X

∂⊗2
L∞ : 0) > 0

(but it is unclear if dimL∞(X
∂⊗2
L∞ : 0) > dimL2(X

∂
L2
: 0)).

EXAMPLES. (a) LetV = Cm andEλ → Cn be a lineHermitian holomorphic
bundle, i.e. with a given fiberwise norm) where the curvature equalsλdz dz onCm
for λ real (where dz dz is the standard Hermitian form onCm). ThisE can be iden-
tified with the trivial bundleCn × C→ Cn, such that the norm of the unit section
x(v) equals exp−λ‖v‖2. If λ > 0, the unit functionx1: Cn → 1 ∈ C becomes
a holomorphic section onCn which decays as exp−λ‖v‖2 and so is summable
with all degrees. It easily follows, that the space of bounded holomorphic sections
of Eλ has mean dimension equalcnλn for some constantcn > 0. (Here we refer
to the mean dimension with respect to some amenable exhaustian ofCn. If Eλ is
equivariant with respect to some Lattice0 ≈ Z2n acting onCn, then this space, say
Xλ, has dim(Xλ : 0) = cnλn vol(Cn/0).)

(b) LetE→ V be a line bundle equivariant for some cocompact group0 acting
onV .

If the curvature formω of E is everywhere greater than the curvatureκ of the
canonical bundle, i.e.w − κ is positive definite onV , then theL2-Euler charac-
teristic of (the sheaf of sections of)E equals theL2-dimension ofH 0(V,E), i.e.
the space of holomorphicL2-sectionsV → E. This is the standard corollary of
the vanishing theorems. On the other hand, the Euler characteristic is given by a
certain characteristic class which is a topological invariant of(E, V ) and which is
of the ordercn1(E) for bundlesE with largecm1 , n = dimC V . Therefore, ifw > 0,
this class forEi is aboutin for largei and so a sufficiently high powerEi admits a
nonzero holomorphic section, providedE is apositiveline bundle, i.e. its curvature
fromw is positive definite.

Remark.Notice that the above can deliver sections for a givenE, without taking
powers, providedw−κ > 0 andχ(V,E) > 0. But if we allowEi, there is no need
to appeal to theL2-index theorem. In fact a simple application of theL2-estimate
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for the∂-operator (which is essentially based on the Fredholm alternative, a baby
version of the index theorem) yields lots ofL2-sections ofEi withoutany0-action
at all.

3.3.2. Recollection onL2-estimates

Let V = (V, g) be a complete Kähler manifold andE → V a Hermitian line
bundle such thatw− κ > λg where, as above,w = w(E) denotes the curvature of
E, κ = κ(V ) stands for the curvature of the canonical line bundle ofV andλ > 0
is some real number.Then, for every smoothE-valued(0,1)-form z with ∂z = 0,
there exists a smooth sectiony: V → E, such that

∂y = z and ‖y‖L2 6 constλ−1‖z‖L2, (∗)
where ‘const’ is universal.

This is a by now standard interpretation of the∂-estimates (see [Nap] and
references therein).

We shall apply(∗) in order to approximate a given smooth sectionx0: V → E

by a holomorphic one as follows. Considerz = ∂x0, solve∂y = z and takex =
x0− y. Thisx is clearly holomorphic,∂x = ∂x0 − ∂y = 0 and

‖x − x0‖L2 6 constλ−1‖∂x0‖L2. (∗∗)
This x is close tox0 if ‖∂x0‖L2 is small and/orλ is large. In what follows we

shall be dealing with a manifoldV with boundedcurvature and high powerEi of
apositivebundleE. Thus we assumeλ > const and(∗∗) becomes

‖x − x0‖L2 6 ‖∂x0‖L2. (∗∗∗)
For example, if we want to have anonzeroholomorphic sectionx of E, all we

need is anx0, such that‖∂x0‖`2 < ‖x0‖`2.

3.3.3. LEMMA (see [Tian]).LetE be a positive line bundle onV , andv0 ∈ V
a given point. Then there exists a sequence of smooth sectionsxi of Ei with the
following properties.

(1) All xi are supported in a given (small) ballB(v0, ρ) ⊂ V .
(2) All xi are holomorphic in a smaller concentric ballB(v0, ρ0) ⊂ B(v0, ρ).
(3) ‖xi(v0)‖Ei = 1 and‖xi(v)‖Ei < 1 for v 6= v0.
(4) ‖xi‖L2 > consti−n for some ‘const’ independent ofi.
(5) The pointwise norm of∂xi exponentially decays fori →∞, ‖∂xi(v)‖Ei 6 α−i

for someα > 1 and all v ∈ V .

Proof. SinceE is positive, there obviously exists a local holomorphic section
x0 nearv0 with ‖x0(v0)‖E = 1 and‖x0(v)‖ < 1 for v 6= v0. (Actually such anx0

exists on a rather large neighbourhood ofx0, but this is irrelevant at the moment.)
We smoothly extend thisx0 to a smooth sectionx1: V → E with a support near
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v0 and still havingx1(v) < 1 for all v 6= v1 and finally takexi = xi1. This xi
is > 1/2 in the ball of radius≈ 1/

√
i since‖x0(v)‖ > const(dist(v, v0))

1
2 for v

close tov0 and so itsL2-norm is at least consti−n. On the other hand,∂(x1(v)) is
different from zero away fromv0 wherex1(v) 6 1− ε and so‖∂xi(v)‖ is bounded
by consti(1− ε)i−1 as required by (5). 2

3.3.4. Remarks.(a) This construction of approximately holomorphic sections
of ‘sufficiently positive’ bundles was explained to me by Simon Donaldson about
5 years ago who used this idea for producing symplectic hypersurfaces.

(b) The above remains true if instead of the powersEi we take an arbitrary
sequence of line bundlesEi → V , such that the curvatureswi = w(Ei) grow,
roughly, asiw0 for a fixed positive formw0.

(c) Notice, we did not use the full positivity ofE, but rather positivity at the
point v0 in question.

3.3.5. COROLLARY (Existence of holomorphicL2- andL1-sections).Let V =
(V, g) be a complete Hermitian manifold as earlier andE → V an Hermitian line
bundle such thatw − κ > λg with λ > 0 and such thatw is positive at some point
v0 ∈ V . Then some powerEi admits a nonzero holomorphicL2-section. AlsoEi

admit nonzero holomorphicL1-sections for all sufficiently largei.
Proof.The existence of anL2-section is immediate from the preceding discus-

sion and to turnL1 we splitEi = Ei1 ⊗ Ei2 with largei1 andi2 and observe that
the products of twoL2-sections isL1. 2

Remarks.(a) TheL2-claim remains valid for every line bundleEi having the
same positivity asEi. Moreover, the holomorphic sections obtained by the above
argument have a controlled decay at infinity. Indeed, letx0 be a continuous section
with compact support andh be theL2-nearest holomorphic section, i.e. the normal
projection ofx0 to the space of holomorphicL2-sections. Theny0 = x0 − h is
holomorphic outside some ball, sayB(v0, r) ⊂ V , and it is orthogonal to all
holomorphicL2-sections. Now, take the functionϕ: V → R+ which equals 1
outside a large concentricR-ballB(v0, R) ⊃ B(v0, r), which vanishes onB(v0, r)

and which equals 1− (R − dist(v, v0))/(R − r) for all v in the annulas between
the two balls. Consider the sectiony1 = ϕy0 and observe that

〈y1, y0〉 def=
∫
V

y1(v)y0(v)dv >
∫
C(R)

|y0(v)|2dv,(i)

whereC(R) ⊂ V denotes the complementV \B(v0, R), and

‖∂y1‖L2 6 (R − r)−1‖y0‖L2(ii)

since|∂(ϕy0)| = |ϕy0| 6 (R − r)−1|y0|. If our bundle is sufficiently positive, we
can approximatey1 by a holomorphicL2-sectiony, such that

‖y − y1‖L2 6 const‖∂y1‖L2 6 const(R − r)−1‖y0‖L2.
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It follows that

0= 〈y, y0〉 >
∫
C(R)

|y0(v)|2 dv − const(R − r)−1‖y0‖L2,

and so∫
C(R)

|y0(v)|2 dv 6 constR−1|y0|L2

for largeR andC(R) = V \B(R).
Finally, ash equalsy0 outsideB(v0, R), our h also has itsL2-norm decaying

with the rateR−1/2 at infinity.
(b) Instead of theL2-nearesth one could take theLp-nearest one, which is

unique (if it exists) for allp (includingp = 1, where the strict convexity is due to
holomorphicity). It seems not hard to show that theLp-norm of thish has a similar
decay overC(R) for R→∞.

(b′) Let us indicate the proof of the decay property for (as well as the existence
of) holomorphicLp-sections in the case of locally bounded geometry. First we pass
to a largeoddpowerEi of E where one has many holomorphicL1-sections (of the
form

∑
j xj yj for holomorphicL2-sectionsxj of Ei1 andyj ofEi2 with i1+i2 = i,

compare 3.3.5). SuchEi admitsn+1= dimC V+1 bounded holomorphic sections
x0, x1, . . . , xn that are uniformly transversal to the zero 0= V ⊂ Ei and such that
their zerosx−1

k (0) ⊂ V , k = 0,1, . . . , n, are simultaneously uniformly transversal
(see 4.3). Denote bỹV → V the canonical ramified cover of order 2n with the
ramification locus6 =⋃k x

−1
k (0), observe that̃V is nonsingular and that the lifted

bundleẼ→ Ṽ admits a square root, sincẽEi does andi is odd. Now holomorphic
L2-sectionsX of such square root, sayE → Ṽ , can be multiplicatively pushed
forward to holomorphicL1-sectionsx of E for x(v) = x(ṽ1)⊗ x(ṽ2) · · · ⊗ x(ṽ2n)

for the pullbacksṽ1, . . . , ṽ2n of v and so theL1-properties ofE reduce to theL2-
theory ofE. Notice, that the curvature ofE (as well as that of̃E) vanishes along
6̃, but only in transversal directions, and so the metric onE can be perturbed to a
one with sufficiently positive curvature, provided we had enough positivity inE to
ensure thatE|6 is more positive than the canonical bundles of the submanifolds
x−1
k (0) and their intersections (compare 4.3).

Then we get lots ofL1 (and henceLp,p > 1) of holomorphic section ofE with
controlledL1-decay at infinity.

3.3.6. Let (V,E) be acted upon by an amenable Lie group0 with V/0 compact.
Then the space of bounded holomorphic sections ofEi for large i has positive
mean dimension.

Indeed, the presence of a single nonzeroL1-section suffices as was mentioned
earlier. (See 3.3.11 for a sharper result.)
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3.3.7. Gårding Inequality inEi

In order to see how the Gårding constant for holomorphic sectionsV → Ei

depends oni, we scale the underlying manifold(V, g) by g 7→ ig. Then the
curvatureiw ofEi scales tow and so we have a uniform (independent ofi) Gårding
inequality inEi over(V, ig). Then, coming back tog, we conclude that

The sup-norm of a holomorphic sectionx: V → Ei in theε-ballB = B(v, ε) ⊂
V bounds the differential ofx, by

‖Dx(v)‖Ei 6 Cvε−1 sup
v∈B
‖x(v)‖Ei (+)

for everyε 6 i−1.

3.3.8. COROLLARY.The sup-norm is bounded by theL2-norm,

‖x(v)‖Ei 6 C′vε−n
(∫

B

‖x(v)‖2 dv
)1/2

6 C′vε−n‖x‖L2 (++)

for ε 6 i−1.

3.3.9. Remarks.(a) Notice that(+) and(++) are local properties where the
holomorphicity ofx is only required on the ballB. Thus we can apply(++) to
the solutionsy1 of the ∂-problem∂yi = ∂xi satisfying the basicL2-estimate(∗)
from 3.3.2. Theseyi are holomorphic (as well asxi) in a small (but fixed!) ball
B(v0, δ) ⊂ V and then(++) applies to smallerε-balls B(v, ε) ⊂ B(v0, δ). It
follows, that the holomorphic sectionsx′i = xi − yi converge toxi uniformly (and
exponentially fast fori → ∞) on every concentric ballB(v0, δ

′ < δ). In fact,
such convergence takes place also on larger balls, where∂xi 6= 0 anymore, since
the Gårding inequality remains valid for nonhomogeneous situation, but we do not
need this for our purposes.

(b) The constantsCv andC′v depend on local geometry ofV andE nearv.
Actually Cv can be bounded in terms of the curvatures ofV andE while C′v also
depends on the injectivity radius ofV . (In general,ε−n in (++) must be replaced
by (Vol B(v, e′))−1/2 for someε′ somewhat smaller thanε.) In particular,Cv andC′v
are bounded ifV andE have bounded local geometry, e.g. if there is a cocompact
isometry group0 acting onV and onE.

3.3.10. INTERPOLATION THEOREM.Let V andE have bounded local geom-
etry and thus the constantsCv andC′v are bounded onV , and let6 ⊂ V be a
δ-separated subset, i.e.dist(σ1, σ2) > δ for all σ1 6= σ2 in 6. Then, for every
i > constV,E max(1, δ−2) and every bounded sectiony of Ei |6, there exists a
bounded holomorphic sectionx: V → Ei , such thatx|6 = y.

Proof. First we observe that by scaling the metricg of V , by g 7→ δ−2g, we
make aδ-separated set 1-separated. This also normalizes the curvature ofEi with
i ≈ δ−2 to the unit size and explains (actually proves) the dependence ofi on δ.
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Now we prove the theorem forδ = 1 by summing upL1- sections ofEi. It
(obviously) suffices for our purpose to have holomorphicL1-sectionsx•σ : V → Ei ,
for all σ ∈ 6 and a giveni > constV,E, such that

(a) ‖x•σ (σ )‖Ei > 1/2;
(b) the sum of the norms‖x•σ (σ ′)‖Ei over allσ ′ ∈ 6 is small, say6 0.1.

We recall thatL1-sections are obtained as products ofL2 sections and so we need
L2-sections, sayx′σ , satisfying (a), where (b) is replaced by a similar bound on
the sums of‖xσ (σ ′)‖2Ei . Such anxσ is constructed by first using 3.3.3 atv0 = σ
with ρ 6 0.1 and then by approximating the resulting almost holomorphic section,
call it now x0

σ , by a holomorphic one, that is ourxσ . The bounded geometry as-
sumption makes the estimates in 3.3.3 independent ofσ and then 3.3.8 applied to
ε-balls around allσ ′ 6= σ in 6 yield the required bound on the sum of‖xσ (σ ′)‖2Ei ,
providedi is sufficiently large. 2
3.3.11. COROLLARY.If (V,E) is acted upon by an amenable group0 with com-
pact quotient, then the mean dimension of the space of bounded holomorphic
sections ofEi is aboutin, n = dimC V .

3.3.12. Remark.There is a distinguished holomorphicL2-section ofEi taking
a given valuee ∈ Eiu at a given pointu ∈ V , namely the one which has the minimal
L2-norm. This section, call ithe(v), v ∈ V , controllably decays at infinity in the
sense that the integrals of‖he(v)‖2 over the complementsC(R) ⊂ V of the large
R-ballsB(R, u) ⊂ V aroundu satisfy∫

C(R)

‖he(v)‖2 dv 6 constR−1.

This follows from Remark (a) in 3.3.5 and the Gårding inequality.

3.3.13. Interpolation with Jets and Transversality Theorem

One can easily interpolate not only the values on6 but also a given numberr of
derivatives at allσ ∈ 6. This is done again by first constructing approximately
holomorphic sections and then making them holomorphic by small perturbations,
where ‘small’ refers to theCr-topology as is allowed by 3.3.7 (which needs an
obvious generalization in the caser > 2).

Let us spell out how the approximate sections come about. Start withx0 near
v0 as in the proof of 3.3.3 and let8 be a finite collection of holomorphic functions
ϕ defined onV nearv0, such thatthe r-jets of the functionsϕ ∈ 8 at v0 linearly
span the full space ofr-jets (as do the set of monomials of degrees6 r in local
coordinates).

Now we take some sufficiently small positiveε and letxϕ = (1 + εϕ)x0.
Sinceε is small, all xϕ satisfy ‖xϕ(v)‖E 6 1 on theboundaryof some small
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ball B(v0, ρ0) ⊂ V and so can be smoothly extended with this property toV .
The totality of these extendedxϕ represent allr-jets atv0. This property passes to
the corresponding sectionsxiϕ of Ei and then further to theholomorphicsections
approximatingxiϕ. This is straightforward and left to the reader (who is referred
to [Tian] for further results and applications).

3.3.14. Take a subsetS in the jet bundleJ r(Ei) overV and let us try to move a
given holomorphic sectionV → Ei away fromS. This presupposes some metric
onJ r(Ei) and ‘away fromS’ means that ther-jet V → J r(Ei) does not intersect
anε-neighbourhood ofS for someε > 0. In what follows, we assume thatV andE
have bounded local geometry and observe that thenJ r(Ei) also admits a Hermitian
structure of bounded local geometry compatible with this inV . We choose and fix
such structure in eachJ r(Ei).

We say thatS is uniformlyk-dimensional, if for each unit ballB ⊂ J r(Ei) and
everyδ > 0, the intersectionS ∩B can be covered by at mostCδ−k balls of radius
δ for some constantC = C(S).
UNIFORM TRANSVERSALITY THEOREM.LetE be positive andS uniformly
k-dimensional fork < dimV . Then there existsi0 = i0(V,E, r), such that for each
i > i0 every bounded sectionV → E can be moved away fromS by an arbitrarily
small(in the uniform topology) perturbation.

Proof. The required perturbation exists over eachρ-ball in V for a fixed small
ρ > 0 as follows from the above and the standard transversality argument. Fur-
thermore, this argument applies to a union of such balls, say toU = ⋃

B, µ =
1,2, . . ., if these balls are situated sufficiently far apart inV . Finally, we coverV
by finitely manyU ’s of the above kind,V = U1 ∪ U2 ∪ · · · ∪ UN , and apply
the first perturbation overU1, then the second, much smaller one overU2 and so
on. This ‘much smaller’ guarantees we do not each step what we gained at the
previous one and so theN ’th perturbation gives us a sectionx: V → Ei with the
jetJ r(x): V → J r(Ei)missingS, i.e. ‘moves the original section away fromS’. 2
3.3.15. Further Applications, Generalizations and Open Questions

(a) As we have mentioned several times earlier, theL2-part of our discussion ap-
plies to (nonpower!) line bundlesEi with curvature≈ iω, but to go toL1 (and
thusL∞) we need such anEi to be tensor product of two bundles with this kind of
curvature. Such decomposition is possible, for example, ifH 2(V ;Z) = 0 (but the
interpolation theorem, probably, remains true in all cases, compare 3.3.4(b′)).

(b) The full L2-story extends to suitably positive vector bundlesE of higher
rank. But our ‘squaring argument’ needs passing to tensorial powers ofE. Here
again, it would be nice to prove anL1-version of the∂-estimate and this looks
easy.

(c) The proof of 3.3.10 yields on interpolation results for holomorphicLp-
sections ofEi for all p > 1.
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(d) The classical correspondence between divisors and line bundles extends
to the framework of bounded geometry. This allows, in particular, construction
of many bounded sectionsV → Ei vanishing on a hypersurfaceW ⊂ V with
(sufficiently) bounded geometry.

(e) Here are several problems which seem to be solvable in the present frame-
work:

(1) Extension of bounded (andLp) holomorphic sections ofEi from a submani-
fold 6 ⊂ V of (sufficiently, depending oni) bounded local geometry (where
the case dim6 = 0 is covered by the interpolation theorem).

(2) Decomposition of bounded holomorphic sections ofEi into convergent sums
of L1-sections.

(3) Construction of bounded sections of affine subbundles of sufficiently positive
vector bundles. For example, solution of the equation

∑s
r=1 cr ⊗ xr = a for

given bounded sectionscr of Ej and ofEi with the unknownxr bounded
sections ofEi. Similarly, one is interested in the equation∑

r

xr ⊗ yr = a

wherea is anL2-section and the solution(xr, yr )must beL1.

(f) Kodaira embedding theorem.The uniform transversality theorem trivially
implies that the canonical map2 fromV to the projectivized space of holomorphic
L2-sectionsV → Ei is a holomorphic embedding fori > i0. (Recall, that2
is defined by sending eachv ∈ V to the space of holomorphic sections ofEi

vanishing atv.) Actually,2 is easily seen to belocally bi-Lipschitz, i.e. there exists
a constantC > 0 such that

C−1 dist(2(v1),2(v2)) 6 dist(v1, v2) 6 C dist(2(v1),2(v2))

for all pairs of disjoint pointsv1 andv2 in V satisfying dist(v1, v2) 6 1.
If V is compact, then the receiving projective space is finite-dimensional and it

is infinite-dimensional otherwise. In the latter case, we clearly have

dist(2(v1),2(v2))→ π/2 for dist(v1, v2)→∞.
There is (apparently) no good finite-dimensional reduction of this map but nice
mapsV → CPN are available for allN > dimV within theL∞-framework.

(g) Many naturally arising line bundles, e.g. those associated to divisors inV

(say with uniformly bounded volumes in the unit balls inV have singular curva-
tures and it would be useful to extend our upper and lower bounds on the spaces of
holomorphic sections to such bundles.

(h) Let E be some Dirac operator twisted with a Euclidean vector bundleE on
V . When can one guarantee the existence of manyLp-solutions to the equation
EEx = 0 (where the casesp = 1 andp = ∞ are especially interesting in the
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present context)? Here one exercises a good control overL2-sections especially
for the tensorial powersE⊗i in terms of the index of the twisted operatorEE⊗i
but it is unclear when there are nontrivialLp-sectionsx of E⊗i satisfying the
equationEE⊗i(x) = 0. Similar question arises for the Hodge–Laplace operator
acting on3∗(V ) where nonzero harmonicL1-form may (?) appear in the presence
of a nontrivial cup-product.

3.4. NONLINEAR EQUATIONS

Let V be, as earlier, a complete Riemannian manifold andX be a compact Rie-
mannian manifold. We are interested in smooth mapsx: V → X satisfying some
elliptic systemE of partial differential equations, where basic examples are:

(i) harmonic maps;
(ii) holomorphic maps, where the Riemannian metrics inV andX are assumed

Hermitian;
(iii) mapsx: V → X whose graphsGx ⊂ V ×X are minimal subvarieties.

The essential features of our equations we shall need later on are as follows:

(a) Regularity and compactness.EveryC1-mapx: V → X satisfyingE is in
factC∞-smooth. Moreover, all higher derivatives ofx are bounded in terms of the
first derivatives, i.e.

‖Dix‖ 6 Ci(‖Dx‖) (+)
for some bounded functionsCi = Ci(V,X,E), where‖ ‖ denotes the sup-norm
on functions onV , i.e. ‖Dix‖ =def supv∈V ‖Dix(v)‖. It follows, that the space
of our mapsx with ‖Dx‖ 6 const iscompactfor the uniform convergence on
compact subsets inV .

(b) Nonlinear Cauchy–Gårding inequality.Letx1, x2: V → X be smooth maps,
wherex1(v) can be joined by auniqueminimizing withx2(v) geodesic inX for all
v ∈ V . Then we can compare the differentials

Dx1(v): Tv(V )→ Tx1(v)(X)

and

Dx2(v): Tv(V )→ Vx2(v)(X)

using the parallel transport inX along the geodesic[x1(v), x2(v)] ⊂ X and take
the differenceDx1(v)−Dx2(v). Thus we can speak of theC1-distance‖Dx1(v)−
Dx2(v)‖ and set

‖Dx1−Dx2‖ def= sup
v∈V
‖Dx1(v)−Dx2(v)‖.
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Notice that thisC1-distance is well defined ifx1 andx2 areC0-close, i.e.

‖x1 − x2‖ def= sup
v∈V

distX(x1(v), x2(v)) 6 ε0 < InjRadX,

where, observe, the injectivity radius ofX is positive as we assumeX is compact.
(Notice that one could equivalently define aC1-distance with a given covering of
X by coordinate charts where it is possible to speak ofx1 − x2 locable in every
chart.) Now we can state our inequality.

If x1 and x2 have bounded differentials and‖x1 − x2‖ 6 ε0 for the aboveε0,
then

‖Dx1−Dx2‖ 6 C‖x1 − x2‖ (∗)
for some constant

C = C(V,X,E, ‖Dx1‖, ‖Dx2‖, ε0).

About the proof of(a) and(b) for our examples.The property (a) is well-known
for the classes of maps indicated in the above (i)–(iii) where it is derived from
the corresponding elliptic regularity for nonhomogeneous linear equations via the
standard implicit function argument. The sufficient condition onV andX is a
uniformC1-bound on their curvatures. Then (b) follows by the trivial interpolation
property of smooth maps,

‖Dx1−Dx2‖ 6 C‖x1 − x2‖
for C = C(V,X, ‖D2x‖, ‖D2x‖).

3.4.1. Embedding Property

Let V andX be as earlier where we assume‖K(V )‖ 6 const<∞. Consider the
spaceXc of mapsx: V → X satisfying one of the elliptic conditions (i), (ii) or
(iii) and having‖Dx‖ 6 c for a givenc > 0. Then there existsε > 0 depending on
V,X,E ande, such that the restriction map fromXc toX6 for an arbitrary ε-net
6 ⊂ V is an embedding.

This follows from the Cauchy–Garding inequality by the same (obvious) argu-
ment we used in the linear case. Also, we have as a corollary, the bound dim(Xc :
0) <∞, wheneverV is isometrically and co-compactly acted upon by an amenable
group0 (which must preserve the implied complex structure in the case (iii)).

3.4.2. Dependence ofC andε onc = sup‖Dx‖ and the Proof of 0.6.1

Harmonic and holomorphic maps are invariant under the scaling: ifx: V → X is
a harmonic (holomorphic) map then it remains such if we replaceV by λV andX
byµX, where the notation ‘λV ’ refers to multiplying the metric inV by a constant
λ > 0 andµX has similar meaning. Also observe that the (ellipticity) constantC
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in (∗) can be assumed independent ofλ andµ in-so-far as theseλ andµ are> 1,
since such scaling diminishes the curvature. On the other hand, when we scale the
metrics, the norms of the differentials of the mapsx: V → X scale by the rule,

‖Dx‖λ,µ = λ−1µ‖Dx‖,
where‖Dx‖λ,µ is the norm measured with respect to metrics inλV andµX. It fol-
lows, that the constantC in (∗) is bounded byc const(V,X,E, ε0) if c = sup‖Dx‖
is > 1. This is seen by takingλ = c andµ = 1. Consequently, the aboveε is
bounded from below byδc−1, δ > 0, and so we obtain the bound of the mean
dimension ofXc for largec by bcn as was stated in(?)∞ of 0.6.1.

Next let us see what happens ifc = sup‖D(x)‖ is small. Such a mapx sends
largeR-balls inV to small ones, of radiicR in X, and if we scale these small balls
to the unit size by passing toµX with µ = (cR)−1 we get maps fromB(R) ⊂ V
to almost Euclidean unit balls, where we assume thatc is much smaller thanR−1.
Thus, we can think of the harmonic equation for mapB(R)→ µX on eachB(R)
as a small perturbation of the ordinary Laplace equation for mapsB(R) → RN ,
N = dimX. Namely, if x1 andx2 are two harmonic maps fromB(R) to a unit
ball inµX, then the differencex1− x2 is approximately harmonic in the Euclidean
sense, where the difference is taken in the Euclidean geometry approximating the
Riemannian one inµX. Now (b) and (b′) from 3.2.3 imply the following

APPROXIMATE MAXIMUM PRINCIPLE. Let V and X have bounded local
geometries and letx1, x2: V → X be nonequal harmonic maps with‖Dxi‖ 6 c,
i = 1,2, and with ‖x1 − x2‖ 6 ε. Then there is a ballB(v0, R) ⊂ V where
x1(v0) 6= x2(v0) and the ratio‖x1(v)−x2(v)‖/‖x1(v0)−x2(v0)‖ is almost constant
on B(v0, R), whereR → ∞ for c, ε → 0 and where ‘almost’ means up to a
(1+ δ)-factor whereδ→ 0 with c, ε→ 0.

This trivially implies (?)◦ in 0.6.A exactly as in the linear case considered
in 3.2.3.

Remarks.(a) We treated above only harmonic maps, but the same argument ap-
plies to the pseudo-holomorphic maps between almost complex manifolds (where
it somewhat simplifies in the honestly holomorphic case).

(b) It is not hard to quantify the above and give a specific bound on dim(Xc : 0)
for harmonic maps and smallc in terms ofc, the upper bound on the sectional
curvature ofX and the rate of decay of the heat kernel inV .

3.4.3. Additional Remarks and Generalizations

(a) One can allow a noncompact target manifoldX, provided it has a uniformly
bounded local geometry, i.e.|K(X)| 6 const<∞ and InjRadX > ε > 0 (where
only the upper boundR(X) 6 const is essential for harmonic maps). Furthermore,
one may start with a general fibrationZ→ V (instead of the trivial oneX×V →
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V ) and extend the discussion to sectionsV → Z satisfying our kind system of
PDE. For example, one has dim(Xc : 0) <∞ for holomorphic sections of suitable
holomorphic bundles overV , e.g., those associated to the tangent bundle.

(b) If one deals with higher-order elliptic systems one may need a bound on
‖Dix‖ for i > 1 to achieve the full regularity and compactness, whereXc is defined
by the condition‖Di(x)‖ 6 c for some sufficiently largei.

(c) It is interesting to have a possibly precise bound on dim(Xc : 0) depending
on specific properties of the manifoldsV andX.

Here is a result by A. Eremenko (see [Ere]), whereV = C, X = CPm and the
maps we are concerned with are holomorphic ones.

The restriction mapx 7→ x | 1, sendingXc → (CPm)1, is an embedding,
provided1 ⊂ C is ε-dense forε < c−1√π/4. Furthermore,

dim(Xc : C) 6 2mC2/π;
(d) More general (but less precise) results are available for harmonic maps,

where the elliptic estimates are controlled by the lower bound on Ricci curvature
of V and the upper bound on the sectional curvature ofX as (apparently) follows
from the Yau gradient estimate (compare (b) in 3.4.2).

(e) Our embedding result states, in effect, that twodistinctharmonic (line) maps
x andx′ with bounded differentials cannot coincide on a sufficiently dense subset
6 in the manifoldV where the maps are defined. Much more is known for holo-
morphic maps, where the first main theorem of the Nevanlinna theory provides a
bound on the density of6 in terms of the growth of‖Dx‖ and‖Dx′‖ onV . This
leads to the following

GENERAL PROBLEM. Consider harmonic mapsx from V toX or more general
maps satisfying some (linear or nonlinear) system of elliptic PDE. Take two non-
negative functionsσ(v) andδ(v) enV and decide whether there exist twodistinct
mapsx andx′ from our class, such that

max(‖Dx(v)‖, ‖Dx′(v)‖) 6 σ ′(v)
and

dist(x(v), x′(v)) 6 σ(v)

for all v ∈ V .
Here again, one expects the bound on a suitable density of the zero set ofδ(v) in

terms of the asymptotic growth ofσ(v) for v → δ. More generally, one wishes to
show, that ifδ(v) is small on a rather dense set, then it is also small on a much larger
set, provided we have some bound onσ(v). For example, a holomorphic function
x with many zeros in aρ-disk and with a bound on‖x(v)‖ in the consecutive
2ρ-disk is much smaller on theρ-disk than was suggested by the original bound
on ‖x(v)‖. Another general phenomenon of this kind is the unique continuation
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property for elliptic PDE but all this seems far away from a desirable solution of
the above problem.

3.4.4. Residual Dimension for Spaces of Holomorphic Maps

This refers to the dimension of the space of holomorphic mapsx: V/0i → X for
subgroups0i ⊂ 0 of finite index. The above argument shows that the dimension of
the space of such mapsx satisfying‖Dx‖ 6 c is bounded byAcn|0/0i | for some
constantA = A(V,0,X) andn = dimR V . In fact this remains valid for all our
harmonic-like maps while for holomorphic maps there is a better estimate due to
the following elementary (and well known)

3.4.5. PROPOSITION.Let X be a complex projective variety,W be a compact
connected complex manifold and letx0: W → X be a holomorphic map. Then the
dimension of the connected componentX0 of x0 in the space of holomorphic maps
W → X is bounded by the volume of the image ofx0 and the maximal number
ν = ν(x0) of irreducible components of the fibers ofx0 as follows

dimX0 6 Aν Vol2k x0(W)

for k = dimC x0(W), ν = supx∈X card conn(x−1
0 (x)), and some constantA =

A(X).
Proof.The dimension dimX0 is bounded by the dimensionh of the spaceHx of

holomorphic sections of the induced bundlex∗(T (X))→ W for a genericx ∈ X0,
as theseHx make up the tangent bundle ofX0 on the nonsingular locus ofX0,
which is known to be a complex variety in its own right. (Here we used smoothness
of X but this can be always achieved by embeddingX into a smooth variety, e.g.
into a projective space.) Next we observed thatT (X) can be embedded into a sum
of several very ample line bundles overX (this is true and obvious for all vector
bundlesL over projectivevarieties) and the matter reduces to evaluation of the
dimension` = dimH0(x

∗(L)). Such anL embedsX to some projective space
CPN and so we may think ofx∗(L) as the restriction of the bundle O(1) to ourW ,
now mapped toCPN by composingx: W → X and the embeddingX → CPN .
Notice that the productν(×)Vol ×(W) is invariant under deformations of maps
and so all we need is to estimate` for a mapy0: W → CPN in terms ofν =
ν(y0)Vol2k y0(W). We do this by induction onk as follows. Intersecty0(W) with a
generic hyperplaneP and observe that our number` = `k is bounded bỳ k−1+ `′
where`k−1 comes fromP ∩ y0(W) and`′ is the dimension of the space of sections
of O(1) onW which vanish onP ∩ y0(W). This space easily identifies with the
space of sections of a trivial line bundle overy0(W) and sò ′ = 1. Thus everything
reduces̀ 0 where our variety consists of at mostν Vol y0(W) points counted with
multiplicity (for the usual inCPN , where the volume of each subvariety equals its
degree). Thus finallỳ 6 ν Volzk y0(W)+ k. 2

(Notice, this is sharp for the linear embeddingsW = CP k → CPN .)
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Remark.Probably the conclusion remains true for all complex (not necessarily
algebraic)X and, possibly, for more general harmonic (like) maps.

3.5. LOWER BOUNDS ON THE MEAN DIMENSION FOR SPACES OF

HOLOMORPHIC MAPS

If X is a compact Riemannian manifold andV is complete, then, typically, the
space of harmonic mapsx: V → X with ‖Dx‖ 6 const looks zero-dimensional
(probably, uncountable for many generic classes of metrics onV ), but I am not
aware of any published result of this kind. On the other hand, there are certain
remarkable exceptions, such as Káhler manifolds that sustain lots of holomorphic
maps and these are necessarily harmonic.

3.5.1. EXAMPLE: MAPSC → S2. These are just meromorphic functionsx =
x(v), v ∈ C, which can be constructed in abundance with bounded spherical
derivatives as follows. Take a discrete subset6 ⊂ C and consider meromorphic
functionsϕσ : C → C ∪ ∞ = S2 = CP 1 of the formϕσ (v) = cσ (v − σ)−k.
If the sum of these over allσ ∈ 6 converges, we get a meromorphic function
X: C → C ∪ ∞ = S2 = CP 1 where one can easily control the differential dx.
For example, if6 is separated, i.e.‖σ1 − σ2‖ > δ > 0 for all σ1 6= σ2 in 6 and
the coefficientscσ are bounded, then this sum obviously converges and gives us
an x: C → S2 with supv∈C ‖dx‖ < ∞, providedk > 3. Moreover, by varying
cσ , one can easily make such anf with prescribed values on a sufficiently rare net
6′ ⊂ Cn lying away from6. This shows, that the spaceXc of holomorphic (and
thus harmonic) mapsx: C→ S2 with ‖dx‖ 6 c has

dim(Xc : C) = κc2 for someκ > 0.

Consequently,if a complex analytic manifoldX contains a rational curve then
the space of holomorphic mapsx: C → X with ‖dx‖ 6 c has positive mean
dimension for allc > 0.

Remark. By varyingσi and/or rotating the sphereS2, one can easily make an
x: C → S2 with ‖dx‖ 6 c and prescribed values on a given, sufficiently sparce
(depending onc > 0) net6′ ⊂ C. (See [Ere] for a finer construction of such
interpolating mapsC→ CPn.)

3.6. L2-TECHNIQUE FOR MAPSV → CPN

LetV = (V, g) be a Hermitian manifold with locally bounded geometry andE →
V a strictly positive line bundle, i.e. with the curvature formw satisfyingw > λg.

3.6.1. EMBEDDING THEOREM.There exists a holomorphic uniformly locally
bi-Lipschitz mapx: V → CPN for someN = N(V,E).
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Proof.First, for each pointv ∈ V , we can constructn+ 1 L2-sectionsxj : Ei
for somei andj = 0, . . . , n = dimV such that the mapV → CPn defined by
these sections embeds some ballB(v, ρ) toCPn. Furthermore, by squaringxj , we
can make the sectionsL1 (see 2.1.3). Then, we take such sections at each point of
a sufficiently rare net6 ⊂ V and by summing them up (compare 3.3.10), obtain
a mapV → CPn that embed theρ-neighbourhoodUρ(6) ⊂ V into CPn in a
bi-Lipschitz manner. Finally we cover all ofV by ρ-neighbourhoods of several
such nets,V = ⋃ν Uρ(6ν), ν = 1, . . . , N0, and then the resulting mapx: V →
CPnN0+N0−1 is clearly seen to be locally bi-Lipschitz. 2

Remark. If V is compact, the above amounts to the classical Kodaira theorem,
where one can, moreover, projectV from CPN to CP 2n+1 and then further to
CPn if one is not concerned so much with embeddings. But ifV is noncompact,
the image ofV in CPN may be, a priori, dense and then there is no holomorphic
Lipschitzprojection toCPN−1. However, such projection can be obtained with the
uniform transversality theorem as will become clear later on.

3.6.2. Now, given a suitable holomorphic Lipschitz (i.e. with bounded differential)
mapx0: V → CPN we want to generate a larger space of such maps. To do this we
take the pull-backE→ V of the O(1)-bundle overCPN and use bounded sections
of Ei for this purpose. So we needE to be rather positive which is ensured by the
following condition generalizing the ‘locally bi-Lipschitz’ property.

Uniform nondegeneracy.Let x: V → CPN be a holomorphic Lipschitz map.
SinceV has bounded geometry, we have a local coordinate system with ‘bounded
distortion’ at each pointv ∈ V and so by looking atx and on all small balls inV
we obtain a precompact family of holomorphic maps from the unit ballB ⊂ Cn
to CPN , call themxv: B → CPN . We say thatx is uniformly nondegenerateif
every mapy: B → CPN belonging to the closure of the family{xv}, v ∈ V ,
(with the uniform topology) is finite to one. For example, ifV is compact, then this
equivalent tox itself being finite to one.

Now, it is essentially standard that ifx: V → CPN is uniformly nondegen-
erate holomorphic Lipchitz map, then theninduced Hermitian structure inE =
x∗(O(1)) admits a small perturbation making the curvature ofE strictly positive.
(Such a perturbation can be achieved, for example, along the stratification of the
locus where the differentialDx is noninjective.)

3.6.3. PROJECTIVE INTERPOLATION THEOREM.SupposeV admits a uni-
formly nondegenerate holomorphic Lipschitz mapx0 to CPN . Then for everyδ-
separated subset6 ⊂ V there exists a holomorphic mapx: V → CPN with
‖Dx‖ 6 const(1+ δ−1) taking given values at all pointsσ ∈ 6, whereconst=
const(V, x0).

Proof.The line bundleE = O(1) overCPN admits many (meromorphic) maps
intoCPN different from the original projection. To see one, observe that each point
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(vector) inE is given by a pair(`, ϕ) where` ⊂ CN+1 is a line andϕ: ` → C a
linear form.

Now, with a given vectorz1 ∈ CN+1, we associate the mappz1: E → CPN
where the linè ′ = pz1(`) ∈ CPN is spanned by the vectorz1 + ϕ−1(1) ∈ CN+1.
Notice, that thispz1 has poles, but it is regular in some (Zariski) neighbourhood of
the zero sectionCPN ⊂ L = x∗0(E) of E toV , and observe that each holomorphic
sectiony1: V → E with a sufficiently small sup-norm gives us a map ofV to
CPN , that is the composed mappz1 ◦ y1, denotedx1: V → CPN . Furthermore, if
z1 6= 0, then the mappz1 is injective on each fiber ofL near zero, and so we obtain
an embeddingfrom the space of small sectionsV → E to the space of maps
V → CPN close tox0. (Consequently, the mean dimension of the space of maps
x: V → CPN with ‖Dx‖ 6 const is bounded from below by that for the space
of bounded sectionsV → E.) Then one can similarly deformx1 using somepz2
andy2 and so on. Thus the proof would be concluded if we had the interpolation
property in the bundleE.

We cannot guarantee thatE itself has sufficiently many sections, but some
powerEi is good for this purpose. To go fromE toEi, we consider a selfmapping
ψ of CPN given by polynomials of degreei such thatψ can be found with‖Dψ‖
about

√
i (modeled on the standard map ofCN/Z2N) and it pulls backE to Ei .

We composeψ with our x0: V → CPN and thus promoteE to Ei overV , as
(x0 ◦ ψ)∗(E) = Ei. Now we have as many sections as we need and the proof
trivially follows from 3.2.6. 2
COROLLARY TO THE PROOF (Compare 0.6.2). If V is acted upon by an
amenable group0 with a projective algebraic quotientV/0, then the spaceXc
of holomorphic mapsx: V → CPN with ‖Dx‖ 6 c satisfies

dim(Xc : 0) > b′cdimR V

for all sufficiently largec and someb′ > 0.

3.6.4. Projective Transversality Theorem

Let x0: V → CPN be as above and consider a subsetS in the space ofr-jets
holomorphic mapsV → CPN . We want to movex0 away fromS, i.e., to have
the r-jet of the moved section to lieε-far from S for someε > 0. Again, we
cannot freely manipulatex0 itself, but we can work withxi = ψ ◦ x for the above
mapψ : CPN → CPN , where the above argument combines with the uniform
transversality theorem and leads to the following conclusion.

If the uniform dimension(see[GroPCMD]) of S is strictly less thandimR V =
λdimC V , then there exists a holomorphicR uniformly nondegenerate Lipschitz
mapx′i : V → CPN which is uniformly transversal toS.

COROLLARIES. (a)If N > dimC V , then one can make thex′i miss a small ball in
CNN . This allows projections fromCPN to CPN−1 and eventually toCPn. Thus
we obtain a holomorphic uniformly nondegenerate mapV → CPn, n = dimV .
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(b) If N > 2n − 1, we can produce uniform immersionsV → CPN , i.e.
uniformly locally bi-Lipschitz maps.

3.6.5. Remarks and questions.(a) If V = Cn or if V admits a nonconstant
holomorphic mapV → Cn with bounded differential, then there are lots of holo-
morphic mapsx: V → CPn with ‖Dx‖ 6 c for arbitrarily smallc > 0. On the
other hand, for someV , every mapx: V → CPn with sufficiently small‖Dx‖
is necessarily constant. This is the case, for example, for infinite cyclic coverings
of compact manifolds as well as for more generalV which areone-dimensional at
infinity in the sense of [GroPCMD]. Can one classify manifolds with this properly?
Similarly, assumingV is acted upon by an amenable group0, what is the mean
dimension of the spaceXc of holomorphic mapsV → CPN for small c < 0?
Now, in general, does the dimension dim(Xc : 0) depend onc, especially for
c→ 0?

(b) What is the relation of dim(Xc : 0) and the corresponding residual dimen-
sion for residually finite groups0? In particular, when can a holomorphic map
x: V → CPN with ‖Dx‖ 6 c be approximated by0i-periodic mapsxi with
‖Dxi‖ 6 c1 where0i ⊂ 0 is some sequence of subgroups of finite index andcj
is independent ofi? Closely related to this is the Runge approximation problem
where we look for an approximate extension of holomorphic Lipschitz maps from
smaller domains inV to larger ones. Finally, one asks when holomorphic Lipschitz
maps toCPN extend from subvarietiesW ⊂ V with bounded local geometry to
all of V .

(c) Foliations. Consider a manifoldU (or a general locally compact space for
this matter) foliated into complete Hermitian manifoldsV and letE → U be
a complex line bundle holomorphic along the leaves. For each pointu ∈ U we
take the universal covering̃Vu of the leafVu ⊂ U passing throughu, thought of
as the space of the homotopy classes of loops inVu ⊂ U based atu so thatu
canonicallylifts to Ṽu and is denoted̃u ∈ Ṽv. Let H̃u be the space of holomorphic
L2-sections of the bundlẽEu→ Ṽu induced fromE and take a vectore in the (one-
dimensional) fiberEu ⊂ E atu identified with the corresponding fiberEũ of Ẽu. If
the evaluation map̃Hu→ Ẽũ = Eu is surjective, then there exists a unique section
h̃ = h̃e: Ṽu → Ẽu having h̃(u) = e and minimizing theL2-norm ‖h̃‖L2. Now,
supposeE is positive along the leaves, where this positivity is uniform onU, and
also assume that all leaves have uniformly bounded local geometry. Then the above
surjectivity condition is satisfied for alle ∈ Eu and allu, if not for E itself, then,
at least, for some tensorial powerE i of E . Thus every sectionϕ: u 7→ e(u) ∈ E iu
of E i gives rise to a family of holomorphicL2-sectionsh̃u =def h̃ϕ(u): Ṽu → Ẽ iu,
that is a section, call it̃ϕ, of E i lifted to the graph̃V of our foliation defined as the
space of pairs(u, ṽ), for u ∈ U andṽ ∈ Ṽu. According to 3.3.12, each holomorphic
constituenth̃u of ϕ̃ has a controlled decay on the leafṼu with the decay estimate
independent ofu. Moreover, theL2-estimate (see(∗) in 3.3.2) implies that the
sectionsh̃u areL2-continuous inu, providedϕ is continuous. In fact, ifu andu′ are
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near by points inU ande ∈ E iu ande ∈ E ′u′ are close vectors, then the leavesṼu and
Ṽu′ are close on large balls̃Bu ⊂ Ṽu andB̃u′ ⊂ Ṽu′ . Then the holomorphic section
h̃e, onB̃u′ can be moved to an almost holomorphic sectionh̃′ onBu which lies close
to h̃e′ on B̃u′ and has̃h′(u) = e. This h̃′ can be made zero outsidẽBu by applying
an obvious cut-off argument and then we observe that the sectionh̃′′ = 1

2(h̃e + h̃′)
is also almost holomorphic and thus can be turned holomorphic as we did before
using theL2-estimate. The resulting holomorphich̃• isL2-close toh̃′′ and may be
assumed to havẽh•(u) = e. On the other hand, if̃he′ were far fromh̃e, thenh̃′ is far
from h̃e as well, and then their mean would have significantly smallerL2-norm than
h̃e (as we could assume‖h̃e′‖L2 6 ‖h̃e‖L2 by interchangingu andu′ otherwise)
which contradicts to minimality of the norm‖h̃e‖L2. Next, we square each̃hu thus
making itL1 and then push down the resulting sectionϕ̃2 from Ṽ to a sectionϕ2(v)

of E2i → U by integratingϕ̃2(u, ṽ) with respect tou over the leafVv = Vu and
summing up over all̃v in Ṽu overv, where we needϕ to be bounded (as well as
continuous) onU. In particular, ifU is compact, we obtain, by varyingϕ, lots of
continuous sections ofE2i → U holomorphic along the leaves and conclude that
U admits a continuous leafwise holomorphic and leafwise locally bi-Lipschitz map
to someCPN .

Notice, that such foliations exist, for example, on locally homogeneous spaces
U of the formK\G/0 whereG is a semi-simple group without compact quotients,
K ⊂ G a (nonmaximal!) compact subgroup and0 ⊂ G is a cocompact lattice.

(d) Singular spacesV . Probably, our results extend to singular spacesV with
an obvious extension of the idea of bounded local geometry. For example, one can
easily handle submanifoldsV of a manifoldW with bounded geometry, such that
Vol2n(V ∩ B) 6 const for all unit ballsB in W . In general, one needs a suitable
version of∂-technique where a natural idea is to embedV into a nonsingular mani-
fold. Alternatively, one may resolve the singularity ofV and adjust the∂-lemma to
sections constant (vanishing) on the pull-back of the singular locus. Alternatively,
one may tryL2-techniques on thêCech resolutions of the relevant sheaves.

(e) As we mentioned earlier, the space of harmonic maps between generic Rie-
mannian manifolds seems rather small but there are some exceptional cases besides
the Kähler manifolds. For example, one may look from this angle at harmonic maps
Rn → SN for all n > 2. One can also considern-harmonic mapswhich locally
minimize the energy= ∫ ‖Dx‖pdv with p = n which bubble very much like
ordinary harmonic maps forn = 2. Here one should probably replace the uniform
metric for

∫ ‖Dx‖p by ‘the energy metric’ and study mapsx: V → X locally
minimizing

∫ ‖Dx‖pdv and having this integral uniformly bounded over the unit
balls in V . This is similar to bounding holomorphic mapsx: V → X by their
‘local degrees’, i.e. by the volumes of their graphs within unit balls inV × X,
where one can use estimates from 4.1 or, alternatively, the (first main theorem of
the) Nevanlinna theory which, when it applies, gives better bounds on the mean
dimensions of these spaces than 4.1 (as was pointed out to me by Alex Eremenko).
Notice that in all these cases the spaces of maps with bounded local energy (or
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degree) are not compact and one should compactify them by allowing suitable
‘singular maps’ best represented by certain subsets inV × X appearing as limits
of graphs of the maps in question.

(f) It is worthwhile to recall at this stage that the mean dimension of a space
of mapsV → X appears as a limit of theε-dimensions of spaces of maps of
relatively compact domains� ⊂ V . A more general class of geometric problems
can be formulated for an arbitraryV , allowed to be noncomplete and/or to have a
boundary and for a relatively compact� in the interior ofV . Here we take some
spaceXc of our (harmonic like) mapsx: V → X with a bound like‖Dx‖ < c,
or a similar bound on the (local or global) energy ofx. Then we restrict the maps
x ∈ Xc to� and evaluate theε-dimension Widimε of the resulting spaceXc|� of
maps� → X with respect to some metric in this space, e.g. the uniform metric
or some energy metric. What we want to know is the asymptotic behavior of the
resulting Widimε(Xc|�) for growing V and�, where� remains much smaller
thanV . Here it is equally interesting to evaluate the minimal numberNε of the
ε-balls needed to coverXc|�, where the expected growth is roughlyε−Vol�.

3.6.6. About Fusion

If dimC V = 1, then there are nonlinear techniques for producing holomorphic
mapsV → X whereX is analmost complex manifold(with possibly anoninte-
grablestructure) which contains ‘sufficiently many’ rational curves. Here a given
holomorphic mapx0: V → x can be modified by ‘fusing’ it with rational curves
at the pointsσ of some discrete subset6 ⊂ V . Recall that the analytic model
for ‘fusion’ of two curvesc1 andc2 in X given by the equationsf1(x) = 0 and
f2(x) = 0 is the curveC = Cε given by the equationf1f2 = ε. ThisCε for small
ε 6= 0 looks like the connected sum ofC1 andC2 at their intersection points.

EXAMPLE. LetX = CPN with an almost complex structure tamed by the stan-
dard symplectic fromw on CPN . One can easily construct, by fusing together
infinitely many rational curves,a holomorphic Lipschitz mapx: C → CPN with
assigned values on a given separated subset6 ⊂ C. Probably, there is a similar
interpolation result for all Riemann surfaces with bounded geometry. Also one
may try maps into more general spacesX, e.g., intorationally connectedalgebraic
manifoldsX.

4. Spaces of Subvarieties

Let W be a Hermitian manifold and consider the space of complex analytic sub-
varietiesM ⊂ W of given dimensionn. All? possible topology inM comes from
the Hausdorff convergence on compact subsets inW . We shall use below a slightly
different topology induced onM from the space of currents onW . Namely, for
every collection� of continuous formsw onW of degree 2nwith compact support,
we set
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|M1−M2|� = sup
w∈�

∣∣∣∣∣
∫
M1

w −
∫
M2

w

∣∣∣∣∣.
ThenMi → M signifies that|M −Mi|�→ 0 for every finite collection�. Notice
that the limits ofMi in this topology may acquire multiplicity. For example, the
graphMλ ⊂ C2 of the functionz → λz2, converges, forλ → ∞, to the vertical
line inC2 with multiplicity two (while the Hausdorff limit gives us this line without
multiplicity. Our objective is the spacẽMd consisting of the subvarietiesM ⊂ W
of ‘local degree’ bounded byd. This means that

Vol2n(M ∩ B) 6 αWd
for all unit ballsB ⊂ W and a suitable normalization constantαW > 0 which for
M = CN should be chosen equal the volume of the unit Euclidean 2n-ball. If W
has bounded geometry, then our study can be reduced to that inW = CN where
the relevant properties ofM ∈ M̃d become more transparent.

4.1. NORMALIZATION AND CAUCHY INEQUALITY

A complex analytic subvarietyM ⊂ CN can be locally represented as the graph of
multi-valued holomorphic mapCn→ CN−n. Namely, for each pointv ∈ M, there
exists a linear projectionp: CN → Cn so thatp is finite-to-one onM. Then a germ
of M atv becomes a ramified cover of a small ballB = B(p(v), ε) ⊂ Cn where it
is represented by the graph of adv-valued map fromB to CN−n. Such a map can
be viewed as a singled valued holomorphic map fromB to thedv−, the symmetric
power ofCN−n, sayµ: B → SdvCN−n and by Cauchy inequality we can bound
the differential ofµ in a smaller ball, say inB ′ = B(p(v), ε/2) by something like
ε/2. (Notice that the varietySdvCN−n is singular but it embeds into a smooth one
and so one can speak of norms of derivatives of maps into it.) Thus our objective
is a lower bound onε in terms of the 2n-volume ofM.

4.1.1. Controlled Normalization

We want to locatem-dimensional polydisksDm ⊂ CN (which are more suitable
for us than 2m-balls) form = N − dimM, such that their intersections withM
are stable underε-perturbations. Thus we say thatDm is ε-transversal toM if its
boundary∂Dm is ε-far fromM, dist(∂Dm,M) > ε. Here everyDm lies in somem-
dimensional affine subspaceL ⊂ CN . Observe that thisDm = (D(r))m contained
in the ballB(R) ⊂ Cm of radiusR = √nr and we call thisR the radius ofDm.

LEMMA. LetM be a complex analytic subvariety inCN of dimensionn. Then for
everyρ > 0 there exists a polydiskDm in CN with the following properties.

(1) The center ofDm is located at the origine ofCN .
(2) The radiusR ofDm lies in the intervalρ/26 R 6 ρ.
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(3) Dm is ε-transversal toM, where

ε > constN ρ
2n+1d−1(ρ), (+)

for d = d(ρ) denoting the2n-volume of the intersection ofM with theρ-ball
in CN around the origin.

Remark.One can show, a posteriori, that suchDm exist forall R in the interval
1
2ρ 6 R 6

2
3ρ.

Proof.An obvious integral geometric (or, alternatively, transversality) argument
shows that almost all polycylindersDm centered at 0∈ CN have empty intersection
∂Dm ∩ M. Here one may invoke the compactness property of analytic sets with
bounded volume and thus obtain a definite lower bound on dist(∂Dm,M) for some
R. Next, as we want a quantitative result, we recall the relevant property ofM

behind the compactness property which reads

Vol2n(M ∩ B(v, δ)) > αnδ2n (∗)
for all v ∈ M, all balls B(v, δ) ⊂ CN at v and αn equal the volume of unit
Euclidean 2n-ball. Then we take someDm of radiusR centered atO ∈ CN and
intersect it with theε-neighbourhoodMε of M. We measure this intersection by
the minimal numberN = N(Dm, ε) of ε-balls needed to cover the part of this
intersection lying in the ‘band’Dm\1

2D
m = Dm(ρ) − Dm(ρ/2). If N 6 0.1ρ/ε,

then, clearly, there is anR betweenρ/2 andρ such that the boundary ofDm(R)

missesMε and(+) follows with thisε. Now, assumeN > 0.1ρ/ε for all Dm(R)

and bound the volume ofM∩B(ρ) from below(∗) as follows. First, imagine we are
allowed the parallel translations ofDm by distanceρ. Then we get aboutN(ρ/ε)2n

points inM with mutual distances> ε/2 and thus the volume ofM covered by
these translated is bounded from below roughly byNαn(ε/2)2n(ρ/ε)2n = Nαnρ2n.
It follows, N is bounded approximately by Vol(M ∩ B(ρ)/ρ2n, hence 0.1ρ/ε 6
CN Vol(M ∩ B(ρ))/ρ2n and(+) follows.

Finally, instead of translatingDm (which we are not allowed to do as the center
of Dm is fixed) we rotate it around some(m − 1)-planeL in Cm ⊃ Dm. We
choose thisL ⊂ Cm so that the significant part of the intersectionMε∩(Dm\1

2D
m)

lies roughlyρ-far from L, i.e. the covering number forMε ∩ (Dm\1
2D

m\Lρ′) is
> βNρ/ε for someβN > 0 andρ ′ > βNρ. Granted suchL, the rotation ofDm

gives us essentially the same volume as the above translation. Finally, to see that
suchL exists, we apply the same reasoning, but now we rotateL in Cm around
some(m− 2)-planeL′ ⊂ L. ThenL′ is located with rotation ofL′ aroundL′′ and
so on down to a rotating line inC? 2
4.1.2. Local Representation ofM by Multivalued Function

Consider the normalε-tube around ourDm that isDm × B⊥0 (ε) ⊂ CN=m+n where
B⊥0 (ε) is the n-dimensionalε-ball in CN normal toDm and letM0 denote the
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intersection ofM with this tube. Clearly, the projection ofM0 toB⊥0 (ε) is a proper
map of multiplicity d0 = d0(ε) 6 constn(VolM ∩ B(ρ))/ε2n. ThusM0 is rep-
resented by the graph ofd0-valued map overB⊥0 (ε), sayϕ0: B⊥0 (ε) → Sd0D

m.
Then we consider such tubes centered at all points inM and coverM by a min-
imal number of these. Here we setρ = 1 and denote byd the supremum of the
volumes of intersections of the unit balls inCN with M. Then we see with(∗)
that there is a covering ofM by ε-tubes, where the number of such tubes meeting
each unit ball inCN is bounded by constN dε−2n 6 const′N d

2n+1, where we use
(+) in the formε > constN d−1 (and where we exercise the usual freedom with
the notation ‘const’N ). Finally we observe with(+) that d0 6 constN d2n and so
dimSd0D

m 6 constN md2n 6 const′N d2n. Thus the total number of ‘parameters
per unit volume’ definingM is bounded by constN d4n+1. This makes plausible
that the mean dimension of the spacẽMd of n-dimensional complex subvarieties
M ⊂ CN with the local degrees bounded byd satisfies the inequality

dim(M̃d : CN) 6 constN d
4n+1. (?)

Actually, the natural conjecture (justified later on) reads

dim(M̃d : CN) 6 constN d
n+1, (??)

but we are not able to prove even the weaker inequality(?).

Here are two difficulties.
1. The above heuristic argument only applies to subvarieties close to a given

one and we lack a good localization theorem saying that ‘the local mean dimen-
sion equals the global one’. Thus we have to vary the tubes coveringM which
unpleasantly enlarges the exponent 4n+ 1 to something of orderN2.

2. As we change a covering ofM by ε-tubes, we change our representation of
M by a collection of maps (this already happens near a fixedM as we appeal to
Cauchy inequality). This introduces an ambiguity in our choice of a metric inM of
orderdd (which probably could be greatly reduced) and this makes our exponent
(even in the local case) comparably large.

Remark.One can improve the covering argument ofM by ε-tubes (using tubes
of variable size at different points inM) but I doubt you can bring the exponent
down ton + 1 this way. (The ‘difficult’M ’s are those having large intersections
with small balls, e.g., having conical singularities of degrees≈ d.) On the other
hand, the above 1 and 2 are purely technical problems and should be eventually
resolved.

4.1.3. Parametrizations ofSdCm

The symmetric powers ofC are nonsingular. In fact,SdC can be identified withC
in several ways. For example, given a symmetric configuration of complex numbers
v1, . . . , vd one can associate to them the polynomialp(z) =∏d

i=1(z−vi) and then
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one uses the metric onSdC corresponding to the sup-norm of functions on the disk
D(2) ⊂ C of radius 2. Another useful representation ofSdC is by means of the
symmetric functions,

s1 =
d∑
i=1

mi, s2 =
d∑
i=1

m2
i , . . . , sd =

d∑
i=1

mdi ,

where the corresponding metric is the sup-norm in the(s1, . . . , sd)-space. The two
norms are bi-Lipschitz equivalent, at least in the region corresponding tomi ’s with
|mi| 6 1 where the Lipschitz constant can be trivially bounded by something like
dd . Indeed, going fromsi to polynomials amounts to expressing the elementary
symmetric functions as polynomials insi. Conversely, one reconstructssi out of
p(z) by taking Cauchy integral ofzip′(z)/p(z) over the circle of radius 2 since
zip′(z)/p(z) has simple poles atmi with residuesmdi .

Next we observe that the natural mapSdCm → (SdC)m is finite-to-one, we
take, additionally, the composition of this projection with a generic linear map of
Cm. Then the resulting mapSdCm → (SdC)m × (SdC)m = (SdC)2m becomes
one-to-one.

4.1.4. Embedding ofMd to a Power Space

We want to construct a sufficiently large set ofm-disks inCN=m+n, so that each
M ⊂ M̃d will be uniquely determined by intersections with these disks. (We
shall eventually disregard the disks which are notε-transversal toM.) Recall, that
everym-disk inCN is of the formgDm(1) for the standardD(1) ⊂ C and some
isometryg: CN → CN . Thus we can mark the disks in our set byg’s. Here are our
requirements on these disks andg’s.

A. The set ofg’s is ε0-dense in the group IsomCCN for the standard metric,
whereε0 should be quite small, sayε0 6 const−1

N (d + 2)(d+2)N for constN = NN2
.

B. If somem-disk D is in the set, then there is aδ-dense set of rotations of
this D = Dm in them-planeL spanned byD. That isg’s are δ-dense in the
subgroup(≈ U(m)) of unitary transformations ofL fixing the center ofD. Here
δ is independent ofd, sayδ = N−N . (Notice that the dependence of our constant
onN is a matter of convention as they could be absorbed by the definition of the
‘standard’ metric in IsomCN . Also observe, that the only role of this condition is
to take care of noninjectivity of the mapSdCm→ (SdC)m.)

C. With every diskD in our family, there are ‘sufficiently many’ disks, sayDi

obtained fromD by parallel translation in the directions normal toD. Namely the
projection of thisDi to the normalCm is ε0-dense, for the aboveε0 in some ball of
radius 10 inCm. (This is a purely technical condition. It is not truly needed but it
simplifies what follows.)
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Clearly, there exists a system of disks with above properties, such that the num-
ber of these per unit volume inCN , i.e. meeting each unit ball (or cube) inCN does
not exceed constN ε

−K
0 for

K = dim IsomCN + n = N(2N + 3)+ n 6 3N2.

4.1.5. MAIN LEMMA. Let D be a collection of disks satisfyingA,B,C and let
M1 andM2 ben-dimensional subvarieties inCN from the classM̃d . Suppose, that
every diskD ∈ Dε-transversal to bothM1 andM2 with the aboveε, satisfies
D ∩M1 = D ∩M2. ThenM1 = M2.

Proof. SinceM1 ∪M2 ⊂ M2d and ourε′ is so small, we can coverCN by ε-
tubesg(Dm × B(ε)) for D = D(1) ⊂ C, B(ε) ⊂ Cn andε much larger thanε,
sayε = constN d−1 (see(+)) such that all disksgDm are in our collection and,
moreover, 2ε-transversal to bothM1 andM2. Thus,M1 andM2 are represented by a
collection ofSdgCm-valued mapsϕg on the correspondingε′-ballsg(B(ε)) ⊂ CN ,
wheredg are bounded by const′N d/(ε)2n 6 N2Nd2n+1. The intersection condition,
with B, says that these functions are equal onε′-dense subsets in these balls. Now,
let δ denote the supremum of the distances between these functions over all our
balls. The argument as in Section 3 appealing to the Cauchy inequality makes
this distanceλδ-small on concentric balls of radii, say 0.9ε with very smallλ,
something of order12d

−d . Thusδ-distance for one covering implies12d
−dδ-distance

for another covering which then yield12δ-distance for the original covering by the
discussion in 3.1. It followsδ = 0 and the proof follows. 2

Remark. We did not try to be sharp in the above estimates but used notations
clarifying relative roles ofn,N andd. Besides, there are little details to fill in, like
requiring covering by 0.8ε′-tubes (rather than theε′-tubes), etc.

4.1.6. We want to interprete 4.1.5 as an embedding result and thus bound the mean
dimension ofM̃d . Denote by1 = 1(Dn) the union of the cones ofSiDm, i =
1, . . ., d0 joint at the vertex

1 =
d0∨
i=0

cone(SiD
m),

whered0 is the smallest integer> N2Nd2n+1, and let1g = 1(gDm). Now, for
every collections of disksgDm, g running over some subsetg ∈ IsomCN , we
mapMd to the Cartesian product×g∈g1g as follows. IfgDm is 2ε-transversal to
M, then theg’s component of our map sendsM to M ∩ gDm. If gDm is not ε-
transversal, we go to the joint vertex of the cones and we interplate between the
two maps in some standard way. Now Main Lemma shows that this map is an
embedding.

COROLLARY. The mean dimension of̃Md is bounded by

dim(M̃d : CN) 6 const(N, d), (++)
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const(N, d) 6 constN ε
−K
0 dim1.

Proof. All we need, is our collection of disks beingZ2N -equivariant. Then we
found the mean dimension relative toZ2N that equals that forCN . 2

Remark. Our bound onK, ε andd0 = dim1 are pretty awful. Better leave it
just as const(N, d).

4.1.7. The Proof of the Upper Bound in 0.6.4

The above proof of(++) is essentially local in nature and trivially generalizes to
subvarieties in all Hermitian manifolds with bounded local geometry. This gives us
the desired (horrible but effective) upper bound in 0.6.4. The lower bound will be
proven later on.

Remarks and open questions.(a) As we mentioned earlier, the constant in(++)
should be bounded by constN d

2n, where it will be interesting to explicitely com-
pute constN .

(b) The above argument can be, probably, extended to two-dimensional mini-
mal subvarieties in Riemannian manifolds and also to pseudo-holomorphic (one-
dimensional) subvarieties in almost complex manifoldsW (where the easiest case
if of dimRW = 4 as we have at our disposal pseudo-holomorphic curvesε-
transversal to ourM ⊂ W ). On the other hand, the situation seems more difficult
for higher dimensional minimal subvarieties. In fact, it seems unknown if the space
of n-dimensional minimal subvarieties of volume6 d < ∞ in a compactRie-
mannian manifoldW has finite topological dimension. (On the other hand,generic
W ’s contain few minimal subvarieties and so, typically, their mean dimension
should be zero for infinite groups0.)

(c) Clearly M̃d is empty ford 6 d0 = d0(W), where the criticald0 equals
1 for W = CN . It is not hard to see that the mean dimension is continuous at
this critical value in the case ofCN , dim(M̃d : CN) → 0 for d → 1, and,
probably, something similar holds true for allW . For example, if|K(W)| is small
and InjRadW > 1, then the criticald0(W) is close to one and the spaceM1+ε is
small f or smallε. In particular, ifW is cocompactly acted by a discrete amenable
group0, then dim(M1+ε: 0) → 0 for ε → 0 and|K(W)| → 0, as a simple
argument shows. (In fact, whend is close to 1, ourM ’s are uniformly nonsingular
and everything trivially reduces to linear PDE. Actually, this equally applies to
general minimal subvarieties withd 6 1+ ε, where the uniform nonsingularity
follows from Allard’s theorem. On the other hand, we do not know how to bound
the mean dimension of spaces of minimal varieties withd � 1.)
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4.2. RESIDUAL DIMENSION OFM̃d AND RELATED QUESTIONS

LetW be acted upon by a discrete group0 with projective algebraic quotientW/0,
let0i ⊂ 0 be a sequence of subgroups of finite index. The above discussion applies
to submanifolds inW/0i and shows, in particular, that the residual dimension
of M̃d is bounded by const(W, d, 0). We observe that0i-invariant submanifolds
∈ M̃d descend to subvarieties inW/0i of volumes6 constd|0/0i | and pose the
following

PROBLEM. Given a sequence of numbersδi , evaluate the dimensions of the
spacesMn

δi
(W/0i) of n-dimensional subvarieties inW/0i of volume6 δi .

Here we are interested in theasymptoticbehavior of these dimensions for ‘in-
teresting’ sequences of subgroups0i , where, specifically, we want to know the
answer forδi = |0/0i |α for a fixedα. We start with the following simple

OBSERVATION. Let W• be a compactN-dimensional manifold that admits a
holomorphic finite-to-one mapϕ: W• → CPN , such that the Kähler class ofCPn
goes to a multiple of the Kähler class ofW• say toλ[w(W•)] ∈ H 2(W•;R), then

dimMδ′(CPN) 6 dimMδ(W•) 6 dimMδ′′CPN

for δ′ = λn(degϕ)δ andδ′′ = λnδ where degϕ denotes the toplogical degree ofϕ.

In fact, Volϕ−1(M) = λ2n(degϕ) volM for all M ⊂ CPn, which yields the
lower bound on dimMδ(W), while Volϕ(M) = λn VolM for all M ⊂ W• which
gives us the upper bound.

Remarks. (a) This observation applies, strictly speaking, only to thoseWi =
W/0i where0i actsfreelyonW in order to haveWi nonsingular. But everything
(and obviously) equally works in the singular case.

(b) The above inequalities are most efficient for small degϕ but for ourWi =
W/0iwe only guarantee mapsϕi: Wi → CPN with degϕi = const|0/0i | and
one cannot do better in most (?) cases, e.g., for the groups0 satisfying Kazhdan’s
propertyT (see [GroMIKM ]). On the other hand, there are cases where degϕi 6
const independently ofi, e.g., for coverings of an Abelian variety.

Now we recall the standard bounds for dimMn
δ (CPN).

4.2.1. LEMMA. The spaceMn
δ1
(CPN) of irreduciblen-dimensional subvarieties

in CPN of degreeδ satisfies

(δ + 1)(δ + 2) . . . (δ + n+ 1)

(n+ 1)! − 1

6 dimMn
δ (CP

N) 6 (N − n)
(
(δ + 1)(δ + 2) . . . (δ + n+ 1)

(n+ 1)! − 1
)

6 constN δ
n+1.
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Proof. If N−n = 1 thenM ’s are given by homogeneous polynomials of degree
δ and so

dimMn
δ (CP

N) = (δ + 1) . . . (δ + n)
n! .

Next, ifN −n > 2, we projectM toN−n (n+1)-planes in general position in
CPN and observe thatM appears as an irreducible component of the intersection
of the pull-backs of these components. 2
EXAMPLE (Abelian varietes). Let0 be a Lattice acting onCN with projective
algebraic quotientW• = CN/0, e.g.0 = i Z2N , i = 1,2, . . .. Then there is our
mapϕ: W• → CPN with degϕ 6 const< ∞ independently of0 with λ =
(VolW•)−1/N (where the Kähler metric inCPN is normalized to have VolCPN =
1). Then dimMn

δ (W•) is approximately (i.e. up to a multiplicative constant) equal
to

(δλn)n+1 = δn+1(VolW•)−
n(n+1)
N .

Thus, if we setd = δ/VolW•, we get

dimMn
δ (W•) ∼ dn+1(VolW•)

(n+1)(N−n)
N . (∗)

If N = n+ 1, this becomes

dimMn
d(W•) ∼ dn+1 VolW•

and gives us the following bound on the residual dimension of the spaceM̃d =
M̃d(CN) (of n-dimensional subvarietiesM with VolM ∩ B(1) 6 d for all unit
ballsB(1)), resdimM̃d 6 constdn+1. This improves our earlier bound (with a poor
dependence ond) and suggests that the mean dimension ofM̃d must be asymptotic
to dn+1. Here is a more general

CONJECTURE. LetW be a Hermitian manifold of bounded local geometry and
{Bi}i∈I be a collection of balls of radiiri 6 1, such that the concentric balls of
radii ri/2 coverW . Consider the spaceM of n-dimensional subvarietiesM ⊂
W , such that Vol(M ∩ Bi) 6 dir

n
i for all i and givendi > 0. Then dimM 6

const
∑

i∈I d
n+1
i , where the constant depends only onN = dimW and the implied

bound on the local geometry ofW .
The above conjecture truly makes sense only for compactW , where in general

one should use a suitable ‘dimension per unit volume’ inW . For example, ifW
is cocompactly acted upon by an amenable group0 and the system{Bi} is 0-
invariant, then the mean dimension dim(M : 0) should be bounded by
const

∑
i d

n+1
i for i running over a fundamental domainJ ⊂ I , i.e. a subset such

that0J = I .
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Remark.For certain manifoldsW , e.g., forW = RN , it is interesting to look at
M ’s defined with systems of ballsBi whereri are unbounded, say for concentric
balls of radii i → ∞ in CN . Then one may try to evaluate some ‘asymptotic
dimension’ ofM in the spirit of the Nevanlinna theory. For example, letMϕ denote
the space ofn-dimensional subvarietiesM inCN , such that vol(M∩B(R)) 6 ϕ(R)
for a given functionϕ(R) and all concentricR-ballsB(R) ⊂ CN around the origin.
Denote byMϕ(R) the space of subvarieties inB(R) of the formM ∩ B(R) for all
M ∈ Mϕ. Then one may ask what is the asymptotic behaviour of dimε Mϕ(R)

for R → ∞ (and eventually forε → 0) with respect to the Hausdorff metric in
Mϕ(R). A particularly interesting case isϕ(R) = CRp for somep > n. (If p = n,
M is necessarily algebraic and so dimε Mϕ(R) is uniformly bounded.)

Now, let us look at the above asymptotic relation(∗) for codimM > 2, i.e. for
N − n > 2. Here the exponent(n+ 1)(N − n)/2 is strictly greater than 1, and so
(∗) yields no bound at all on the residual (as well as on mean) dimension ofM̃d .
However, this does not contradict(++) from 4.1.7 but rather shows that majority
of subvarietiesM ⊂ W are highly nonuniformly distributed inW for N − n > 2
and so(++) does not apply. This suggests the following

ALGEBRAIC QUESTIONS. Consider the spaceMn
δ (CPN) of algebraic subvari-

eties inCPN of dimensionn and degreeδ. How many irreducible components of
Mn

δ (CPN) lie in the interval[δα1, δα2] for given 0< α1 < α2 6 n+ 1? Here we
are most interested in the asymptotic behaviour of this number forδ→∞, where
a good answer is plausible for largeα1, e.g.,α1 > n.

To get some perspective look at the spaceM ⊂ Mn
δ (CPN) of complete inter-

sectionsM of hypersurfaces of degreesδ1 > δ2 > · · · > δN−n. Its dimension is
easy to evaluate by looking at the normal bundle ofM or by rescalingCPN by δ1

(which makes the volume of hypersurfaces of degreeδ1 equal that of the rescaled
CPN and then applying(++) to the rescaled picture). Thus one easily shows that
dimM ∼ δδn1 and so eachM ∈ M is contained in a hypersurface of degree,δN−n
which is roughly bounded by(

δ
n+ 1

n
/d

1
n

) 1
N−n−1

for d = dimM (sinceδ = δ1δ2 . . . δN−n).

This suggests that foreveryirreducible varietyM ⊂ Mn
ρ(CPN) of (large) dimen-

sionD, eachM ∈ M is contained in a hypersurface of degree6 δ′, whereδ′ can
be (reasonably) evaluated in terms ofD andδ. For example, ifD > εδn+1, then
one expectsδ′ 6 ε′ = ε′(ε,N), and ifD > δn+1−α for a smallα > 0, thenδ′ < d

for δ > δ0 = δ0(α,N). (Notice that holomorphic mapsCPn→ CPN with images
of degreeδ make a variety of dimension aboutδn whose generic members do not,
apparently, lie in hypersurfaces of degrees< δ and so ‘small’ should be at least
‘smaller than one’.)

There is another idea also expressing nonuniform distribution of subvarieties of
codimension> 2 in CPN . For example, one may seek a nontrivial upper bound
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on the dimension of the subspaceN n
δ ⊂ (CPN)k consisting of thosek-tuples of

points which lie onsomesubvarietyM ⊂ CPN of dimensionn and degreeδ. For
example, ifk > εδn+1, then, probably, codimN n

δ > 0 for all δ > δ0 = δ0(ε,N). In
fact our inequality(++) suggests, that no configuration of points(x1, . . . , xk) ∈
N n
δ can be uniformly dense inCPN , i.e. theρ-neighbourhood of{x1, . . . , xk} ⊂

CPN must have small measure forρ not much exceeding(εδn+1)−N and δ >
δ0(ε,N).

4.3. CONSTRUCTION OF SUBVARIETIES INW

LetW admit a positive line bundleE of locally bounded geometry. ThenW admits
a holomorphic uniformly nondegenerate Lipschitz mapx to CPN,N = dimW .
The pull-backs of subvarieties inCPN are, clearly, in our class̃Md→∞ and by
varyingx one sees that̃Md has positive mean dimension. Actually, by a direct ap-
plication of the uniform transversality theorem one obtains bounded holomorphic
sectionsx: W → Ei which are uniformly transversal to the zero section in the
obvious sense. The zero setx−1(0) ⊂ W of such anX is a manifold with bounded
local geometry of dimension equal dimW − 1 and so one obtains by induction
such submanifolds of all codimensions. This combines with an obvious scaling ar-
gument and shows, in particular, that in the presence of cocompact amenable action
the mean dimension of the spacẽMd of n-dimensional submanifoldsM ⊂ W with
the boundVol B ∩M 6 d for all unit ballsB ⊂ W satisfies

dim(M̃d : 0) > constdn+1

for all n 6 N , someconst= const(W,0) > 0 and all sufficiently larged.

Remarks and final questions.Since every complex subvariety is minimal, one
sees with the above theorem, for example, that the spaceMd of 2m-dimensional
minimal subvarietiesM ⊂ RN with the volume bound by VolM ∩ B 6 d has
dim(Md : RN) > 0 for allN > 2m + 2 andd > Vol B2m. But it is unclear if this
dimension is positive for minimal surfaces inR3 (where one can use the Weirstrass
representation to generate minimal surfaces).

Another situation where one may expect positive mean dimension is that of
pseudo-holomorphic subvarietiesM ⊂ W with dimRM = 2, but here one needs
a different technique for producing sufficiently many of them in suitable almost
complex manifoldsW .

Finally, we mention special Lagrangian submanifolds and related classes of
complex submanifolds, e.g.,M ⊂ CN isotopic relative to a given (symmetric or
anti-symmetric) bi-linear form onCN . Unfortunately, the lack of examples pre-
cludes us from asking meaningful questions.
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