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0. Introduction
0.1. FROMX TO X©

Start from some category of spacksand the maps between them. These can be
bare sets with no additional structure and all maps, topological spaces and con-
tinuous maps, smooth manifolds, algebraic varieties, linear or affine spaces, etc.
Then, given a group', we have a functionally defindd-spaceX, i.e. a space with
aI'-action, namely the Cartesian pow&f thought of as the space &f-valued
functions on". Here the action of on X" is induced by the left actioff on T,

Y'x(y) =x(y'y).

This action is called thehiftand X" is called the full) shift space over with the
alphabetX, where the basic examplels= Z and X consisting of finitely many
elements calletktters

0.1.1. Maps of Finite Type

There are by far mor&-maps i.e. I'-equivariant mapst” — Y', than those
coming from mapX — Y if our category admitfinite Cartesian products. In fact,
every mapy from the finite Cartesian powe¥ x X x --- x X to Y defines a -

d
mapX' — Y' determined by the choice of a finite subget= {81, 85, ..., 84} C
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" as follows: each functiom(y) goes toy(y), y € T, by the usual ‘finite differ-
ence operator’ recipe,

y(¥) = o(x(¥81), x(¥82), ..., x(¥8a)).

In other words,y(y) for eachy e T is determined by the value a@f on the
restriction ofx to they-translate ofD,

y(¥) = @(x|y D),

whereg is interpreted as a map frox? = X? to Y. In this case, we say that our
mapx +— y is based onD and/ordefined byp.

Notice that this construction can be used aefinitionof I'-morphismsf over
categories of certain spac&s e.g., for algebraic varieties. But for the topological
category, there are additionabntinuousI’-mapsX"” — Y, not coming by the
way of ¢: X? — Y. In fact, every continuous map: X' — Y (which may
essentially depend on infinitely manyy ), y € I') definesf = f,: X" — Y' by
the same rule: x — yfor y(y) = ¢(yx).

0.2. SUBSPACES INXT

The simplest-invariant subset iX" consists of thdixed point seFixI" ¢ X"

which obviously identifies witlX itself, realized by the construct maps— X.
More interesting subspacesih= X" appear as pull-backs of fixed pointsin

by I'-mapsf: X — Y. One can think of such a subspakg = f~*(yo), yo € Y,

as the set of solutions to the ‘difference’ equatipx) = yo and if f = f, for

¢: XP — Y with D = {64, ..., 8,) as earlier, then this equation turns into the

following system of algebraic equations denoted), y € T',

@(x(y81), x(¥82), ..., x(yda)) = y, € Y. (¢y)

In fact, one can drofy from this definition and start with an arbitrary subgetc
XP = x4, d = cardD (corresponding t@‘l(yo) in the previous setting). Then
Xo = Xo(L) c X' is defined as the space of functionsI" — X such that the
restriction ofx to each translate D is contained irl., where we identifyX”? with
XP via the correspondenges <> 8, 8 € D, and where we viewk”” as the space
of functionsy D — X. TheseXo = Xo(L) C X' are calledsubshifts of finite type
in X" (where ‘finite’ refers to the finiteness & c I') andL is regarded as daw’
distinguishing legal function onT.

0.2.1. Remark on Quotient Spaces

Besides taking subspaces, one may consider vafieeguivariant quotient spaces
of X" and of the above{, c X' where the most attractive ones are defined'by
invariant equivalence relations off (or on X, c X") of finite type The simplest
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example is the quotient spade / FixI", where the fixed point set FIx ¢ X' is
shrunk to a single (fixed) point. Finding more interestirgquivariant equivalence
relations

RCXoxXoCX" xX"=XxX)"

of finite typels a nontrivial matter which we will not discuss at this stage.

0.3. FROM GEOMETRY TO DYNAMICS

Given our category of spacég take an invariant (property, theory) in this category
and try to extend it to a class df-spaces includingk” and subshifts of finite
type inX". Our extension must satisfy InX" = Inv X and the essential (formal
functorial) properties of Inv must be similar to those of Inv. Besides, we want
our new invariant Iny to be ‘dynamical’ which expresses a vague idea of-Inv
depending on the overall behavior of theorbits. For example, we wish

Invr (X" / FixT) = Invp X',

so that the ‘few’ fixed points of should not matter.
Here is a specific example indicating what we have in mind.

0.3.1. EMBEDDING PROBLEM. LetX andY be topological spaces where we
have a nontrivial obstruction for the existence of a topological embedding Y,
e.g.,S' ¢ Rt or RP? ¢ R3. Does this obstruction translate to a dynamical lan-
guage and yield a nonembedding result for thepacesXx' and Y with their
respective product topologies and the shift actionE f

Of course, every'-embeddingk” — Y! automatically embed¥ = Fixy C
X" toY" = Fixp ¢ Y! and so we have a trivial ‘yes’ to our question. But if we
take X, = X"/ Fix; andY, = Y'/ Fixp, then the nonexistence offaequivariant
embeddingX, — Y, does not (seem to) immediately follow from what we know
for mapsX — Y. And, truly, what we want to show is that every continudumap
X" — " identifies ‘many’ pairs of points (and thus Bforbits) in X",

0.3.2. SUBEXAMPLE. Letl" = Z and observe that evef#-embedding between
7Z-spaces, say: X — Y, sends theeriodic pointsof X to those ofY, i.e. the
subset PgI(X) =qef FiX(nZ) C X goes to PenY) = Fix(nZ) c Y for each
n € N where, obviouslyall periodic points are dense iXiZ. In particular, there
is noI'-embedding fromX, = X' /FixI"to Y, = Y/ FixT. All this is obvious
and trivially extend to altesidually finite(see 1.3) group§ but more general’
provide many challenging problems as we shall see later on.

0.3.3. Amonglr'-embeddingsX — Y one distinguishe$'-homeomorphismand,
actually, when we speak df-invariants, one means invariance undiehomeo-
morphisms. Here one may have an extra structure on our spaces (e.g., a measure,
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symplectic structure, complex structure, etc.) and one wishes to study (groups of)
I'-homeomorphisms preserving such a structure.

0.3.4. Tha -topology can be naturally relaxedfshomotopywith many standard
invariants (such as homology) passing frato X = X". For example, the global
homological dimension becomes Fildii : T") within this framework (see 1.1.6).

0.4. MEAN ENTROPY AND MEAN DIMENSIONS

The simplest nonembedding theorem is fligeon hole principlethere is no em-
beddingX — Y if cardX > cardY for finite setsX andY. The dynamical
version of the cardinality, or rather of the entropye log(cardinality), is the
mean topological entropglefined for arbitrary compact (and sometimes noncom-
pact) topologicall’-spacesX (i.e. with continuous actions of groupy denoted
ent(X : I') (see 1.7 for a definition). If is anamenablegroup (see 1.3), then, not
surprisingly,

entX" : ) = entX"/FixI' = entX (ent=)

for all finite setsX. This is a common knowledge. (Probably, something like this
must be true for setX of infinite cardinality where the interesting’s are those
with cardl’ > cardX.) Also, one knows that

entX: I <entY : IN) (ent)

if X admits a topological’-embedding td or, more generally, if there isfaite-
to-onel'-map f: X — Y, (i.e. cardf~(y) < oo for all y € Y). It follows
that there is no finite-to-one (not even countable to one) rhax’ — Y if
cardX > cardY and the group’ is amenabile. (Itis clear for dll that there is nd'-
embeddingf: X" — YT as this would embedl = Fixy ¢ X" toY = Fixp c Y©
but | do not see how to excludeembeddingst" / FixI" — Y/ Fix! for general
groupsr'.)

Now, let us replace the cardinality by tkepological dimensiomf underlying
spaceX which we assume at the moment being a compact metric spacéinitich
topological dimension. One can mimic the way one goes fromXenb
ent(X : I') and define thenean dimensiodim(X : T') in the spirit of Lebesgue
(with the Lebesgue number of arcovering replacing log card (covering) appear-
ing with the entropy) for all topologicdr-spaces (see 1.5). Here again

dmX" : ) =dimX"/FixI': T) = dimX (dim =)
for most reasonable (see 1.1.5) spakesnd amenable groupgs Furthermore,

dim(X : T) < dim(y : ) (dim <)
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if X admits aI"’-embedding taY or, more generally, &-map f: X — Y with
dimf~1(y) < d < oo forall y € Y. This leads to the nonexistence of such a
map f from X" to Y if dim X > dimY andT is amenable. Also, one sees in
this way that if dimX > dimY, thenX" / Fix I" does nof"-embed tar'" / Fix- for
amenable groupB where the case of generalremains unclear.

0.5. SMOOTH SUBSHIFTS OF FINITE TYPE

Let X be a smooth manifold antl ¢ X”, D c T, a smooth submanifold or, more
generally, a stratified subset, e.g. an analytic subvariet{’inOne thinks of sucli.
as the zero set of = codimL (sufficiently generic) equations; (x1, ..., xs) =0,
d=-cardD, j =1,...,r and thenXg = Xo(L) is given byr I'-invariant systems
of equations. So thexpectednean dimension of thiXg is

dim(Xo : ) = dim X — codimL. ?)

PROBLEM. Find specific sufficient conditions dnhwhich would guarantee the
above equality.

EXAMPLE. Let X be the complex projective spateP” andL c (CP"P =
(CP™?, whereD = {61,...,8;} C TI', be a complex algebraic subvariety. We
shall show in 2.6.6 (using positivity of the cycle represented.pthat

dim (Xo(L) : T') > dim X — codimL >)

for all L. Then we prove that the equality holds for (suitably understgedgricL.

Remark.Evaluating diniXg : T') and, in particular, verifying (?) is not a trivial
matter even folX = R* andlinear laws L c (R*)” since they-translates of the
linear equations

(pj(x((Sl),...,x((Sd)) =0, j=1,...,r

may develop unexpected linear relations. These are easy to control for such groups
asI” = Z for instance and, to some extent, for more genanédue producgroups
(see 2.2.2) but the general case seems rather subtle.

0.6. SPACES OF HARMONIC MAPS AND MINIMAL VARIETIES

The most interesting spaces from our point of view appear as solutions of elliptic
differential equations over manifoldg with groupsI” acting onV. A basic ex-
ample is the space dfarmonic mapsd’ — X between Riemannian manifolds
and X, whereV is noncompactX is compact and wher& comes along with an
isometry groud”, such thaV/ T" is compact. For instance, one may take= R”,
wherer is either taken to be alk” or some latticeA c R”.
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The full space of the harmonic mdp — X is too big and usually has infi-
nite mean dimension but it has interestifiginvariant subspaces where the mean
dimension is finite and, sometimes, different from zero. A particular space of this
kind, denotedX,, is distinguished by the pointwise bound on the differential of
such maps: V — X, namely

[Dx|| < ¢ < oo. ()c

0.6.1. Upper Bound on the Mean DimensionXf (see 3.4)
If T" is amenable then

dmX,.: ) < o0 )
for all ¢ > 0. Furthermore, ifc is sufficiently large¢ > co(V, X), then

dim(X. : T') < bc" (%)oo

for n = dimV and some constamt = b(V, X, I"), whereb = a(V, X) vol(V/T)
for discrete groupd”. Moreover,

dm(X.: ') - 0 forc— 0. (*)o

Remark.If V = R", then(x),, holds true forll ¢ > 0 as follows by an obvious
scaling argument. Probably, this remains valid for nonflat metricR’omvariant
underZ” but, in general, the asymptotics of diiy. : ") for ¢ — 0 should depend
on the growth rate of the group.

0.6.2. Nonvanishing oflim(X. : I') and Instantons

We shall prove in 3.6 the following:

THEOREM. Let V be a complex manifold, where an amenable gréupcts
discretely by complex analytic transformations, such that the quoti¢nt is a
projective algebraic variety. Then the spakg of complex analytic maps V —
CPN with | Dx|| < c satisfies for allvV > dim¢ V,and allec > ¢g = co(V, X) >0,

dm(X,:T) > b'c", (xx)

for n = dimg V and some positive constabit= »'(V, X, I'), which is of the form
a'(V, X)vol(V/T) for discreterl".

Remarks. (a) If V is Ké&hler, then holomorphic maps are harmonic and so
dim.(X : I') is also bounded from above according+®., and(x)o. In fact, these
bounds remain valid without being K&hler as we shall see in 3.4.
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(b) It seems that the strict inequality dix,. : I') > 0 manifesting the abun-
dance of our map¥ — X is intimately linked to thébubbling phenomengr.e.
the presence dfistantonshighly localized solutions of our elliptic equations. Here
is a specific conjecture:

0.6.3. CONJECTURE. LeX be a complex projective manifold and look at the
spaceX. of holomorphic maps:: C — X with derivatives bounded by some
¢ > 0.Thendim(X. : C) > 0, if and only if X contains a rational curve

Here (for holomorphic maps @) the ‘if’ part of the conjecture follows from
above and also can be derived by a simple interpolation argument. On the other
hand, the ‘only if’ claim (which parallels Lang’s conjecture on hyperbolicityof
requires a study of ‘normal’ deformations of holomorphic curveXiwhich we
postpone till the second part of this paper. (At the moment, | worked out the proof
only under rather unpleasant technical assumptions.)

Remark on continuity alim(X. : T'). It is easy to see in many cases that the
mean dimension diX . : T') is continuous i € R, and whenever itis positive, it
is alsononconstangs a function ot.. Thus we getl"-spaces with mean dimension
taking continuous spectra of values. To see it clearer, take the cawraiorphic
functions i.e. holomorphic maps:: C — P! where we bound the (spherical)
derivative by one, i.e. tak& = X; = {x | ||[Dx]| < 1}. Then consider a lattice
A = A\7Z? C C, for » e C*, and observe (this is nearly obvious) that

dim(X : A) = |A)2dim(X : C), (+)

as|A|2 equals the volume (area in this case) of the fundamental domatrirofC.
Thus, by varyingA with A we get a continuum of mean dimensionsAsEpaces.

Next we observe that the restriction map X — (PYH”*, where we evaluate
our mapst: C — P! at the points; € A, isinjectivefor all sufficiently smallx.
In fact this follows from the Cauchy inequality and yields the finiteness property
(x) for the present case as

dim(Xy : C) = |A|72dim(X : A) < [A|2dim ((PYH* : A) = 2|x| 2

(see 3.4). Now, our spack is embedded into the shift spac@l)? = (PHZ*,
whereA = AZ? andi e C* is small, with a continuously varying mean dimension
of the imageX, = p,(X1) C (PH = (PHZ*. Actually, dim(X, : Z?2) varies in
the interval (0, 2], since for largex, where the latticeA = AZ?2 is sufficiently
rare, the restriction map,: X1 — A become®ntoas every mapy — P! can
be extended (interpolated) to a holomorphic nd&apC — P! with |Dx| < 1
(see 3.6, where such an interpolation is used to show thagtximC) > 0).

Remark on the bounfiDx| < 1. This may look quite restrictive but, in fact,
harmonic (holomorphic) maps with ||Dx| < 1 often give a fair representation



330 MISHA GROMOV

of all harmonic (holomorphic) maps. For example, if we deal with holomorphic
(or pseudoholomorphic) mapsof C, then the AfiC-orbit of everyxg: C — X

for compactX contains, in its closure, a nonconstant holomorphic mawith
IDxo|l < 1, where AffC, where the group of transformatiops— Az + u of C
naturally acts on the spaces of holomorphic map€ ofhis simple remarkable
dynamical property of spaces of holomorphic maps, cddledh—Brody principle

will be expanded further in the second part of this paper.

0.6.4. About Residual Dimension

Letl'; c T',i = 1,..., be adecreasing sequence of subgroups of finite irdex

oo, where we emphasize the cgsSgI'; = {id} (which maked" residually finite.

Then we consider subspacEs C X of I';-invariant (holomorphic, harmonic etc.)
mapsV — X which correspond to maps from = V/T; to X. In our case (when

we deal with harmonic maps, holomorphic maps, etc.), the ordinary dimensions
of theseX; are finite and, moreover, are bounded by const@atd;) (see 3.4.3),

but it is unclear when the limit lim, ., dim X; / cardT"/ I';) exists. If it does, it can

be called theesidual dimensiomesdim X : I') and it is tempting to conjecture it
equals the mean dimension difh: I') in many interesting cases.

EXAMPLE. LetV =C", T, =iZ%,i =1, 2,...,andX be a projective algebraic
variety, e.gX = CPV, N > n.If X = X, consists of holomorphic maps C" —

X with | Dx|| < ¢, thenX; = X,; are made of such mapsfrom the toriC" /i Z?"

to X. The bound||Dx| < c obviously implies that the volumes of the images of
these maps counted with multiplicities (as well as the volumes of their graphs in
C"/iZ? x X) are bounded by = constX)(ci)?". With this in mind, we define
the spacet’; of ‘Abelian subvarieties itX of degree< d’, i.e. of pairs(A4, x) where

A is ann-dimensional Abelian variety and A — X is a holomorphic map with
n-dimensional image whose volume counted with multiplicity is bounded. by

is rather obvious (see 3.4.3) that diffy < d constX) and probably it is not hard
to prove the existence of the limit, = a,(X) = lim,;_ ., d~1dim A”. Then we
define the corresponding spakgof holomorphic maps: C* — X by requiring
that their graph&s,: C* — C" x X have

vol G, (B) < dvol B

for all unit ballsB c C”. (Actually, it would be more logical to require VoI B) <

d but then one must be more careful in compactifying the resulting space of maps.)
The space’,; admits a natural”-invariant compactification, sak, with the mean
dimension bounded by constX). (This bound follows from the first main the-
orem of the Nevanlinna theory as was pointed out to me by Alex Eremenko.) It
is not hard to show that the limit lig, ., =1 dim(Y,; : C") exists but it appears
more difficult to show this limit equals the above numbg¢X). Observe that a
rough bound on dirt¥, : C") in terms ofa, for n = 1 would solve conjecture
0.6.2. On the other hand, 0.6.2 is vacuous for such spaces as CP", for
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instance, but thequality between the two dimensions, one referring to all maps
C — CP" and the other téZ?-invariant maps, does not seem obvious even for
N = 1. (Actually, the easiest case concerns not maistait rather ofC/Z versus
maps ofC/Z @ iv/—17,i = 1,2, ...,toCPL)

0.6.5. Spaces of Subvarieties

Take a Riemannian manifol and consider the spacé of all closed subsets
M c W with the Hausdorff convergence topology on compact pari® oflearly,
X is compact. Notice that each isometry gradomf W continuously acts oiX,
where, obviously, difiX : I') = oo unlessX/ I is finite.

The subsets irfW worth looking at are those coming from some class:of
dimensional subvarietie8f ¢ W which satisfy an elliptic equation (e.g. being
minimal, complex analytic, etc.) and, furthermore, are locally bounded in a suitable
sense. Then the spadé of suchM'’s is expected to have difti : T') < oo, for
a cocompact amenable isometry groughdotind this dimension should be positive
in significantly many examples. Here is a specific

THEOREM. Let W be a Hermitian manifold isometrically acted upon by a co-
compact amenable group. Denote byM, the space ofi-dimensional complex
subvarietiesM C W, such that the intersection af with every unit ballB in W
satisfies

Vol,,(M N B) <d
for a givend > 0. Then
dim(M, : T') < const< oo

for someconst= const{W, I, d). Furthermore, ifl" is discrete and the quotient
spaceW/ T is projective algebraic, then, fd < » = dim¢ M < dim¢ W, one
has

dim(M, : T') > constd" %,

for all sufficiently larged > do(W) and some positive constambnst =
const(W,T") > 0.

EXAMPLE. The above applies to complex subvarietidsc CV with I' = 72V
and implies, for instance, that thererie Z2" -equivariant topological embedding
from M, to My if d is much (?) larger thad'.

Remark. This example should be taken with a pinch of salt as our proof of the
lower bound on diraM, : T') is based on &-embedding ofM, to ([0, 1]*)"
while the lower bound exploits an embeddii, 11V2)"" — M.



332 MISHA GROMOV

0.6.6. Subvarieties in Compact Spaces and Residual Dimension

Along with the mean dimension, one considers the residual dimensi&refier-
ing, for example, to subvarieties in the t&i /i A for a latticeA ¢ R” andi — oo
(see 4.2).

0.7. ABOUT THIS PAPER

The present notion of mean dimension(s) arose from my attempts to geometrize
the algebraic and model theoretic conception of dimension over difference fields.
It was gratifying to see that the mean dimension distinguishes certain spaces of
holomorphic maps, thus rekindling my hopes of setting some branches of the
Nevanlinna theory into a dynamical casting. | could not trace this definition in the
literature and, apparently, this did not come up in the dynamical systems, as was
confirmed to me by Benjy Weiss with whom | was fortunate enough to discuss the
subject matter. Benjy encouraged me by showing his interest in the mean dimen-
sion (actually, it was Benjy who suggested the ‘mean dimension’ terminology) and
he immediately generated a flow of dynamical ideas, including several conjectures
relating the mean dimension and entropy. Many of his conjectures have already
turned into theorems which appear along with many other results in [Lin-Wei]
and [Lin]. Then | had an opportunity to discuss the holomorphic part of this paper
with Mario Bonk and Alex Eremento. Alex explained to me several essential points
on normal spaces and professionally sharpened the inequalities on the dimension of
the spaces of meromorphic maps (see his survey paper [Ere]). More recently, | had
a pleasure of talking to Michael McQuillan about the problems related to Lang’s
conjecture which made me more confident in my mean-dimensional version of it.

Part | of our paper focuses on elementary properties of the mean dimension and
on illustrative examples. More technical discussion is postponed until Part Il.

1. Mean Dimension in Various Categories oI'’-Spaces
1.1. WIDTH AND DIMENSION

Amap f: X — P,whereX is a metric space, is called arembeddingdf f does
not identify points inX with distances> ¢. In other words,

Diam f~Y(p) <e forall p € P.

Then, following Uryson, we define WidinX as the minimal numbek, such that
X admits a continuougs-embedding to &-dimensional polyhedrorP. Clearly,
Widim, is monotone decreasing in

1.1.1. The basic example of evaluation of thidimension is the following:

LEBESGUE LEMMA. The unit cubg0, 1]¥ ¢ RY has
Widim,[0,1]Y = N forall ¢ < 1.
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Consequently,

Widim,RY = N forall ¢ > 0.
Here is a more general (and slightly less precise) Widim inequality:

1.1.2. Widim Inequality

Let B be the unit ball in anvV-dimensional Banach space. Then
Widim, B =N foralle < 1. (*)

Proof. The inequality Widim B < N — 1 trivially implies that FilRadd B) <
/2 (compare App. 1in [Grigm]). On the other hand, the boundary sphgte?! =
9B with the induced metric has FilR&} ! > 1/2 by the argument in 1.2.3
of [Groggry] since everyk-tuple of points in thiss¥—1 with mutual distances: 1
canonically (and obviously) spang/a— 1)-simplex inSV—1, a

Remark. The above will be used in 2.4 for evaluating the mean dimension of
(sub)-linear subshifty ¢ B ¢ (R*)", where we shall need another lemma:

1.1.3. TRIVIAL LEMMA. LetY be a closed subset in a Banach spatand let
p: X — R" be abounded linear operator. Then, for arbitrary metricsiband on
p(Y) C RY compatible with their topologies, one heéidim, Y > Widim, p(Y)
forall ¢ > 0.

Proof. As the fibers of the map: Y — p(Y) are all nonempty convex, there is
a continuous section, i.e.amap p(Y) — Y suchthaipog =1d: Y — Y. Thus
one has WidimY > Widim, gp(Y) > Widim, p(Y). O

1.1.4. OPEN QUESTIONS. The Widim inequality allows a lower bound on Widim
of the intersection of a linear subspakén a Banach spac¥ with the unit ball,

Widim, Y N B > dimY fore <1 (%)

(compare 2.6). Then we wish to have a similar inequality for nonlinear subvarieties
Y C X. For example:

Does (x) hold true forX = CV andY being acomplex analyticsubvariety
passing through the origin?

We would not mind(x) with a slightly smallere > 0 but the answer is not
even known fore = ey > 0. On the other hand, it is not hard to pro#e with
¢ depending on the degree Bfin the caseY is complex algebraic. In factx)
holds true withe = ¢(Mol (Y N 2B)), d = dimg Y for all minimal subvarieties
in R?N by the usual compactness argument. It would be interesting to make such
an argument work uniformly for all dimensions and thus applicable for evaluating
of the mean dimension of (local) algebraic subvarietiesGh)" (compare 2.5).
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On the other hand, one may ask on the possible range of Widingivene on a
given class of subvarieties and then one is tempted to extend this question to other
‘slicing invariants’ ofY N B defined in App. 1 of [Grerm].

It seems Widim has not been evaluated even for simple convex subs@s,in
e.g. for the simplexA”™! = {x; > 0, Zx; = 1}, where one expects (maybe too
navely) that

Widim, A" ~ const n.

Another interesting example is the Euclidean Bl = {37, x? < 1} whose
Widim, is to be measured with respect to the sup-product metric (with the corre-
sponding normjx|,,, = Sup_;_,|X:]). More generally, one asks what is
Widim, B, with respect to thé,-norm inR"?

1.1.5. Itis clear that WidimX < oo for all compacimetric spaceX and alle > 0
but it may become infinite for noncompact spa&eévhere, in fact, the definition
must be modified by replacing Diayft*(p) by limsup,_, , Diam f ~1(U) where
U runs over the neighbourhoods &fin P) and this inequality istrict. It is also
clear that Cartesian produ&t, x X, with the sup-product metricthat is

dist((xl, x2), (x7, x’z)) = max(dist(xl, x7), dist(xz, x’z)),
satisfieghe product inequality
Widim, (X1 x X5) < Widim, X1 + Widim, X>.

It follows, that Widim, is also subadditive for taking maxima of metrics on the
same space,

Widim, (X, dist) < Widim, (X, dist;) + Widim, (X, dist)
for dist = max(disty, dist,).

Warning. One should be careful with the additivity of Widinfior Cartesian
products. In fact, even the Lebesgue dimension is not always additive, but the extent
of the nonadditivity is completely clarified by the work of Dranishnikov (see [Dra])
who kindly explained this to me.

1.1.6. Remarks orcov, and Fildim,. The e-dimension Widim X, as a function

of ¢ carries the same information about the geometrXdds the totality of its
Uryson's widthgsee [Grq.s]). A more traditional and essentially equivalent defi-
nition of e-dimension is thé.ebesgue covering numbkeb, X, that is the minimal
intersection multiplicity of the-covers ofX minus one. We prefer Widigras this
leads to interesting variations of the theme in the spirit of metric geometry such as
the globale-dimension Fildim X. The latter is defined as the maximal dimension
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of cyclesC ¢ X with FilRadC > ¢, i.e. nonbounding in any metric extension
Y O X with sup,.y dist(y, X) < & (compare[Grerm]).

1.2. DEFINITION OF Widimg (X : {€;}) AND Widimg(X : I')

Let X be a metric space and a grolipact onX. We assumd’ is given aproper
left invariant metric, where ‘proper’ means that the ballg/, R) = {y’ € T |
dist(y’, y) < R} are compact for alR < oo. Also, we fix a left invariant (Haar)
measure o, denote|Q2] = measure(2) and observe thal2| < oo for all
bounded (with respect to the metric) domaiagn I'.

Our basic examples are Lie groups, suchl'as= R” with the usual metric
and measure, as well as discrete finitely generated giowygth given generators,
Yj,---»Yis -+, vk Where theword metricis defined by setting digtZ, ) equal to
the length of the shortest words jnrepresentings and wherg2| = cards2.

We denote bylx — x'|, the y-translate of the original metric oX, denoted
|x — x'|, and assume that the identity mak, |x — x'[,,) — (X, |x — x|,,) is
uniformly continuous for allyy, y» € T where the implied continuity modulus
depends only on digty, y»). In other words, the action af is assumed uniformly
continuous onX. We define the metrick — x’|q on X for all bounded2 c X
as|lx — x'|lo = SUp,cqlx — x'[, and letXq = (X, [x — x'|q). Then we look at
Widim, X as a function on bounded subs&tg~ I" and observe that this function
is subadditiveaccording to the inequalities in 1.1.5. This implies, for amenable (see
below) sequenceQ; c T, that the limit

Widim, (X : {€;}) = lim |;|~* Widim, ;

exists and does not depend on a sequéhdgee 1.3.5), exactly as it happens to the
entropy (see [Orn-Weis]). Then we use this limit for the definition of Widikh:
) (see 1.4).

1.3. AMENABILITY

Given a subsef2 C TI" we define itsp-boundaryd,2 c I' forall p > 0 as
the set of thoser € T' for which the ball B(y, p) intersectsQ as well as the
complementl"\2. Then a sequenc®; C T is called amenable (or Folner), if
[0,92;]/|1€2;] — O fori — oo and eaclp > 0. In other words, the-boundary of
Q; is ‘asymptotically negligible’. Notice that, on the one hand, this definition uses
no group structure but rather the metric and the measuife @n the other hand,
the amenability of a sequence does not depend on the choice of a Haar measure
and of (proper left invariant) metric dn.

A groupT is calledamenabléf it admits an amenable sequen@e C I'. (If T
is discrete or, more generally, unimodular, this equivalent to the classical definition
of amenability where every continuous actionfobn a compact space is required



336 MISHA GROMOV

to have an invariant measure. Actually all amenable groups we consider in this
paper may be assumed to be unimodular and so one should not be bothered by the
discrepancy between the two definitions.)
1.3.1. Ornstein—Weiss Lemn{aee [Orn-Weis])
Leth(2) be a positive function defined on bounded subQets I such that
(a) h is subadditive, i.e.

h(§21 U Q22) < h(21) + h(£22) (%)

for all pairs of bounded subsef2; and2, in T".
(b) & is invariant underT",

h(yQ) =h(Q), forally eT.
Then the limit
lim h($2:)/1€] (%)

exists for every amenable sequeec T.

Remark. (a) Clearly, the existence of the limit fall amenable sequences
implies its independence of a choice of a sequence.

(b) if £(2) is monotone increasing fa@’ O €, then it suffices to assune)
only for disjoint subsets€2; and2,.

Sketch of the Prooflake two subset®y and$2 in I, where2 will be eventually
taken much larger thaf?y, and consider some translate§o c I',i = 1,2, ...,
such that:

(a) ally;2p are contained i12; _ _
b) the intersection of; ($2) with the unionU/~* = ’;l y; Qo satisfies
0 j=17J

|(1Q0) N UG < 1R (%)e
for a givene > 0.
We take anaximalsequence of translates2q, i = 1, ..., k, satisfying thes-
packing conditiongx), for all i and estimate from below the measure of the result-
ing unionUc’,‘ C Q as follows. Denote by, the diameter of2y, i.e. sup dists, §")

for s, 8’ € Qpand letw denote the relative amenability constant,dg= «a (2, Qo)
= [0,,K2|/1€2|. We claim that

\USI/12| > (1 — 20). (+)e

To see this, leR2* C I' consist of those for which the intersectiony QN Q2 is
nonempty and2~ C I' consist ofy, wherey Qo C . It is convenient to assume
at this point that ide Q¢. ThenQ™" is containedin the po-neighbourhood of2, i.e.
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in QU d,,2, while 2~ containsthe pop-interior of 2, i.e. the complemer2\o,,, 2.
Thus|Q~ /12| > 1 — 2aq.
On the other hand, obviously,

/ UE Oy Qol dy = [UL] 120l
Qt
and so
IQIl/_ IUS NyQldy < IUSI 10| 127711 — 2a) 7t
< |Ug 1920l 121711 — 2a0) (1)
Next, by the maximality ok, (x). must be violated for aljy € @, i.e.
\U§ Nyl = &S|

forall y € Q@ and thus
|s2_|—1/ U Ny Q0! dy > £]2l.

Hence,
e <|USIIQITHL — 207

and(+), is proven.

Now we are ready to prove the existence of the ligjtby adopting the clas-
sical (and trivial) argument establishing convergencé (of/r for sublinear func-
tionsh(t). Denote byl _ the lower limit

and take som&;, , Q,,, ..., €;, among<2; such that
(a) the ratiosi(L2;)/ 2; are all close td_, say
h(2:)/192%| < €-+¢

for a givene > 0;

(b) the relative amenability constant%<2;,, £2;,) are very small compared o
foralli, <i,;

(c) the numbes is very large.

Then we bound the ratib(£2)/ 2 for all sufficiently large2 where the relative
amenability constants(<2, 2;,) are small. To do this we start with the abowe
packing’ of 2 by ; (playing the role 0£2p). The remaining pai®’ = Q\ Uy, Q;,
has measurer (1— ¢)Q2 and itsp-boundary equals the union of theselbaind the
translatesy; ;. Thus, the relative amenability constant&2’, €2;,) remain small
for u < s and we cané-pack’ Q' by translates of2; ,. We keep doing this and
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finally cover much of2 by translates of2;, , namely the union of all these translates
has total measure at legdt— (1—¢)*)(1—20)*|R2|, wherex is the upper bound on
the relative amenability constants. Since (we may assunigejnuch smaller than
&*, we cover almost all of2. On the other hand, our covering(i — ¢)-efficient,
i.e. the total measure of our translates does not ex¢eed: )2 according ta(x),.
Thus, the union of all our translates selyc 2 hasi(U) bounded by something
of the order¢, + 2¢. On the other hand, the compleme®itU has small measure
and retains some ‘amenability’ havim@2\U) U 9,(2\U)| also small, say «. It
follows, by subadditivity oft, thatz(2\U) is bounded by something of the order
of ¢|Q| andi(R2) is bounded by _|2| + O(¢e)|R2|. This yields the Ornstein—Weiss
lemma.

1.3.2. Euclidean Example

LetI’ = R" and®; be Euclidean-balls fori = 1, 2, .... Then the above some-
what simplifies as large balls can be efficiently packed by smallerwitlesutany
overlaps at all. (This is especially useful when we deal with superadditive functions
such as maximal degrees of 1-Lipschitz m&ps—~ S”, see [G-L-P], § 2.)

1.4. EXISTENCE OFWidims(X : ') FOR AMENABLE AND NONAMENABLE T

We continue 1.1.6 and 1.3.1 and define
Widim (X : I') = lim Widim.(X : {Q;})

with any amenable sequente C T.
In general, if we do not assume amenability, we set

Widim, (X : {2;}) £liminf |2/~ Widim, Xq,
1—> 00

for all sequence®; c I with ©(2;) — oo. And if we want to eliminate?;, we
consider all exhaustion(§2,} of I and take the infimum of Widig(X : {©;}) over

all exhaustions. This can be regarded as Wijdixn: I') which is equal to the above

if " is amenable, as a simple reasoning shows. But we are not seriously concerned
with keeping our definition independent Qf as all our considerations are as good

for one sequence @t’s as for another.

1.5. LETTING ¢ — 0 AND DEFINING dim(X : I')

The above meastrdimensions Widim(X : {€2;}) and Widim.(X : I") are monotone
decreasing in. Thus, we can go to the limit and set

dim(X : (€,)) = Widim(X : {€,}) = lim Widim. (X : (<))
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and
dm(X : ') =Widim(X : T") = IimOWidime(X : )
£—

if we want to beQ;-free.

Also, we observe that this definition makes sense for every (not necessarily
invariant) subse¥ C X (as we may work with the metrigs — x'|q restricted to
Y) and we shall be using this faompactsubsety C X.

If X is itself acompactmetric space, then the above definition of Widim does
not depend on the original metijie — x’| in X. In general, one could make things
invariant by first taking supWidim(Y : {€2;}) over all compact C X and then
taking infimum over all metricéx — x’| on X compatible with the topology ok
and such that the action dfon X is uniformly continuous. (We shall return to this
later on when it becomes relevant.)

1.5.1. Topological Invariance of Mean Dimension

If X is a compact space then, clearly, the mean dimension Widin{$2;}) does
not depend on the choice of the original metsic— x’| in X. In fact, continuity of
the identity map( X, |x — x’|%%) — (X, |x — x’|"¥) implies uniform continuity for
the metricsx—x/r;'d and|x —x'|}*"simultaneously for aly e I and consequently
for |x —x’|99 and|x — x|28". This gives a bound on Widiff" in terms of Widinf'?
for somes = §(¢) and as: — 0 we arrive at the equality WidifA¥ = Widim°® in
the limit, sinces(¢) — ¢ for ¢ — 0.

1.5.2. Monotonicity ofWidim

Clearly everyl'-invariant subspac®& c X has Widim(Y : {Q;}) < Widim(X :
{2;}. In fact, as we mentioned earlier, Widjin : {22;}) makes sense for arbitrary,
not necessarily invariant, subsetsC X as all we need are our metrips — y'|,,
onY and these come by just restricting the mettics- x’|, from X toY C X for
all y € I'. Then obviously,

Widim(Y7 : {©;}) < Widim(Y, : {2;})
forall Y, C Y, C X and all sequence®; C I'. In particular,
dim : T) <dim(X : I

if Y admits al"-equivariant embedding tD.

1.6. ON ISOMETRIC ACTIONS ON BANACH SPACES

There are certain topological spacéswhich admitweak compactificatigri.e. a
compact topological spacé, along with a bijective continuous map X — X,.
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For example, the unit bajl| X || < 1} in each Banach space is like that. Clearly, if
X, exists it is unigue up to homeomorphism.

Now, let X come along with an action df and let weak compactification refer
to a compact -spaceX, with a bijective continuou§ -equivariant magX — X,.
This (X,, I') is also (obviously) unique, if it exists, and il5invariants, such as
dim(X, : I') can be regarded as invariants(af, I").

BASIC EXAMPLE. LetI" isometrically act on a Banach space and thus on the unit
ball X in this space. A"-invariant weak compactification is obvious for reflexible
spaces and it also exists for some (all?) other examples, such(&3. Then one
may speak of

dim(x : 1) £dim(x, : ).

Itis clear, that
dmX : TN =s

for X being the unit ball in th€.-space of bounded functiols — R* (T" is
discrete here) and that this dimensignn for all other¢,-spaces. But | could

not decide if it is actually positive fop < oo (where the problem is related to
evaluation oft .-width of £ ,-balls, compare 1.1.4) and nontrivially dependspon

(If so, this would imply the spacesX, I') are mutuallyl"-nonhomeomorphic for
different p, which, | guess, is unknown for infinite groups) This problem, on the

one hand, and the idea of the Von Neumann dimension, on the other hand, lead to
the following modification of our dirgX : I') (see 1.12 — 1.12 3).

1.6.1. Definition ofdim(X : T'),,

Let us replace the sup-product distamce- x’|o from ... by the{ ,-distance,

1/p
|x _x/|9,e,, = (/ |x —x/|$dy)
Q

and then repeat everything witlh — x| ¢, instead of|x — x’|o. Notice that the
resulting dimension isot a topologicall*-invariant, it is only a Lipschitz invariant

(and Hdlder ‘covariant’ in an obvious sense). This is not so bad if we speak of
isometric actions on (balls in) Banach spaces (where even the linear Lipschitz in-
variance is a nontrivial issue) but our definition needs an adjustment to this case. It
seems reasonable to consider all compacivexmetricI"-spacesX, admitting bi-
jective (surjective?) Lipschitinear I'-mapsX — X,, and take sup diX, : I'),,

over all suchX, ‘under’ X. (And as the discussion became linear, one might try
more manageable linear widths instead of the topological one.)
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1.7. REMARKS ABOUT ENTROPY COVERINGS ETC.

Our definition of the mean dimension mimics that of the topological entropy where,
instead of our Widim X, one uses eptX = log cov, X, where coy is the minimal
number of the open subsets } of diameter< ¢ needed to coveK. In fact,
one can avoid any metric in the definition of both invariants(Ent {€2;}) and
dim(X : {;}) by a direct appeal to (sufficiently fine) finite open coverscofsay
X =J, U, and the associated covers by the intersectfdps,,  (U,). This defin-
ition of the mean dimension has an advantage of being applicable to nonmetrizable
spaces and it is adopted in [Lin-Wei]. We choose here Widim as it is easier on
the level of notations and also more flexible when it comes to generalizations. For
example, our definition does not truly need any action: every famityf metrics
|x — x'|5,8 € A, on X will do. Such a situation naturally comes up in the study of
spacesX of X-valued functions over a givemackground spaceé replacingl” in
the example o = X". Here each point € A gives rise to a metric on functions
x(8) via someweight functiorw (8, §;) on A x A by the formula

|x — XI5 = supw(8, 81)[x(81) — x"(81)x,

S1€A

where|x — x’'|x refers to a preassigned metric &nTypically, A itself is a metric
space (e.g. a graph as in [Ggg)y), and

w(8, 81) = exp—p dista (8, 81).

‘Microscopic’ observationsOne can think of a subs€l c I (or more generally

Q C A) as a ‘microscope’ applied to the metric spa€e= (X, |[x — x’|) and en-
larging its visual image to the greater si¥g = (X, |x —x'|q), where the resolving
power of2 depends on the presence of transformationX — X, y € Q, which
expand the original metric iX. This expansion brings invisibly small geometric
details of X = (X, |x — x’|) to the observable scake where we have a vari-
ety of ‘macroscopic’ geometric techniques at our disposal (seerfardsron ]
and [Grecmp]). The magnification may be highly nonuniform in different direc-
tions and so when we eventually semd> O we arrive at a new ‘non-isotropic’
image of X quite different from the originalX, |x — x’|) (compare 8§ 4.10 in
[Grocc]). Thus various ‘macroscopic’ invariants discussed in the above-cited pa-
pers (e.g. Widim X, Fildim, X, etc.) are getting transported from the geometric
realm to the domain of topological dynamics.

1.8. MEAN MINKOWSKI DIMENSION

This dimension is defined for invariant sub-spa&esf a topologicall’-spaceX
with a Borel measurg on X as follows.

Let U D Y be a (noninvariant!) neighbourhood &fin X and consider the
intersection of the-translates oV, sayUq, = (), .q, yU. Then pass to the limit

My = lim sup(M(UQi))l/'Q” ()

i—00
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and finally let

Mindim(Y : {2;}) = igf My,
whereU C X runs over all neighbourhoods &f C X.

1.8.1 Motivating ExampleLet (X, o) be a compact probability space and
Y C X be aclosed subset. Then the subiset Y' ¢ X = X' has MindimY :
{Q2:}H = no(Y) for amenable sequence€s. This directly follows from the defini-
tions.

1.8.2 Measuring Noninvariant Subsels ¢ X. Instead of translating/ we
may transport a given metrie — x’| on X and defineUg, as the intersection of
the e-neighbourhoods of with respect to the metrigs — x’|, for y € Q;. Then
we take the limitM, with Ug, substitutingUg, in (x) and finally lete — 0. The
resulting version of the Minkowski dimension (obviously) reduces to the above
Min dim for closedinvariant subsets ircompactprobability spaceX.

1.8.3 Variation. Rather than intersecting tleneighbourhoods for the metrics
|x—x'|,,, one could take the-neighbourhood with respect to the metie-x'|q, =
Sup, cq, [x—x'|,. This may be only smaller thalii, and so the resulting dimension
is smaller than Mindim. (Probably, there are easy examples wheresitiésly
smaller.)

1.8.4 Smooth Remarkf X is a compact smooth manifold withHaaction then
one can apply the above to a smooth (not necessarily invariant) measuark. In
particular, one may speak of Mindiifx} : {€2;}) for all pointsx € X and observe
that the topological entropy is (obviously) constrained by the numbers

M, = supMindim({x} : {©;}) and

xeX
M_ = inf Mindim({x} : {®;}) as follows
—log M+ topentX : {Q2;}) < —logM_.
1.8.5 Minkowski Dimension and Coentrogy. many examples whene is an
invariant measure of thanaximalentropy and the topological entropy is finite,
the Minkowski dimension equals egppentX : I') — topentX : I')). Further-

more, there are easy examples where ta@entT’") = oo but (X, Y, T') can be
approximated by actions with bounded entropy, €8y, Y;, I'), such that

exp(topentY; : I') — topentX; : I')) — Mindim(Y : I),

where the notation MindiitY : T') refers to a suitable exhausti¢f;} of I'.
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1.8.6. About ExamplesThe mean Minkowski dimension is invariant under
measure preserving continuous maps, e.g. homeomorphisnis, — X where
Y’ = a~1(Y). Constructing such maps is an interesting problem which makes
sense in every geometric category X%, where one is especially interested in
the structure of the group Aat" consisting of invertible mapx" — X' of
finite type with inverse also being of finite type. Besides right translation§ by
and automorphism in AUt acting onX" in an obvious way, one has two general
possibilities.

I. Triangular maps.The simplest instance of this appears whé&ras split,
sayX = Y x Z. Here every map: Z' — (AutY)" of finite type defines an
automorphism oX" by (v, 2) = (¢(2)(»), 2).

Il. Markers.The idea is similar to the above with Alitreplaced by Aut ? for a
finite subsetD C I' (or afinite collection of these). Sudh, as well as its translates
in T, are distinguished by insisting on certain valueg oh theseD’s. If theseD’s
happen to be mutually disjoint, then suitable automorphismi“oparametrized
by z give us automorphisms df". All this has been carefully studied for shif§é
and finiteS (see [Hed]) and we shall return to the general case in the second part
of this paper.

lll. Sometimes one can ensure invertibility of a map by an implicit function
argument but then the resulting inversion is, typically, of infinite type.

IV. If X is a smooth manifold, one may speaklItinvariant vector fields on
X' of finite type and study the corresponding flows (which may be only partially
defined). For instance, K is a symplectic manifold, then every function (local
Hamiltonian)#: X — R defines such a flow. (We shall return to this and will
study the corresponding symplectic geometry in the second part of the paper.)

1.9. PROJECTIVE AND LEGAL DIMENSION INXT

Consider a subspadé ¢ X = X" and define its dimension using natural pro-
jectionsX" — X% Q c T, (corresponding to restriction of functions frofhto
subsets2 C I') as follows. LetY|2; denote the image df under our projection
X' — X% and set

prodim(Y : {€;}) = liminf dim(Y |€2;)/]€2;]

for every sequence of bounded subgets— T" with |Q2;| — oo.

This projective dimension looks more approachable than(dim I') =
Widim(Y : T') and sometimes the two dimensions are known to be equal. In any
case, we have the following:
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1.9.1. PRO-MEAN INEQUALITY.If X is compact, then every closddot
necessarily invariantsubsetr ¢ X' satisfies

dim(Y : {€2;}) < prodim(Y'[{€2;})

for every amenable sequen@e C T'.

Proof. The projection fromY’ to the X% (where; + p c I denotes the
p-neighbourhood of2;) is ane-embedding withe = ¢(p) — 0 for p — oo and,
clearly,

dimy | @ > (dimY | Q; + p) — 9,9 dim X. O

1.9.2 Legal DimensionLet Y ¢ X' be an invariant subset of finite type
defined by a lan. ¢ X, D c TI'. Consider all translateg D in " which are
contained in a given subsgtand letL, ¢ X consist ofL-legal functions on<2,
i.e. of thosex: Q2 — X where the restriction of to eachy D C Q is contained in
L (where, as earliety D is identified withD and X”? with X?). Then define

legdim(Y : {Q;}; L) = liminfdim Lg, /||,

where Q; is a sequence of subsets Ih(which is assumed amenable in most
applications).

1.9.3 On Nontopological SpaceH.T" is a discrete group where bounded sub-
setsD are finite, then the definition of legdim makes sense in every category with
(finite!) Cartesian products and a notion of dimension (or rank). For example, this
applies to linear and affine spaces over an arbitrary field and up to a certain extent
to moduli over more general (commutative and honcommutative) rings. Also, one
may use this definition for (pro)-algebraic varieties over an arbitrary field and also
for analytic varieties over a local field.

1.9.4 On Subspace¥ c X' of Infinite Type for Metric Spaces. If Y is a
subshift of infinite type, the projections — X may be easilyonto (an open
subset inX*?) even for relatively small (e.g. forX = R* andY being a generic
infinite-dimensional linear subspace) and so the ordinary dimensions of the images
do not tell us much. It is more useful to take the Widiof these imaged | Q2
which works well for example, for the spaég(I’, R*) andY = B N Yo, whereYy
is al'-invariant linear subspace in ody and B is the unité,-ball. Here it seems
reasonable to evaluate Widiri | Q with respect to the ,-norm on¢,($2, R%)
as is suggested by the-case where this leads to then Neumann dimension
(see 1.12).

1.9.5 On Invariance ofegdimand Introduction oftablegdim The definition
of legdim depends not only ori = Y (L) but also on the defining lakt ¢ X?
although in most cases the dependencé. amillusory.
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In fact legdim= prodim in many cases (see Section 2) and it is useful to bring
in an intermediate notion afttable legal dimensiqrdenoted stablegdii : {€2;}),
whereg; is increasing sequence of subsetdinTo define this we projedt; to
X% forall j > i and letL;, C X% denote the images of these projections. Then
we set stablegditt : {;}; L) = liminf,_ o lim;_dimL; /|| Observe
that this stablegdim extends to nontopological categories in most cases where it
is possible for legdim and this sometimes allows such an extension for prodim (see
below).

1.9.6. Elementary Inequalitiest is clear that
prodim < stablegdim< legdim

(where, recall, meandirg prodim for compact’).
Also observe that the intersectidn,, =qef [ ;>, Li; equals the projectiol |

Q; of Y to ; for compact subspacésc X'. Hence,
prodimY = stablegdint, (%)

provided the dimension is stable under countable intersections of subsets in our
category. This is so, for instance, foompact complex analytic varietidxy the
Noether intersection propertgvery decreasing family of compact complex spaces
stabilizes.

Thus we have the following simple

PROPOSITION.Let X be a complex analytic variety and ¢ X” be a compact
subvariety. The = Y (L) c X' satisfies the above equality).

Remark. The point of this is our evaluation of some dimension of a ‘trans-
cendental’ object, ouy, in terms of ‘elementary’ ones, i.é.ij.

On Extension of Prodim to Nontopological Categori€he equalityy | Q =
L; remains valid in many algebraic categories, (e.g. for complex algebraic va-
rieties and saturated models of first order theories in general) and if we have a
notion of dimension in our category which passes to countable intersections of
varieties (as it happens, for instance, to countable intersections of constructible
subsets ik N for an uncountable algebraically closed fi&d, then we can define
prodimY (L) for laws L c X” in our category.

1.9.7. On Stable LawsA law L ¢ X? is calledstableif there existspg, such
that the image of the projection frof,,, to Lo does not depend gnfor all p >
po and all bounded2 c T', where, recall2+ p C I' denotes the-neighbourhood
of QinT. Clearly, if L is stable, then

prodim(Y : {©;}) = legdim(Y : {Q;}; L) = stablegdintY : {Q2;}; L)

for all amenable sequenc&s C TI'.



346 MISHA GROMOV

PROBLEM. Find less restrictive conditions ensuring the above equalities between
different dimensions. (See Section 2 for practical results in this direction.)

1.10. RESIDUAL DIMENSION

Given a discrete subgrodpy C I', we consider the fixed point set Hi € X ina
givenT'-spaceX. For example, ifX = X", this FixI'y consists of all"g-invariant
functionsI” — X which can be identified with functioris/ I'o — X.

We are especially interested in the case wiigrs of finite covolume, i.e. when
the Haar measuné’/ I'g| is finite. In this case we may expect dim Flx < oo and
S0 we set

resdimX/I"; = liminf (dim FixI';)/|T'/ T;|

for every sequence of discrete subgrotipsc T of finite covolumes withT'/ T'; |
—> OQ.

The most interesting case is where the spdtgeB; convergeto I, i.e. if for
each bounded subs€t C T the intersection N I'; consists of{id} for all
i > ig = ip(2). Recall that adiscretegroup I' admitting such a sequence of
I'; is calledresidually finite and many residual finite groups are far from being
amenable. Such are the free groups and most finitely generated subgroups in the
linear groupG L, R.

What may limit the applicability of the residual dimension is absence of a
sufficient amount of periodic (i.el';-fixed) points. However, ifl. ¢ XP? is a
strongly stabldaw (see 7.E! in [Grogsay] and below)then periodic points are
dense inY (L) C X for residually finite groups™ andresdim= prodimif I" is also
amenableThis follows by the argument in 7./Ein [Grogsay].

Definition of Strong StabilityCall L strongly stable if there exisis > 0, such
that the following condition(loc,,) is sufficient for extendability of a function
Xo: €0 — X toourx: ' - X belonging toY (L) c X",

(loc,,) For everypp-ball B C TI' the restrictionxg | 2 N B is extendable to an
L-legal function x; on B, i.e. the restriction of; to each translate ab
inside B must be inL.

Remarks(a). Besides the limit of dim FiK; /(I"/ T';) the totality of the numbers
dimFixT; for all latticesI"; C T carries an interesting information abq, I').
For example, i" = Z andT’; = iZ, this information is encoded in the generating
function ", ¢ dim FixI'; which we shall study in the second part of this paper.

(b) One can make the above definition of resdim more robust by dsfixgd
points Fix I';, i.e. moved by judiciously chosen generatorsipfby at mosts.
Also, one may use WidipFix I'; for the metric sup,r- |x — x|, on FixI'; instead
of dim FixT';, where eventuallg, ¢ — O.
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1.10.1. Residual Amenability

This signifies the existence of a decreasing sequence of normal subgrouaps
with amenable quotient groups; and with trivial intersections{), I'; = {id}.
Now, for eachA;, we may have some notion of mean (legal, projective, etc.)
dimension which passes fbas we apply itA; acting on FiX"; and leti — oo.
Alternatively, one may take an amenable sequeRce A; and use FixI'; with
respect to the metric sy — x’| for y € I' summing over the pull-back a®;
under the quotient map — A;.

In fact, the natural class of groups where this idea works consists iaftélly
subamenable groupgssentially introduced in [Ve-Go] and used in [&8/])
generalizing residually amenable groups.

1.11. LINEAR LAWS AND MEAN DIMENSION OVER AMENABLE ALGEBRAS

Given an arbitrary field&, one may take a vector spageover K, e.g.X = K*,
and speak of linear laws (i.e. subspacesy X”. Then, ifl" is an amenable group,
we have our (mean) projective dimension

prodim(Y : ') forY =Y(L) c X"
defined with an amenable exhaustionof

Remark on finite fieldX . If K is finite, thenX = X' is compact (totally dis-
connected) for the product topology akdc X is a closed (and so also compact)
subspace irX. Then the basic topological invariant of the actionlobn Y, the
topological entropyis (obviously) related to the mean dimension by the equality

topentY : T') = prodim(Y : I') log | K|,
for | K| =qef cardK. (See Section 2 for continuation of this discussion.)

Replacing(K*)" by K*(I') and passing to (group) algebrasnstead of the
space(K*)" of all functionsI" — K* one can look at the dual space denoted
K*(I") which can be identified with the space of functions with finite support on
I". Then each linear law C (K*)? defines a subspadg = Yo(L) C K*, namely
Yo = Y(L) N K*(I') for the obvious embeddindg*(I') c (K*)' and, clearly,
prodimY, = prodimY. Then we observe th&* (I") can be identified with the free
module of ranks over thegroup algebrak (I") where the [-invariant!) subspaces
Yo C K*(I') are just submoduli irk*(T").

Now we generalize everything to an arbitraky+algebraA in place of K (I').

We sayA is amenablédf it admits an amenable exhaustidsy K -linear subspaces
A C Ai =1,2, ..., where amenability of+4;} signifies that4;, for largei are
‘almost invariant’ under right multiplication id, i.e.

(dlm]( A + Aa)/ dimg Aj —> 1
i—00

for eacha € A.
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Next, given a finitely generatddft module B over A, we define its dimension
relative to{+A;} as follows. Take some finit& -dimensional linear subspady C
B generatingB over A and set

dimy B | {-A;} = liminf dim A; Bo/ dim ;.

Clearly, this dimension does not depend on the choid@ind it gives the ‘right’
number for free moduli: dimA* = s for all amenable exhaustions. Furthermore,
if A equals the group rin(I") of someT", this reduces to the notion of le-
gal (or stable) dimension ovét, but | do not know if the existence of the limit
lim;_, o #; Bo/ dim A; holds in full generality.

Remark(made by Ofer Gabber). Since liminf is nonadditive, we cannot claim
the additivity

dimy B1 ® B> = dimy B1 @ dimy B>

prior to proving the existence of the limit. Yet we always can take some general-
ized limit (the best here, | think, is an ultralimit) and thus recapture the additivity.
Eventually we shall be interested in additivity of djrfor exact sequences, 6
B; — B — B, — 0, where some extra problems arise (as was also pointed out to
me by Ofer).

Let us relax the assumption @& being finitely generated ovet by giving
B a topology where the action af is continuous and such th&tadmits a dense
finitely generated submodul. (For example, ifA = K (I'"), one can take&8 equal
the space of all functions — K* with the product topology in thi® = (K*)",
whereK* comes with the discrete topology. Clearly, the finitely generated module
B’ = K*(I') densely embeds to thi8.) Then we can define di® as dimB’ or
(which is essentially equivalent) by approximating the abBydy someB, and
taking

liminf lim A; B./dim ;.
e—>0 i—o00

The major drawback of all this is the amenability assumptiomoiThis can
be overcome in the context of thén Neumann algebrag.g. for the ringR(I")
for arbitrary countable grouds. HereK = R and the relevant modules are those
of £>-functionsT” — R* as well as their submodules and factor modules (com-
pare 1.12.1. below). The resultivgn Neumann dimensiatim,, B is well defined
forall " and ifT" is amenable it equals the above dil as an easy argument shows
(explained to me by Alain Connes about 20 years ago and exposed in the case of
£,-cohomology in [Dod-Mat]).
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1.12. VON NEUMANN DIMENSION

LetY C (R%);, C (R*)" be al'-invariant Hilbert space insideR*);, = £>(I", R%),
the space of the square summable functibns- R*. Then for every subse® we
define the restriction operator (maR),: ¥ — (]RS)?2 for Ro(x) = x| and let

RE: (RS)?2 — Y be the adjoint operator. THe-invariance ofY” (trivially) implies
that

traceRqR;  cardQ

traceRq R, cards’

for all nonempty finite subset® andQ’ c T (Where(RS)?2 = (R")%) and one
defines the Von Neumann dimensionloas

def

dimg, (Y : T) = |Q | traceRq R, (+)

for some (and so for each) finite subSetC I', where|2| =4t cardS2 (see [Con],
[Groa ] and references therein).

Remark. In what follows we use standard embeddiri§$)®? — (R*)% for all
Q' > Q where we just extend functions by zero outsieldn particular, we embed
(R? c (R)" and observe thak}, = R}:|(R*)®, and so we abbreviat&;, to
simpleR* forall @ C T.

To see this more geometrically in the case of an amenable dgraupindicate
the following (well known, | believe)

1.12.1. PROPOSITIONLet2; c I', i = 1,..., be an amenable exhaustion of
" by finite subset®; and letn;[a, b] denote the number of the eigenvalues of the
operator R, R* in the interval[a, b]. Then, if0 <a < b < 1,

n;la, bl/|2;| — 0 fori — oo,

(while n;[0, 1] = s|2;|, of course).In other words the majority of eigenvalues is
concentrated near the ends of thaenterval [0, 1].

Proof. Let x: Q@ — R* be anapproximateir-eigenfunctionof R R* for some
A € [0, 1] in the sense that

[ReR*(x) — Ax|| < ax ()
and assume that the restriction®f(x) to the complement af2 is g-small, i.e.

IR* () I\l < Blix]l. BIrne
We claim that for smallk and the numbe#i must be close to zero or one. Namely

AMLl—=2) <20+ 8. (*)
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Indeed, write(8)r\ as
|R*(x) — RaR*(x)| < Blx|
and obtain with(«),
[R*(x) — Ax|| < (o + B)llex].
Since||R*|| < 1 andR*R* = R*, we have
[R*(x) = AR* ()| < (e + B) x|l
and

|ReR*(x) — ARR} (X)|| < (@ + B)Ix],

(1= ) |RaRG ™) || < (e + B)lIxII.
Now use(x) again and conclude
AL =) lxll < (@ + B +a@d—1)llx]l
and, finally,
AMI-—AN) <o+ B4+ald—1r).
In particular we getx) as well as the relations,

A(L—2) =0 + B)

1—A=o(“+ﬁ).
A

Next letQ—* < Q be thep-interior of 2, i.e.y € Q7 iff the p-ball B(y, p) C
Q for a givenp > 0. We claim that the majority of functions Q—° — R* satisfy
(B)r\a wWith somep = B(p) — 0 for p — oo, at least foffinite subsets2 C T'.
To say it precisely, we denote I$: (R*)% " — (R*)"\® the operatoRr\qR* on
(RH®" ¢ (R*)® and show that

traceS;S, < B(p)|Q7"| (B)p

whereB(p) = B(p,T,s) — 0for p — oo and wheres?: (R)"\? — (R*)™ is
the adjoint toS,.

In fact everys-functionx = x, onI'" concentrated at some € I' satisfies
[R*x,|| € 1 since||R*|| < 1. It follows, that the restriction of R*x, || to the
complement of the balB(y, p) has nhorm< B(p) for S(p) p_)—>oo 0. Therefore,

and
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1S, (x,)Il < B(p) forall y € Q7 as well, becausé™\2 is contained in the
complement of the ballB(y, p) for y € Q~. Then the same inequality is clearly
satisfied bysS,: (R)® " — (R)*”,

”S;Sp(xy) | < B

that implies(8),,, since thej-function make an orthonormal basis(iR*)$* .

Now we prove our proposition by first evaluating[a, b] for small intervals
[a, b], namely for those whergr — b| = « for somea > 0 specified later on.
We denote byX; = X;,, C (R*)% the span of the.-eigenfunctions ofRg, R*
for A € [a, b] and observe that all € X; arex-approximatei-eigenfunctions for
everya € [a, b].

Next we consider those € X; which vanish on thep-boundary of$;, i.e.
x € X' =ger X; N (R")%” and observe that

|dimX? — dimX;|/|Q;| —> 0
for every fixedp, a andb by the amenability of<2;}. Thus the estimate for ditk;

reduces to that foX?. Then we take the intersection & ” with the span of the
eigenfunctions of5;S,, (with €; in place of<2) corresponding to the eigenvalues

< 2. We denote this b”” ¢ X and notice that the operat6j: (R)%" —
(R has norm< g on X,.p’ﬂ. Furthermore, according (@), the dimension of
Xf’ﬂ is rather close to that of? for largei andp. Namely,Vg > 0, ¢ > 03p, s.t.

lim sup(dim X7 — dim X7*) /|| < e.

i—00

Thus all we need is to estimate the dimensioanSfﬂ. To do this we invokegx),
and apply ittoh = a € [a, b] Witha — b = « and get

a(l—a) < 2(a—b)+ B,

provided some spacx-f‘f’ﬁ has positive dimension. In other words, the inequality
la — b| < (a(l—a) — ,3)/2

forces dime’ﬁ = 0; consequently

lim supdim X/ /|€2;| < e
i—00
for sufficiently largep = p (B, ¢) and then also
limsupX;/|Q;|=0
i—00
sincee — 0 for p — o0. Thus we proved our propositions for all intervids b],
where

la —b| <a(l—a)/2, (%)
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sinces > 0 can be chosen arbitrarily small. Finally, we cover an arbitrary interval
lying strictly within [0, 1] by those satisfying*) and thus conclude the proofO

1.12.2. COROLLARY.LetE; C (Rs)fz" be the image of the unit;-ball in a I'-
invariant Hilbert subspac& c (IRS)KF2 under the restriction magRg,. Then

lim (Widim, B;)/|:| — dim,,(Y : ")
for eache in the interval0 < ¢ < 1.

In fact, E; is a full ellipsoid in the Euclidean spatﬁ&s)?z" where the majority
of the principal semiaxes,, A = 1,...,|Q;|, is concentrated at zero or at one.
It follows, the average ok, eventually defining the Von Neumann dimension
dim,, (Y : I'), is essentially determined Bys close to one and our claim follows
since Widim of an ellipsoidE with semiaxes., equals the number &f,'s greater
thane’ for somee’ in the intervale < ¢’ < 2¢.

Remark. It is obvious that the numbei(¢’) of A, > ¢’ satisfies
n() > Widim, E fore' = 2¢
while the inequality
n(e) < Widim, E

trivially follows from 1.1.2. Probably, it is not hard to evaluate the criticator
whichn(¢’) = Widim, E.

1.12.3. The restriction mapBg,: ¥ — (R%)% arise from the evaluation map
R.. Y — R for y — y(e) for the identity element € I'. Now, letR: ¥ — R¥
be an arbitrary bounded operator andRet Y — (RV)% be the orthogonal sum
of the y-translates ofR for y ranging over2;. We defineE; c (RV)% as above
with R; in place ofRq, and let

dr = lim lim Widim, E;.
e—>0i—00
Then a straightforward generalization of the above arguments shows that the supre-
mum ofdy over all operator®: ¥ — RV, N =1, 2, ..., equals the Von Neumann
dimension dim, (Y : T').

¢,-Remark.The above definition of dig(Y : T') via d makes sense for an
arbitrary Banach spaceé with aT"-action. Here one can make some modifications,
e.g. by using thé ,-norm in the Cartesian powéR" ) for p # 2 (compare 1.6.1)
and/or to allow more general (linear and nonlinear) m&pgom Y to suitable
spaces. Eventually this line of thought converges to the discussion in 1.6.1.
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QUESTION. What is dimp(RS)erq for amenable groupE? One may (?) expect
that dim, (Rs)gp = s for all p inthe interval 1< p < oo, where the major issue is
the inequality din, Rgp < oo. This would imply, in particular, that the,-spaces
(R‘l){p and(RSZ)KFP are notl"-isomorphic fors; # s,, at least for amenable groups
I". This seems to be unknown even o= Z.

1.12.4. Nonlinear Von Neuman

The classical definition of the Von Neumann dimension extends to certain infinite
dimensional smooth manifolds with invariant measures where the tangent bundles
admitI-invariant Hilbert structures. More generally, [Btact on a compact space

X with a probability measure. and letT — X be a Hilbert bundle, such that
the action ofT" lifts to T and preserves the Hilbert norm in the fibgts C T,

x € X. Then we take the spacé of L,(u)-sectionss: X — T acted upon by the
Von NeumanalgebraA generated by alf € T" acting on the sections and by the
operatorss — fs for all continuous functiong’: X — R. With all this, one has

a bona fide Von Neumann dimension dii. (If the measure is concentrated at a
single fixed pointyy € X, then dimy X = dim,, (T, : I').) And if I is trivial the
above becomes the ordinary rankzfi.e. dimT,.

Remark.While our mean dimension parallels the topological entropy, the above
Von Neumann dimension is reminiscent of the metric entropy. This may suggest the
following questions. Which (infinite-dimensiondl)}manifolds X have dimy x <
dim(X : I') and when does symim, x = dim(X : I') for x running over
all invariant probability measures oxi? However, we do not expect the positive
answer, unless the definitions are modified in some (?) way (compare 2.1).

1.13. TRANSCENDENCE DEGREE FOR-FIELDS

Let F be an extension of a given field and letI" act by automorphisms aof
fixing K, i.e. we are given a homomorphisdi— Gal(F/K).

BASIC EXAMPLE. Consider independent variables associated to aly € I'
and takeF equal the field of rationak -fractions (functions) in these variables. In
other words F equals the field of rational functions & viewed as a proalgebraic
variety.

In general, we assume thatis finitely I'-generated ovek, i.e. there exists a
subfield Fy ¢ F whosel -translates generaté (as the above (xjq) I'-generates
F = K{x,}) and then definé¢ -transcendence degres F' over K with a given
amenable exhaustidi2;} of I" as follows. LetF; C F be generated by Fy for all
y € Q; and a givenFy I'-generatingF. Then

trandedF : {Q;}) d:eflim inf |;| " trandegF; /K.
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We shall not pursue this algebraic line of thinking anymore but shall return to
proalgebraic varietied in 2.7 where their dimension will be studied within a
topological framework. (I is irreduciblethen we can pass to the function figid

and define diny : ') as trande@F : T"). But isolating an irreducible component

in (reducible)Y may cause a problem as this may be Retwvariant.)

1.14. r-SPACES WITH SLOWLY GROWINGdimY | ©;

If our Y c X' is given by abalanced(or determined) lan. ¢ XP?, i.e. L has
codimL = dimX, then we expect that the spackg of L-legal functions on
Q C T (see 0.2) have dimensions much smaller ti@hand this is even more
likely to happen for theoverdeterminedtase where codirh > dim X (here we
deal with discrete groupB and finite subset® C I') for ‘sufficiently amenable’
Q, i.e. having relatively small boundad, 2. For example, ifl’ = Z" and ©;

are thei-balls inT", then we expect that dithg, is asymptotic ta”~1(~ |Q,~|"51)
rather than ta” (= |2;]), since solutions of balanced difference equation should
be determined by their values on a suitably ‘Cauchy (hyper)surfac&’,ie.g., on
7tczr.

The above suggests a modification of our definitions of various dimengibns
{Q:)) where the cardinality$;| is replaced by|;|? for somes < 1 or by a
more general functiow(|€2;|). Then one can speak of tlgitical exponent that
is the maximal (or, rather suprema) such that the3-dimension is infinite for
all sequences?; c I' with |Q2;|] — oo. Next, one may try to compute thg, ;-
dimension with some ‘most amenable’ exhaustiéh} of I". This will be done
for some examples in the second part of this paper. Here we only observe that for
linear laws L the following three conditions are equivalent:

(1) prodimY : {€2;}) > O, i.e. liminf_, dim Lg, /|€2;| > O;
(2) liminf;_,odim Lg, /|3,82;| = oo for all p > 0;
(3) there exists a nonzero functign I' — X from Y = Y (L) with finite support.

Indeed, obviously(l) = (2) = (3) = (1) for all amenable sequencéR;} inT.
Notice that (3) says in effect that the implied homomorphisiI') — K" (')

(for K* = X, compare 1.11) is noninjective. Also, one can replace ‘with finite

support’ in (3) byy € ¢,(T") in the caseK = R.

1.15. MEAN POINCARE POLYNOMIAL

Next topological invariant coming after dimension is Pancaré polynomiabf a
metric spaceX encoding its Betti numbers. This can be modified to Poincar
by factoring awaye-fillable classes inH,(X), i.e. realizable by cycleg with
FilRadC < ¢ for the metric onC induced fromX (compare [Grerm]). Thus
the degree of PoincaX equals the filling dimension mentioned in 1.1.6. Then we
enlarge the metri¢x — x| in aT'-spaceX to |x — x|q for @ C T (see 1.2) and



TOPOLOGICAL INVARIANTS OF DYNAMICAL SYSTEMS: | 355

define the mean Poincaré polynomial as a limit of suitably normalized polynomials
Poincar Xgq,, for Xq, =det (X, |x — x'|g,). Namely, we take

lim lim (PoincaréXg, )Y !, (%)
e—>0i—o00
For example, the zero degree term of this limit equals exp(topértanpY
{Q2;}) where comf denotes the space of connected components of

Remark. The above ‘normalization’ by theQ;|~! exponent is motivated by
the exponential bound on the Poincaré polynomial for algebraic laws. Namely, if
L c (R¥? is an algebraic variety, then the Poincaré polynomRigalr) of the space
Lq, of L-legal functions o2 is bounded by exg;|2| as follows from Petrovski-
Thom-Milnor inequality. But the behavior of coefficients of fixed degree (i.e. of
individual Betti numbers) (as well as the convergencdsnfor i — oo with
suitable?;) is a more delicate matter which we do not study in this part of the
paper.

2. Evaluation of the Mean Dimension for Subshifts of Finite Type

We exhibit in this section a variety of examples, where the dimension of a subshift
Y ¢ X" equals dimX minus the number of (difference) equations definihg

2.1. PRODIM AND LEGDIM IN THE LINEAR CATEGORY

Let X be a finite dimensional vector space over a figldsay X = K* (e.g.,
K = R), and take a subshift = Y (L) c X" defined by a linear law. ¢ X?,
D c T (see 1.8.2). We observe thiie projective dimension of such a linesr
equals its legal dimension, i.e.

prodim(Y | {Q;}) = legdim(Y : {Q;}) (o)

for all amenable sequencé® C I'. (See Section 0 and 1.9 for notations.)

Proof. Let Lo ¢ X be the space of legdl*-valued functions orf2, denote
by M§, C Lg the subspace of functior@ — K* vanishing on the-boundary of
Q,i.e.onQ2 N 9,22, and observe that dilMg > dim Ly — cardd, 2. On the other
hand, ifp is sufficiently large, i.e. if the-ball in " around the identity contains our
D cCT, thenM{-’2 naturally embeds int& = Y (L), where each function: Q —

K* extends by the identical zero dm\Q and where the inclusio®® C p-ball
ensures thé -legality of such extension. Now, §&; is an amenable sequence, then
(card$2;)~tdim Ms/‘)zi and(card®;) ! dim Lg, have the same asymptotice behavior
fori — oo by the above inequality and our claim follows. a

2.1.1 Remarks(a) Nonlinearity.If L is a nonlinear law it makes little sense to
makey € Y = Y (L) ¢ X" vanish at infinity but instead of this one can look at the
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pairs(yi, y2). yi € Y,i = 1,2, such thaty;(y) = y2(y) for all but finitely many
y € I'. Then one can easily show for many nonlinear subshifféngé typethat
such pairs are abundant¥hx Y if a suitable mean dimension &fis positive.

(b) Summability.A more interesting generalization concerns the linear case
whereX = R* andY c X" is aweakly closedinear subspace, i.e. it is closed for
the weak convergence X" wherex; — x iff x;(y) — x(y) foreachy e I'. Here
one cannot guarantee that the inequality pradifg;}) > 0 implies the existence
of nonzeroy € Y with finite support inl’, but one can ensure the existence of a
square summable: ' — Rin Y. In fact, for everyp > 2,

prodim(Y,, | {€2:}) = prodim(Y | {2;}),

whereY is a weakly closed linear subspaceXit = (R*)", whereY,, =gt ¥ N
¢,(I', Rs) and @; C T is an amenable sequence

Idea of the proofif a linear space of functions on a finite $ete.g. ourY' |2 has
dimension close to ca@, then it contains many sharply localized (concentrated)
functionsy where (3", . y*(w))¥2 is of the order sup_,|y(w)|. Furthermore,
one can find many, about dim(our space), syishwhich vanish on a given subset
in Q provided this subset has relatively small cardinality (such, & in €2; for
large i). All this follows by simple-minded linear algebra and, when applied to
Y |€2;, yields in the limit fori — oo ‘many’ nonzero functions € Y, and thus
inall Y, for p > 2. Actually there is the following standard trick of doing this
very quickly. Let P; denote the normal projection frof(I"; R*) to the space of
functionsY | ; extended by zero outside; c I". We think of these operators on
£,(I"; R*) as matrices indexed by with entries inG LR, written P;(y, '), and
observe that

dmY | Q; = Z traceP; (v, y).
yeQ;

Next we observe that the functio®s(y, y') onT" x I weakly converge fof — oo
to someP = P(y, y’) which is invariant under the diagonal actioniobnT" x T.
Clearly, the imageP (¢2(Y; R*)) is contained inY,, and its projective dimension
with respect to{Q2;} equals that oft. In fact, this argument shows that then
Neumann dimens ioof Y,, equals the projective dimension bf

Notice thaté,-functions produced by this method appear as normal projections
of §-functions toY,,,

S(v) — 1 atagiveny €T,
) = 0 fory' £y

and of more general functiopswith compact supports dn. Such a projection can
be obtained in certain cases as the limit> oo) of the heat flow which suggests a
possible (not the only one) nonlinear generalization offhstory and which shall
be discussed further in the second part of this paper.
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2.1.2. Comparison betweedim,,, dim,, anddim,_,

The above suggests that the mean dimensian gfqgeil N £ (I'; R*) minorizes
the Von Neumann dimension &f,. Herel..(I"; R*) denotes the space of bounded
functions on" with the sup-norm and the mean dimension refers to thet oh B"

for a ball B ¢ R*. I do not know if this actually is true but a similar result is valid
with our topological widim replaced by its linear counterpart, denoted dim
This is defined for (centrally symmetric) subsetsn a Banach spacé as the
maximal dimensiom of a linear subspacé&, C L, such that the intersection
AN Lg contains the-ball in Lo around the origin. Notice that dimA < widim, A
according to 1.1.2 but it remains unclear when dim> widim, A.

Next, given al-invariant subspac& C ¢ (I"; R*), we take its intersection
with the unit ball in£.,(T"; R), call this X; ¢ X and project it to the spaces
£50(2;; R%) by just restricting functions froni" to ; c ' as we always do. We
look at the images oK, call themX|Q; C £,,(22;; R), and set

dim,_ (X : {Q;}) = Iim0 lim supdiny (X1 | €2:)/1€2].

Now, the argument in 1.12 shows tlifldhe spaceX; is weakly closed i, (T"; R?),
then

dimg, (X, : I') > dimg_ (X : {2;}) (%)

for every amenable exhaustid®;} of I". In particular, if X; is weakly closed
and dim_ (X : {€2;} > O for some amenable exhausti¢f;} then X contains a
nonzerol,-functionl” — R¥.

2.1.3 Remarks.(a) The present condition of weak closeness is by far less
demanding than the one in 2.1. In particular, the ab@yeapplies to the spaces
coming from solutions of linear elliptic PDE.

(b) Every¢o-function onT is bounded. Furthermore every nonzere X N
£,(; RY) gives rise to many functions iX C £..(I' : R*) by taking sums
> er ¢, vx for square summablé.e. £;) functionsy — ¢, € RonT'. But it
is unclear if

dimgz(X@z ) > dlm(m(x : {Ql})

Itis not even clear what kind @h-condition ensures the positivity of djm and/or
of the mean dimension. On the other haifdX contains a single nonzeré-
function, therdim,_ (X : {€2;}) is positivefor every amenablexhaustion{<2;} of
I'. In fact, given anx € X N £.(T"; RY), we get lots of bounded functions i by
taking sumsy - e, A(x) for boundedunctionsy + ¢, € RonT. These suffice
to prove that dim_ > 0 and, probably, to show that dim< dim,_, for a suitably
defined dimension dim = dim,, (X, : {:}).
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Squaring/,-functions.Suppose we are given a bilinear mMap R* — R¥,
denoted(x, y) — x e y and observe that so defined productgfunctionl” —
R* lands in¢,(I", R*). Denote byX?, C (T, R*") the set of the products of all
X,y € XL?Z, take the linear span of,, and Iet@oo(sz) be the closure of this span

in £oo(I" : RY). If our product is sufficiently nondegenerate, then

dim, (X¢, : T) # 0= dim (€ (X7,) : T) # 0.

QUESTION. When does one have the inequality
dim (¢eo(X7) : T) > dimy, (X, : T)?

For example, is this true fo€*-valued functions with the component-wise
productC* ® C* — C*?

2.2. GENERICITY AND I'-TRANSVERSALITY

Denote by — D the set ofy € I', such thaty D c Q. In other wordsQ2 = D is
the maximal subseR~ in I" such that2~ D c . Clearly, the cardinality of this
subsef2 — D in T satisfies

Q= D|<|Q and |Q = D|/| — 1

for every finite subseD and each amenable sequeizec I'. (Notice that ifl"
has no torsion, theff2 — D| < |2] — | D] + 1.) Itis equally clear that the subspace
Lo C X of L-legal functions ore2 (i.e. thosex: © — X whose restriction to
every translatey D C  is contained inL) has

codimLg < |2+~ D|codimL
and so
legdim(Y : {2;}) > dimX — codimL (+)

for all amenable?; in T".

Q-Transversality.Denote by c X' the pull-back ofL ¢ XP” under the
restriction map (projection” — X? and say thaL is Q-transversal for a given
subset2 c T, if the translates’ L c X" are all simultaneously transversal for
running overQ2 = D. This makes sense, strictly speaking, only for finite subsets
Q c T; if Qs infinite this is understood &3y-transversality for all finite subsets
Qo C Q.

Itis clear that

Lo = ﬂ yL and Y(L)= ﬂ yL.

yeQ+D yel
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ThusQ-transversality implies that
codimLg = |2 =+ D|codimL
andI'-transversality yields the ‘expected’ identity
legdim(Y : {2;}) = dimX — codimL (=)

for all amenable2; C T'.

Now we want to decide how generic is thetransversality assumption. To do
this we represent. ¢ X? by r independent linear equations with= codimL,
i.e. we makel. = Kero for some linear map: X? — K’ leta: X' — (K")F
be the corresponding difference operator afid K" (I') — K*(I') be the dual
K (I')-morphism fors = dim X (andK* = X). It is obvious that

the morphisna’ is one-to-one if and only if is I'-transversal

Thus thel-transversality problem and issuing relatiéa) reduce to deciding
whena' is injective.

2.2.1. Itis notationally convenient to interchangands and look at mapa from
K" (') ¢ (K" to K5(I') C (K*)' defined bya € Maps ((K")? — K*). We
denote by lg, € Maps((K")? — K*), @ € T the subset of those for which
the kernel ofu: K" (I') — K*(I') containsno functionx: ' — X = K* with
support in2 (where we view elements iki* (I') asK*-valued functions o with
finite supports). Clearly, if2 is finite, this is a Zariski open subset andsif> r
it is nonemptyas it contains an injectivea: K"(I') — K*(I") corresponding to
an embedding” — K*. The subset we really want to understand isdg; In-
corresponding tinjectivex and this equals intersection of Jrover all finite D C
I". We see from the above that thistnMaps((K")? — K*) = K"*IPl equals the
intersection of a countable family of Zariski open subsets and therefore it is rather
large, at least for uncountable fields In fact, it is clear that

if s > r, then everyw, whose allsr|D| components are algebraically inde-
pendent over the prime fiel®, C K, gives rise to an injectiver, where the
correspondingdual) L satisfieg(=).

2.2.2. Suppos& = R and show that
In ¢ R*"1P! contains a nonempty open subsetsa r.

To see this let firsk = r and observe that every operator of the fdrm-
e RY(I") — R5(I") is injective if the sup-norm of is < 1, since the equation
£(x) = x has no nontrivial solution fofe| < 1 (where one may allow nonlinear
operatorse as well). Now, ifs comes frome: RSPl — RS, then the condition
lle’l < 1is ensured by the inequalit¢|| < 1, where the norm of can be taken
relative to an arbitrary norm oR* and the corresponding sup-norm BA?! =
(R*)IPI, This yields our claim fos = r and the case > r trivially follows.
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(a) One can relax the conditiofe|| < 1 to || < 1 provided the equality
le@Il = @I, for x = (x4, x5, ..., xp), x; € R, is possible only for; =
X, =...xp- This situation arises, for example, for diffusion operator&Ron).

Remarks. (b) The above applies to every normed fi&d e.g. toQ with a p-
adic norm. For example, ¥ is given by an(s| D| x s) matrix with integer entries
divisible by a prime number, thahe corresponding morphisti + ¢: Q*(T") —
Q(IN) is injective

In fact, ¥ + ¢ remains injective if we replac® by an arbitrary field of char-
acteristic zero. More generally, I@tbe an arbitrary complex number and let all
entries of the above matrix be integer polynomials inn without constant terms
(i.e. divisible byA). Thenthe corresponding morphisi#i+ ¢: C*(I') — C*(I") is
injective, provided eithek is transcendental or an algebraic integer which is not
a root of unity.

In fact, the fieldQ (1) obviously admits a norm making| < 1 under the above
assumptions.

(c) Our (implicite function) argument, shows that an injective morphism
K"(I') — K*(I') remains injective under small perturbations if it admits a right
inverse, i.e. a morphism: K*(I') — K" (I'), such thai8 o a: K" (I') — K" (T")
equalsl. Suchpg obviously exists (and this was used above) doinduced by
an embeddingk” — K, but it is unclear how typical such invertibility is for
generale. To get a perspective, &t = 7" andK = C. ThenK (") = C(Z")
identifies with the ring of regular functions on the tor(t8*)" and morphisms
C'(z"y — C*(Z") become homomorphisms from the trivial vector bundle of
rank r over this torus to such bundle of rank Then injectivity of« translates
to injectivity of the vector bundle homomorphism somefiber, while invertibility
of & amounts to injectivity orall fibers. Thus we see that thoge€or which « is
injective (i.e. those from Inconstitute anonempty Zariski open subset@y'”! for
s > r and all finite subset® c Z", while « corresponding to invertible have a
similar property only fos > r + n.

(d) If one replaces the spa@ (I') by its dual(R*)", then the corresponding
implicit function argument yieldsurjectivityof maps¥+e for suitably contracting
(possibly nonlinear) maps (R*)" < of finite type (i.e. defined via: (R*)? —

R? for finite D C T'). In fact, such an argument yield®unded(and alsot,, for

p < 00) solutions to the equation + ¢(x) = yfory € R*(I') C £.(T"; R%) C
(R and then one uses density Bf(I") in (R*)". Notice that all this applies
to (K*)' for all complete normed field& as well as some subvarieties in these
(K.

(e) Another class of injective examples is provided by positive selfadjoint oper-
atorsR*(I") <—. For example, if3: R*(I') — R’(I") is injective, theng*B : R*(I")
is positive selfadjoint and so injective.

2.2.3. Letus give a combinatorial condition &1C T" which provides amonempty
Zariski opensubset in In= In. C Maps((K")? — K*).
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DEFINITION. A collection & of nonempty subsetE C D is called anextremal
family if for every nonempty finite subs&® c T there existsy € TI', such that
(yQ)NDeE.

EXAMPLES. (a) If D ¢ Z" c R", then the collection of the extremal points of
the convex hull ofD makes an extremal family as an obvious argument shows. The
same is true for free groups realized as vertex sets in trees, where the convex hulls
are defined as the spanning subtrees.

Next, for an arbitrary collectiog of subsets irD defineIn. ¢ Maps(K")? —
K*) as the set of those: (K*)? — K" which are injective on the subspadds’)*
for all E € &, where(K*)f embeds tqK*)” by extending functions by zero on
D\E. Clearly, In. is Zariski open and it is nonempty if sgp. cardE < s/r. On
the other hand, i€ is an extremal family, then |nC In. In fact, if «(x) = O,
then the suppor2 C " of x: ' — K" must be empty as trivially follows from
the above definitions. Thus we obtain a nonempty open subset,ipiovided D
admits an extremal family with sup cafd< s/r.

EXAMPLE. A groupT is called D-uncoiledif D admits an extremal system
& with supcarde = 1. We sayr is uncoiled (traditionally, a unique product
group) if it is D-uncoiled for all finite subset® c I'. (Notice that free groups
are uncoiled by the above remark and extensions of uncoiled groups by uncoiled
are, obviously, uncoiled. All this is well known, see [Pass].) For such graugps
have our nonempty Zariski open subsetrirfor all D, provideds > r (which
extend the solution of thEaplansky problenfor these groups, i.e. nonvanishing
of o fors = r = 1 anda # 0, see [Pass]).

Next we want to make examples of injectivdor s < r, i.e. we want to embed
K'(I')toK*(I') fors < r.

DEFINITION. Call a subsetD c T tree-likeif for every finite subset?, there
existy andy’ # y inT" andw € €, such that

yQND={yw} and y'QND = {y'w}.

BASIC EXAMPLE. Leta, b € T be freely independent. Then the subgetb,
a1} c T'is tree-like. Indeed this reduces to the free casd'fer F(a, b), where
everything is clear withw € 2 being an extremal point of the spanning tree (convex
hull) of .

Now, define a subsét, ¢ Maps(R")? — TI'*) as follows. For a pair of points
8,8 € D, consider the subspacR$, R, C (R")? consisting of function® — R”
concentrated at andé§’ correspondingly and identify them with the stand&d
Then each mag: (R")” — R’ restricted ta5 andé’, gives us a map of thi®” to
R? and we declare e T> if this map is injective for every pair of distinct points in
D. ClearlyT; is Zariski open and it is nonempty fos 2= ». On the other hand, our
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previous argument shows thatiif is star-like, theril> C In and so we obtain, in
particular, arinjective K (I")-morphism fromk'?(I") to K*(I"), providedI" admits
a star-like subset.qg.,if I' contains a free nonAbelian subgroup.

Remark. If the groupI” is amenable, then an easy argument shows that there is
no injective morphisnk”(I') — K*(I') for » > s. On the other hand, such maps
may exist forall nonamenable goups. Also one can ask which nonamenable groups
admit star-like subsets where the picture is unclear, for example, for torsion groups
with sufficiently rare sets of relations. (It is easy to constructoal -invariant
embeddingk?(I') — K(I') of finite type for every nonamenable group using a
bounded measure contracting ‘vector field’ or siich

Application to the entropy.et I" be amenable and the subsetdrMaps (K")”
— K*) be nonempty Zariski open, e.d.,is polycyclic torsion freep C I' is an
arbitrary finite subset and < s. If the field K is finite, this_Inmay be still rather
small but it increases as we pass to finite extensikp®of K. In fact it covers
almost all spac&*'’! = Maps(K!)? — K?) for largeK,, i.e.

cardIn(K,))/ cardk*'P! — 1

for cardK, — oo.

Next we observe that the topological entropy of the spgace Y (L(K))) for
a given lawL c (Ke)” obviously equals prodi¥ : I') log cardk,. Thus we
obtain many examples of subshifts of finite type where we know what the entropy
is,

topentY : ') = (s — r) log | K,|.

Observe that tope(l : I') is notoriously difficult to compute for subshifts of finite

type overl” noncommensurable b and the above algebraic systems constitute the
bulk of available examples (compare [Schm]). We conclude by noticing that the
above applies to uncoiled groups and it seems harder to generate such examples
for groups which contain coils or where uncoilness is unknown.

2.3. STABILITY AND TRANSVERSALITY

A (possibly nonlinear) lanl. ¢ X" is called p-stableon @ c T if the legal
extendability of functions from Qg C Q (i.e. ofx € (X)) to Q, i.e. to functions
y € Lo C (X)%, is equivalent to legal extendability to theneighbourhood2y+p
of Qq, where we require this property for dllp in 2, such thatq + p C @
(compare [Gresay]). It is easy to see that linear laws € Gr,(K*)” which are
p-stable on a finite subs€t make a constructible subset in,Gk*)? (i.e. a union
of intersections of Zariski closed and Zariski open subsets). Alsey # 3p C 2,
andL is p-stable org2, then every legal functiom on Qg + 3p can be modified to
X0, Such thatxg | Q¢ = x | ¢ and such thaty vanishes outsid€g + 2p. Thus,



TOPOLOGICAL INVARIANTS OF DYNAMICAL SYSTEMS: | 363

for p > DiamD, one can extend sucl to a legal function on all of" vanishing
outside2g + 2p.

LEMMA. If L is p-stable onl0p-ball 2, in T" for p > DiamD and L is Q,-
transversal, then it i§"-transversal.

Proof. Suppose. is Q-transversal and prove it i2;-transversal fo€2; = Q U
{y1} and some; € I'\Q. Denote byLi C (K*)* the intersection of those” C
(K*)* for which y; € yD € Q1 and observe that all we need to prove is the
transversality otf with Lg. Then we take the@ball By = B(y1, 20) aroundy,
and project(K*)® to (K*)#17%, We denote byL; and L, the images of.1 and
of Lo under this projection and observe that the transversality of these images is
equivalent to the transversality of the original spatesandLi. But in the stable
case these images are the same for sm&llemamely forQ2’ = Q N B(y1, 5p),
where the transversality follows from our assumptions. Thus, the proof follows by
induction on card2. O

COROLLARY. The intersection of the subs&an- c Gr(K*)? with the set of
p-stable laws o2, sayTran- NSt,, is Zariski open inSt,.

QUESTION. Under which assumptions &nD, p doesSz, C Gr.(K*)? contain
a nonempty Zariski open subset?

2.3.1. Disjoint Transversality

This property is very close to the above stability and it expresses the idea of
noninteraction between subsetdlirseparated by distances p, where the space
Y = Lr C X = (K*)! serves as the medium of such intersection. Namely, we
say that the spacE C X is p-disjointly transversalf for every finite system of
finite subsets2y, ..., Q;, ..., Q,, in T with dist(2;, Q) > p, 1 <i < j < m,
them subspaced; consisting ofy € Y satisfyingy | ©; =0,i = 1,2,...,m,
are transversal irY. Thendisjoint transversalitymeansp-disjoint transversality
for somep > 0.

Itis clear that

stability = disjoint transversality

(where ‘stability’ meansg-stability onT" for somep’) and in many cases (e.g. for
groups with bounded asymptotic dimensions, see §&d) the disjoint transver-
sality implies the existence ofsiablesublawL’ c L, c (K*)”" for some finite
subsetD’ C T, such thatL. = Y = Lr. On the other hand, disjoint transversality
of the spaceé.q, for all finite @ C I" (with an obvious modification of the definition
where Q takes the role of”) is equivalent to the stability as an easy argument
shows.
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2.3.2. Open Problem

The old unsolved question concerns the possible values of p¢gdini’). The
above considerations indicate many examples, where this prodiminsegerfor
certain (torsion free) groups and it is quite easy to make examples where it takes
rational values for groups with torsion. (See [Luck] for further discussion of this
problem for the Von Neumann dimension.)

As we have seen above, the integrality of prodim follows fromitkteansversa-
lity of a given presentation (i.e. a law) of our Y c (K*)', and one may ask for
whichT" everyY c (K*)' of finite type admits a presentation (possibly in some
(KT for s/ > s) with ['-transversalL. This can be, probably, expressed with a
suitable Grothendieck grodfio(I") = Kq(K (T")) of finitely generated moduli over
K (I") (or a given amenable algebrain general). Our prodim should give us a
homomorphism, say: Ko(I') — R, and we also have a homeomorphisn¥ —
Ko(I") where each € Z goes td K*(I')] € Ko(I'). Now the basic questions read:
What is the image of ? When does it equal t8 C R or is contained if)? What
is there inKq(T") /i (Z)? Do the subgroupgZ) and kerd generatékq(I")?

Apparently, all this is well known fopolycyclicand, moreover, foelementary
amenablegroups, wheré&q(I") tends to be quite small (as was pointed out to me
by Ofer Gabber, also see [LUck]).

Another kind of a transversality question is as follows.

Given submoduly ¢ K*(I") andYy C K*o(T"), can one find & (I")-morphism
p: K5(I') — K*(I'), such that

prodim(Y N p~(¥p)) < 8

for a givens > 0? More specifically, when is this possible wite= prodimY —so+
prodimYy? Or, even better, when can one finanappingY I'-transversally (in an
obvious sense) tH,? For example, when does, for a givErc K*(I"), there exist
o. K*(I') - K(I'), such that the kernel gf is I'-transversal t& ? Also, observe
that the dimension type invariants of moduli lead to norm&e(™) andKqy(I')/iZ
(see [Gropcmp). Finally, notice that thekK -theoretic point of view does not do
justice to such moduli a&*(T")/pK* (") for embeddingso: K*(T") — K*(I')
(describing determined systems of independent difference equations).

2.4. MEAN DIMENSION OF SUB-LINEAR SUBSHIFTS

Take a linear subshifty ¢ X' for X = R* and letB ¢ R* be a compact subset
containing the origin in its interior. TherY, = Yo N B" ¢ B" makes a closed
I-invariant subshift (which can be called ‘sublinear’) in the compact (full shift)
spaceB" where one may speak of our mean dimension(#im{;}).

2.4.1. PROPOSITIONThe mean dimension &f = Y (L) c B' equals the pro-
jective dimension ofy c X"

dim(Y : {€;}) = prodim(Yo | {€2;})
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for all amenable sequencé&y C I'. Consequently,
dim(Y : {Q;}) = legdim(Yy : {Q2;}).

Proof. The upper bound on di(¥ : {€2;}) follows from 1.9 and we concentrate
on the lower bound. We observe that the projectionB” — B is distance
decreasing for the metrie@ — x| on B and the sup-product metric @&f?. Then
we assume, without loss of generality, tlaequals a small ball ifR* around the
origin and then, by applying 1.1.2, obtain the following inequality for the image
Y | Q =4 p(Y) C B with the sup-product metric

Widim, Yo > Widim, Y | @

whereYq = (7, |x — x'|q) as earlier. O
Now the proposition is reduced to the following

LEMMA. There existg = ¢(X) > 0, such that
Widim,.(B¥ N M) = dimM

for all finite subset2 c I' and every linear subspade c (R*)® > B® (where,
we use the sup-product metric Bt?).

Proof. Everything trivially reduces td being a ball inR" around the origin
and thenB® N M appears as the unit ball with respect to the Banach nori in
induced from the norm iriR?*)$ with the unit ballB*. Then 1.1.2 applies and the
proof follows. a

2.4.2. COROLLARY.If s > r, then the subset of the lauiss in Gr, (R*)? giving
Y of mean dimension—r is residual. Furthermore, it always contains a nonempty
open subset and, if is uncoiled, then ‘open’ can be strengthened to ‘Zariski open’.

2.5. ON LOCAL DIMENSION OFI'-SUBVARIETIES

Let X be an algebraic variety (over some field, ékgor C) or an analytic space
(overR or overC) or a smooth manifold (where, more generally, we may allow
stratified spaces, e.g. polyhedra). We are interested in subget¥ = X' defined
by a law which is a subvariety ¢ X” in our category. Here, as earlier, one may
first look at the legal and projective dimensions and then try to prove that the mean
dimension ofY intersected with a bounded (and weakly compact) part X"
equals the projective dimension.

Conjecturelf Y is defined by a generic lalv ¢ X? of codimensiorr, then

legdim(Y : T) = prodim(Y : ) =dimY NB: T =s—r (=)

fors = dimX andB = B", whereB c X is a sufficiently large compact subset.
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Notice that the major difficulty in proving that
dm NB:T') > prodmY : T') (%)

stems from the problem of bounding from below WidithN B in the finite-
dimensional case (see 1.1.4). Yet, even without resolving the finite-dimensional
problem from 1.1.4, one expec{s) in many cases, e.g., fd&f = Y (L) where
L C XP? is real analytic.

Another (rather technical) issue, which comes about in the smooth category, is
a possible bad behaviour of the singularitiesyo& Y (L) and of the intermediate
finite-dimensional spaces, C X%, Q ¢ TI. Itis unclear ifLg can be as bad as
any other closed subset but, in any case, one can rule out major (?) pathologies by
imposing genericity assumptions én making allLq stratified subsets (and often
just smooth submanifolds) K (compare 2.7).

2.5.1. Many examples df = Y (L) ¢ X”, where dinfY : I') = s — r, e.g., for

X = R*, can be obtained with the implicit function theorem (see 2.2.2). Namely,
we start with somé.o ¢ X", where the equality difY (Lo) : ') = s —r is known

for some reason (e.d.o C (R*)? is a generic linear law of codimensiaf and
then apply a difference operatdr X" — X" which is sufficiently close to the
identity, e.9.A = Id+&: (R)" — (R%)', where the implieck: (R*)”? — R*

is bounded and has small differential. ThEn= A=1(Y(Lg)) < X' will have
the same mean dimension Egby the discussion in 2.2. For example, if we start
with Ly C (R*)? of codimension < s represented as the kernel of a linear map
(R)P? — R’ factoring through a coordinate projectioR*)” — R*, then every
small smoothC!-perturbationL, of Ly in (R*)” gives usY, = Y(L,) C (R*)"
withdim(Y, : ") =s —r.

QUESTION. LetL c (R*)” be a smooth submanifold of codimensiorcon-
taining the origin 0e (R*)? and denote by, the tangent spac&(L) of L.
What property ofLq ensures thak is I'-transversal near the origin and thus every
Lo C (R is smooth of codimension|Q = D| near the origin, i.e. when in-
tersected withBSQ, where B, C R* is a¢-ball with ¢ > 0 independenbf Q7?
Moreover, we want dire¥ (L) N BY') : ' = s — r under a suitable assumption
on Ly. (Apparently, what we need is some kindwfiform I'-transversality ofLg
meaning, for example, that the corresponding Map") — R*(T") is not only
injective, but is left invertible in the1-topology.) Also, we wish a more general
result of this type applicable to an arbitrary (ftfixed) pointyy € Y (rather than
y = 0), where the corresponding tangent spAge)) is notI'-invariant.

2.6. GLOBAL LOWER BOUNDS ONdim(Y(L) : T) FOR NONLINEAR LAWS L c xP?

Although we have no general result at the moment for ‘local’ mean dimension it is
possible to obtain some lower bounds for ‘global’ infinite dimensional varieties.
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An appealing example is whetE is the complex projective space atidis
a complex algebraic subvariety, i.e. ¢ (CP™)?, d = cardD. We shall show
for such L that thecorresponding subspacé c (CP™)" of L-legal functions
' - CP™ (see 2.6.14 and 2.Tas the expected mean dimension

dim(Y : T") = 2m — codimg L, (%)

providedL is generic in a suitable sengsee 2.7).
In fact the upper bound on dif¥ : T") follows from that for the legal dimension

legdimY < dimX — codimL (¥)<

which holds true in all categories whenever one has a reasonable notion of gener-
icity for L (i.e. whenL appears as a member of a sufficiently ample family of
subvarieties, see 2.7). On the other hand, the lower bound

dim(Y : T") > dimX — codimL (k) >

does not need genericity but rather homological nondegeneraty(sde below)
which, in the case o = CP”", is satisfied byall algebraic subvarietiesd C
(CP™)4. In fact this nondegeneracy is satisfied for many (e.g., sufficiently mobile)
L c X? whereX is any complex projective variety but (see 2.7) it is unclear if
(*)> holds true for all algebraié c X“.

2.6.1. Homological Lower Bound on the Mean Dimension

Let X be a compact finite-dimensional locally contractible metric space, take a

Cartesian powex” = X x X--- x X with the sup-product metric and con-
e’
M

sider ai-Lipschitz map from a compact metric space iXd’, saya: ¥ —
XM We denote byV the maximal integer such that the indudeaimomorphism

N M N .
Hg (X") — H  (Yo) does not vanish.

2.6.2. TOPOLOGICAL LEMMA. There exists a positive= ¢(X) > 0, such that
theg’-dimension ofy for ¢’ = ¢/2 satisfies

Widim, (Y) > N,

where thise does not depend oM, Y, @ and N.

Proof. If Y admits are-embedding to a polyhedroA then the cylinder of this
map, sayZ O Y admits a metric extending this &f, such that dist, ¥) < ¢/2 for
all z € Z (compare 2.5). Next we consider theprojections ofX" to X, compose
them witha and observe that the resulting maps> X extend to continuous maps
P — X fore' < g9 = g9o(X) > 0. In fact X embeds into some Euclidean space,
say X c R", where we may assume our original metricXnis induced by this
embedding. Since our map fromto X C R” is A-Lipschitz, it extends to aén-
Lipschitz map fromZ > Y to R" > X. Now, as all ofZ is ¢’/2-close toY, for
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g = ¢/2, ourZ landsé-close toX c R” for§ < %Sn. But thes-neighbourhood

of X in R", for small§ < §u(X c R") > 0, retracts taX, sinceX is locally
contractible. This gives us the desired mép— X extendingY — X and all
theseM maps together extend the original embeddihg- X" to a continuous
mapZ — XM.

Finally, if dim P < N —1, the above extension allows a homotopy of the embed-

dingY c X" to a map which factors through(&/ — 1)-dimensional polyhedron.
This makes the induced homomorphismi@f zero. O

2.6.3. Homological Dimension

GivenY c X" we define itsprojective homological dimensiaelative to a given

exhaustiorg; of I' by projectingY to X%, denoting byN; the maximal dimension

where the corresponding cohomological rng) (X%) - Hf (Y) does not
. R ech Cech

vanish and then by setting

prohomdim(Y : {Q;}) = liminf N;/ card<2;.
Next define a similar stable legal dimension for= Y(L) ¢ X' coming from
L c XP by

stlehodim(Y : {©;}) = liminf lim N;;/cardS;,
j— 00

i—o0 |

where N;; denotes the maximal dimension of nonvanishing of the cohomology
homomorphism corresponding to the projection: Lo, — Lo, j > i.

It follows from the continuity of theCech cohomology under the projective
limits that

stlehodim= prohomdim

in the category of compact metric spaces. This combines with the above topological
lemma and leads to the following

2.6.4. Practical Lower Bound on the Mean Dimension
If X isasin 2.6.A, thery = Y(L) c X' satisfies
dim(Y : {2;}) > stlehodim(Y : {2;})
for all compact laws. ¢ XP.
Proof. All one has to add to the above discussion is the following obvious com-

parison between the sup-product metrickifi and|x — x’| in X": the projection
(X", |x — x'|o) to (X2, sup-metric) is l-ipschitz -



TOPOLOGICAL INVARIANTS OF DYNAMICAL SYSTEMS: | 369

Remark. The dimension stlehodim (despite the ugly notation) is a computable
guantity and so the above lower bound on the mean dimension is practically useful.

2.6.5. Evaluation of Stlehodim in Manifolds

Given a subspacs in a compact spaca we denote byA(B) C H*(A) the part

of the cohomology ofA which can be represented lﬁ;ech cocycles supported
arbitrarily nearB, where the cohomology is taken with coefficients in a fixed field
K. Notice thath € H*(A) belongs toA(B) iff its restriction to A\ B vanishes.
This is obvious. Furthermore, id is a closed manifoldthen A(B) equals the
Poincaré dual of the image &f,(B) in H,(A). Thisis a (small) part of the standard
‘Poincaré duality package’ which is attached totamology manifoldsind also
applies (with some precaution) to gendpaincaré duality space#iere is another
obvious property oA (B),

(x) if somex € H*(A) restricts to a trivial class orB C A, thena — A = 0 for
all A € A(B).

This will be used below in the following way. Define corahki € HY(A),
as the maximak, such that. — « # 0 for somex € H*(A). Notice that ifA
is ann-dimensional manifold (or a general Poincaré duality space), then corank
A, = n — ¢ for all nonzerox in H¢(A). More generally, given a mag — C,
define coranki by means of those € H*(A) which come fromH*(C). Clearly,
corank < corank, = corank.

Next, set

corank B def corank- A(B) def sup corank A
reA(B)

for a givenB C A. Clearly, (») implies thatthe latter corank bounds from below
the maximal dimensiohwhere the homomorphisi#t* (C) — H*(B) (induced by
B C A — C) does not vanish.

[

Finally we observe that
A(B1N B2) D A(B1) — A(B2) (@)

for all pairs of compact subseBy andB; in A.
Now we return to our power spaggl andY = Y (L) c X' foralawL c X?,
D c T'. Recall that

Y(L)=(\rYr, (N6)

yel

for Y, c X' being the pull-back of. under the projectiok” — X”. We denote
by A* ¢ H*(X") the pull-back ofA (L) c X” under this projection and we want
to apply(N) to theinfinite intersection(Nr).
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DEFINITION OF H*. Given a commutative (or, skewcommutative) algeHra
we denote byH * the set of formal finite and infinite products,

H* = {hx :Hh,-}, h; € H,

wherei may run over an arbitrary index setWe say (and this is all we care about)
that some such* € H* does not vanish, writteh* # 0, if [,., h; # 0 for all
finite subsety C I.

We shall apply the above convention #b = H*(X") and denote the corre-
spondingH* by H*(X"). Here the most interesting infinite products are of the

form
n=|Jvh

yell

for someh € H*(X") and we want to decide when such/ahdoes not vanish.
More specifically, we define\*(Y) c H*(X") as the set of the products
—,r YA, forall assignmenty — i, € A* and we introduce the following

DEFINITION. Given a finite subsef2 C I', consider anx in the image of
HN (X% in HV(X") (for the projectionX” — X) andA* € A*(Y), such that
a — A* # 0 and letN be the largest integer where suglandi* exist. Then set

Y / card$2.

corankY : Q) £ corank A*(Y) : Q)
2.6.6. PROPOSITIONThe above corank bounds from below the stable legal ho-
mological dimension of = Y (L) for compact lawd. ¢ X7,

stlehodimY : {€2;} > liminf corankY : ;).

The proof is clear with the preceding discussion. Also, the following corollary
is now obvious.

2.6.7. If X is a closed manifoldor a general Poincaré duality spagand A €
A(L) N H*(XP) is a class such that its lift to H*(X") satisfies—, . yA # 0,
thenstlehodim(Y : I') > k and consequentlgm(Y : T") > k.

2.6.8. EXAMPLE: UNTANGLED LAWS AND MONOMIALS. Supposd.® c

X? is given byd untangled(systems of) equations in the (groups of) variahigs

i =1,...,d = cardD, namely byf,.O(L.) = 0,i = 1,...,d. In other words,
L° equals the intersection @ksubsets.? coming from somd.? c X via thed
projectionsX” — X (where eaciL? c X may be given by the equatioff(x;) =

0). Then take somg; € A(L?) and observe that their tensor product (monomial)
M ®A®- - ® A, is contained inA (LO).
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Denote by the cup-product o, ..., A, in H*(X) and suppose there exists
o € H*(X) such that. — « # 0, i.e. corank. > k. For example, ifX is a closed
manifold (or a general Poincaré duality space) of dimensions.and!” (X), then
there always exists such ane H*(X) fork =s —r.

Next, we consider the-translates of the monomial ® --- ® A, forally e T’
and formally cup-multiply them over. The resultingl’-monomialclearly equals
the tensor product of copies (translates) df, one A assigned to each € T.
Denote this"-product byp" and observe that, formally,

Ve =0 - #0
for the abovexr € H*(X).

2.6.9. COROLLARY.LetL c X“ be homologous t&°, and soA (L) contains the
above monomial; ®1,®---®A,. Thendim(Y (L) : I') > k. In particular, if X is
ans-dimensional manifold and is homologous to intersection @fcycles coming
from some cycleg,; in X (via thed projectionsX” — X, d = cardD), where
Z?Zl codimL; = r and the homology class represented by their intersection in
H* " (X) does not vanish, then

dm L) : ) >s —r. >)

2.6.10 Remarks(a) This corollary is most powerful if applied to the coho-
mology with finite (e.gZ/27) coefficients where the monomial condition is not
so restrictive. Thus starting with a monomija in H*(X”; Z) nondivisible by an
integerp, one gets nonmonomial classes of the fargt- pu’ where the corollary
may apply.

(b) If we work with real coefficients, then the nonvanishing of an (infinite)
integer monomialg obviously yields this fog + ®u’ for an integer” and all
transcendenta® € R. Unfortunately it is not useful as the cohomology (L) C
H*(XP) lives overZ but it suggests that nonvanishing of products of the form
—,cr ¥ and issuing lower bound on the mean dimension are generic phenomena.
This is also confirmed by the examples we study below.

2.6.11. Nonvanishing Products over Uncoiled Groups

Let H be a (skew)commutative algebra with unit, ed.= H*(X; K) andH =
H®" (i.e. H equals the tensor product bfcopies ofH, say of H, = H, where

the basic example i# = H*(X")).

Nonvanishing problemGiven anis € H. Decide when the formal product
[1,cr vh does not vanish, where we use the obvious actian of H.

The simplest case, and the only one we address here, is wigtinear, i.e.
h=3%.phyforh, e H, whereD C I'is a finite subset and where al| are



372 MISHA GROMOV

assumed# 0. (This is somewhat opposite to the monomial case,®yeD h, we
studied earlier.)

2.6.12. PROPOSITIONLet h = } ,_, hs. If T is D-uncoiled (e.g., uncoiled,
see2.2.3)then[ [, yh # 0.

COROLLARY. Let X be a closedr — 1)-connected manifol@.e. its homotopy
groups up tar,_1(X) vanish and L ¢ XP? be a cycle of codimension nonhomolo-
gous to zero. Then

dm (L) :T) >dmX —r

for all uncoiled amenable groupB, e.g., for all nilpotent and polycyclic groups
without torsion.

Proof. We must show that = ]_[yEQ yh # 0 for all finite subset2 c T'. We
proceed by induction on cafa. Chooseawg € 2 anddy € D such thatwgdg = 1o
has a unique solution, l€2_ = Q\{wo} and assume that_ = ]_[VGQ_ yh #
0. Then, our full-productr = HVEQ yh equals the product of_ by the wo-
translateh, of h = hs, + 5.5, hs- This translate can be written as

h. :a)Oh :hVO + Z hV'
Y#70

Also, observe that no monomial in_ includes a factor coming fronf/,,, since
Q_D does not contairyy. Thusw = n_h, = n_ ® h,, + &, where nos-term
includesh,,, as a factor. Hence, no cancellation is possiblesané O. O

2.6.13 Remark on the Kaplansky problefthis refers to the following ques-
tion. LetI" have no torsion. Can then the group rikigI") have zero divisors? The
above generalizes the standard argument showing there is no zero divisdr)n
if " is uncoiled (see Section 2.2 and [Pass]).

2.6.14. Positivity and Noncancellation in Complex Manifolds

Suppose we have amdered(graded skewcommutative) algelifawhere the order
is given, by definition, by a subséf™ C H consisting of what we cafpositive
elements, such thaf * is closed under addition and multiplicationthand H+ N
—H* = {0}.

EXAMPLE. Let H be the real cohomology algebra GfP™, i.e. the algebra of
polynomials in a variable truncated by the relatiori” = 0. Then, nonvanishing
polynomials withpositive coefficients define an order in the above sense. Notice
that theintegral positive elements in this

H = H*(CP",R) D H*(CP™;, Z)
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are exactly the Poincaré duals of fundamental classesmplex subvarietiem
cpm.

An order onH induces a natural order on every tensorial powfeof H where
H#* is defined as the set of sums of tensor products of positive elemerifs in
For example, ifH = H*(CP™) then its tensor poweH®? consists of truncated
polynomials ind variables with the obvious notion of positivity. It is not hard to
show that the Poincaré duals of complex subvarieti¢€iP™)? are positive in this
sense.

Now, if we look at# = H®' for a groupI” and take some positive element
h # 0 there, (i.eh € #\{0} for #* defined with some order i&/ given by
H* C H), then the formal infinite produc}f[yEr yh does not vanish. This applies,
for example, to the classes i*(C P™)?, D c T, dual to complex subvarieties in
(CP™P = (CP™4,d = cardD, and lead to the following

COROLLARY. Let L c (CP™)P be a cycle of codimensianhomologous to a
complex algebraic one. Thetim(Y (L) : ') > 2m — r for all amenable group§'.

Standard order orH*(X; R). The space of real exterior forms @ has a nat-
ural (minimal in some sense) order whesitive2k-forms are defined as positive
combinations of pull-backs of the standard (positive!) volume fronCamnder
nonsingularC-linear mapsC" — C*. (This is the onlyG L,C-invariant order on
AZ(C") but it seems unclear what are other orders\%f(@”) fork > 2.) Observe
that our positive form lies in the subspace/of consisting of the form invariant
under the actionr — +/—1z on C", where they constitute a convex cone with
nonempty interior. Forms in the interior are then cabédctly positive

Next, given a complex manifol&, a classh € H*(X; R) is called (strictly)
positive if it can be represented by a form which is (strictly) positive on the tangent
spaced, (X) for x ranging over an open dense subseXirClearly, this is a bona
fide order onH*(X) in our sense.

CLASSICAL EXAMPLE. EmbedX into someC P" and intersect it with a generic
hyperplane. Then the Poincaré dual of this intersection is strictly positik# {X)
assuming dink > 0.

This shows that positive elements always exist. Moreover, the Hodge theory
says that every complex cycle can be ‘moved’ to the dual of a positive cocycle.
Namely, letH: ¢ H*(X; R) be the span of the Poincaré duals of the fundamental
classes of complex subvarietiesXn

THEOREM (See [Gri-Ha])If X is a complex projective manifold, then the strictly
positive elements constitute a cone with nonempty interidédnThus, for every
h € Hg, there exists a strictly positive™ € H*, such thath + k™ is strictly
positive.
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Remark.Our interest in positivity is motivated by the nonvanishing problem for
productsr = ]_[yEr yh for someh € H*(X") = (H*(X))®" which eventually

come fromk € H*(XP), D  T". We know thatr # O if 4 is positive for the order
relation in H*(X?) = (H*(X))®¢, d = cardD, induced by the above order in
H*(X) associated to the complex structureXinBut the order ind*(X”) coming
directly from the complex structure i ” usually has more positive elements than
those coming fromH*(X) (as some algebraic cycles X do not come from
products of such cycles iKi’s. For example, graphs of ‘interesting’ automorphisms
of X give us such cycles iX x X).

QUESTIONS. Let: be positive with respect to the complex structurgi. Does
thens nonvanish? Lel c X” be a complex subvariety of real codimensian
Does the mean dimension Bf= Y (L) satisfy

dm@ : ') >dimg X —r?

What can be said about ‘positivity’ of the cohomology classeg iand in X”
which are positive on all algebraic cycles?

2.6.15. Representing Infinite Products by Measures

It is hard to make sense of an infinite product= ]_[yer yh for generalh € H,
but if & is positive for a suitable order on the algel#fahis can be done.

EXAMPLE. Let X = CP>® and soH = H*(X",R) equals the algebra of
polynomials in the variables,, y € I', with the natural action of', and with the
standard notion of positivity. I is finite, then monomials are marked by functions
I' — Z, indicating the degree of the lettey in a given monomial. Thus each real
polynomial becomes a functiom: Z, — R telling the values of coefficients of a
polynomial at all monomials.

Next, look from this angle at the product over an infinite gréuph +— 7 =
mr = [1,er vh, whereh € H*(X"), X = CP* is induced fromh € H*(XP)
as earlier. The set of monomials in the polynomigls, y € T, is given by the
double power setZ?)", that is mapped by the above product oveo Z',, denoted
u: (Z2Y)" — ZL. This map sends ead¢hfamily of monomials{m, € Z2, y € I'}
to the product [ ym, € Z. Next, suppose we have functiops: Z? — R,

y € D, representing polynomials in,, y € D and we want to multiply them
overI". To do this we limit ourselves tpositivefunctions on the (countable!) set
Z2 which are viewed ameasure®n Z”. Now we can multiply the measures,
where the result, denotgel = x.p,, is a measure ofZ?)". Of course, this
measure looks rather unruly unlesszallare probability measures. Andpf, have
finite total masses they can be normalized to have mass one.

Finally, we push forward the product measpfeto (Z.)" via our map.: (Z2)"
— 7 and declare this to be our infinite product oVemotice, that forp, = ypo
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the resulting measure I&-invariant. Also notice that foX = CP™ with m < oo,
we deal with smaller spaces, namely, fimite set{0, ..., m — 1}” (instead o%f)
and the Cantor s€0, ..., m — 1}" (instead ofZ.,).

Summing up, we see th#te ‘fundamental cohomology class’ of the infinite
intersection

(\rYe. Lc@CP)?. DcT,
yel

whereL is a complex algebraic subvariety arg ¢ (CP™)" is the full pull-back
of L under the projectio” — X? is representable by B-invariant probability
measure on th€Cantor) set of map$” — {0, ..., m — 1} (where the ‘probability’
property is achieved with an obvious normalization).

The above generalizes to arbitrary ordered real algeHrashere we have to
deal with vector valued measures. The reader may enjoy persuing this more closely.

QUESTIONS. Is there a deeper relation between the algebra-geometric idea of
positivity on I'-varieties (such ag") and (C-invariant) measures on associated
compactl"-spaces? What is the nature of the space of proalgebraic cycles in such
varieties asx! andY (L) c X* where we keep track of the moduli of the cycles

as well as of their ‘homology classes’ expressed by measurés, 8ris there a
formalism of this kind associated to the Von Neumann algebia?of

2.7. GENERIC LAWSL c X? AND UPPER BOUNDS ONdim(Y (L) : ')

We want to extend the results of 2.2 to nonlinear laws- X” and show that
genericallythe mean dimension of = Y (L) is bounded by what one may expect,

dim( : T') <dimX — codimL.

Intuitively, we think that the/-translates of the equations definihgemain essen-
tially independent for generic laws c XP?.

2.7.1. Monomial Laws

Let L be the product of subvarietids, ¢ X; = X, § € D, where we think ofx”

as the Cartesian product &f; = X, overs € D. If Ly = X, for all but a single
3, e.g. if codimL = 1, then, clearly, the translates bfby y € ' are mutually
transversal and thus the legal dimensiorY ¢f.) is bounded by dinX — codimL.
But this may fail in general. Take, for instandeé,= Z/2Z andL = L; x L,
whereL; = L, Cc X. ThenY (L) = L and codiml' = codimL instead of the
expected value codiri = 2 codimL. However, the order of things is recovered if
L, is transversal td., in X. Then, clearlyL; x L, is transversal td., x L, and so
the resultingY (L), being the (transversal!) intersectiaqi,; x L) N (L x L1) =
(L1 x Ly)?, has right codimensiot= 2 codimL).
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The above reasoning applies to all grodpswhere mutual transversality of
all L; ¢ X (trivially, compare 2.2) implies that the legal codimensiort@f.) is
> codimL.

2.7.2. Polynomial Laws

Let L be a union of finitely many monomial lawé, = U‘_,L,. Here a simple
example is wherd” = Z, and L defined inR” for D = {0, 1} by the equation
xox1 = 0. A sequencéx; € R}z belongs tar = Y (L) if and only if x;x; = O for

alli € Z, i.e. out of two consecutive’s one must be zero. Thus dii: Z) = 1/2
rather than zero. Yet, if we perturbe the equationd@; — ¢) = 0 fore # 0, then
every sequenceéx;} € Y (L) looks like...0,0,0,x, ¢, ¢, ¢, ..., wherex is a free
variable and thus digY (L)) = 0. This trivially generalizes to all and polynomial
lawsL c XP, where it yields the expected bound on the dimension(@f) c X"

for genericpolynomial laws (where all factors of all irreducible components are
mutually transveral itk or at least meet across subvarieties of proper dimensions).

2.7.3. Polynomial Reduction of Algebraic Laws

Suppose we have an algebraic subvariety= Lo ¢ X whichis included in
algebraic family, sayL., ¢ X”, ¢ € &, such that some limiL,_, ., becomes
polynomial in the above sense, i.e. becomes the union of monomial (i.e. product)
varieties with factors inX, where all these factors are mutuatiymensionally
transversal i.e. all intersectiond.; N L; N Ly, etc., have codini; N L; N L; <
codimL; + codimL; + codimL,. Then, if we work in the category of projective
varieties over an algebraically closed field, we come to the following

CONCLUSION.
legdim(Y (L,) : ') < dimX — codimL, )

for generice € &, where ‘generic’ means away from a countable union of proper
subvarieties ir€.

Indeed, the dimension of our intersection is semicontinuousdaré and if it is
small for some (possibly asymptotic) valuesothen it is generically small.

2.7.4. Examples of ‘Polynomial’ Reduction of Algebraic Cycles

The above reduction works very well X is a projective variety homogeneous
under an action of a linear reductive groapFor example X may be a manifold
of flags inC" (e.g., the Grassmann manifold,Gr(C")) acted upon by L,C".
Then, the Cartesian power of the grouyy, acts onx? and every algebraic cycle
L c X%isincluded into the family\L, = a,L, a, € A“.

LEMMA. There is a degeneratiofreduction of L to a ‘prodynamical cycle’
within this family.
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Proof. A generic transformatiom € A hasisolatedfixed points inX as fol-
lows from Thom'’s transversality theorem (yielding this property for homogeneous
spaces of all connected Lie groups). It follows in the reductive case that there is
a multiplicative 1-parameter subgroup 4y sayC* c A (we work overC here,
to be specific) which acts oK with isolatedfixed points. Then, by the complex
Morse theory, such an action must necessarily have a repulsive fixed point, say
x4 € X, such that the eigenvalues ofe2C* acting on the tangent spaég, (X)
have|eigenvalues> 1. (This was explained to me by liosik Bernstein.)

Now let us apply such an action to one componémtf X¢ and see what it does
to L. For example, leX = P!, d = 2, andL is the diagonal. Our action &> on
P! has two fixed pointsy, andx_ andaL obviously converges toP! x x_) U
(xy x Py c Pt x Pl forz — o0, a € C*. The same eventually happens to
everyL ¢ XY where we must apply expanding action along vari@ugactors of
X“ at some points irL. (To see it clearly, we must order all cyclEs;C; in X? as
follows. First we usez; n;, i.e. the number of irreducible components counted with
multiplicities, whichincreasein the course of reduction and which is obviously
bounded. Then, we use the dimensions of projectiors, @b the subproducts

X X o0 X K
N e’
d—38
which may onlydecreasén the course of reduction.
When we arrive at a cycle with a maximal number of components where each
of them has minimal dimensions of projections, then this cycle is ‘polynomial’.)
Now we can use the above) and conclude to the inequality

legdimY (aL) < dimX — codimL (%)

for a generic perturbation df ¢ X? = X¢,d = cardD by a € A?. O

2.7.5. Real Case

The above argument does not work directly oler For example, the North
Pole — South Pole action &> on $" may collapse all of. to a single point with

all information irrevocably lost. However, we may pass to the complexification
X(C) = A(C)/Ap(C) where Aq is the isotropy subgroup of somg € X and

if X(C) is projective, then our conclusion (includirig,)) applies toX = X(R)
acted upon byl = A(R). For example, this works for the abo§é acted upon by
SQ(n, 1) as the corresponding subgrodp(C) is parabolic in this case. But if you
take §” with the SQn + 1)-action the complexification trick does not work, but
our conclusion may hold true all the same.

QUESTION. Which (homogeneous) spacéacted byA satisfy(x,)? What about
R" acted upon by parallel translations and similarity transformations?
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2.7.6. Analytic and Smooth Cases

Since the required genericity éfis essentially an algebraic condition, one expects
(*.) to be valid for complex (and real) analytic subvarieties X” (which may be
noncompact and/or have boundaries). In fact, the required transversality (express-
ing genericity) concerns the behaviorbfc X” at several points;, ..., xy € L
where the lifts ofZ to X meet. If we could deform the germs Atby A¢ inde-
pendently at these points, we could easily arrivégt in the analytic category. In
fact, such independence is achieved inrtred analytic category if we use the group
A of all real analytic transformations df, whereX is an arbitrary real analytic
manifold, and if we work ove€, we may admitL’s ¢ X” which are images of
holomorphic mapsf: L — X” whereL is aSteinmanifold. Then, by allowing
L. = f.(L) for all holomorphic deformations of, we again recapturéx,), at
least in the case of a homogenedisby a rather standard argument. Yet, | could
not rigorously proves,) as it stands for complex analytic c X°.

Finally, the above should work in the smooth category with- Diff X where
one, probably, needs some equisingularity lemma in the spirit of Thom (compare
1.3.2.(B) in [GroppR]) but | did not check the details (appearing rather straightfor-
ward to a casual eye).

2.7.7. Algebraic Laws.. ¢ X for Nonhomogeneouk

Start with a projective embedding ¢ P¥ = CPM and then embe&? —
PN for N = (M + 1)d — 1 in the usual way. (For example, df = 2, a pair
(x0, X1, - - > Xp1)s (YO, Y15 - -+ » Yaur) GO€S tO((200 = X0Y0s « - -5 Zij = XiVjs-+-» 2N =
xuyu).) We look at the familyLs < X“ obtained by intersecting? c PV
with a linear (i.e. projective) subspasec PV of a given codimensiod. Among
theseLg there existmost degeneratebnes which are polynomial in our sense
and satisfy the transversality assumptions of 2.7.1. These come by intersecting
X4 c PN with ‘tensor products’ of subspacesit!. (For example, the hyperplane
zij = 0in PM for N = 2(M + 1) — 1 intersectX? c PV across the union
(X; x X) U (X x X;) whereX; denotes the intersection &f with the hyperplane
x; = 0in PM.) ThereforegenericL = Ly ¢ XP = X9, d = cardD, give rise to

Y = Y (L) with the expected legal and mean dimensjons

dim( :T') =legdim(Y : ') = dimX — codimL. (%)

In fact the upper bound on legdim follows by the above reduction argument
while the lower bound depends on the homological positivity argument in 2.6.

QUESTION. Does this conclusion (or at least the upper bound on l€ddiri))
remain valid forall projective embedding&? c PN?
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3. Harmonic Maps and Related Spaces

We prove here the results stated in Section 0.6 concerning the mean dimension of
spaces of harmonic maps and of solutions of more general elliptic PDE. We start
with a recollection of the standard properties of linear PDE.

3.1. CAUCHY—GARDING INEQUALITY

Consider a homogeneous, uniformly elliptic system of linear PDE imposed on
Rs-valued functionst in the standard unit balB c R”, sayéx = 0. If the co-
efficients of the equations are smooth, then the classical regularity theorem ensures
the smoothness af. Moreover, all derivatives of at the origin Oc B are bounded

in terms of the sup-norm of on B. Here we are mainly concerned with the first
derivative (differential)Dx where the Cauchy—Garding inequality reads

I Dx(0)|| < C sup|lx(v)]| ()
veB
for some constanf = C(8).
Next suppose is defined over alR”, where it is assumed uniformely elliptic
and with all coefficients and their derivatives bounded. Then we applio each
unit ball B = B(v, 1) ¢ R" and obtain a bound ojhDx|| everywhere ofR”,

sup|Dx(v)|l < € supllx(@). (k)

veR” veR?

3.1.1. VANISHING COROLLARY.Let x be a bounded solutiom of the system
&x = 0. If x vanishes on aa-netx ¢ R” withe < C~1, thenx = 0.

Proof. If x|X = 0, then, obviously||x(v)| < &sup,.: | Dx(v)|| forallv e V.
This and(xx*) imply that

supllx() | < C e supllx ()]
veRn veR”®

and so||x(v)| must vanish ifC; ! < 1. O

3.1.2. Denote b ¢ = Xfoo the space aboundedsolutionsx of the systen€x =
0 and restate the above vanishing result as the following

EMBEDDING PROPERTY.The restriction maRy: X& — £, (Z; R*) C (R%)*
is one-to-one.

In fact the above argument implies thRt is a topological embedding (i.e.
Rglz Rx(X®) — X¢ is aboundedoperator for the uniform topologies) and that
the intersection ofRx (X¢) with the unit ball in¢,.(I"; R*) is weakly closed in
oo (T RY).
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3.1.3. Estimate on the Mean Dimension Xf

Take concentrig-balls B(G) ¢ R* of radiii = 1,2,..., and letXé(G) c X¢
consist of mapR"” — B(i) satisfyingé&. Clearly, all spacexé(i) are mutually
isomorphic via the maps — ij~1x sendingX¢(j) — X¢&(i), and the union of
X¢(i) equalsX €. Furthermore, thesk¢ (i) arecompactspaces and one may speak
of their mean dimensions for actions of lattide®n R" compatible withé. Thus
we set

dim(x¢ : 1) £'dim(x€ @) : 1),

where the latter dimension does not depend.on

Finiteness oflim(X¢ : I'). Let & be invariant under a latticE acting onR".
Then

dim(X€ : ') < const volR"/T".

Proof.Use al'-invariant net> ¢ R” and observe that the above embedding be-
comes equivariant and senkl$ to (R%*)" whered denotes the number of elements
from X contained in a fundamental domainIof Thus

dim(X€ : ') < ds. -

3.2. LINEAR PDE ON RIEMANNIAN MANIFOLDS

Let V be a complete Riemannian manifold and consider an elliptic opegaior
some vector bundle ovér. If the ‘coefficients’ of & and its ‘ellipticity’ are uni-
formel y controlled by the Riemannian metric, thes) generalizes td, provided
the curvature tensor df is C1-bounded (probablg?® suffices) onV. (Notice, that
we donotneed a lower bound on the injectivity radiusiof but we have it anyway
in our applications wheré€V, €) is invariant under a cocompact grolip)

3.2.1. The basic examples of suglare as follows:

(A) The ordinary Laplace operator dn

(B) The Hodge Laplace operator on differential forms.

(C) Various Dirac operators (where one adds sometimes the spin conditions on
V).

(D) Thed-operator, in the case whebeis Hermitian.

(E) All of the above twisted with an auxiliary vector bundieover V, with a
Euclidean connection.

Here the inequality(x) applies to the coordinate charts ¥ (or in the unit balls
B,(1) in the tangent spacds (V), v € V mapped toV by the exponential maps)
and shows that

supl|Dx ()|l < € supllx(v)], (k) y

veV veV
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where the constartt depends only on the curvature ¥f i.e. on sup._, [ K, (V)|l,

and on the curvature of the implied vector bundle. In particular, we always have
(x%)y with someC < oo if (V, E) is acted upon by a cocompact (isometry) group.
Then we have the vanishing corollary and embedding property provided)

has bounded curvature. Furthermore (¥, E) is invariant under a cocompact
amenable group, then, clearly,

dim(X¢ : ') < consy ¢ vol(V/ ).

3.2.2. Remarks and generalization&@) The vanishing corollary trivially extends
to manifolds with unbounded curvature if the densitpf a netA is allowed to
depend orv. Essentially, we need(v) < cons}, || K (v)||~Y?, whereK incorpo-
rates the curvatures &f and E and their first derivatives if so needed. Similarly,
one may admit unbounded sectiomwith ¢ (v) ~ (sup,.g, lx()|)~*for B, C V
being the unit ball around € V.

In fact, one expects here a more generous density bourkl ionthe spirit of
the first main theorem of the Nevanlinna theory.

(b) The above have an obvious version in a general setting whésen arbi-
trary metric space anki® is replaced by a subspatén the space of bounded maps
x: V. — R*. All one needs is uniform compactness of the restriction operators from
Y to functions on the ball8(v, 1) c V, for all v € V. Actually, one needs even
less: if X is a linear space of bounded functiornisV — R* where allx € X with
sup,cy llx(v)|| < 1 are uniformly continuous with a given modulus of continuity
thendim(X : ') < oo.

EXAMPLE. LetX : X (1) be alinear space of functions on a Riemannian manifold
V where eachy e Y satisfies sup, [|[Dx(v)|| < Asup,.y lx(v)| for a given
constant.. Then dim(X : I') < oo and it may be interesting to find more specific
bounds on this dimension in termsjofind the geometry of .

(c) The situation similar to the above example arises in Ehdramework,
where one studies the,-spacesX®(A) C L»(V,R*) (or sectionsX — E, in
general) corresponding to the spectrung dfiside thel-disk in the complex plane.
Here one knows that the von Neumann dimension,dikf (1) : T') < oo for
all ' (cocompact onV) andi < oo. There are several candidates for the-
counterpart of this space. For example, one may take the weak closure of the above
X&(1) in Loo(X; R%). Or one may look at somié-invariant space’ (1) of bounded
functions, such thag(Y;) C Y, and sup., [E() Il < Asup,.y Iyl forally e Y.

One wonders whether diffi (1) : T) < oo for such spaceg ().

(d) Let & be the ordinary Laplace operataron functionsV — X. Then one
has the following geometric bound on the von Neumann dimension of the space
X2 (1) of Lo-functions belonging to the spectrum afbelow i. Suppose the Ricci
curvature ofV is bounded from below by 1 and let N(¢) denote the minimal
number ofe-balls needed to cover afballs needed to cover the quotient space
V/T'.Then
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CiN(A Y% < dimg, (X2 (0) : T) < CoN(VH2)

where the positive constant§ and C, depend only om = dim V.

This easily follows from the Paul Levy isoperimetric inequality (see Ap. C in
[G-L-P]). Notice in this regard that fazonnected// T" the bound Ricci> —1 im-
plies, by Bishop inequality, the following bound &f(¢) in terms of the diameter
of V/T,

N(e) < max(1, ¢ ™" exp(n DiamV/T))
whereV /T is assumedonnectedand thus
dimg,(X* (%) : ) < consf, max(1, 1"/? exp(n DiamV /")) (%)

for connectedv/ T (see [G-L-P]).

Notice that the above inequality is very far from being shargrféinite groups
I, where the following is well known.

(i) Every Ly,-harmonic function onV vanishes (as is true for all connected
complete noncompact manifold, by a standard ‘integration by parts’ argument,

(i) dim,(X*(x):T)—0 forr— 0,

where the rate of convergence dependslorFor example, dim(X4(x) : T')
vanishes for small < A(V) > 0, if and only if the groud” is nonamenable

QUESTION. What are thé ..-counterparts of the above properties? For example,
does the mean dimension of the space of bounded harmonic functions vanish for
all amenable groupB? (It is clear that dim introduced in 2.1.2 does vanish.)

(e) LetE — V be ar'-equivariant Euclidean vector bundle of ranlkand let
A g be the (Bochner) Laplace operator on sectitnd ' hen the functiorpg (1) =
dimz,(X2£(x) : T) is related to the above(r) = dim,,(XP(x) : ') by the
following classical

KATO INEQUALITY.
/ e Mo dr < s / e My/(1) dr
0 0

for all § > 0, where, observe, the derivative$ and¢’ are positive (measures)
since our functions are monotone increasing.

COROLLARY.
(M) < s€p(R). (+)

(f) If & is a ‘geometric’ selfadjoint operator of second orderHrthen it is
related toAg by aBoehner formulaé = A + Bg, where B¢ is a symmetric
endomorphism of the bundiE. Then one can bound the spectral functior€dfy
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that of A and the spectrum d8s. Namely, if all eigenvalues aBg¢ in all fibers of
E are bounded from below by p then, clearly,

pe(V) < pp(h + p) < s + p). (%)

For example, if¢ = A, is the Hodge—Laplace operator érforms (wheres =
(n/k), n = dimYV), then the aboveB; is minorized by the so-calledurvature
operator R = R(V) and then(x) and (x*) give us a spectral bound ofy; in
terms ofR (which includes Ricci) and diarvi/ T". This applies, in particular, to the
L,-Betti numberb, (V : I'), that is the Von Neumann dimension of the space of
harmonicL,-forms onV of rankk,

n

k

providedp(R) > —1. (This was pointed out by Gallot and Meyer fBr= {e}
in [Gal-Mey].)

bi(V : T) < ( )exp(n” DiamV/ I (o)

QUESTIONS. (a) Can one improve over t#fefactor in (+)? (Here one may be
willing or unwilling to bring the curvature of into play.) Can one bound the mean
dimension of the space dbbundedharmonick-form in the spirit of(o)?

Notice that a bound similafo) (but with a poorer dependence ah holds
true under less restrictive assumption of eetional curvaturesf V (rather than
R(V)) being bounded from below by-1. This is shown in [Gregpg] for I' =
{e} but the argument equally applies to &l Furthermore, that argument ap-
plies to the homologyH, (V; K) for an arbitrary fieldk and yields a bound on
prodim(H,(V; K) : T') for amenable groupE.

(b) What is the relation between prodifd, (V; R) : T') and the mean dimen-
sion of the space of bounded harmokiforms onV? (If one had a full-fledged
Hodge theory foboundedforms one could immediately claim the equality of the
two dimensions.)

3.2.3. Harmonic Functions and the Maximum Principle

Let & satisfy the maximum principle, e.¢g, equals the ordinary Laplaciatn on
functionsV — R. We claim that

if a bounded solution: of & vanishes on some n&t C V (i.e. an e-net with some
& < 00), thenx = 0. Consequentlgim(X€ : I') = 0 for every amenable group
cocompactly acting ogv, €).

Proof. Let a bounded solutiom of & vanish on some n& and take a sequence
of pointsv; € V,i =1, ..., such that|x(v;)|| = a = sup,.y lx(v)| fori — oo.
If V is cocompactly acted by, we translate alb; by suitabley; € T to a fixed
compact subsevy C V and then (after taking a subsequence if necessary) pass
to the limit x,, = lim,_ , y;x. This x,, vanishes on some (nonempty!) net, say
Y C V,and|xs | achieves its maximum at some poigte V. Hencexy, (v) =
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Xso(vg) for all v € V and sincex, | X, = 0 thisx,, vanishes everywhere. This
yields the vanishing at as sug|x|| = ||x(vo)|l.

Next, forget about” and just supposéV, &) has locally bounded geometry.
Then, instead of translating, we move ourselves to the pointsand pass to the
(pointed Hausdorff) limit manifold/,, = lim;_, . (V, v;) with the limit operator
€~ on V. Then the maximum principle applies g, on V,, and the proof
follows. a

EXAMPLE. If & = A and we deal with harmonic functions, then the ‘bounded
local geometry’ refers to a bound on the curvature and the lower bound on the
injectivity radius. In fact, the above argument can be easily carried through with
the assumptionk (V)| < const alone, without any bound on the injectivity radius.
(Probably, one needs even less, something kk&) > — const or RicaiV) >
—const.)

Remarks.(a) The above argument, does not use the lineari/afid applies to
all equations satisfying the maximum principle or the convex hull property. (This
includes harmonic and minimal maps into Riemannian manifolds without focal
points.) On the other hand, when we want to evaluate the dimensiaiXdimI)
we compare two solutions and the linearity is used in an essential way.

(b) Quantitative maximum principl&.he maximum principle can be expressed
as follows.

If the value||x(vg)| is close tosup|x(v)||, then the ratiax(v)/x(vp) is almost
constant on a large ball around,.

More precisely, lefjx(vg)|| = (1—¢)||x(v)]|, for all v in the R-ball B(vg, R) C
V aroundvg. Then|x(v)] = (1 — §)||x(vo)| for all v € B(v, r), wheres andr
depend orR, ¢ (as well as on(V, &), but not orvg) andé — 0,r — oo fore — 0
andR — oo.

Notice, that this quantitative maximal principle is equivalent to the previously
used one as an obvious limit argument shows. Also observe that the quantification,
i.e. the dependence éfandr on e and R, can be made explicit and rather pre-
cise. For example, one can use in the case of harmonic functions and maps, the
mean value theorem expressingyg) by a weighted average afv) on theR-ball.
(Ultimately, one may appeal to the Harnack inequality.)

(b") Notice, that the functiorr(v) in question need be only defined on the ball
B(vg, R), not on all of V. Also the almost constancy conclusion remains valid if
the equationg (x) = 0 is satisfied only approximately&(x)|| < ¢|x]|, where
the norm in question is the sup-norm vy, R) and where we assume that our
x satisfies the Cauchy—Garding inequality with the constaimtdependent of the
aboves.
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3.3. EQUATIONS WHEREdim(X¢ :T) > 0

The L,-index theorem provides many instances where,dixi® : I') does not
vanish but it is unclear if this implies nonvanishing of the mean dimension. On
the other hand, the presence of a nonzegesolution of the equatio®x = 0
(trivially) yields sufficiently manyboundedsolutions to ensure nonvanishing of
the mean dimension difW¢ : I'). An obvious way to go fronl, to L, is by
taking ‘squares’ ok’s (compare), but this is usually incompatible with the equation
&x = 0. A happy exception is the Cauchy Riemahoperator as the square of a
holomorphic function is holomorphic. More generallyVifis a complex manifold
andE — V is a holomorphic vector bundle, then one can take, for instance, the
symmetric square of, denotedE?, and observe that the symmetric square of a
holomorphic section is holomorphic. Thus

dimg, (X2 :T) > 0= dim;_(X?%2:T) > 0
(but itis unclear if dim_ (X}%?: T') > dim;, (X7, : ).

EXAMPLES. (a) LetV = C™ and E; — C”" be a lineHermitian holomorphic
bundle i.e. with a given fiberwise norm) where the curvature equalsdz on C™
for A real (where ddz is the standard Hermitian form @"). This E can be iden-
tified with the trivial bundleC” x C — C", such that the norm of the unit section
x(v) equals exp-Aljv||% If A > 0, the unit functionx;: C* — 1 € C becomes
a holomorphic section oft” which decays as expi|v||> and so is summable
with all degrees. It easily follows, that the space of bounded holomorphic sections
of E; has mean dimension equgl.” for some constant, > 0. (Here we refer
to the mean dimension with respect to some amenable exhaust@h BfE; is
equivariant with respect to some LattiEex~ Z2" acting onC”, then this space, say
X,, hasdimX; : ') = ¢, A" vol(C"/T).)

(b) LetE — V be aline bundle equivariant for some cocompact gioagating
onvV.

If the curvature formw of E is everywhere greater than the curvaturef the
canonical bundle, i.ew — « is positive definite or¥/, then theL,-Euler charac-
teristic of (the sheaf of sections of) equals thel,-dimension ofHO(V, E), i.e.
the space of holomorphif,-sectionsV — E. This is the standard corollary of
the vanishing theorems. On the other hand, the Euler characteristic is given by a
certain characteristic class which is a topological invariantfV) and which is
of the orderc] (E) for bundlesE with largecy’, n = dim¢ V. Therefore, ifw > 0,
this class forE’ is abouti” for largei and so a sufficiently high powe# admits a
nonzero holomorphic section, providé&ds apositiveline bundle, i.e. its curvature
from w is positive definite.

Remark.Notice that the above can deliver sections for a giEewithout taking
powers, providedy —«x > 0 andy (V, E) > 0. Butif we allowE’, there is no need
to appeal to thd ,-index theorem. In fact a simple application of the-estimate
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for the 9-operator (which is essentially based on the Fredholm alternative, a baby
version of the index theorem) yields lots bf-sections ofE? withoutanyI"-action
at all.

3.3.2. Recollection orL,-estimates

Let V = (V, g) be a complete Kahler manifold arld — V a Hermitian line
bundle such thay — x > Ag where, as abovey = w(FE) denotes the curvature of
E, x = «(V) stands for the curvature of the canonical line bundl& ahdA > 0

is some real numbeT.hen, for every smooth-valued(0, 1)-form z with 9z = 0,
there exists a smooth sectipn V — E, such that

dy =z and |y, <constiYz| L, (*)

where ‘const’ is universal

This is a by now standard interpretation of theestimates (see [Nap] and
references therein).

We shall apply(x) in order to approximate a given smooth sectignV — E
by a holomorphic one as follows. Considet= 9xo, Solvedy = z and takex =
xo — y. Thisx is clearly holomorphicgx = 9xo — 9y = 0 and

—1nya
llx = Xollz, < constA~~[|dxol| ., (sok)

This x is close toxg if ||5x0||L2 is small and/on. is large. In what follows we
shall be dealing with a manifoltf with boundedcurvature and high powet’ of
apositivebundle E. Thus we assumk > const andx*) becomes

llx = xollz, < 19x0llL,- (s k)

For example, if we want to haversnzeroholomorphic section of E, all we
need is anxg, such that|dxoll¢, < llxolle,-

3.3.3. LEMMA (see [Tian])Let E be a positive line bundle oi, andvg € V
a given point. Then there exists a sequence of smooth segati@isE’ with the
following properties.

(1) All x; are supported in a given (small) bal(vp, p) C V.

(2) All x; are holomorphic in a smaller concentric bak(vg, pg) C B(vg, p).

) llxi(o)ll g = Land|lx; ()|l g < 1for v # vo.

(4) lIxi1l, = const—" for some ‘const’ independent af

(5) The pointwise norm dfx; exponentially decays for— oo, [|3x; (V)| g < o~
forsomex > 1and allv € V.

Proof. Since E is positive, there obviously exists a local holomorphic section
xo Nearvg with |lxg(vo) | = 1 and|jxo(v)|| < 1 for v #£ vg. (Actually such anxg
exists on a rather large neighbourhoodrgfbut this is irrelevant at the moment.)
We smoothly extend thisy to a smooth section;: V — E with a support near
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v and still havingx;(v) < 1 for all v # v, and finally takex; = xi. This x;
is > 1/2 in the ball of radius~ 1/+/i since|xo(v)|| > constdist(v, vo))% for v
close tovg and so itsL,-norm is at least const”. On the other handj(x1(v)) is
different from zero away fronng wherex;(v) < 1 — ¢ and so||dx; (v)]| is bounded
by consti (1 — ¢)~1 as required by (5). O

3.3.4 Remarks(a) This construction of approximately holomorphic sections
of ‘sufficiently positive’ bundles was explained to me by Simon Donaldson about
5 years ago who used this idea for producing symplectic hypersurfaces.

(b) The above remains true if instead of the powEfswe take an arbitrary
sequence of line bundles; — V, such that the curvaturas; = w(E;) grow,
roughly, as wq for a fixed positive formwg.

(c) Notice, we did not use the full positivity af, but rather positivity at the
point vg in question.

3.3.5. COROLLARY (Existence of holomorphit,- and L;-sections).Let V =
(V, g) be a complete Hermitian manifold as earlier aAd— V an Hermitian line
bundle such thaty — « > Ag with A > 0 and such thatv is positive at some point
vp € V. Then some powek’ admits a nonzero holomorphic,-section. AlsaE!
admit nonzero holomorphit-sections for all sufficiently large

Proof. The existence of al,-section is immediate from the preceding discus-
sion and to turn.; we split E/ = E't @ E™2 with largei; andi, and observe that
the products of twd.,-sections id_;. O

Remarks.(a) TheL,-claim remains valid for every line bundlg; having the
same positivity agZ’. Moreover, the holomorphic sections obtained by the above
argument have a controlled decay at infinity. Indeedyddte a continuous section
with compact support antd be theL,-nearest holomorphic section, i.e. the normal
projection ofxg to the space of holomorphit,-sections. Theng = xg — h is
holomorphic outside some ball, s&(vg, ¥r) C V, and it isorthogonalto all
holomorphic L,-sections. Now, take the functiop: V. — R, which equals 1
outside a large concentrig-ball B(vg, R) D B(vp, r), wWhich vanishes oB (vg, r)
and which equals + (R — dist(v, vg))/(R — r) for all v in the annulas between
the two balls. Consider the sectign = ¢y and observe that

0 (1 yo) & / y1(v)yo(v) dv > / Iyo(v)|%d,
Vv C(R)

whereC(R) C V denotes the complemeht\ B(vg, R), and

(i) 19y1llz, < (R —r"yollr,

since|d(¢yo)| = |@yol < (R — r)~Yyo|. If our bundle is sufficiently positive, we
can approximate, by a holomorphicL,-sectiony, such that

Iy = y1ll, < constljay L, < constR —r)lyollL,-
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It follows that
0= (3. y0) > / yo()2dv — constR — ) yollL,.
C(R)
and so

f [yo(v)|?dv < constR Y|yl
C(R)

for largeR andC(R) = V\B(R).

Finally, ash equalsyg outside B(vg, R), our i also has its.,-norm decaying
with the rateR~1/? at infinity.

(b) Instead of thel,-nearesth one could take the ,-nearest one, which is
unique (if it exists) for allp (including p = 1, where the strict convexity is due to
holomorphicity). It seems not hard to show that fhyenorm of thisk has a similar
decay ovelC(R) for R — oo.

(b') Let us indicate the proof of the decay property for (as well as the existence
of) holomorphicL ,-sections in the case of locally bounded geometry. First we pass
to a largeodd power E’ of E where one has many holomorpHig-sections (of the
form 3~ x;y; for holomorphicL,-sections; of E™r andy; of E2 with iy +ip =i,
compare 3.3.5). Such’ admitsn+1 = dim¢ V +1 bounded holomorphic sections
X0 X1, «+ vy Xn that are uniformly transversal to the zere=0vV c E' and such that
their zerosy, Y0 c vV, k=0,1,...,n, are simultaneously uniformly transversal
(see 4.3). Denote by — V the canonlcal ramified cover of ordet @ith the
ramification locust = [ J, x;*(0), observe thaV’ is nonsingular and that the lifted
bundleZ — V admits a square root, sinég does and is odd. Now holomorphic
L,-sectionsX of such square root, say — V, can be multiplicatively pushed
forward to holomorphid.;-sectionsy of E for x(v) = x(01) @ x(02) - - - @ x (V)
for the pullbacksiy, ..., 12 of v and so thel;-properties ofE reduce to the. -
theory of E. Notice, that the curvature & (as well as that of2) vanishes along
3, but only in transversal directions, and so the metricfocan be perturbed to a
one with sufficiently positive curvature, provided we had enough positivify ia
ensure thaf | X is more positive than the canonical bundles of the submanifolds
_‘1(0) and their intersections (compare 4.3).

Then we get lots of.; (and hencd. ,, p > 1) of holomorphic section of with
controlledL-decay at infinity.

3.3.6. Let(V, E) be acted upon by an amenable Lie grdupvith V/ " compact.
Then the space of bounded holomorphic sectiong‘ofor large i has positive
mean dimension.

Indeed, the presence of a single nonzegesection suffices as was mentioned
earlier. (See 3.3.11 for a sharper result.)
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3.3.7. Garding Inequality inE?

In order to see how the Garding constant for holomorphic sections> E’

depends on, we scale the underlying manifold/, g) by ¢ — ig. Then the
curvature w of E? scales tav and so we have a uniform (independent)dBarding
inequality inE? over(V, ig). Then, coming back tg, we conclude that

The sup-norm of a holomorphic sectionV — E’ inthes-ball B = B(v, &) C
V bounds the differential of, by

IDx ()| < Coe™t supllx ()|l g (+)

veB

for everye < i~ L.

3.3.8. COROLLARY.The sup-norm is bounded by thg-norm,

1/2
lx() g < C{ﬁ‘"(/ IIX(v)IIZdv) < Cre"xllL, (++)
B
fore <i~ 1L

3.3.9 Remarks(a) Notice that(+) and (++) are local properties where the
holomorphicity ofx is only required on the balB. Thus we can apply++) to
the solutionsy; of the 3-problemdy;, = dx; satisfying the basid ,-estimate(x)
from 3.3.2. Thesg; are holomorphic (as well ag) in a small (but fixed!) ball
B(vg, §) C V and then(++) applies to smallee-balls B(v, &) C B(vg, ). It
follows, that the holomorphic section$ = x; — y; converge toy; uniformly (and
exponentially fast foi — oo) on every concentric balB(vg, 8’ < §). In fact,
such convergence takes place also on larger balls, wherg: 0 anymore, since
the Garding inequality remains valid for nonhomogeneous situation, but we do not
need this for our purposes.

(b) The constant€”, and C; depend on local geometry of and E nearv.
Actually C, can be bounded in terms of the curvatured/oéind E while C; also
depends on the injectivity radius &f. (In generalg™ in (++) must be replaced
by (Vol B(v, ¢'))~Y/? for somes’ somewhat smaller than) In particular,C, andC’,
are bounded it/ and E have bounded local geometry, e.g. if there is a cocompact
isometry groud" acting onV and onkE.

3.3.10. INTERPOLATION THEOREMLet V and E have bounded local geom-
etry and thus the constants, and C; are bounded orV/, and letX C V be a
5-separated subset, i.€ist(oq, 05) > § for all o1 # o5 in X. Then, for every
i > consy rmaxl,572) and every bounded sectionof E/|X, there exists a
bounded holomorphic section V — E’, such thatx|X = y.

Proof. First we observe that by scaling the metgiof V, by g — §72g, we
make aj-separated set 1-separated. This also normalizes the curvatffendth
i ~ 8§72 to the unit size and explains (actually proves) the dependencerof.



390 MISHA GROMOV

Now we prove the theorem fa = 1 by summing upL1- sections ofE’. It
(obviously) suffices for our purpose to have holomorphiesectionst?: V — E’,
forall o € ¥ and a given > consy g, such that

@) llx5 (0)llg > 1/2;
(b) the sum of the normx; (o”) ||z over allo” € X is small, say< 0.1.

We recall thatL ;-sections are obtained as productd.efsections and so we need
Lj-sections, say., satisfying (a), where (b) is replaced by a similar bound on
the sums of|x, (¢")||2,. Such anx, is constructed by first using 3.3.3af = ¢

with p < 0.1 and then by approximating the resulting almost holomorphic section,
call it now x2, by a holomorphic one, that is our,. The bounded geometry as-
sumption makes the estimates in 3.3.3 independeatarid then 3.3.8 applied to
g-balls around alb’ # ¢ in X yield the required bound on the sum|pa‘g(o/)||fi,.,
provided: is sufficiently large. a

3.3.11. COROLLARY.If (V, E) is acted upon by an amenable groliwvith com-
pact quotient, then the mean dimension of the space of bounded holomorphic
sections ofE’ is abouti”, n = dim¢ V.

3.3.12 RemarkThere is a distinguished holomorphic-section ofE’ taking
agiven value € E! atagiven point: € V, namely the one which has the minimal
L,-norm. This section, call ik.(v), v € V, controllably decays at infinity in the
sense that the integrals k. (v) | over the complement§(R) C V of the large
R-balls B(R, u) C V aroundu satisfy

/ . (v)||2dv < constR™2.
C(R)

This follows from Remark (a) in 3.3.5 and the Garding inequality.

3.3.13. Interpolation with Jets and Transversality Theorem

One can easily interpolate not only the values3bibut also a given number of
derivatives at alb € X. This is done again by first constructing approximately
holomorphic sections and then making them holomorphic by small perturbations,
where ‘small’ refers to the”"-topology as is allowed by 3.3.7 (which needs an
obvious generalization in the case> 2).

Let us spell out how the approximate sections come about. Startewitear
v as in the proof of 3.3.3 and I€t be a finite collection of holomorphic functions
¢ defined onV nearuvg, such thathe r-jets of the functiong € ® at v linearly
span the full space of-jets (as do the set of monomials of degrees- in local
coordinates.

Now we take some sufficiently small positiceand letx, = (1 + g¢)xo.
Sincee is small, allx, satisfy ||x,(v)||z < 1 on theboundaryof some small
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ball B(vg, po) € V and so can be smoothly extended with this propertyto
The totality of these extendeq) represent all-jets atvg. This property passes to
the corresponding section§ of E' and then further to tholomorphicsections
approximatingxfp. This is straightforward and left to the reader (who is referred
to [Tian] for further results and applications).

3.3.14. Take a subsétin the jet bundle/"(E") over V and let us try to move a
given holomorphic sectior — E' away fromS. This presupposes some metric
onJ’(E") and ‘away fromS’ means that the-jet V — J"(E’) does not intersect
ane-neighbourhood of for somes > 0. In what follows, we assume th&tand £
have bounded local geometry and observe that #i¢A) also admits a Hermitian
structure of bounded local geometry compatible with thi¥ inVe choose and fix
such structure in each’ (E').

We say thatS is uniformly k-dimensionalif for each unit ballB c J"(E') and
everys > 0, the intersectior§ N B can be covered by at most—* balls of radius
§ for some constant’ = C(S).

UNIFORM TRANSVERSALITY THEOREM .Let E be positive ands uniformly
k-dimensional fok < dim V. Then there existg = ig(V, E, r), such that for each
i > ig every bounded sectioh — E can be moved away frofby an arbitrarily
small(in the uniform topologyperturbation.

Proof. The required perturbation exists over eachall in V for a fixed small
o > 0 as follows from the above and the standard transversality argument. Fur-
thermore, this argument applies to a union of such balls, s&y te | J B, u =
1, 2, ..., if these balls are situated sufficiently far apartinFinally, we coverV
by finitely manyU'’s of the above kindy = U; U U, U --- U Uy, and apply
the first perturbation ovet/;, then the second, much smaller one oWgrand so
on. This ‘much smaller’ guarantees we do not each step what we gained at the
previous one and so theé'th perturbation gives us a sectian V — E' with the
jetJ (x): V. — J'(E") missings, i.e. ‘moves the original section away frash O

3.3.15. Further Applications, Generalizations and Open Questions

() As we have mentioned several times earlier, thgoart of our discussion ap-
plies to (nonpower!) line bundleB; with curvaturex~ iw, but to go toL; (and
thusL.,) we need such ah; to be tensor product of two bundles with this kind of
curvature. Such decomposition is possible, for exampld?2ifV; Z) = 0 (but the
interpolation theorem, probably, remains true in all cases, compare 3)B.4(b

(b) The full L,-story extends to suitably positive vector bundiesof higher
rank. But our ‘squaring argument’ needs passing to tensorial powefs biere
again, it would be nice to prove aby-version of thed-estimate and this looks
easy.

(c) The proof of 3.3.10 yields on interpolation results for holomorphijg
sections ofE’ for all p > 1.
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(d) The classical correspondence between divisors and line bundles extends
to the framework of bounded geometry. This allows, in particular, construction
of many bounded sectiong — E’ vanishing on a hypersurfad® c V with
(sufficiently) bounded geometry.

(e) Here are several problems which seem to be solvable in the present frame-
work:

(1) Extension of bounded (ant,) holomorphic sections of’ from a submani-
fold ¥ ¢ Vof (sufficiently, depending o) bounded local geometry (where
the case dint = 0 is covered by the interpolation theorem).

(2) Decomposition of bounded holomorphic sectiongz6into convergent sums
of Lq-sections.

(3) Construction of bounded sections of affine subbundles of sufficiently positive
vector bundles. For example, solution of the equajidh,; ¢, ® x, = a for
given bounded sections. of E/ and of E! with the unknownx, bounded
sections ofE*. Similarly, one is interested in the equation

Zxr®yr:a

wherea is anL,-section and the solutiofx,, y,) must beL;.

(f) Kodaira embedding theorenThe uniform transversality theorem trivially
implies that the canonical mapfrom V to the projectivized space of holomorphic
Ly-sectionsV — E' is a holomorphic embedding far > io. (Recall, that®
is defined by sending eaah € V to the space of holomorphic sections Bf
vanishing ab.) Actually, ® is easily seen to blecally bi-Lipschitz i.e. there exists
a constanC > 0 such that

C1dist(® (v1), O(vy)) < dist(vy, v2) < C dist(© (vq), O (vy))

for all pairs of disjoint points; andwv, in V satisfying disfvy, v;) < 1.
If V is compact, then the receiving projective space is finite-dimensional and it
is infinite-dimensional otherwise. In the latter case, we clearly have

dist(® (v1), ®(vp)) — m/2 for dist(vy, v2) — 0.

There is (apparently) no good finite-dimensional reduction of this map but nice
mapsV — CPV are available for allv > dim V within the L .-framework.

(9) Many naturally arising line bundles, e.g. those associated to divisdrs in
(say with uniformly bounded volumes in the unit ballsWinhave singular curva-
tures and it would be useful to extend our upper and lower bounds on the spaces of
holomorphic sections to such bundles.

(h) Let & be some Dirac operator twisted with a Euclidean vector buidbe
V. When can one guarantee the existence of miagpgolutions to the equation
&px = 0 (where the cases = 1 andp = oo are especially interesting in the
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present context)? Here one exercises a good control bysections especially
for the tensorial power&€® in terms of the index of the twisted operatge:

but it is unclear when there are nontrivial,-sectionsx of E® satisfying the
equationége; (x) = 0. Similar question arises for the Hodge—Laplace operator
acting onA*(V) where nonzero harmonic,-form may (?) appear in the presence
of a nontrivial cup-product.

3.4. NONLINEAR EQUATIONS

Let V be, as earlier, a complete Riemannian manifold &nkde a compact Rie-
mannian manifold. We are interested in smooth map¥ — X satisfying some
elliptic systemé of partial differential equations, where basic examples are:

(i) harmonic maps;
(i) holomorphic maps, where the Riemannian metric¥imand X are assumed
Hermitian;
(i) mapsx: V — X whose graph&, C V x X are minimal subvarieties.

The essential features of our equations we shall need later on are as follows:

(a) Regularity and compactnesBvery C1-mapx: V — X satisfyingé& is in
fact C*°-smooth. Moreover, all higher derivatives.ofire bounded in terms of the
first derivatives, i.e.

ID' x|l < C:(IIDx|)) (+)

for some bounded functiorG; = C;(V, X, &), where|| | denotes the sup-norm
on functions onV, i.e. [|[D'x|| =gef SUR,cy |ID'x(v)]|. It follows, that the space
of our mapsx with ||[Dx|| < const iscompactfor the uniform convergence on
compact subsets ivi.

(b) Nonlinear Cauchy—Garding inequalitiyet x1, xo: V — X be smooth maps,
wherex;(v) can be joined by aniqueminimizing with x,(v) geodesic inX for all
v € V. Then we can compare the differentials

Dx1(v): T, (V) = Ty ) (X)
and
Dx2(v): T,(V) — Vi) (X)

using the parallel transport K along the geodesitxi(v), x2(v)] C X and take
the differenceDx1(v) — Dx,(v). Thus we can speak of ti@'-distancel| Dx1(v) —
Dx,(v)| and set

def
| Dx1 — Duxa|| = sup|| Dx1(v) — Dxa(v)]l.

veV
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Notice that thisC!-distance is well defined if; andx, areC°-close, i.e.

Jx1 — ol €' supdisty (x1(v). x2(v)) < €0 < InjRadX,
veV
where, observe, the injectivity radius &fis positive as we assun¥ is compact.
(Notice that one could equivalently defineCa-distance with a given covering of
X by coordinate charts where it is possible to speak.0f x, locable in every
chart.) Now we can state our inequality.
If x; and x, have bounded differentials arjdt; — x| < o for the aboves,
then

|Dx1 — Dxa|| < Cllxg — x2|| (%)
for some constant

C=CV,X, & ||Dxill, [IDx2|, £0)-

About the proof ofa) and(b) for our examplesThe property (a) is well-known
for the classes of maps indicated in the above (i)—(iii) where it is derived from
the corresponding elliptic regularity for nonhomogeneous linear equations via the
standard implicit function argument. The sufficient condition ¥orand X is a
uniform C*-bound on their curvatures. Then (b) follows by the trivial interpolation
property of smooth maps,

| Dx1 — Dxo|| < Cllxg — x2l
for C = C(V, X, |D?x|, || D?x]|).

3.4.1. Embedding Property

Let V andX be as earlier where we assufffi€(V)|| < const< oo. Consider the
spaceX. of mapsx: V — X satisfying one of the elliptic conditions (i), (ii) or
(i) and having|| Dx| < ¢ for a givenc > 0. Then there exists > 0 depending on
V, X, & ande, such that the restriction map froii, to X* for an arbitrary e-net
3 C V is an embedding.

This follows from the Cauchy—Garding inequality by the same (obvious) argu-
ment we used in the linear case. Also, we have as a corollary, the bou® dim
I') < oo, wheneveW isisometrically and co-compactly acted upon by an amenable
groupI” (which must preserve the implied complex structure in the case (iii)).

3.4.2. Dependence of ande onc¢ = sup||Dx| and the Proof of 0.6.1

Harmonic and holomorphic maps are invariant under the scaling: ¥ — X is

a harmonic (holomorphic) map then it remains such if we replady AV and X
by 1 X, where the notation.'V’ refers to multiplying the metric i by a constant
A > 0 andu X has similar meaning. Also observe that the (ellipticity) cons@nt
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in (x) can be assumed independentaind . in-so-far as thesg andu are> 1,
since such scaling diminishes the curvature. On the other hand, when we scale the
metrics, the norms of the differentials of the mapsV — X scale by the rule,

IDx|5 . = A~ rll Dx],

where||Dx |, , is the norm measured with respect to metrics ¥hand X . It fol-
lows, that the constant in (%) is bounded by constV, X, €, &) if ¢ = sup||Dx||

is > 1. This is seen by takingg = ¢ andu = 1. Consequently, the abowveis
bounded from below bgc=t, § > 0, and so we obtain the bound of the mean
dimension ofX, for largec by b¢" as was stated itw),, of 0.6.1.

Next let us see what happensit= sup||D(x)|| is small. Such a map sends
large R-balls inV to small ones, of raditR in X, and if we scale these small balls
to the unit size by passing 10X with i = (cR)~* we get maps fronB(R) C V
to almost Euclidean unit balls, where we assume ¢hatmuch smaller tha® 1.
Thus, we can think of the harmonic equation for ni@R) — X on eachB(R)
as a small perturbation of the ordinary Laplace equation for nkgdy — RV,

N = dimX. Namely, if x; and x, are two harmonic maps frorB(R) to a unit

ball in 1 X, then the difference; — x, is approximately harmonic in the Euclidean
sense, where the difference is taken in the Euclidean geometry approximating the
Riemannian one ipX. Now (b) and (b from 3.2.3 imply the following

APPROXIMATE MAXIMUM PRINCIPLE. Let V and X have bounded local
geometries and let;, x,: V — X be nonequal harmonic maps willDx; || < c,

i = 1,2, and with|x; — x»|] < . Then there is a balB(vg, R) C V where
x1(vo) # x2(vg) and the ratiol|x1(v) —x2(v) ||/ |lx1(vo) —x2(vo) || is @lmost constant
on B(vg, R), whereR — oo for ¢, ¢ — 0 and where ‘almost’ means up to a
(1+ 8)-factor where§ — Owithec, & — O.

This trivially implies (x), in 0.6.A exactly as in the linear case considered
in3.2.3.

Remarks.(a) We treated above only harmonic maps, but the same argument ap-
plies to the pseudo-holomorphic maps between almost complex manifolds (where
it somewhat simplifies in the honestly holomorphic case).

(b) Itis not hard to quantify the above and give a specific bound oiiXiimI")
for harmonic maps and smallin terms ofc, the upper bound on the sectional
curvature ofX and the rate of decay of the heat kerneVin

3.4.3. Additional Remarks and Generalizations

(&) One can allow a noncompact target manif&@dprovided it has a uniformly
bounded local geometry, i.eK (X)| < const< oo and InjRadX > ¢ > 0 (where
only the upper boun® (X) < const is essential for harmonic maps). Furthermore,
one may start with a general fibratigh— V (instead of the trivial on& x V —
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V) and extend the discussion to sectiohs— Z satisfying our kind system of
PDE. For example, one has diK. : I') < oo for holomorphic sections of suitable
holomorphic bundles over, e.g., those associated to the tangent bundle.

(b) If one deals with higher-order elliptic systems one may need a bound on
| Dix]| fori > 1to achieve the full regularity and compactness, whéris defined
by the condition| D' (x)|| < ¢ for some sufficiently large.

(c) Itis interesting to have a possibly precise bound on(&im I') depending
on specific properties of the manifoléfsand X .

Here is a result by A. Eremenko (see [Ere]), wheére= C, X = CP™ and the
maps we are concerned with are holomorphic ones.

The restriction mape — x | A, sendingX. — (CP™)?, is an embedding,
providedA c C is e-dense foe < ¢t/ /4. Furthermore,

dim(X. : C) < 2mC?/x;

(d) More general (but less precise) results are available for harmonic maps,
where the elliptic estimates are controlled by the lower bound on Ricci curvature
of V and the upper bound on the sectional curvatur @fs (apparently) follows
from the Yau gradient estimate (compare (b) in 3.4.2).

(e) Our embedding result states, in effect, that tliminctharmonic (line) maps
x andx’ with bounded differentials cannot coincide on a sufficiently dense subset
¥ in the manifoldV where the maps are defined. Much more is known for holo-
morphic maps, where the first main theorem of the Nevanlinna theory provides a
bound on the density ot in terms of the growth of Dx|| and| Dx’|| on V. This
leads to the following

GENERAL PROBLEM. Consider harmonic map$rom V to X or more general
maps satisfying some (linear or nonlinear) system of elliptic PDE. Take two non-
negative functions (v) ands(v) enV and decide whether there exist taistinct
mapsx andx’ from our class, such that

max(|| Dx()|, [[Dx'()]) < o' (v)
and
dist(x(v), x'(v)) < o (v)

forallveV.

Here again, one expects the bound on a suitable density of the zer® &ex iof
terms of the asymptotic growth ef(v) for v — 8. More generally, one wishes to
show, that if§ (v) is small on a rather dense set, then it is also small on a much larger
set, provided we have some boundmf). For example, a holomorphic function
x with many zeros in a-disk and with a bound otfjx(v)| in the consecutive
2p-disk is much smaller on the-disk than was suggested by the original bound
on |lx(v)||. Another general phenomenon of this kind is the unigue continuation
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property for elliptic PDE but all this seems far away from a desirable solution of
the above problem.

3.4.4. Residual Dimension for Spaces of Holomorphic Maps

This refers to the dimension of the space of holomorphic mapg/ I'; — X for
subgroupd”; C T of finite index. The above argument shows that the dimension of
the space of such mapssatisfying| Dx|| < ¢ is bounded byAc"|I"/ T';| for some
constantA = A(V, T, X) andn = dimg V. In fact this remains valid for all our
harmonic-like maps while for holomorphic maps there is a better estimate due to
the following elementary (and well known)

3.4.5. PROPOSITIONLet X be a complex projective varietyy be a compact
connected complex manifold and igt W — X be a holomorphic map. Then the
dimension of the connected compon&giof xg in the space of holomorphic maps
W — X is bounded by the volume of the imagexgfand the maximal number
v = v(xp) of irreducible components of the fibersagfas follows

dim Xo < Av V0|2k xo(W)

for k = dimg xo(W), v = sup, card conr(lxgl(ﬁ)), and some constamt =
AX).

Proof. The dimension dink, is bounded by the dimensidnof the spaceH, of
holomorphic sections of the induced bundfg€T (X)) — W for a generice € Xy,
as theseH, make up the tangent bundle &f on the nonsingular locus ofy,
which is known to be a complex variety in its own right. (Here we used smoothness
of X but this can be always achieved by embeddihgto a smooth variety, e.g.
into a projective space.) Next we observed théX) can be embedded into a sum
of several very ample line bundles ovEr(this is true and obvious for all vector
bundlesL over projective varieties) and the matter reduces to evaluation of the
dimension¢ = dim Ho(x*(L)). Such anL embedsX to some projective space
CP" and so we may think of*(L) as the restriction of the bundle(D to our W,
now mapped tdC PV by composingt:: W — X and the embedding — CPV.
Notice that the product(x) Vol x (W) is invariant under deformations of maps
and so all we need is to estimateor a mapy,: W — CP" in terms ofy =
v(yo) Vol yo(W). We do this by induction ok as follows. Intersecto(W) with a
generic hyperplan® and observe that our numbér ¢, is bounded by, _; + ¢’
wheret,_1 comes fromP N yo(W) and¢’ is the dimension of the space of sections
of O(1) on W which vanish onP N yo(W). This space easily identifies with the
space of sections of a trivial line bundle oygtW) and so¢’ = 1. Thus everything
reduceso where our variety consists of at mastol yo(W) points counted with
multiplicity (for the usual inC P, where the volume of each subvariety equals its
degree). Thus finally < vVol,, yo(W) + k. a

(Notice, this is sharp for the linear embeddirgs= CP* — CPV))
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Remark. Probably the conclusion remains true for all complex (not necessarily
algebraic)X and, possibly, for more general harmonic (like) maps.

3.5. LOWER BOUNDS ON THE MEAN DIMENSION FOR SPACES OF
HOLOMORPHIC MAPS

If X is a compact Riemannian manifold aidis complete, then, typically, the
space of harmonic maps V — X with ||Dx|| < const looks zero-dimensional
(probably, uncountable for many generic classes of metric¥ prbut | am not
aware of any published result of this kind. On the other hand, there are certain
remarkable exceptions, such as Kahler manifolds that sustain lots of holomorphic
maps and these are necessarily harmonic.

3.5.1. EXAMPLE: MAPSC — S2. These are just meromorphic functions=

x(v), v € C, which can be constructed in abundance with bounded spherical
derivatives as follows. Take a discrete subsSetc C and consider meromorphic
functionsg,: C — CU oo = §? = CP?! of the formg, (v) = ¢, (v — o)7*.

If the sum of these over af € X converges, we get a meromorphic function
X: C - CUoo = §? = CP* where one can easily control the differential. d

For example, if is separated, i.glo; — o>|| > § > 0 for allo; # 0, In T and

the coefficients:, are bounded, then this sum obviously converges and gives us
anx: C — S$2 with sup,¢ |ldx|| < oo, providedk > 3. Moreover, by varying

¢, ONe can easily make such g@rwith prescribed values on a sufficiently rare net
¥’ c C" lying away fromX. This shows, that the spacé. of holomorphic (and
thus harmonic) maps: C — S2 with ||dx|| < ¢ has

dim(X, : C) = k¢®> for somex > 0.

Consequentlyif a complex analytic manifol& contains a rational curve then
the space of holomorphic maps C — X with ||dx|| < ¢ has positive mean
dimension for alk > 0.

Remark. By varying o; and/or rotating the sphei$?, one can easily make an
x: C — S? with ||dx|| < ¢ and prescribed values on a given, sufficiently sparce
(depending ore > 0) netX’ c C. (See [Ere] for a finer construction of such
interpolating map& — CP”".)

3.6. L,-TECHNIQUE FOR MAPSV — CPN

LetV = (V, g) be a Hermitian manifold with locally bounded geometry d@he->
V a strictly positive line bundle, i.e. with the curvature fomrsatisfyingw > Ag.

3.6.1. EMBEDDING THEOREM.There exists a holomorphic uniformly locally
bi-Lipschitz mapc: V — CPY for someN = N(V, E).
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Proof. First, for each poinb € V, we can construot + 1 L,-sectionsy; : E!
for somei andj = 0,...,n = dimV such that the may — CP”" defined by
these sections embeds some Blh, o) to CP". Furthermore, by squaring, we
can make the sectiorns; (see 2.1.3). Then, we take such sections at each point of
a sufficiently rare neE c V and by summing them up (compare 3.3.10), obtain
a mapV — CP" that embed the-neighbourhood/,(X) C V into CP" in a
bi-Lipschitz manner. Finally we cover all df by p-neighbourhoods of several
such netsy = |J, U,(%,),v = 1,..., No, and then the resulting map V —
C pNotNo—1 s clearly seen to be locally bi-Lipschitz. O

Remark.If V is compact, the above amounts to the classical Kodaira theorem,
where one can, moreover, projeétfrom CP" to CP?'* and then further to
CP" if one is not concerned so much with embeddings. Bi# is noncompact,
the image ofV in CP" may be, a priori, dense and then there is no holomorphic
Lipschitzprojection toC PV ~1. However, such projection can be obtained with the
uniform transversality theorem as will become clear later on.

3.6.2. Now, given a suitable holomorphic Lipschitz (i.e. with bounded differential)
mapxo: V — CPY we want to generate a larger space of such maps. To do this we
take the pull-backe — V of the O(1)-bundle overC PV and use bounded sections

of E' for this purpose. So we negtlto be rather positive which is ensured by the
following condition generalizing the ‘locally bi-Lipschitz’ property.

Uniform nondegeneracytet x: V. — CP" be a holomorphic Lipschitz map.
SinceV has bounded geometry, we have a local coordinate system with ‘bounded
distortion’ at each point € V and so by looking at and on all small balls iV

we obtain a precompact family of holomorphic maps from the unit Batt C”

to CPV, call themx,: B — CP". We say thatc is uniformly nondegenerati

every mapy: B — CP" belonging to the closure of the family,}, v € V,

(with the uniform topology) is finite to one. For exampleVifis compact, then this
equivalent tar itself being finite to one.

Now, it is essentially standard thatif V — CP" is uniformly nondegen-
erate holomorphic Lipchitz map, then theruced Hermitian structure £ =
x*(0(1)) admits a small perturbation making the curvaturemstrictly positive
(Such a perturbation can be achieved, for example, along the stratification of the
locus where the differentidbx is noninjective.)

3.6.3. PROJECTIVE INTERPOLATION THEOREMSupposeV admits a uni-
formly nondegenerate holomorphic Lipschitz mapo CPY. Then for every-
separated subseE C V there exists a holomorphic map V — CPY with
| Dx|| < constl+ §71) taking given values at all points € X, whereconst=
constV, xo).

Proof. The line bundleE = O(1) overCP" admits many (meromorphic) maps
into CPY different from the original projection. To see one, observe that each point
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(vector) inE is given by a pair¢, ¢) where¢ ¢ CV*lis aline andp: ¢ — C a
linear form.

Now, with a given vector; € C¥*1, we associate the map,: £ — CPY
where the ling’ = p_,(¢) € CPY is spanned by the vecter + ¢~1(1) € CV*+1,
Notice, that thisp., has poles, but it is regular in some (Zariski) neighbourhood of
the zero sectiof© PY C L = x$(E) of E to V, and observe that each holomorphic
sectiony,: V — E with a sufficiently small sup-norm gives us a maplofto
CPV, that is the composed map, o y;, denotedx;: V — CPY. Furthermore, if
z1 # 0, then the map_, is injective on each fiber af near zero, and so we obtain
an embeddingfrom the space of small sections — E to the space of maps
V — CP" close tox,. (Consequently, the mean dimension of the space of maps
x: V — CPN with || Dx|| < const is bounded from below by that for the space
of bounded section¥ — E.) Then one can similarly deformm using somep_,
andy, and so on. Thus the proof would be concluded if we had the interpolation
property in the bundle.

We cannot guarantee th itself has sufficiently many sections, but some
powerE’ is good for this purpose. To go frofito E?, we consider a selfmapping
¥ of CPY given by polynomials of degreesuch thaty can be found with| D/ ||
about+/i (modeled on the standard map®f /Z?") and it pulls backE to E'.

We compose)/ with our xo: V — CPY and thus promoté& to E' overV, as
(x0 o ¥)*(E) = E'. Now we have as many sections as we need and the proof
trivially follows from 3.2.6. a

COROLLARY TO THE PROOF (Compare 0.6.2f V is acted upon by an
amenable groug” with a projective algebraic quotiert/ I", then the spac&.
of holomorphic maps: V — CP" with || Dx| < c satisfies

dim(X, : ') > p/cdim=V
for all sufficiently largec and somé’ > 0.

3.6.4. Projective Transversality Theorem

Let xo: V — CP" be as above and consider a subSeh the space of-jets
holomorphic mapy — CP". We want to movex, away froms, i.e., to have
the r-jet of the moved section to lie-far from S for somee > 0. Again, we
cannot freely manipulate, itself, but we can work with;; = 4 o x for the above
mapy: CPY — CPV, where the above argument combines with the uniform
transversality theorem and leads to the following conclusion.

If the uniform dimensiorisee[Gropcmp]) Of S is strictly less thardimg V =
Adimg V, then there exists a holomorphi® uniformly nondegenerate Lipschitz
mapx/: V — CP" which is uniformly transversal 8.

COROLLARIES. (a)f N > dim¢ V, then one can make themiss a small ball in
CNV. This allows projections frort PV to CPV~! and eventually t&C P". Thus
we obtain a holomorphic uniformly nondegenerate nivap> CP", n = dimV.



TOPOLOGICAL INVARIANTS OF DYNAMICAL SYSTEMS: | 401

(b) If N > 2n — 1, we can produce uniform immersions — CP", i.e
uniformly locally bi-Lipschitz maps.

3.6.5 Remarks and question@) If V = C” or if V admits a nonconstant
holomorphic map/ — C” with bounded differential, then there are lots of holo-
morphic mapsc: V. — CP" with ||Dx| < ¢ for arbitrarily smallc > 0. On the
other hand, for som#&, every mapx:. V — CP" with sufficiently small|| Dx||
is necessarily constant. This is the case, for example, for infinite cyclic coverings
of compact manifolds as well as for more genéralvhich areone-dimensional at
infinity in the sense of [Grg\p]. Can one classify manifolds with this properly?
Similarly, assumingV is acted upon by an amenable graDpwhat is the mean
dimension of the spac&. of holomorphic mapsy — CP¥ for smallc < 0?
Now, in general, does the dimension diX : I') depend orc, especially for
c— 0?

(b) What is the relation of digX. : I') and the corresponding residual dimen-
sion for residually finite group$'? In particular, when can a holomorphic map
x. V. — CPN with |Dx| < ¢ be approximated by';-periodic mapsy; with
| Dx;|l < c1 wherel'; C T' is some sequence of subgroups of finite index and
is independent of? Closely related to this is the Runge approximation problem
where we look for an approximate extension of holomorphic Lipschitz maps from
smaller domains iV to larger ones. Finally, one asks when holomorphic Lipschitz
maps toCP"V extend from subvarietie c V with bounded local geometry to
allof v.

(c) Foliations. Consider a manifold/ (or a general locally compact space for
this matter) foliated into complete Hermitian manifoléfsand leté — U be
a complex line bundle holomorphic along the leaves. For each pomtU we
take the universal coveriny, of the leafV,, c U passing through, thought of
as the space of the homotopy classes of loopg,inC U based at: so thatu
canonicallylifts to V, and is denoted € V,. Let H, be the space of holomorphic
Lo-sections of the bundlg, — V,, induced from¢ and take a vectar in the (one-
dimensional) fibeiz, C & atu identified with the corresponding fibér; of &,. If
the evaluation map&lu — E; = E, is surjective, then there exists a unique section
h=h,: V, > &, havingh(u) = e and minimizing theL,-norm ||h||L2 Now,
SUPPOSEE is positive along the leaves, where this positivity is uniformnand
also assume that all leaves have uniformly bounded local geometry. Then the above
surjectivity condition is satisfied for all € &, and allu, if not for & itself, then,
at least, for some tensorial pow&t of &. Thus every sectlorp u e(u) €&
of & gives rise to a family of holomorphit ,-sectionsh, =gef h‘,,(u) vV, > 8’
that is a section, call i, of &' lifted to the graphV of our foliation defined as the
space of pairsu, v), foru € U andv € V,. According to 3.3.12, each holomorphic
constituents, of & has a controlled decay on the I&af with the decay estimate
independent of:. Moreover, theL,-estimate (seéx) in 3.3.2) implies that the
sectiong:,, areL,-continuous in:, providedy is continuous. In fact, ift andu’ are
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near by points il ande € &’ ande € &, are close vectors, then the leavésand

V. are close on large balB, c V, andB c V,. Then the holomorphic section
he, onB can be moved to an almost holomorphic secfibon B, WhICh lies close

to i, on B, and has’ (1) = e. Thish’ can be made zero outsuiﬁ, by applying

an obvious cut-off argument and then we observe that the sectieni (h + i)

is also almost holomorphic and thus can be turned holomorphic as we did before
using theL »-estimate. The resulting holomorphi¢ is L,-close tok” and may be
assumed to have’ (1) = e. On the other hand, i, were far fromv,, thenh' is far

from /1, as well, and then their mean would have significantly sméljenorm than

h. (as we could assumigi, N, < 7, Iz, by interchanging: andu’ otherwise)
which contradicts to minimality of the norifz, llz,- Next, we square eadh, thus
making itL; and then push down the resulting seci@ifrom Vtoa sectiorp?(v)

of 8% — U by mtegratlng(p (u, v) with respect ta: over the leafV, = V, and
summing up over alb in V,, over v, where we neeg to be bounded (as well as
continuous) orfl. In particular, if U is compact, we obtain, by varying, lots of
continuous sections &% — U holomorphic along the leaves and conclude that
U admits a continuous leafwise holomorphic and leafwise locally bi-Lipschitz map
to someCP".

Notice, that such foliations exist, for example, on locally homogeneous spaces
U of the formK\ G/ I" whereG is a semi-simple group without compact quotients,

K c G a (honmaximal!) compact subgroup aidc G is a cocompact lattice.

(d) Singular space¥’. Probably, our results extend to singular spaewith
an obvious extension of the idea of bounded local geometry. For example, one can
easily handle submanifoldg of a manifoldW with bounded geometry, such that
Vol,,(V N B) < const for all unit ballsB in W. In general, one needs a suitable
version of-technique where a natural idea is to embehto a nonsingular mani-
fold. Alternatively, one may resolve the singularity wfand adjust thé-lemma to
sections constant (vanishing) on the pull-back of the singular locus. Alternatively,
one may tryL,-techniques on th€ech resolutions of the relevant sheaves.

(e) As we mentioned earlier, the space of harmonic maps between generic Rie-
mannian manifolds seems rather small but there are some exceptional cases besides
the K&ahler manifolds. For example, one may look from this angle at harmonic maps
R" — SV for all » > 2. One can also considarharmonic mapsvhich locally
minimize the energy= [ ||Dx||”dv with p = n which bubble very much like
ordinary harmonic maps far = 2. Here one should probably replace the uniform
metric for [ || Dx||? by ‘the energy metric’ and study maps V — X locally
minimizing [ || Dx||”dv and having this integral uniformly bounded over the unit
balls in V. This is similar to bounding holomorphic maps V= — X by their
‘local degrees’, i.e. by the volumes of their graphs within unit balld/ik X,
where one can use estimates from 4.1 or, alternatively, the (first main theorem of
the) Nevanlinna theory which, when it applies, gives better bounds on the mean
dimensions of these spaces than 4.1 (as was pointed out to me by Alex Eremenko).
Notice that in all these cases the spaces of maps with bounded local energy (or
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degree) are not compact and one should compactify them by allowing suitable
‘singular maps’ best represented by certain subsels in X appearing as limits
of graphs of the maps in question.

(f) It is worthwhile to recall at this stage that the mean dimension of a space
of mapsV — X appears as a limit of the-dimensions of spaces of maps of
relatively compact domain® C V. A more general class of geometric problems
can be formulated for an arbitrafy, allowed to be noncomplete and/or to have a
boundary and for a relatively compagtin the interior of V. Here we take some
spaceX, of our (harmonic like) maps: V — X with a bound like||Dx|| < c,
or a similar bound on the (local or global) energyxofThen we restrict the maps
x € X, to Q and evaluate the-dimension Widim of the resulting spac# |2 of
maps2 — X with respect to some metric in this space, e.g. the uniform metric
or some energy metric. What we want to know is the asymptotic behavior of the
resulting Widim (X.|2) for growing V and 2, where2 remains much smaller
than V. Here it is equally interesting to evaluate the minimal numNgrof the
e-balls needed to covex, |2, where the expected growth is rouglaly“' .

3.6.6. About Fusion

If dim¢ V' = 1, then there are nonlinear techniques for producing holomorphic
mapsV — X whereX is analmost complex manifol@vith possibly anoninte-
grable structure) which contains ‘sufficiently many’ rational curves. Here a given
holomorphic map: V — x can be modified by ‘fusing’ it with rational curves

at the pointso of some discrete subsé& C V. Recall that the analytic model
for ‘fusion’ of two curvesc; andc, in X given by the equationg;(x) = 0 and
f2(x) = 0is the curveC = C, given by the equatiortf; f> = ¢. This C, for small

& # 0 looks like the connected sum 6% andC> at their intersection points.

EXAMPLE. Let X = CP" with an almost complex structure tamed by the stan-
dard symplectic fromw on CP". One can easily construct, by fusing together
infinitely many rational curvesa holomorphic Lipschitz map: C — CP" with
assigned values on a given separated subset C. Probably, there is a similar
interpolation result for all Riemann surfaces with bounded geometry. Also one
may try maps into more general spacgés.g., intorationally connectedlgebraic
manifoldsX.

4. Spaces of Subvarieties

Let W be a Hermitian manifold and consider the space of complex analytic sub-
varietiesM C W of given dimensiom. All? possible topology inM comes from

the Hausdorff convergence on compact subselg.iVe shall use below a slightly
different topology induced om from the space of currents dif. Namely, for
every collectiort2 of continuous formsy on W of degree 2 with compact support,

we set
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My My

ThenM; — M signifies thatM — M;|q — O for every finite collectiorf2. Notice
that the limits ofM; in this topology may acquire multiplicity. For example, the
graphM, c C? of the functionz — Az?, converges, foh — oo, to the vertical
line in C? with multiplicity two (while the Hausdorff limit gives us this line without
multiplicity. Our objective is the spac#(, consisting of the subvarietied c W

of ‘local degree’ bounded hy. This means that

|My — M>|q = sup

we2

V0|2n(M N B) < Olwd

for all unit ballsB ¢ W and a suitable normalization constant > 0 which for
M = C" should be chosen equal the volume of the unit Euclideabdll. If W
has bounded geometry, then our study can be reduced to thiat=in C" where
the relevant properties @ff € .M, become more transparent.

4.1. NORMALIZATION AND CAUCHY INEQUALITY

A complex analytic subvariety/ ¢ C" can be locally represented as the graph of
multi-valued holomorphic mafi” — CV~". Namely, for each point € M, there
exists a linear projectiop: C¥Y — C” so thatp is finite-to-one onV. Then a germ

of M atv becomes a ramified cover of a small bBl= B(p(v), ¢) C C" where it

is represented by the graph of/avalued map fromB to CY—". Such a map can
be viewed as a singled valued holomorphic map f®io thed,—, the symmetric
power of CN—", sayu: B — S, CV=" and by Cauchy inequality we can bound
the differential ofu in a smaller ball, say iB’ = B(p(v), £/2) by something like
/2. (Notice that the variety, C¥~" is singular but it embeds into a smooth one
and so one can speak of norms of derivatives of maps into it.) Thus our objective
is a lower bound o in terms of the 2-volume of M.

4.1.1. Controlled Normalization

We want to locaten-dimensional polydiskD™ c CV (which are more suitable
for us than 2:-balls) form = N — dim M, such that their intersections witlf
are stable undet-perturbations. Thus we say thBt" is e-transversal toM if its
boundaryo D™ is e-far from M, dist(do D™, M) > ¢. Here everyD™ lies in somen-
dimensional affine subspad¢ec CV. Observe that thi®” = (D(r))™ contained
in the ballB(R) c C™ of radiusR = /nr and we call thisk the radius of D".

LEMMA. LetM be a complex analytic subvariety @" of dimension:. Then for
everyp > 0there exists a polydisk™ in CV with the following properties.

(1) The center oD™ is located at the origine of".
(2) The radiusR of D™ lies in the intervalp/2 < R < p.
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(3) D™ is e-transversal taM, where
e > consty p?"1d—1(p), (+)

for d = d(p) denoting the2n-volume of the intersection aff with the p-ball
in CY around the origin.

Remark.One can show, a posteriori, that subl exist forall R in the interval
30 SR < 3p.

Proof. An obvious integral geometric (or, alternatively, transversality) argument
shows that almost all polycylinde3™” centered at @ CV have empty intersection
aD™ N M. Here one may invoke the compactness property of analytic sets with
bounded volume and thus obtain a definite lower bound oodigt, M) for some
R. Next, as we want a quantitative result, we recall the relevant properdy of
behind the compactness property which reads

\Voly, (M N B(v, 8)) > a, 8% (*)

for all v € M, all balls B(v,8) c CV atv andw, equal the volume of unit
Euclidean 2-ball. Then we take som®™ of radiusR centered aD € C" and
intersect it with thes-neighbourhoodV/, of M. We measure this intersection by
the minimal numbetN = N (D™, ¢) of ¢-balls heeded to cover the part of this
intersection lying in the ‘bandD’”\%D’” = D"(p) — D"(p/2). If N < 0.1p/e,
then, clearly, there is aR betweenop/2 andp such that the boundary @ (R)
missesM, and (+) follows with thise. Now, assum&V > 0.1p/¢ for all D™ (R)
and bound the volume @ N B(p) from below(x) as follows. First, imagine we are
allowed the parallel translations 8" by distancep. Then we get abouV (p/¢)?"
points in M with mutual distance$: ¢/2 and thus the volume a¥/ covered by
these translated is bounded from below roughlyMay, (¢ /2)?" (p/€)?" = Na, p?".

It follows, N is bounded approximately by Mai/ N B(p)/p?", hence Qlp/e <
Cy Vol(M N B(p))/p? and(+) follows.

Finally, instead of translatingg™ (which we are not allowed to do as the center
of D™ is fixed) we rotate it around some: — 1)-planeL in C" > D™. We
choose thid. ¢ C™ so that the significant part of the intersectigfyN (D'"\%D'")
lies roughly p-far from L, i.e. the covering number fa¥f, N (D’”\%D'"\Lp/) is
> Bnp/e for someBy > 0 andp’ > Byp. Granted suclL, the rotation ofD™
gives us essentially the same volume as the above translation. Finally, to see that
such L exists, we apply the same reasoning, but now we rataie C” around
some(m — 2)-planeL’ C L. ThenL’ is located with rotation of.” aroundL” and
so on down to a rotating line i@? O

4.1.2. Local Representation dff by Multivalued Function

Consider the normal-tube around ouD™ that isD™ x By (¢) C C¥=""" where
By (¢) is the n-dimensionale-ball in C¥ normal to D™ and let M, denote the
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intersection of\/ with this tube. Clearly, the projection &f, to By (¢) is a proper
map of multiplicity dy = do(e) < consf,(Vol M N B(p))/e?". Thus My is rep-
resented by the graph af-valued map oveB; (¢), saygo: By (¢) — Su,D™.
Then we consider such tubes centered at all point® iand coverM by a min-
imal number of these. Here we set= 1 and denote byl the supremum of the
volumes of intersections of the unit balls @" with M. Then we see withix)
that there is a covering a¥f by e-tubes, where the number of such tubes meeting
each unit ball inCV is bounded by congtde=2" < consf, d>'*1, where we use
(+) in the forme > consly 4~ (and where we exercise the usual freedom with
the notation ‘consk). Finally we observe with+) thatd, < consiky d?* and so
dim S, D™ < consly md? < const, d?'. Thus the total number of ‘parameters
per unit volume’ definingM is bounded by congtd*'**. This makes plausible
that the mean dimension of the spabg of n-dimensional complex subvarieties
M c CV with the local degrees bounded W\satisfies the inequality

dim(AM, : CV) < consty d* 11 (%)
Actually, the natural conjecture (justified later on) reads

dim(M, : CV) < consty d"*2, (%)
but we are not able to prove even the weaker inequédity

Here are two difficulties.

1. The above heuristic argument only applies to subvarieties close to a given
one and we lack a good localization theorem saying that ‘the local mean dimen-
sion equals the global one’. Thus we have to vary the tubes covéfighich
unpleasantly enlarges the exponemti41 to something of ordeN?.

2. As we change a covering &f by s-tubes, we change our representation of
M by a collection of maps (this already happens near a fieds we appeal to
Cauchy inequality). This introduces an ambiguity in our choice of a meti¢ of
orderd? (which probably could be greatly reduced) and this makes our exponent
(even in the local case) comparably large.

Remark.One can improve the covering argumentwhy e-tubes (using tubes
of variable size at different points i) but | doubt you can bring the exponent
down ton + 1 this way. (The ‘difficult’ M’s are those having large intersections
with small balls, e.g., having conical singularities of degreed.) On the other
hand, the above 1 and 2 are purely technical problems and should be eventually
resolved.

4.1.3. Parametrizations of,;C™"

The symmetric powers df are nonsingular. In fact§,C can be identified wittC
in several ways. For example, given a symmetric configuration of complex numbers
v1, ..., Vg ONe can associate to them the polynomi&l) = ]_[?Zl(z —v;) and then
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one uses the metric o) C corresponding to the sup-norm of functions on the disk
D(2) c C of radius 2. Another useful representationfC is by means of the
symmetric functions,

d d d

E E 2 E d
S1 = m;, S2 = m;, ey Sqg = m;,

i=1 i=1 i=1

where the corresponding metric is the sup-norm in(the. . ., s4)-space. The two
norms are bi-Lipschitz equivalent, at least in the region correspondingtavith

|m;| < 1 where the Lipschitz constant can be trivially bounded by something like
d. Indeed, going fromy; to polynomials amounts to expressing the elementary
symmetric functions as polynomials i Conversely, one reconstruatsout of
p(z) by taking Cauchy integral of p’(z)/p(z) over the circle of radius 2 since

7' p'(z)/ p(z) has simple poles at; with residuesn?.

Next we observe that the natural mapC” — (5,C)™ is finite-to-one, we
take, additionally, the composition of this projection with a generic linear map of
C™. Then the resulting mag,C" — (5,C)" x (S;C)" = (S;C)?" becomes
one-to-one.

4.1.4. Embedding oM, to a Power Space

We want to construct a sufficiently large setmefdisks in CN=mtn 5o that each

M c My will be uniquely determined by intersections with these disks. (We
shall eventually disregard the disks which are sirtansversal td/.) Recall, that
everym-disk in CV is of the formg D™ (1) for the standard>(1) ¢ C and some
isometryg: C¥ — CV. Thus we can mark the disks in our setgy. Here are our
requirements on these disks agis.

A. The set ofg’s is eg-dense in the group IsanC" for the standard metric,
whereeg should be quite small, say < const,*(d + 2)@+2" for consty, = NV°.

B. If somem-disk D is in the set, then there is&dense set of rotations of
this D = D™ in the m-plane L spanned byD. That isg’s are §-dense in the
subgroup(~ U(m)) of unitary transformations of fixing the center ofD. Here
§ is independent of, says = N~V. (Notice that the dependence of our constant
on N is a matter of convention as they could be absorbed by the definition of the
‘standard’ metric in IsonT". Also observe, that the only role of this condition is
to take care of noninjectivity of the mapC™" — (S5,C)™.)

C. With every diskD in our family, there are ‘sufficiently many’ disks, s
obtained fromD by parallel translation in the directions normalo Namely the
projection of thisD; to the normalC™ is gg-dense, for the abowug in some ball of
radius 10 inC™. (This is a purely technical condition. It is not truly needed but it
simplifies what follows.)
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Clearly, there exists a system of disks with above properties, such that the num-
ber of these per unit volume i@}V, i.e. meeting each unit ball (or cube)@' does
not exceed congte, X for

K =dimlsomC" +n = N(2N + 3) +n < 3N?.

4.1.5. MAIN LEMMA.. Let D be a collection of disks satisfyigg, B, C and let
M1 and M, ben-dimensional subvarieties i@" from the classM,. Suppose, that
every diskD € De-transversal to bothv; and M, with the aboves, satisfies
DN My = DN M, ThenM; = M.

Proof. SinceM; U M> C My, and oure’ is so small, we can covet” by e-
tubesg (D™ x B(g)) for D = D(1) c C, B(¢) c C" ande much larger thar,
saye = consly d—* (see(+4)) such that all diskg D™ are in our collection and,
moreover, 2-transversal to boti, andM,. Thus,M; andM, are represented by a
collection ofS;, C"-valued mapsg, on the corresponding-balls g(B(e)) C CV,
whered, are bounded by corjstd/(¢)>* < N?Vd?'*1. The intersection condition,
with B, says that these functions are equakbdense subsets in these balls. Now,
let 5 denote the supremum of the distances between these functions over all our
balls. The argument as in Section 3 appealing to the Cauchy inequality makes
this distancers-small on concentric balls of radii, say9% with very smallA,
something of orde%d*d. Thusé-distance for one covering impIi(%szi*d(S-distance
for another covering which then yie%ﬁ-distance for the original covering by the
discussion in 3.1. It followg = 0 and the proof follows. a

Remark. We did not try to be sharp in the above estimates but used notations
clarifying relative roles ofi, N andd. Besides, there are little details to fill in, like
requiring covering by B¢’'-tubes (rather than thg-tubes), etc.

4.1.6. We want to interprete 4.1.5 as an embedding result and thus bound the mean
dimension ofM, . Denote byA = A(D") the union of the cones of; D™, i =
1, ..., dpjoint at the vertex
do
A= \/ congs; D™),
i=0
whered, is the smallest integee N?Vd?'*1, and letA, = A(gD™). Now, for
every collections of diskgD™, g running over some subsgt € IsomC", we
map M, to the Cartesian product, ., A, as follows. IfgD™ is 2-transversal to
M, then theg’s component of our map sendg to M N gD™. If gD™ is note-
transversal, we go to the joint vertex of the cones and we interplate between the
two maps in some standard way. Now Main Lemma shows that this map is an
embedding.

COROLLARY. The mean dimension df, is bounded by
dim(M, : CV) < constN, d), (++)
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constN, d) < consly g5 dim A.

Proof. All we need, is our collection of disks beirfe" -equivariant. Then we
found the mean dimension relativeZd" that equals that foE" . a

Remark. Our bound onK, ¢ anddy = dim A are pretty awful. Better leave it
just as constv, d).

4.1.7. The Proof of the Upper Bound in 0.6.4

The above proof of++) is essentially local in nature and trivially generalizes to
subvarieties in all Hermitian manifolds with bounded local geometry. This gives us
the desired (horrible but effective) upper bound in 0.6.4. The lower bound will be
proven later on.

Remarks and open questiolia) As we mentioned earlier, the constan{-+-)
should be bounded by corst?*, where it will be interesting to explicitely com-
pute const.

(b) The above argument can be, probably, extended to two-dimensional mini-
mal subvarieties in Riemannian manifolds and also to pseudo-holomorphic (one-
dimensional) subvarieties in almost complex manifdidgwhere the easiest case
if of dimg W = 4 as we have at our disposal pseudo-holomorphic cusves
transversal to oud C W). On the other hand, the situation seems more difficult
for higher dimensional minimal subvarieties. In fact, it seems unknown if the space
of n-dimensional minimal subvarieties of volumee d < oo in a compactRie-
mannian manifold¥ has finite topological dimension. (On the other hageheric
W'’s contain few minimal subvarieties and so, typically, their mean dimension
should be zero for infinite grouds.)

(c) Clearly M, is empty ford < dy = do(W), where the criticaldy equals
1 for W = CV. It is not hard to see that the mean dimension is continuous at
this critical value in the case of", dim(M,; : CV) — 0 ford — 1, and,
probably, something similar holds true for &1l. For example, if K (W)| is small
and InjRadWw > 1, then the criticallp(W) is close to one and the spagé, . is
small f or smalle. In particular, if W is cocompactly acted by a discrete amenable
group T, then dimMq,.: T) — O0fore — 0 and|K(W)| — 0, as a simple
argument shows. (In fact, whehis close to 1, ouM’s are uniformly nonsingular
and everything trivially reduces to linear PDE. Actually, this equally applies to
general minimal subvarieties with < 1 + ¢, where the uniform nonsingularity
follows from Allard’s theorem. On the other hand, we do not know how to bound
the mean dimension of spaces of minimal varieties Witk 1.)
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4.2. RESIDUAL DIMENSION OFﬂd AND RELATED QUESTIONS

Let W be acted upon by a discrete graopvith projective algebraic quotient/ T",

letT"; c T be a sequence of subgroups of finite index. The above discussion applies
to submanifolds inW/T"; and shows, in particular, that the residual dimension
of M, is bounded by conéW, d, I'). We observe thal';-invariant submanifolds

e M, descend to subvarieties Wi/ I"; of volumes< constd|I"/ T';| and pose the
following

PROBLEM. Given a sequence of numbeys evaluate the dimensions of the
spacesM;. (W/ T';) of n-dimensional subvarieties W/ T'; of volume< §;.

Here we are interested in tlesymptoticbehavior of these dimensions for ‘in-
teresting’ sequences of subgroups where, specifically, we want to know the
answer fors; = |/ I';|* for a fixedw. We start with the following simple

OBSERVATION. Let W, be a compactV-dimensional manifold that admits a
holomorphic finite-to-one map: W, — CP¥, such that the Kahler class @fP"
goes to a multiple of the Kahler class @, say tor[w(W,)] € H*(W,; R), then

dim Mg (CPY) < dim Ms(W,) < dim My CPY

for & = A"(degyp)s ands” = A"§ where de@ denotes the toplogical degreef

In fact, Volp~1(M) = A% (degy) vol M for all M c CP", which yields the
lower bound on dinMs(W), while Vol (M) = A" Vol M for all M c W, which
gives us the upper bound.

Remarks. (a) This observation applies, strictly speaking, only to th#se=
W/ T; whereT; actsfreelyon W in order to haveW; nonsingular. But everything
(and obviously) equally works in the singular case.

(b) The above inequalities are most efficient for small gdmit for our W; =
W/ T;we only guarantee maps: W; — CP" with degy; = constiI'/I';| and
one cannot do better in most (?) cases, e.g., for the growgadisfying Kazhdan'’s
property T (see [Greukm]). On the other hand, there are cases wherepdeg
const independently af e.g., for coverings of an Abelian variety.

Now we recall the standard bounds for diwt§ (CPV).

4.2.1. LEMMA. The spaceMg’l(CPN) of irreducible n-dimensional subvarieties
in CP" of degrees satisfies

(8+1)(8+2)...(8—|—n+1)_1
(n+ 1)

<dimM;(CPY) < (N — n)(

B+DB6+2)...6+n+1) _1>
(n+ 1)
< consty 8" L.
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Proof.If N —n = 1thenM'’s are given by homogeneous polynomials of degree
8 and so
G+D...(64+n)

dim M3 (CPY) = '
n.

Next, if N —n > 2, we projectM to N —n (n + 1)-planes in general position in
CP" and observe tha¥ appears as an irreducible component of the intersection
of the pull-backs of these components. O

EXAMPLE (Abelian varietes). Lef be a Lattice acting o™ with projective
algebraic quotienW, = CV/T", e.g.I' =i Z?N,i = 1,2,.... Then there is our
mapg: W, — CPV with degy < const < oo independently of" with A =
(Vol W,)~V/" (where the Kahler metric i€ PV is normalized to have VA PN =

1). Then dimMm} (W,) is approximately (i.e. up to a multiplicative constant) equal
to

n(n+1)

A = s Vol W)~ E .

Thus, if we setl = §/ Vol W,, we get

(n+1)(N—n)

dimM;(W,) ~d" ™ (Mol W)~ v . (%)

If N =n+ 1, this becomes
dim M7 (W,) ~ d"™ Vol W,

and gives us the following bound on the residual dimension of the spéce-
My (CN) (of n-dimensional subvarietie®& with Vol M N B(1) < d for all unit
balls B(1)), resdimi(, < constd"**. This improves our earlier bound (with a poor
dependence o) and suggests that the mean dimensiomgfmust be asymptotic
to d"*+1. Here is a more general

CONJECTURE. Le®W be a Hermitian manifold of bounded local geometry and
{B;};c; be a collection of balls of radi; < 1, such that the concentric balls of
radii r; /2 cover W. Consider the spac#( of n-dimensional subvarietied C
W, such that VolM N B;) < d;r! for all i and givend; > 0. Then dimM <
consty_, ., d'™*, where the constant depends only®n= dim W and the implied
bound on the local geometry o .

The above conjecture truly makes sense only for compgathere in general
one should use a suitable ‘dimension per unit volumeWinFor example, ifW
is cocompactly acted upon by an amenable grbuand the systenB;} is I'-
invariant, then the mean dimension ditd : T) should be bounded by
consty_, & for i running over a fundamental domainc 1, i.e. a subset such
thatl'J = 1.
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Remark.For certain manifoldsv, e.g., forw = R”, it is interesting to look at
M’s defined with systems of ballB; wherer; are unbounded, say for concentric
balls of radiii — oo in CV. Then one may try to evaluate some ‘asymptotic
dimension’ ofM in the spirit of the Nevanlinna theory. For example A&} denote
the space of-dimensional subvarietig® in CV, such that valM N B(R)) < ¢(R)
for a given functionp(R) and all concentri®k-balls B(R) ¢ C" around the origin.
Denote byM,(R) the space of subvarieties B{R) of the formM N B(R) for all
M e M,. Then one may ask what is the asymptotic behaviour of. dip(R)
for R — oo (and eventually foe — 0) with respect to the Hausdorff metric in
M, (R). A particularly interesting case ¢ R) = CR? for somep > n. (If p =n,

M is necessarily algebraic and so dint,(R) is uniformly bounded.)

Now, let us look at the above asymptotic relatign for codimM > 2, i.e. for
N —n > 2. Here the exponerit + 1)(N — n)/2 is strictly greater than 1, and so
() yields no bound at all on the residual (as well as on mean) dimensiad#, of
However, this does not contradict+) from 4.1.7 but rather shows that majority
of subvarietiesy ¢ W are highly nonuniformly distributed iW for N —n > 2
and so(++) does not apply. This suggests the following

ALGEBRAIC QUESTIONS. Consider the spagé; (CP") of algebraic subvari-
eties inCP" of dimensionn and degreé. How many irreducible components of
M (CPV) lie in the interval[§*t, §*2] for given 0< a3 < ax < n + 1? Here we
are most interested in the asymptotic behaviour of this numbér feroco, where

a good answer is plausible for large, €.9.,01 > n.

To get some perspective look at the spacec Mj (CPY) of complete inter-
sectionsM of hypersurfaces of degreés > 6, > --- > éy_,. Its dimension is
easy to evaluate by looking at the normal bundlébr by rescalingCP" by §;
(which makes the volume of hypersurfaces of degreequal that of the rescaled
CP" and then applying+-+) to the rescaled picture). Thus one easily shows that
dimM ~ 887 and so eacl € M is contained in a hypersurface of degrég,.,
which is roughly bounded by

1
N—n—1
(5” : 1/d»lz> ford = dimA  (SiNCes = 816, ... Sy_n).
This suggests that faveryirreducible varietymM C M;((CPN) of (large) dimen-
sion D, eachM € M is contained in a hypersurface of degreed’, wheres’ can
be (reasonably) evaluated in termsfands. For example, ifD > £6"*%, then
one expects’ < ¢ = ¢'(e, N), and if D > §"71~* for a smalla > 0, thens’ < d
for § > 8o = 8o(ax, N). (Notice that holomorphic magsP” — CP" with images
of degree make a variety of dimension abaiit whose generic members do not,
apparently, lie in hypersurfaces of degreess and so ‘small’ should be at least
‘smaller than one’.)

There is another idea also expressing nonuniform distribution of subvarieties of
codimension> 2 in CP". For example, one may seek a nontrivial upper bound
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on the dimension of the subspasg’ c (CPM)* consisting of thosé-tuples of
points which lie orsomesubvarietyM ¢ CP" of dimension: and degreé. For
example, ifk > £5"*1, then, probably, codinv)" > O for all§ > 8o = 8o(e, N). In
fact our inequality(++) suggests, that no configuration of poiriis, ..., x;) €
N can be uniformly dense i€ PV, i.e. thep-neighbourhood ofxy, ..., x;} C
CPY must have small measure fornot much exceedinges”*)~" ands§ >
50(8, N)

4.3. CONSTRUCTION OF SUBVARIETIES INW

Let W admit a positive line bundI& of locally bounded geometry. Thé# admits

a holomorphic uniformly nondegenerate Lipschitz mafo CPN,JV = dimWw.

The pull-backs of sub\Larieties i@PN are, clearly, in our class{,_, ., and by
varyingx one sees that(, has positive mean dimension. Actually, by a direct ap-
plication of the uniform transversality theorem one obtains bounded holomorphic
sectionsx: W — E' which are uniformly transversal to the zero section in the
obvious sense. The zero sett(0) ¢ W of such anX is a manifold with bounded
local geometry of dimension equal diivi — 1 and so one obtains by induction
such submanifolds of all codimensions. This combines with an obvious scaling ar-
gument and shows, in particular, that in the presence of cocompact amenable action
the mean dimension of the spagg of n-dimensional submanifold® c W with

the boundvol B N M < d for all unit balls B ¢ W satisfies

dim(M, : T') > const?"**

forall n < N, someconst= constW, I') > 0 and all sufficiently largel.

Remarks and final questionSince every complex subvariety is minimal, one
sees with the above theorem, for example, that the spacef 2m-dimensional
minimal subvarietiesly ¢ R" with the volume bound by Va¥ N B < d has
dim(M, : RY) > Oforall N > 2m + 2 andd > Vol B?". But it is unclear if this
dimension is positive for minimal surfacesikt (where one can use the Weirstrass
representation to generate minimal surfaces).

Another situation where one may expect positive mean dimension is that of
pseudo-holomorphic subvarietidé ¢ W with dimg M = 2, but here one needs
a different technique for producing sufficiently many of them in suitable almost
complex manifoldgv.

Finally, we mention special Lagrangian submanifolds and related classes of
complex submanifolds, e.gy c CV isotopic relative to a given (symmetric or
anti-symmetric) bi-linear form oi©". Unfortunately, the lack of examples pre-
cludes us from asking meaningful questions.
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