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Introduction 

We study in this paper the spectral distribution of the Laplace operator 
acting on k-forms on a complete Riemannian manifold M. If M is compact 
this distribution is expressed by the (spectral density) function Nk(A) that 
represents the number of eigenvalues < A. In the general case where M is 
non-compact this number may very well be infinite. Yet, if M comes along 
with a discrete isometric action of a group F, then one can "renormalize" 
the naive definition of Nk(A) in order to have Nk()~) < co whenever the 
quotient space M/F is compact. The renormalization is achieved with the 
notion of the yon Neumann dimension (or F-trace) as is explained in w 

The most important  characteristic of Nk(A) is 

bk = lim Nk(A) , 
,~---*+0 

which equals the yon Neumann dimension of the space of harmonic t-forms 
on M of degree k. This was introduced by M. Atiyah [A] and called the k-th 
L2-Betti number of M. Atiyah also asked in [A] whether the L-Betti num- 
bers are homotopy invo~riants. A positive answer was given by J. Dodziuk 
[D]. 

Next, it was observed in [NS1,NS2] that  the asymptotic behavior of 
Nk(A) for A --- +0 also has a topological meaning which has led to new 
differential-topological invariants of compact manifolds with infinite funda- 
mental groups. 

The purpose of the present paper is to improve the results in [NS1,NS2] 
by showing that  the asymptotics of Nk(A) at A -- 0 is in fact a homotopy 
invariant. This is done by expressing this asymptotics as a chain homotopy 
invariant of the Rham L2-complex of M in the category of Hilbert spaces 
and bounded linear operators. 

The authors wish to thank V. Ivrii, to whom we owe the first version 
of the proof of Corollary 3.1. (See the remark following this Corollary.) 



376 M. GROMOV AND M.A. SHUBIN GAFA 

1. P r e l i m i n a r i e s  

Let M be a Riemannian F-manifold with a discrete infinite group F of 
isometries of M. We shall always suppose that F acts freely (i.e. without 
fixed points) and that X = M/F  is a compact manifold. Let us consider 
the Laplacians Ak = d5 + 5d on exterior k-forms on M (here 6 is the formal 
adjoint to d). 

Let L2Ak(M) be the Hilbert space of all square-integrable exterior k- 
forms on M and C~Ak(M)  be the space of all smooth (i.e. C ~176 k-forms with 
compact support on M. Since M is complete as a Riemannian manifold, the 
Laplacian Ak is essentially self-adjoint in L2Ak(M) ([ca]), i.e. its closure ~k 
(with the initial domain C~'Ak(M)) is a self-adjoint operator in L2Ak(M). 
So we can take the spectral decomposition 

~k = / A d E  (k) . 

Let e~($, x, y) be the Schwartz kernel of the projection E (k) so that 
ek(X, x, y) defines a linear map AkT~M --~ AkT*M and 

( E(k) w)(x) = / M  ek( X, x, y)w(y)dl~(y) , 

where w E C~Ak(M)  and d# is the Riemannian density on M. It is well 
known that e k ~. C ~ with respect to x, y. So we can define the spectrum 
distribution function 

N~($) = Trr E (k) = JR trek(X,x,x)di~(x) , (1.1) 

where F is a fundamental domain of the action of F on M,  tr is the usual 
matrix trace and Trr defined by the integration over F is the F-trace on 
the von Neumann algebra A (k) = A(k)(M) of the F-invariant operators in 
L2Ak(M). 

The trace Trr was introduced by M. Atiyah [A] who used it to de- 
fine and calculate the F-index of elliptic F-invariant operators on vector 
F-bundles over M. Atiyah also defined the L2-Betti numbers, 

bk = N k ( + 0 )  = l im  N k ( $ )  = Trr Bk , 
,X~+O 

where B~ is the orthogonal projection in L2Ak(M) onto the space of the 
harmonic L2-forms. It was proved in [NS1] that these Betti numbers satisfy 
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the same Morse inequalities as the ordinary Betti numbers. It was conjec- 
tures in [NS1] that the asymptotic behaviour of Nk(A) as A --, +0 should 
contain interesting topological information. It was announced in INS2] that 
if Ark, N~ are spectrum distribution functions corresponding to F-invariant 
Riemannian metrics g, g' on M then there exists C > 0 such that 

N~(C -1 A) <_ N[:(,k) <_ Nk(CA) 

for every ), �9 It. The proof (see [ES]) uses the variational principle 

( 1 . 2 )  

Nk(A) = sup T r r P ,  (1.3) 
p E p (  k ) 

where p(k) is the set of all bounded operators P in L2Ak(M) such that the 
following conditions are satisfied: 

(i) p 2  = p = p ,  
i.e. P is an orthogonal projection in L2Ak(M); 

(ii) P e A (k) 
i.e. P is a F-invaxiant operator; 

(iii) Im P C D(&k) 
where D(~k)  is the domain of Ak; 

(iv) P(~k  - AI)P <_ 0 
i.e. the quadratic form of ~ k  - )~I is negative on Im P (here I is the identity 
operator). 

We can omit the condition of selfadjointness of P ,  replacing (i),(iv) by 
the following conditions 

(i)' p2 = p 

(iv)' P*(-Ak - AI)P <_ O . 
Also we can forget about the operator ~k  and consider the correspond- 

ing closed quadratic form Qk (with the domain D(Qk)). If w E D(&~) then 
by definition 

= 

where the inner product is taken in L2Ak(M). Now we can replace (iii), 
(iv)' by the conditions 

(iii)' I m P  C D(Qk); 
(iv)" Qk(w) <_ )~(w,w) for every w �9 ImP.  
If we introduce the F-dimension direr on the P-invariant linear sub- 

spaces L C L2Ak(M) by direr L = Trr PL for the orthogonal projection 
PL: L2Ak(M) --* L ,  then (1.3) can be written as 

Nk(~) = sup direr L (1.3') 
LEs 
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where s is the set of all F-invariant closed linear subspaces L C L2Ak(M) 
such that  L C D(Q~) and Qk(w) <_ )~(w, w) for every w E L. 

Let us give a more explicit description of D(Qk) in our case. Let us 
define 

W1Ak(M) = {w I w e L2Ak(M) , dw e L2Ak+I(M) , 5w e L2Ak-I (M)}  , 

where d, 5 should be understood in the distributions sense. Then 

D(Qk) = WIAk(M) (1.4) 

and 

Qk(~)  = IId~ll 2 + I1~112 , w e D(Qk). (1.5) 

Indeed it is well known that  any essential domain of a selfadjoint operator is 
an essential domain for the corresponding quadratic form (see, e.g. [RS]). So 
it is sufficient to prove C ~ A k ( M )  is dense in the Hilbert space W1Ak(M) 
equipped with the natural norm 

11~1121 = I1~112 + IId~ll 2 + 115~112 , (1.6) 

where II II denotes the usual L2-norm. But this is trivial because we can 
apply F-invaxiant mollifiers to the forms from W1Ak(M) and then multiply 
by appropriate cut-off functions. This will give us small errors because d, 5 
are first order operators. 

Let us also define the Laplace transform of the Stieltjes measure defined 
by the spectrum distribution function Nk(A): 

ok(t) = T~r exp(-tZxk) = f exp(-~t)dNk(X) , t > 0 .  

Then Ok is a decreasing positive real-valued function on the open half-axis 
a +  = { t i t  > 0}. 

It is well known that  the asymptotic behaviour of Nk()O as ~ --~ +0 
or ,~ --, +c~ is closely connected with the asymptotic behaviour of Ok(t) as 
t ~ +r or t --* +0  respectively (see Appendix). The main subject of this 
paper  concerns the asymptotic behaviour of Nk(A) as A --~ +0 or of Ok(t) 
as t ~ +oo. Therefore now we shall introduce an appropriate terminology. 

Denote by jV" the set of all (non-strictly) increasing functions on R 
which vanish on the open negative half-line, i.e. Af contains all increasing 
functions N(.)  such that  N(A) = 0 when A < 0. Choosing N1, N2 E A f we 



Vol.1, 1991 V O N  N E U M A N N  S P E C T R A  N E A R  Z E R O  379 

shall write N1 d N2 (and say that  N1 and N2 are dilatationally equivalent) 
if there exists a constant C > 0 such that  

NI(C-la) < Y2(a) < g1(ca) 

for every )~ E R. We shall write that  N1 d N2 near 0 if these inequalities 
are satisfied on ( -cr  ~] for some E > 0. 

Similar terminology can be applied to the Laplace transforms. Namely, 
let O be the set of all (non-strictly) decreasing positive real-valued functions 

on R+. Let 81,02 E O. We shall write 01 ~ 02 if there exists C > 0 such 
that ~ 

ol(ct) <_ o2(t) <_ o (c-lt) 

for every t > O. We shall write that  01 d 02 near infinity if this hoIds true 
on [to, +oo) for some to > O. 

The Laplace transform of a distribution function N EAf  is defined as 

O(t) = f exp(-)~t)dN()~) 

and O E O provided O(t) is finite for all t > 0 (which is the case for all 

functions Nk which were introduced above). It is easy to prove that N1 ~ N2 

(everywhere or near 0) implies that  01 d 02 (everywhere or near infinity 
respectively) for the corresponding Laplace transforms. 

There is not much known about the asymptotic behaviour of Nk(A) as 
)~ --* +0 or of Oh(t) as t ~ +oo. The limits 

bk = lira N k ( ~ ) =  lira Oh(t) 
~--*+0 t - -*+~  

are called yon Neumann Betti numbers of the base manifold X = M/F  in 
the case when M is simply connected (and F = 7rl (X)). They are homotopy 
invariants of X which were introduced in [A] and used in INS1] to improve 
Morse inequalities for non-simply connected manifolds. 

It was noticed in INS2] that  if Nk, N~ are the spectrum distribution 
functions corresponding to the Laplacians Ak, A~ constructed by means of 

two I'-invariant metrics g, g' on M then Ark ~ N~ (the proof is published 
in [ES]). It follows that  the dilatational equivalence class of Ark in Af does 
not depend on the choice of a F-invariant Riemannian metric on M. Hence 
the same is true for the corresponding functions 0h. So the dilatational 
equivalence classes of Ark and Oh depend only on the r-invariant smooth 
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structure on M.  Supposing that  X = M / F  is fixed we can say that  the 
classes of Nk and 0k depend only on the smooth  structure on X (and on 
the choice of a normal subgroup K C 7rl (X) which gives us a covering M 
of X with an action of F = 7r~(Z)/K).  The main result of this paper  will 
imply that  these classes near 0 for Nk and near infinity for 0k are in fact 
homotopy  invariant. 

Let us write tha t  f(A) • ,k s as ~ --, +0 if there exists C > 0 such that 
C-~,X a < f ( $ )  < C,k a in (0, A0) for some ~0 > 0. The notat ion g(t) ,~ t -~ 
as t --* +oo  has a similar meaning. Now let us suppose that  there exists 
ak  E R + such that  

Nk(A) - bk x A '~' , A ---} + 0 ,  (1.7) 

o r  

o k ( t )  - • t , t - - ,  , (1.8) 

(it was proved in [ES] that  these estimates are equivalent). Clearly the 
number  ak depends only on the dilatation equivalence class of Nk near 0 or 
Ok near infinity. Hence the homotopy invariance of the classes of Nk and Ok 
implies that  the numbers  crk are also homotopy  invariants. 

Let us mention the results of calculations which are known to the au- 
thors. All of them concern the case when M is simply connected and so 
r = ~ l ( x ) .  

If M = R n with the usual flat metric and F is a lattice in R n then 
clearly 

O~ 0 ~ OL 1 ~ . . .  ~ 0 l  n ~ n /2  

due to the s tandard Poisson formula for the heat  kernel. 
It was ment ioned in [ES] that  a l  = c~2 = 1/2 for the  case M = H 3 where 

H n is the n-dimensional hyperbolic space (it is a corollary of calculations in 
[Vii). Using the results of [M] and IF], J. Lot t  ILl calculated the numbers 
ak in the case M = H 2n+1 and has shown tha t  an = an+l  = 1/2. Note 
tha t  the spec t rum of Ak in H 2n for all k and in H 2n+1 for all k # n, n + 1 
has a gap near 0 which is equivalent to the fact that  Nk(,k) - bk = 0 in a 
neighbourhood of 0 (or to the fact tha t  Ok(t) - bk = O ( e x p - e t )  for some 
e > 0 as t ~ +oo).  

In the case when the est imates (1.7) or (1.8) are not valid we can 
introduce the numbers  (from [0, +oo]) 

__ak-- - - l iminf l~  = l i m i n f - l ~  - ~ k j  / ~ ~ (1.9) 
x-.+0 log )~ ,-.+oo log t 
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(the last equali ty is proved in the Appendix,  Proposi t ion A.1) and the num- 
bers 

~k = l im sup log (Nk(A) - bk) 
~--.+o log A , ~ = limt__,+oosup 

which satisfy the inequality 

- l o g  (Ok(t) - -bk) 

log t 
(1.10) 

~k _> ~ k -  (1.11) 

It becomes an equali ty provided one of the two following equivalent 
conditions is fulfilled: 

N k ( A ) - b k = O ( A e )  as A - - - + 0  (1.12) 

o r  

Ok(t) - b k  = O( t  -~) as t -~ +oo , (1.13) 

with some 6 > 0 (see Proposi t ion A.1). It is clear tha t  if (1.7) or (1.8) axe 
satisfied then  

a_k = ~k = ~'k = ak . (1.14) 

It is not  probable tha t  (1.7) and (1.8) are always fulfilled because these 
est imates are not  satisfied for the functions Ark(),) and Ok(t) having loga- 
ri thmic terms in their asymptotics .  But  these logarithmic terms axe not 
impor tan t  for the  l imits in (1.9) and (1.10) (which are the same, e.g. if 
Nk(~) ,,~ ) ~  (log)~)m as A --, +0 whatever  m > 0). It is not known whether  

- ~ ( 1 . 1 5 )  C~ k ~ C~k = Ol k 

in the general s i tuat ion we consider. 
J. Lott  [L] considers the numbers  a_z r (in a different normalization: in 

fact his no ta t ion  ak means  our 2o~k) and obtains some est imates and explicit 
results about  them,  most ly  in the case of a s imply-connected M (i.e. when 
F = ~rl(X)) which we shall also suppose for the sake of simplicity until  
the end of this section. Using Fourier analysis he proves tha t  if F is an 
abelian group then  g-k is rational and ~-k > 0. Moreover if F = iv e then 
-q0 = c~1 = g/2 and if g = 1 then  ~-k = 1/2nk with some positive integers nk 
for all k. He also remarks  tha t  it follows from [Va] tha t  g-o = oo unless F has 
polynomial  growth (i.e. is almost  ni lpotent  according to [G]), in which case 
2_a 0 is the growth rate of F. It is also proved in [L] by a use of CR-analysis 
that  if M is the (2m + 1)-dimensional Heisenberg group then  a.q_ k < m + 1 
if k ~ m,  m + 1; ~k <- (m + 1)/2 if k = m, m + 1. Moreover, if m = 1 then 
a_0 = 2, a 1 = 1. We also refer the reader to ILl about  some information on 
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the finiteness of the numbers ak in the case when M is a locally symmetric 
space. Let us also mention that the result of R. Brooks [B] implies that if 
F is not amenable then ~-o = +oc. 

2. Formulation of the Main Results  

Let us fix a discrete group F and define a category M r .  Its objects are 
smooth F-manifolds M which are equipped with a free action of F with a 
compact quotient X = M/F. The morphisms in A i r  are homotopy classes 
of smooth F-maps. 

Without loss of generality we may suppose all manifolds to be con- 
nected. 

An equivalent category is obtained if we define objects to be smooth 
compact manifolds X equipped with a given epimorphism j x  : ~rl(X) --* r 
and define morphisms as the homotopy classes of smooth maps which agree 
with the given epimorphism j x ,  i.e. smooth maps f : X1 --* X2 such that 
the diagram 

ix, 
F 

is commutative. We will not distinguish these two categories. Evidently the 
same category is obtained if we consider eontinuous maps instead of smooth 
ones. 

Now we Call formulate one of the main results. 

THEOREM 2.1. Let M, M' be F-manifolds which are F-homotopy equiv- 
alent, i.e. isomorphic in M r .  Let Nk, N~ be the corresponding spectrum 

distribution functions. Then Nk d N~ near 0 for every k = 0, 1 , . . . ,  d imM. 

COROLLARY 2.2. Under the same conditions Ok a O~ near  infinity for the 
Laplace transforms Ok, O~ of Nk, N~ respectiveIy. 

COROLLARY 2.3. Let us suppose that M, M'  are the same as in Theorem 
2.1. Then they have the same numbers a_k,Hk,~' k. If the invariant ak is 
defined on M for some k, i.e. (1.7) (or (1.8)) is satisfied then the same is 
true/ 'or M' with the same exponent ak. 

So all the exponents a_k,Hk,~ k are homotopy invariants (and so is ak 
when it is well defined). 

A particularly interesting case is where M is the universal covering of 
a compact manifold X and the group F -- r l ( X )  acts on X by the deck 
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transformations. Then the dilatational equivalence classes of Nk can be 
thought of as some invariants of the manifold X. Theorem 2.1 implies then 
that the classes of Nk near 0 and of 0k near infinity are homotopy invariants 
of X. Hence all exponents a_k , Ha, ~k are also homotopy invariants of X and 
so is am provided it is well defined. Note that  in fact these invariants depend 
only on the universal covering of X. Hence they are not local invariants 
because they do not change if we pass from X to its finite covering (a 
covering manifold which corresponds to a cofinite subgroup in ~rl (X)). 

Later we shall formulate the main results in a more general and refined 
form which includes the case of manifolds with a piecewise smooth boundary. 
But to do this we shall need some additional preparations which are also 
necessary for the proof of Theorem 2.1. 

3. Kodaira Decomposi t ion  and Generalization to Manifolds with 
B o u n d a r y  

3.1. Let us describe the Kodaira decomposition [K] for the case of a 
Riemannian manifold M with a piecewise smooth boundary. By a manifold 
with a piecewise smooth boundary we mean a closed part M of an (open) 

manifold ~ r  such that  in a neighbourhood U C ~r  of a point x E M the 
part M n U can be represented as (a part of) a polyhedron P C R ~ in 
appropriate local coordinates on M. In fact we need only that  M is locally 
Lipschitz equivalent to a manifold with a smooth boundary but we shall 
write about a piecewise smooth boundary for the sake of simplicity. 

First let us define Hilbert spaces 

Ek(M)=d(C~~ E~(M)=6(C~~ 

where Int M = M\OM and the bars denote the closures in L2Ak(M). 
Let us define the space of all harmonic square integrable k-forms 

?'/k(M) = {w I w e L2Ak(M) , dw = 0 ,  ~w = 0 } ,  

where d, 5 are applied in the sense of distributions. The Kodaira decompo- 
sition has the form 

L2A}(M) = Ek(M) @ Tlk(M) (9 EL(M). (3.1) 

It is an orthogonal decomposition with respect to the scalar product in 
L2A~(M). If we suppose that  M has no boundary and is complete then 
(1.5) and usual ellipticity arguments imply that  

Tl~(M) = {w Iw e Ak(M)NL2Ak(M) , Akw = 0 }  
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where Ak(M) denotes the space of all smooth k-forms on M. 
The kernels Ker d and Ker ~ can be easily described in terms of the Ko- 

daira decomposition if d and ~f are understood in the sense of distributions: 

Kerdk---- E k ( M ) @ ~ k ( M )  , Ker~fk_l = ~ k ( M ) @ E ~ ( M )  , (3.2) 

where dk and ~k-1 denote the restrictions of d and ~ to k-forms. Indeed, 
Kerdk is evidently the orthogonal complement of the closure of 
~f(C~r so the first equality in (3.2) follows from (3.1) and 
the proof of the second one is similar. 

Now let us suppose that  M is a Riemannian F-manifold with a piecewise 
smooth boundary. As before we suppose that  F acts freely and X -= M/F 
is compact  (so X is a compact  Riemannian manifold with a piecewise 
smooth boundary).  Then all the spaces L2Ak(M), Ek(M),  EL(M ), :Hk(M) 
are Hilbert F-modules. There exists a representation 

L2Ak(M) = L2F | L2Ak(X), (3.3) 

where the tensor product  is understood as the tensor product of Hilbert 
spaces (with the completion with respect to the natural  scalar product), 
L2F is the Hilbert space of all square-integrable complex-valued functions 
on F with respect to the uniform discrete measure, L2F considered with 
the natural  left action of F and L2Ak(X) with the trivial action of F. The 
representation (3.3) is induced by a choice of a fundamental  domain of 
the action of r on M. The essential properties of this representation do 
not  depend on this choice. For example, let us define a trace on the yon 
Neumann algebra A (k) of the F-invariant operators in L2Ak(M) by the 
formula 

Trr  = t r r  | Tr . 

Here t r r  is the natural  finite trace on the von Neumann algebra of all F- 
invariant operators in L2F (it is 1 at the identity operator and 0 on all 
right translation operators) and Tr is the usual trace on the algebra of all 
bounded operators L2Ak(X). Then Trr does not depend on the choice of a 
fundamental  domain and is an extension of the trace which was introduced 
in w We shall also denote the corresponding dimension function by direr. 
This function is defined on the set of all F-invariant closed linear subspaces 
in LUhk(M). 
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3.2. Now let us return for a while to the case of Riemannian F-manifolds M 
without boundary and with compact M/F. In w we introduced a quadratic 
form Qk in L2Ak(M) with the domain D(Qk) = WIAk(M) (see (1.4),(1.5)). 
It follows from (3.2) that the Kodaira decomposition (3.1) gives a splitting 
of the form Qk: 

Qk=Q  0 Q . 

For the spectrum distribution function Nk this gives the splitting 

Yk( ) = Gk( ) + + (3.4) 

where Gk, Fk are defined by the formulas obtained from (1.3)' by changing 
L2Ak(M) by Ek(M) and E~c(M) respectively. 

LEMMA 3.1. Fk(A) = Gk+I(A), k = - 1 , 0 , 1 , . . . , n  where n = d i m M  and 
by definition F_I(A) = V n + l ( ~ )  - -  0. 

Proof: The main point here is that the Laplacian A k is essentially self- 
adjoint in L2A k+l (M) with the initial domain C~Ak(M).  Now let us con- 
sider the closures dk and ~k of the operators dk and ~ik in L2Ak(M) and 
L2Ak+I(M) with the initial domains C~Ak(M) and C~Ak+I(M) respec- 
tively. The operators d~ and ~k are formally adjoint to each other and using 
the decomposition (3.1) we easily obtain that the operator (~kdk is essentially 
self-adjoint. It follows, due to the inverse von Neumann theorem (see w of 
[$1]), that djr and ~k are adjoint in the exact Hilbert sense as unbounded 
operators in Hilbert spaces: 

(bars on the right hand sides are omitted because the adjoint operators of 
an operator and of its closure are the same). It follows that Ak = ~kdk on 
E~(M), ~ k  = dk-l~k-1 on Ek(M) and ~k = - d k - l ~ k - 1 3 v - ~ k - d k  o n  L2Ak(M), 
i.e. both sides of all these equalities have the same domains and coincide on 
these domains. 

Now if w E D(~k  I E~) then 

= = (3k , = (ak , (3.5) 

(we can omit the bars keeping in mind that dk, 6k should be applied in the 
sense of distributions). So Fk(A) coincides with the spectrum distribution 
function of the self-adjoint operator ~k  I E~(M) �9 

Furthermore, A~+ldk = dkAk on C~Ak(M).  It follows that 

"dk(--~k - -  IX) - 1  = ( ~ k + l  - - / - t ) - l d k  Oil ( A k  - -  p)(C~CAk(M)) , 
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if g E C \ a ( ~ k )  where a (~k)  is the spectrum of ~ k  in L2Ak(M). Taking 
the closures we obtain 

( ~ k q - 1  - -  ~ ) - l d k  C -dk(~k  -- ]2) - 1  , 

since the closure of d[C~Ak(M) coincides with the closure of 
d](Ak - p)C~Ak(M) because of evident essential self-adjointness of Ak 
on (Ak -/~)C~~ It follows that 

E(/c+i)dk C dkE (~) �9 

Restricting this equality to E~(M) we see that dk gives a similarity of 

E(k)IE~(M ) and E(k+l)lEk+i(M) (this is an "unbounded" similarity but 
it can be changed to a bounded one or to a unitary equivalence if we pass 
from dk to its polar decomposition - see, e.g. Lemma 5.1 in [$2]). So we 
obtain 

Fk()t) = Trr E(k) I E~(M ) = Trr E(k+I) ] Ek+I(M) = Gk+i(A) . [] 

So due to (3.4) and Lemma 3.1 the functions Nk($) are expressed in 
terms of all functions G~(A) or in terms of Fe(A) (and also the numbers bk 
are needed): 

Nk($) = Gk(A) + bk + Gk+i(X) = Fk-1 (A) + b~ + Fk(A) �9 (3.6) 

We shall use the last expression and work with the functions Fk(A) because 
they can be expressed in a more convenient form which does not include/f: 

LEMMA 3.2. For every A E R+ 

Fk(A)= sup d i m r L ,  (3.7) 
LES(k) 

where s  k) is the set of all closed F-invax/an$ subspaces L C L2Ak( M) / Ker d 
such that d(L) C L2Ak+I(M) and 

[Idwll _< v~[[w H , w e L .  (3.8) 

(The norm on the left-hand side is the usual norm in L2Ak+I(M) but the 
norm on the right-hand side is the quotient Hilbert norm in L2A~(M)/Ker d.) 
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Proof: The  s ta tement  becomes evident if we use the  natural  isometry 

L2Ak(M)/Uer d --- E~ ( i )  

and (3.5)�9 n 

Now let us note tha t  Fk(+0)  = 0 and if 

Ft()t) x )t ~' as ~ --* + 0 ,  (3.9) 

for e ---- k - 1 and e = k with some Bt > O, then (1.7) is true due to (3.6) 
with 

crk = min(/3k_l,/~k).  (3.10) 

So the numbers  crk can easily be expressed in terms of similar numbers  
defined for the functions Ft. 

If the  numbers/~t  are not defined then as in the end of w we can define 

numbers  --fit' ~e,/3e. Then  

= _< min(7 _l,7 ), _< 
(3.10') 

and if fl-fl-~-I = ~k-1,  ~ = ~k then cr k = ~k = min (~k_ l ,~k )  (see Proposi-  

tion A.2 and Corollary A.2 in the Appendix).  

3.3. Now we can re turn  to the case of F-manifolds M with piecewise 
smooth  boundaries.  L e m m a  3.2 allows us to give a definition of Fk($) in 
this si tuation.  

DEFINITION: 3.1 For every F-manifold M with a piecewise smooth  bound-  
ary the funct ion Fk is defined by the formula (3.7). 

In the  case where we need an explicit dependence of Fk on M we shall 
write Fk()~; M )  instead of Fk()~). 

It is clear that  Fk is a (non strictly) increasing function on ~ with 
values in [0, + ~ ]  and Fk(~) = 0 if ,~ < 0. 

In fact, only a F-invariant Lipschitz s t ructure and a F-invariant Lip- 
schitz R iemannian  metr ic  on M are needed to make  this definition mean- 
ingful (see, e.g. [T] for the necessary definitions about  Lipschitz manifolds).  
Changing the Lipschitz metric to another  F-invariant one leads to a chang- 
ing of all the  functions Fk to dilatat ionally equivalent ones. Also if two 
manifolds are Lipschitz homeomorphic  then the corresponding functions 
are di latat ionally equivalent. 

We still do not know whether  Fk($) is finite or not.  To prove the  finite- 
ness (for the  case of compac t  M/F) we shall need the following impor t an t  
result about  compar ing  the functions Fk for two different manifolds. 
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PROPOSITION 3.1. Let M1, M2 be two F-manifolds of the same dimension 
with piecewise smooth boundaries and suppose there exists an isometric 
F-inclusion M1 C M2 (i.e. M1 is a part of M2). Then 

Fk(A;M~) _< Fk(A;M2),  k = 0 , 1 , . . . , n ,  (3.11) 

where n = dim M1 = dim M2. 

Proof: Let us use the formula 

Fk(A; M)  = sup dim rL  

where the supremum is taken over all F-subspaces L C EL(M) such that 
d(L) C L2Ak+I(M) and (3.8) is satisfied. Now under the conditions of 
Proposition 3.1 we have a natural inclusion 

C~Ak+l ( In t  M1) C C~~ k+l (Int M2) 

which induces the inclusion 

5C~~ M1) C 5C~Ak+l( In t  M2) 

so after taking closures we obtain an isometric inclusion 

"114:. , E;(M1) C Ek( 2) 

so (3.11) evidently follows, o 

COROLLARY 3.1. Let M be a F-manifold with a piecewise smooth boundary 
and a compact quotient manifold X = M/F .  Then Fk(A) < oc for every 
A E R and for every k = 0, 1 , . . . ,  n. 

Proof: We refer to [A] for the case where OM = 0. 
First we reduce the problem to the case of smooth (C ~ ) boundary. 

This can be done either by passing to a Lipschitz homeomorphic manifold 
or by taking an inclusion M C M1 where M1 is a "neighbourhood" of M 
with a Coo-boundary such that  dimM1 = d i m M ,  M1 is F-invariant and 
M1/F is compact .  

So we can suppose that  0 M  is Coo. Then we can construct an isometricA 
inclusion M C M where M is a Riema.n~nian F-manifold such that  M / F  is 
a compact closed manifold. (E.g. one can take the double M of M). So the 
statement follows from Proposition 3.1. o 
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Remark:  A direct proof of Corollary 3.1 for the case of a smooth boundary 
was suggested by V. Ivrii, who used the ellipticity of a boundary value 
problem on X = M / F .  

We shall define later on the functions Fk(),) (up to dilatational invari- 
ance) for every CW-complex M with a free action of a discrete group F 
with a compact quotient space X = M / F .  We shall also prove that the 
statement of Corollary 3.1 remains true in this situation. 

4. Homotopy (abstract setting) 
Let us recall necessary definitions about L2F-modules in the sense de- 

scribed in [Co]. A free L2F-module is a Hilbert space of the form L2F @ A 
where A is a (complex) Hilbert space. We consider this free L2F-module 
with an action of F which is defined by the left action of F on L2F and the 
trivial action of F on A. There is a natural trace Trr in the von Neumann 
algebra of all F-invariant operators in L2F @ A: 

~lXrF = t r r  | Wr , 

where trr  is defines in w and Tr is a usual trace in the algebra of all bounded 
operators in A. The corresponding dimension-function will be denoted by 
dimr. It is defined on the set of all F-invariant closed subspaces in L2F | A 
and has values in [0, +oo]. 

A L2F-module M is a closed F-invariant subspace in a free L2F-module. 
The dimension function dimr is defined also on all closed F-invariant sub- 
spaces in M and does not depend on the choice of a F-invariant inclusion 
of M into a free L2F-module. 

Let us consider a complex M of L2F-modules, i.e. a sequence 

dn-~ 
0 , Mo do M1 ~ . . .  ~ M~ ,~k Mk+l  ~ . . .  Mn  ,0  

where Mk are L2F-modules, dk : Mk -" Mk+l are closed densely defined 
linear operators such that dk+ldk = O, k = O, 1 , . . . ,  n - 1, dk7 = 7dk for 
all 7 E F and k - 0, 1 , . . . ,  n - 1 (where we use the same notation for the 
elements 7 E F and the corresponding operators in Mk). For the sake of 
simplicity of notation we shall always consider complexes of the same length 
and put by definition M-1 = Mn+t  = O, d-1  = dn = O. 

Let N be another complex of L2F-modules. A morphism f : M --* N 
is a sequence fk : Mk --~ N~ of bounded linear F-operators (i.e. operators 
which commute with the action of F in Mk and Nk) such that 

f k+tdk  C dk fk  



3 9 0  M. G R O M O V  A N D  M.A.  S H U B I N  G A F A  

(we denote  the  differentials in N by the same letters de), i.e. fk+ldew = 
de few for every w E D(de). A homotopy  between two morphisms  f ,g  : 
M --* N is a sequence of bounded  F-operators Tk : Me --* Ne-1 ,  k = 
0, 1 , . . . ,  n, such tha t  

r e -  ge -Te+lde C de-xTe. (4.1) 

Since re, ge, Te are bounded  this implies, in particular,  tha t  the  domain  of 
the  operator  on the r ight-hand side contains D(dk), so (4.1) is equivalent 
to  the equali ty 

fk - ge = Te+lde + de-lTe on D(de) . (4.1') 

I t  is clear tha t  homotopy  in this sense is an  equivalence relation. 
Let us say tha t  two complexes of L2F-modules  M and N are homotopy  

equivalent if there exist two morphisms f : M --* N and g : N --* M 
such tha t  bo th  composi t ions fg and gf are homotopic  to the corresponding 
ident i ty  morphisms  of N and  M respectively. It is easy to check tha t  this 
h o m o t o p y  equivalence is really an equivalence relation. 

If M is a complex of L2r -modules  then  we can define the  functions 
Fe = Fe()~) = Fe(A; M) ,  k = 0, 1 , . . . ,  n, in the same way as we did in w 

Fe(A) = s u p d i m r  L (4.2) 
LES(k) ( M) 

where S (e) (M)  is the set of all closed F-invariant subspaces L C Me~ Ker de 
such t ha t  L C D(de)/Kerdk and 

Ilde ll v ll ll, c L .  (4.3) 

So Fe is a (non strictly) increasing funct ion on R with values in [0, +co] and 
Fe(A) = 0 if A < O. 

Now we can  formulate  the  ma in  abst ract  s ta tement .  

PROPOSITION 4.1. Let M, M' be complexes of L2F-modules which are ho- 

raotopy equivedent, Fk, F~ the corresponding functions. Then Fe ~ F~ 
near O. 
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Proof: Due to the symmet ry  of the requirements it is sufficient to prove 
that  there exists C > 0 such tha t  near 0 

Fk(A) < F~(CA) . (4.4) 

Let the  homotopy  equivalence of the complexes M and M '  be realized 
by morphisms  f : M --+ M '  and g : M '  --+ M such tha t  f g  and g f  are 
homotopic to the ident i ty  morphisms of M ~ and M respectively. Let us 
denote by T the homotopy  of g f  and the identi ty morph i sm 1M of M.  

To prove (4.4) it is sufficient to check that  there exist ~0 > 0 and C > 0 
such tha t  for every ~, e (0,),0) and L f rom (4.2) (satisfying (4.3)) there exists 
a closed F-invariant subspace L'  C M~/Kerdk  such tha t  d imr  L' = d imr  L 
and 

]ldka'l] <_ v~--Alla']l , a' e n'  . (4.5) 

We shall take L' = fk(L) m o d  Kerdk and check tha t  there exist A0 > 0 
and C > 0 depending only on the norms of fe,ge and Te, such that  if 

E (0, ~o) then  the  following is true: 
i) L' is closed and fk is injective on L (hence d imr  L'  = d imr  L); 

ii) (4.5) is satisfied. 
Let us choose an arbi trary w E L and a representative wl E Mk of the 

class w such tha t  wl 2_Ker dk, hence ]]wll = Ilwlll. So we have 

IId~wlll = lldkwl[ < v/AIIwll = v/AIIc~ 

Now we should consider the element fkwl and its class modulo  Ker dk in 
M~/Ker dk which we shall denote by c~'. So we have dka' = d k f k w l  =- 

fk+ldkwl, hence 

Ildk~'ll = I Ih+~dk~l l l  < Ilfk+lllUdkw~ll <- vffllf~+~llllw~ll �9 (4.6) 

Now using the homotopy  T we can write 

~1 = g~fk~l + d~-lT~:wl + Tk+ld~wl . 

We can split f~wl into the sum 

! ! 
Ykwl = ~:1 + w2 

with w~ E Kerd~ and w~• hence Ila'll -- llwill. Clearly dkgkwh = 
g~+ldkw~ = 0, hence the classes of gkfkwl and gkw~ modulo  Ker dk coincide, 
so we have 

wl = gkw~ + Tk+ldkwl m o d  Ker dk �9 
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Since wl-l- Ker dk we obtain 

II~xll <_ IIg~i  + Tk+ldkwll[ < IIg~lllMII + IITk+llllldk~lll <_ 

< I l g ~ l l l M l l  + v q l l T ~ + l l l l l ~ l l  �9 

Choosing ,~o > 0 such that v~ollTk+lll < ~/2 we obtain for ,~ e (0,,~o) 

I1~11 < (1 - v ~ o l l T , ~ + ~ l l ) - l l l g , ~ l l l M I I  < 211g,~ll lMII = 211g,~llll'~'ll �9 

It follows that fk is injective on L and L' = fk(L) is closed. Moreover (4.6) 
now implies 

[Idk~'ll < 2vqllfk+lllllgklllldll = v ~ l l ~ ' l l ,  

for every a '  E L' provided A E (0, Ao) where 0 < Ao < (211Zk+xll) -2. This 
proves (4.5) and concludes the proof of Proposition 4.1. D 

5. H o m o t o p y  ( g e o m e t r i c a l  se t t ing)  

Now we are going to prove a generalization of Theorem 2.1 to the case 
of F-manifolds with piecewise smooth boundaries. 

Let us define the category Br, whose objects Ob(Br) are the smooth 
F-manifolds M (i.e. C~176 which are equipped by a free action of 
F) with piecewise smooth boundaries and compact quotients M/F and mor- 
phisms are the homotopy classes of smooth F-maps (we could also take ho- 
motopy classes of continuous F-maps which lead to an equivalent category). 
Two F-manifolds M1,M2 E Ob(Br) are called F-homotopy equivalent if 
they are isomorphic in Br. 

If M E Ob(Br) then the functions Fk = Fk(.; M) are defined up to the 
dilatational equivalence (w 

THEOREM 5.1. Let M1,M2 E Ob(Br) and let M1,M2 be F-homotopy 
equivalent. Then 

Fk(A;M1) d Fk(A;M2) near 0 

for every k = 0, 1 , . . . ,  n, where n = max(dim M1, dim M2). 
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Remark: Here M1, M2 are not required to have the same dimension. 
For the proof of Theorem 5.1 we shall use the abstract setting of w by 

considering complexes of L2F-modules of the form 

L 2 A ' ( M ) : 0  ,L2AO(M) g0 L2AI(M) , . . .  , L 2 A k ( M )  d ,  

dn~l L2Ak+I(M) , . . .  , L2An(M) ,0  , 

where M E Ob(Br),  M is equipped with a F-invaxiant Riemannian metric 
and d1r are usual exterior differentials which are taken on the maximal do- 
main containing all forms w E L2Ak(M) such that  dw E L2Ak+I(M) if d is 
applied in the sense of distributions. 

Theorem 5.1 will evidently follow from Proposition 4.1 and the follow- 
ing 

THEOREM 5.2. Let M1,M2 E Ob(Br) and let M1,M2 be F-homotopy 
equivalent. Then the complexes of n2F-modules L2A'(M1) and L2A'(M2) 
are homotopy equivalent. 

We shall begin with some preparations on the passage from geometrical 
homotopy to analytical homotopy of complexes of L2F-modules. The main 
idea of this passage is a use of submersions. 

Let us recall that  a submersion f : M1 --* M2 between two manifolds 
(with boundaries) is a C~176 which has surjective derivative maps on 
tangent spaces d , f  : T, M1 ---* TI(,)M2 for all x E M1. The importance 
of submersions is clear from the observation that if we have a C~176 
f : M1 --* M2 between two Riemannian manifolds which is not a submersion 
and take the induced map f* : Ak(M2) --* Ak(M1) then it usually cannot be 
extended to a bounded linear operator f* : L2Ak(M2) ~ L2Ak(M1) even if 
k = 0 and M1, M2 are compact (the simplest example: take M1 = Me = 
[0,1], f (x )  = x 2, then ~:  x ~ z -1/3 is in L 2 but f * ~ :  z H x-2/3 is not in 
L2). In the case of compact M1 and M2 the induced map can be extended 
to a bounded linear operator f* : L2(M2) --* L2(M1) (the case k = 0) if 
and only if f is a submersion. Note that  a submersion is not necessarily 
surjective. 

Now let M1, M2 be F-manifolds. Then f is called a F-submersion if 
it is a submersion and a F-map. The important  point is that if M1, M2 E 
Ob(Br) and f : M1 --* M2 is a F-submersion then the corresponding maps 
f* : L2Ak(M2) --. L2Ak(M1) are bounded linear operators, hence they 
constitute a morphism of complexes of L2F-modules 

f* : L2A'(M2) , L:A'(M1) �9 
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Let us denote I = [0, 1] and suppose that there are two homotopic Coo- 
maps fo, f l  : Mt --* 3//2 of manifolds with boundaries. Let us denote the 
corresponding smooth homotopy by F,  i.e. F : M1 • I --* M2 is a C~176 
such that F(x,  j )  = fj(x),  j = 0, 1. Then the chain homotopy formula gives 
for every w E Ak(M2) 

f~w - f~w = (dT + Td)w (5.1) 

Let us also define a morphism 

by the formula 

Jw = (i~w)dt 

where i~ : M ~ M x I is the following inclusion: i,(x) = (x, t), t is the 
natural parameter on I. It is easy to prove that the morphisms p* and J 
give the desired homotopy equivalence. This can be seen, e.g. by using the 
chain homotopy formula (5.1) with f0 = idMxl and ft,, = i~ o p with a 
natural homotopy between these maps and the integration with respect to 
t over [0, 1] leading to bounded homotopy operators. 

J :  L2A'(M x I) ---* L2A'(M) 

p*:  L2A'(M)-- ,  L2A'(M x I ) .  

where 

= (O/OtJF* o)dt . ( 5 . 2 )  

Now let us suppose that 3//1, M2 E Br and f0, f l  be F-submersions. We shall 
always suppose that F acts trivially on I. Then evidently M1 x I E Br. 
Let us suppose that F is a F-submersion. Then T defines bounded linear 
operators 

Tk : L2Ak(M2) --* L2Ak-I(M1) 

which consititute a homotopy of morphisms f~, f~ as morphisms of com- 
plexes of L2F-modules. 

Now we need some analytic and geometric lemmas. 

LEMMA 5.1. Let M E Ob(Br). Then the complexes L2A'(M) and 
L2A'(M x I) are homotopy equivalent as complexes of L2F-modules. 

Proof: Let p : M x I --* M be the natural projection. It induces bounded 
linear maps 

p* : L2Ak(M) --* L2Ak(M x I) 

which define a morphism of complexes of L2F-modules 
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COROLLARY 5.1. Let M E Ob(Br) and B e be a dosed ball in R e. Then 
the complexes L2A'(M) and L2A'(M • B e) are homotopy equivalent as 
complexes of  L2F-modules. 

Proof: Using the Lipschitz invariance of the homotopy classes we can change 
B e to the cube I t and repeatedly apply Lemma 5.1. 

Later  we shall always suppose for the sake of simplicity that  B e is the 
unit ball with the center at the origin 0 E R e. 

Now we shall need the following trivial geometric statement.  

LEMMA 5.2. For every compact Coo-manifold X with a C~176 there 
exist an integer ~ > 0 and a submersion s : B e ---* X with a given s(O) = 
x0 E Int X .  This submersion can be chosen smoothly depending on Xo. 

Proof: We can imbed X into R e and take the orthogonal projection of a 
small ball B (x0, r(x0)) in R e centered at  x0 with radius r(x0) to a neighbour- 

hood of Xo in X,  composing it with an affine map of B e on B(xo ,r (xo) )  
(r(xo) and the affine map can be chosen smoothly depending on x0 for 
x0 E Int X) .  [] 

LEMMA 5.3. Let M1, M2 E Ob(~r)  have smooth boundaries and f : M1 
IntM2 be a smooth F-map. Then there exist an integer ~ > 0 and a smooth 
F-map F : M1 x B e --~ Int M2 such that F is a submersion and f = F o i 
where i : M1 ---* M1 x B e is the natural inclusion, i.e. i(x) = (x, 0), x E M1. 

Proof: Let us denote Xj  -- M j / F ,  and introduce the notations ~rj : Mj --* 
Xj  for the natural  projections, j = 1, 2. Due to Lemma 5.2 we can choose a 
submersion s : X1 x B e --+ X2 such tha t  s(x,O) = 7r2f(5), x E X1, 5 E M1, 
~rz (7) = x. Then there exists a unique smooth map F : M1 x B e --* M2 
such that  F o i = f and 7r2 o F = s o (7rl x Id), i.e. the diagram 

i Be (~l• Be i l  --* M1 x --* X1 x 

\ s  IF Is 
M2 X2 

is commutative.  It is easy to check tha t  F satisfies all the conditions. D 

LEMMA 5.4. Let  M1, M2 E Ob(/3r) have smooth boundaries and f0, f l  : 
M1 --* M2 be smooth F-submersions which are homotopic in the class of  all 
(smooth or continuous) F-maps. Then there exist an integer t >_ 0 and a 
homotopy F : M1 x B e x I --* M2 such that F is a smooth F-submersion 
(the action of  F on B t x Z is trivial) and F(x ,  b, j )  = f i  (x), j = O, 1, for all 
x E M ,  b E B  e. 
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Proof: Modifying f0, f l  near fo l (OM2) ,  f~ l (OM2)  respectively, we may 
suppose that  f j (M1)  C IntM2,  j = 0,1. Let G : M1 x I --~ M2 be a 
smooth  homotopy  of f0 and f l  in the class of all smooth  F-maps. Using 
Lemma 5.3 we can construct  a smooth F-submersion F : M1 x B e x I -~ M2 
such tha t  F(x ,O, t )  = G( t , x )  for all x E M1, t E I.  Since f 0 , f l  are 
submersions, the  maps F(. ,b,  t) : M1 -+ M2 have surjective derivatives 
dxF(x ,  b, t) : TxM1 -4 TF(,,b,,)M2 for all x E M1 provided b is close to 0 
and t is close to 0 or 1. Using the homothet ies  of the ball B e it is easy to 
modify  F near  t = 0 and t = 1 to satisfy all the conditions of Lemma 5.4. [] 

Proof of Theorem 5.2: Using Lipschitz homeomorphisms we can sup- 
pose without  loss of generality that  M1, M2 have smooth  boundaries. Let 
f : M1 --* M2 and g : M2 --* M1 be smooth F-maps which define an isomor- 
phism of M1 and M2 in Br (a F-homotopy equivalence). Due to Lemma 

5.3 we can find an integer ~ _>O and submersions f ' :  M1 x B e --* M2 and 
: M2 x B e --~ M1 such that  f is homotopic to f o Pl and ff is homotopic 

to g o P2 where pj : M j x  B ~ -4 Mj ( j  = 1, 2) are the natural  projections. 
Let us construct  morphisms 

Jj : L2A' (Mj  x B e ) -~ L2A' (Mj)  , j = 1 , 2 ,  

as in the proof of Lemma 5.1 and Corollary 5.1 so that  p~ and Jj give a F- 
homotopy equivalence of complexes of L2F-modules L2A'(Mj)  and 
L2A'(Mj • Be), j = 1,2. Then  we can define the following morphisms 
of colnplexes of L2F-modules: 

F = J2 o ~*:  L2A'(M1) --. L2A' (M2) ,  

G = J1 o f"* : L2A'(M2) --. L2A'(M1) . 

Using Lemma  5.4 it is easy to check that  F and G consti tute a F-homotopy 
equivalence of complexes of L2F-modules. The required chain homotopy 
is constructed from the homotopy operators like (5.2) by integrating over 
parameters  involved in the construction of -/1 and ,]2. 

Remark 1: Let us describe a definition of the functions Fk(A) (up to di- 
latat ional  equivalence near 0) for CW-complexes M with a free action of a 
discrete group r and with a compact  quotient X -- M / F .  First we replace 
X by a homotopy  equivalent simplicial complex and embed X into a vector 
space R N. Then  we can replace X by a homotopy equivalent closed neigh ~ 
bourhood of X in R N which is a C~176 with a Coo-boundary. After 
tha t  we have the  corresponding covering manifold M with a free action of 
r such tha t  X = M / F .  This M is a Coo-manifold with Coo-boundary. So 
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we can consider the de Rham L2-complex on M and take the corresponding 
functions Fk which have classes of dilatational equivalence near 0 which do 
not depend on the arbitrary elements of the construction above, due to the 
homotopy invaxiance of these classes. 

So for any k the dilatational equivalence class of functions Fk is well 
defined for every CW-complex M with a free action of the discrete group 
F such that  X = M / F  is compact. It is clear from this construction that  
Fk(A) < c~ for all A > 0. In particular this construction works for all 
Lipschitz F-manifolds (and not only those having a C~-structure) .  We do 
not prove now that  for Lipschitz manifolds this topological construction 
gives the same result as the analytical definition but we hope to do it in the 
next paper. 

Remark 2: Let us consider a F-invariant simplicial complex which is ob- 
tained by taking a triangulation of X and then lifting it to a triangulation of 
M. Taking then the corresponding dual combinatorial L2-complex of simpli- 
cial L2-cochains we obtain a discrete approximation of the earlier considered 
complex of L2-forms. Now we can define the corresponding combinatorial 
functions Ft~(~ ). Our technique allows us to prove that  their dilatational 
equivalence class near 0 coincides with that of the earlier defined functions 
Fk(A) by proving that  the combinatorial L2-complex of cochains and the 
de Rham L2-complex are homotopy equivalent in the sense of w this was 
done by A. Efremov [E]. Note that  in a recent paper J. Lott ILl proves 
the inequality c~ _< ~-k for the corresponding combinatorial and analytical 
numbers. In fact these numbers coincide as follows from the coincidence of 
the dilatational equivalence classes of the functions F~ and F k. 

A p p e n d i x  

Decay  e x p o n e n t s  and the  Laplace t r a n s f o r m .  
In this Appendix we investigate connections between the behaviour of 

a (non-strictly) increasing function F :  R -~ R+ = [0, +cx)] near 0 (we shall 
always suppose that  F(A) = 0 if ,~ < 0) and the behaviour of its Laplace 
transform 

O(t) = f e - X t d F ( ~ ) =  lim f ' *  e-AtdF()~) . (A.1) 
JR N - - , + c ~  J -0  

It was proved in [ES] by some elementary considerations that if b = F(+0)  
(i.e. b is the jump of F at 0) and O(t) < c~ for all t > 0 then the estimates 

_ • i . e .  

C - 1 ) k  a ~_ F(/~) - -b ~_ C/~a n e a r  0 
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with some cr > 0 (and a constant  C > 0) are fulfilled if and  only if O(t) - 'b x 
t - a ,  i.e. 

C - i t  -~  < O(t) - "b <_ Ct  -~  near infinity 

(possibly with another  constant  C). Here we use similar reasoning to es- 
tablish other  connect ions between asymptot ics  of F(A) near  0 and O(t) near 
infinity. Note  tha t  the  reasoning tha t  we use is close to the s tandard  argu- 
men t s  which are used to prove Tauber ian theorems of Karamata ' s  type  for 
the  Laplace t ransform. 

The  Laplace t ransform (A.1) is finite for every t > 0 if and only if F 
satisfies the  subexponent ia l  es t imate  

F ( A ) = O ( e  ~a) fo ra l l  ~ > 0 .  (A.2) 

Indeed,  in tegrat ing by par ts  in (A.1) gives 

f_: e-atdF(A)  = e - t N F ( N )  + t e-atF(A)dA , 
0 

hence [e - tNF(N)[  < Ct for all t > 0 which is equivalent to (A.2). Further- 
more  if (A.2) holds then  the same calculation shows tha t  

O(t) = t . ~  e-atF(A)dA , t > 0 ,  (A.3) 

where the  integral  converges absolutely. So from now on we shall always 
suppose  t ha t  (A.2) is satisfied. Denote b = F ( + 0 ) .  Then  

lira O(t) ~- "b. (A.4) 
t - -*+c~ 

Indeed subt rac t ing  bH(A) from F(A) (here H is the Heaviside function) we 
reduce the  proof  to the  case when b = 0. Then  (A.4) follows from the 
dominan t  convergence theorem.  The  main  result  of this Appendix  is the 
following e lementary  

PROPOSITION A.1.  (i) In the notations above we have 

l im in f  log ( F ( A ) - b )  = l im in f  - l ~  (0(t) - ~) - - �9 (A.5) 
a--.+0 log ~ t -+~r log t ' 

(ii) the est imate F ( ~ ) -  b = O(A 6) holds near  0 with some6  > 0 i f  and 
only i f  O(t) - b = O(t  -6) near infinity; 

(iii) the following inequality is true 

lira sup log (F(A) - b-) >_ l im sup 
~--,+0 log A ~--,+r162 

- log (0(t) -- b) . 

log t 
(A.6) 

(iv) i f  one of  the two equivalent conditions in (ii) is satisfied then in 
fact there is equality in (A.6). 
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Proof: 1) By  sub t rac t ion  of bH(A) from F() ,)  we reduce the  proof  to the 
case b = 0 which we shall suppose from now on. 

Le t  us denote  the  lef t -hand side of (A.5) by ~_ and  the r igh t -hand  side 
by ~ .  We have to prove tha t  c~ = cd. Firs t  we shall prove t h a t  cd > ~. If  
c~ = 0 t h e n  this  is ev ident ly  true. Now let us suppose t ha t  0 < ~ < oo. For 
every ~ > 0 we have 

F(~)  < ~ - -"  if ~ e (0, a 0 ) ,  

where ~o = A0(e). Using (A.3) we obta in  t ha t  

/~,o f oo 
O(t) < t ~ - ~ e - ~ d ~  + t e-~F(~)d)~ . 

dO o --0 

The second t e r m  on the r igh t -hand  side is e s t imated  here as O(e - ~ )  for 
any/~ < Ao due to (A.2). The  first one is es t imated  by 

fo ~ tAa-~e-~td)~ = F(ce - e + 1)t -~+e �9 

Therefore O(t) = O(t-a--+e). 
It  follows t h a t  

- log o ( t )  >_ _(~ _ c)  
log t 

for large t, hence a I > a .  
The  same reasoning shows tha t  a > a > 0 wi th  a < co implies tha t  

a '  > a .  I t  follows t h a t  a = ~ implies a '  = oo and  thus  the inequal i ty  

c~' > ~ is proved for all cases. 
Let  us prove the  inverse inequal i ty  a > a I. Again this  is evident  if 

_~' = O. Now suppose t ha t  0 < ~ '  < co. Note first t ha t  

O(t) < t - (z ' -~)  if t >_ t0(e) �9 

Now the Chebyshev  inequal i ty  gives. 

F(A-O)<eXtO(t), )~ER, t>O; 

therefore 
F(,~) <_ eXtt -(a '-`)  

Taking t = A-1 we obta in  for small  )~ 

if t > t 0 ( E ) .  

F (~ )  < C~ (~-'-~) , 
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hence 
log F(A) a '  

logA > - r if 0 < A ~ A o ( e ) .  

It follows that  a > a '  which proves (A.5) provided ~ '  < ~ .  But the 
same reasoning shows that  if a '  > a with 0 < a < ~ then ~ > a.  It follows 
tha t  a > a '  for all cases (including ~ '  = ~ ) .  So (A.5) is proved in full 
generality. 

2) Par t  (fi) of the s ta tement  of Proposition A.1 is proved by the same 
arguments  as in the first part  of the proof. 

3) Now let us denote the left-hand side of (A.6) by ~ and the right-hand 
side by ~' .  As before we assume b - 0. The inequality (A.6) is evidently 
fulfilled if H = cx~. So we shall suppose without  loss of generality that 

< ~ .  Then  we obtain 

F(A) _> A (~+~) , 0 < A < Ao(r , 

hence 

O(t) = t e-~tF(A)dA + t e-~*F(A)dA > 
JO o(~) 

/7 /7 /7 ~_ t A(-~+~)e-Xtd~ - t A(-~+~)e-X~d~ + t e-X~F(A)d~ = 
o(~) o(~) 

= P(~  + e + 1)t -(~+~) + O(e -~t) 

if 0 < ~ < A0(e). It follows tha t  

- l o g 0 ( t )  _ < H + e  if t > t o ( e ) ,  
log t 

hence ~'  < ~, which proves (iii). 
4) Now let one of the two equivalent conditions in (ii) be satisfied. Let 

us prove tha t  H < H' in the notations of the previous par t  of the proof. This 
is evident if ~ '  = oo, so we shall assume that  ~ '  < oo. Let us suppose first 
tha t  also H' > 0. We shall use the inequality 

F(A) > O( t ) -  e-X' /20(t /2) ,  t > 0 ,  ), > 0 ,  (A.7) 

which is proved in [ES] by the following use of the Chebyshev inequality 

/o /7 I O(t) = e-XtdF(A) < e-atdF(A) + e-atdF(A) < 
0 --0 

L" /? < F(A) + e -xt12 e-Xtl2dF()t) < F(A) + e -~t/2 e-Xt/2dF(A) -~ 
- 0  0 

= F()  0 + e-Xtl20(t/2).  
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(We have repeated this proof for the convenience of readers.) Now using 
the est imate 

O(t) >_ t -(~'+~) if t > to(e) , 

we obtain from (A.7) that  

F(X) _> t -(~'+~) - e-~t/2t  -~ if t > to(e) . 

Now let us take t = - M A  -1 log A where M will be chosen sufficiently large. 
Then we obtain 

F(A) _> M]logA]-(~'+~)A~+~ - M-~I logA]-~A u/2+~ , A _> A0(e, M ) .  

We should choose M such that  M / 2  + 6 > ~ + E. Then we evidently obtain 

F(A) >_ cA ~'+~' , 0 < A < $0(E') ,  

for any e' > c with c = c(r > 0. It follows that  

logF(A) < ~ , + r  near 0 .  
log A - 

We can make E ~ > 0 arbitrarily small, hence ~ _< ~ .  
The same reasoning shows that  if a >_ ~'  and 0 < a < oo then ~ < a. 

It follows that  if W = 0 then ~ = 0 too. This completes the proof of 
Proposition A.1. o 

COROLLARY A.1. For every a with 0 < a < oo the equalities 

lim log (F(A) - b) = a 
x--+o log X 

and 
l ira - l o g  (0 ( t )  - = 

~-~+~ log t 

are equivalent. 

Now let FI(X),Fa(A) be such functions as F(A) before and F(A) = 
F1 (A)+F2 (A). Then  we can consider the numbers, corresponding to F, F1, F2. 
We shall denote them with the corresponding subscripts (1 and 2 for F1 and 
F2 respectively and without subscripts for F).  So we have the set of numbers 

--4 --4 
O~, C~I, O~2, O~, Or ~2 ,  ~ ,  Or Or 

and we want  to establish connections between them 

PROPOSITION A.2. The following relations are fulfilled: 

a -- min(a_l, a__~) , (A.8) 

_< min(~ l ,~2)  , (A.9) 

_< min(~i ,  ~ 2 ) .  (A.10) 
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Proof:  1) Wi thou t  loss of generali ty we may  suppose tha t  F1 (+0) = F2 (+0) = 
0. We can also suppose  tha t  a_l < a-2- Let us prove first tha t  

a- ~ min(a-a, a-2) -- a-1 �9 (A.11) 

This  inequali ty is trivial if a-1 = 0. Let us suppose first tha t  0 < a-1 < 00. 
T h e n  we have 

FI(A)_<A -%-~,  F2(A)_<A ~-2-~<A ~-~-~ if A 6  (0, Ao(r �9 

Therefore near  0 

F(A) < 

hence 
logF(A) 

log A 
- > a - 1 - 2 ~  if A 6  (0, A0(~)) 

and  (A.11) follows. 
Now let a_a -- a-2 -- -t-c~. Then the  same reasoning works if we change 

_a t to every a 6 (0, c~). It follows t ha t  a- = -boo which proves (A.8) in this 
c a s e .  

Let us prove the inverse inequality �9 

a_ <_ min(a-l,a-2 ) = a_l . 

T h e  inequali ty F(A) > FI(A) implies that  a_ _< a-1 a s  required. 
2) Since F(A) > F;(A), j = 1, 2, we obtain a < a_j, j = 1, 2, hence 

(A.9). T h e  inequali ty (A.10) is proved by the  same arguments .  [] 

COROLLARY A.2.  I f  ~ = -d~, a-2 = "d2 then 

a- = ~ =  rain(a-l, ~_2 ) . (A.11) 

Rem ark :  Notice tha t  the  relation between the spectral  densi ty and the  de- 
cay  of the  heat  flow has been known to Jeff Cheeger for quite a while. We 
present  our  proof  as Cheeger has never  publ ished his. 
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