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1 Introduction 

The classical Riemann-Roch theorem (see e.g. [G-H])  can be considered as a con- 
nection between two dimensions. The first one is the dimension of a linear space of 
meromorphic functions on a compact Riemann surface (or a non-singular algebraic 
curve over C) which are allowed to have poles up to an assigned order at any point 
from a given finite set, and are required to have zeros of at least assigned order at 
any point from another finite set. The second one is the dimension of a space of 
meromorphic (1,0)-forms with similar restrictions but with poles and zeros chang- 
ing places. The information about poles and zeros is conveniently encoded into 
a notion of divisor which is just a finite subset in the given Riemann surface with 
integers (multiplicities) assigned to every point in this subset. The result includes 
the degree of the divisor which is just the sum of all multiplicities. 

In our previous paper [-G-S] we proved a version of the classical Riemann- 
Roch theorem for solutions of general elliptic equations with point singularities. 
Here we extend the results to much more general singularities supported on 
arbitrary compact nowhere dense sets. The only restriction is that the allowed 
singularities should be taken from a finite-dimensional space. Dually a finite set of 
conditions may be imposed on another nowhere dense compact set (which should 
be disjoint with the set where singularities are allowed). This leads to a notion of 
rigged divisor which includes two disjoint nowhere dense compact sets with 
finite-dimensional distribution spaces supported on them. Then the allowed singu- 
larities on the first given set are described as singularities of solutions which may be 
extended as distributions to the whole given manifold so that after applying the 
given elliptic operator we get into the first given space of distributions. The 
conditions imposed on the second compact set are just orthogonality conditions to 
the second space of distributions. The main theorem then connects the dimension 
of the space of solutions having the allowed singularities and satisfying the imposed 
conditions, with another dimension defined in the same way from the dual (or 
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inverse) divisor which is obtained by changing places of two given compact subsets 
and distribution spaces (and replacing the given operator by the adjoint operator). 
As in the classical Riemann-Roch theorem the corresponding formula includes 
a degree of the divisor. The degree is defined in terms of the dimensions of the given 
distribution spaces and two other naturally arising "secondary" distribution 
spaces. This clarifies the appearance of combinations of the binomial coefficients in 
the case of point divisors in [G-S]. 

The Riemann-Roch type formula described above is proved at the same time 
with a duality theorem which gives necessary and sufficient solvability conditions 
of elliptic equations (with a right-hand side) if the solution is allowed to have 
singularities of the described type and is required to satisfy finite number of 
orthogonality conditions. This result seems important from the analytical point of 
view. It implies for instance local solvability results in smooth sections near 
a compact set with a finite number of conditions imposed on the solution. Basically 
the result here is that the local solution always exists provided obvious necessary 
conditions are satisfied. 

The simplest example is that the Poisson equation Au = f can be always 
solved in a neighbourhood of a compact set D c R n, mes D = 0, with any finite 
number of additional conditions on u which are orthogonality conditions to 
measures supported on D or to first order derivatives of such measures. This can be 
interpreted as an approximate solution of the Cauchy problem for the Poisson 
equation: 

du = f near D; u ~ 0 a n d V u ~ 0 o n D .  

Here the approximate equality might mean e.g. equality of any number of Fourier 
coefficients with respect to any orthonormal system in L 2 (D, dr) where dv is a finite 
Borel measure on D. Note that D might be a complicated set (e.g. a Sierpifiski 
carpet) and not just a hypersurface as for the classical Cauchy problem. 

In Sect. 2 we shall give necessary definitions and precise formulations of the 
main results for the case of compact manifolds. Section 3 contains the proofs. 
A special situation of a non-compact manifold with boundary (with boundary 
conditions and conditions at infinity) is discussed in Sect. 4. 

This paper is written completely independently of [G-S]; in fact the proofs are 
even simpler in this generality. But the reader should keep in mind that applica- 
tions and examples given in [G-S] are not repeated here being specific for the case 
of point divisors. 

2 Preliminaries and main results 

A. Let X be a compact closed C~ E a C ~~ complex vector bundle 
over X. For any open subset U = X denote by C~(U,  E) the linear space 
of all C| of E over U. We shall also need the space of all distributional 
sections of E over U which will be denoted ~ ' (U,  E). If D is a compact (closed) 
subset in X then ~b(X,E)  denotes the linear space of all f ~ ' ( X ,  E) such 
that supp f = D. 

For any C ~ vector bundle E over X denote by E* any vector bundle which is 
supplied with a C ~ bilinear or sesquilinear nondegenerate duality of bundles 
E x E* ~ I2(X) where f2(X) is the density bundle over X. Then we obviously have 
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bilinear or sesquilinear duality on sections: 

( ' , ' ) : C ~ ( X ,  E) x C~(X, e * ) ~  C, 

(u, v) = ~ (u(x), v(x))x, 
X 

where (., .)x denotes the given duality in the fibers over the point  x ~ X .  
Let E, F be C ~ vector bundles over X, 

A :C~(X, E)-~ C~(X, F) 

an elliptic linear differential operator  of order d. Then the adjoint  operator  is again 
an elliptic linear differential operator  of order d 

A*:C~(X ,  F*)--* C~ E*), 

such that  

(Au, v) = (u, A'v) ;  u e C~(X, E), v~ C~(X, F*). 

Definition 2.1 Rigged divisor (associated with A) is a tuple 

# = ( D  + , L + ; D  , L - ) ,  

where D • are compact (closed) nowhere dense disjoint subsets in X, L • are finite- 
dimensional linear spaces of distributional sections, 

L + c g ' D + ( X , F ) , L  c~ 'D-(X,E*) .  

So the sections in L + (L - )  are supported on D + (resp. D ). Denote  also 
I • = d i m L  • Hereafter d i m L  for a complex linear space L will always mean  
dimc L. 

We shall also need "secondary" spaces of distr ibutional  sections which are 
defined as follows: 

L+ = {ulu~d'n+(X,E), Au6L+},  L -  = {v l v6g 'w(X ,F*) ,  A*v6L  }. 

Denote also F • = dimL, • Note  tha t  l'• < l • because A, A* are injective on gb~ 
due to the s tandard elliptic regularity result. 

Definition 2.2 Degree o f  the rigged divisor # is the following integer: 

dega(#)  = (l + -- ? )  -- ( l -  -- ? ) .  

Definition 2.3 Inverse divisor to a divisor # = (D +, L+; D-,  L ) associated with the 
elliptic operator A is the rigged divisor 

#-a = ( D - , L - ; D + , L + ) ,  

associated with the adjoint operator A*. 

Note  that  

degA.(# 1) = _ degA(#). 

Now we shall in t roduce the main  space of solutions with allowed singularities on 
D + and vanishing condit ions on D- .  
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Definition 2.4 Denote 

L(# ,  A)  = {ulu e c ~ ( x  - D +, E), 3fi~ ~ ' ( X ,  E), fi = u on X - D +, Aft ~ L  +, 

(u, L - )  = 0}; r(#, A) = dim L(#, A). 

Here (u, L - )  means the set { (u, O) I O r L -  } = C and we write 0 instead of {0}, so the 
equality (u, L - )  = 0 means the u is orthogonal to L -  with respect to the given 
duality. This makes sense (in spite of the fact that u is defined on X - D + only) 
because all distribution sections from L -  are supported on D-  and D -  c~ D + = 0 
according to Definition 2.1. 

We shall use the notation ind A for the standard index of A 

ind A = dim Ker A - dim Coker A 

in spaces of C~-sections. This index is given by the Atiyah-Singer index formula. 
Now we can formulate our first main result. 

Theorem 2.5 (The Riemann-Roch theorem for the rigged divisor p) 

(2.1) r(/z, A) = indA + degA(p) + r(/z -~, A*). 

Corollary 2.6 r(Ft, A) > indA + degA(#). 
In particular ind A + degA(p) > 0 implies that L(/~, A) # {0}. 

This is actually an existence result for solutions with allowed singularities and 
prescribed orthogonality conditions. 

Example 2.7 Let us consider a particular case of "point divisors". Namely, let D • 
be finite sets. Suppose that D + = ( x l , . . . ,  Xk}, D -  = {Xk+ 1 . . . . .  Xm} and let also 
integers p~ . . . . .  Pk > 0 and Pk+~ . . . . .  Pm < 0 be given. This corresponds to the 
point divisor/~ = x ~ x ~ . . ,  x~ ~ in notations of [G-S]. Then we can introduce the 
distribution section spaces L ~ which are locally represented as 

L • = { f l f ( x )  = ~ ~ c,~6(~)(x- x , ) , c ,~cq} ,  
• 1~16tp, I-  1 

where 3 means the Dirac b-function, 6 ~') denotes its derivative corresponding to the 
multiindex e, and ci~ are vector coefficients from C q where q is the dimension of the 
fibers of the bundles E and F (they are equal due to the ellipticity of A). 

Since A is elliptic (of order d) it is easy to check that the "secondary" spaces 
have a similar form 

d imL • = q 

where 

s = {v jr(x) = X X c,~a,~,(x - x,), c , : C %  
• I~l_~lpd 1 -d  

Now an easy combinatorial exercise shows that 

, 2 n + l P i l - l - d  
+p,>O F/ +p,>O r/ 

- n!(/V-- n)! i f N  > n and 0 otherwise. 
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It  follows that  

l <=i<=m H 1~ 

It is explained in [G-S]  tha t  the space L(#, A) in this part icular  case can be 
described in terms of the behaviour  of solutions near the points x~ . . . .  , x,, without  
referring to their dis tr ibut ion extensions on X. In this way we arrive to the main 
Riemann-Roch  type theorem in [G-S]  as a part icular  case of Theorem 2.5 when 
# is a point  divisor. 

Example 2.8 Let X be a compact  Riemann surface, g = genus(X). Let us consider 
the operator  

A = ~ : C ~  A~  

Suppose tha t  k + I distinct points X l , . . . ,  Xk, Ya . . . .  , y~ are given in X and  define 

D + = { x ,  . . . . .  x k i ,  D -  = { y ,  . . . . .  y , } .  

Define also in local real coordinates  near the given points 

L + = { , = ~ c i g ~ ( x - x i ) , c i ~ C } ,  

Let us consider the rigged divisor # = (D +, L+;  D - ,  L=). Then  the space L(p,  A) is 
the space of all meromorphic  functions f on X which are allowed to have at most  
simple poles at  x l  . . . . .  Xk and are required to have critical points at  Yl . . . .  , Y~ 
i.e. f ' ( y j )  = O, j = 1 . . . . .  I. Note now that  

A* = 8 : A  1'~ --+ A L a ( X )  = a 2 ( x ) .  

Therefore L ( # - I , A  *) is the space of all meromorph ic  (1,0)-forms which are 
allowed to have poles of second order  with vanishing residues at  yl . . . . .  Yt and are 
required to vanish at all the points x~ . . . . .  Xk. 

Obviously I + = k and  l -  = 2l. The  secondary spaces are as follows: 

L + = { 0 } , Z , - = { j = ~ j 6 ( x - y j ) , ~ j E C } .  

It follows that  7 + = 0 and  7- = l, hence dega(#)  = k - I. Since i n d A  = 1 - 9, 
Theorem 2.5 gives in this case 

r(#, A) = 1 -- g + k - 1 + r(# -~, A*). 

It  follows that  

r ( p , A )  >= 1 -  9 + k -  l , r ( # - ~ , A  *) > 9 - 1 +  l -  k, 

which implies the corresponding existence results. 
This example is of course well known and  may be easily deduced from the 

classical Riemann-Roch  theorem. Note  however tha t  it is a natural  example to 
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Theorem 2.5. Similar example for harmonic functions in R" will be considered in 
Sect. 4 after we discuss a non-compact situation. 

B. First idea of the proof of Theorem 2.5 is a localization which begins with the 
introduction of the following space: 

F ( X , p , A )  = { u l u e C ~ ( X  - D+,E),  9 f i e ~ ' ( X , E ) , f i  = u on X - D +, 

Ar i eL  + + C~ (u ,L- )  = 0}. 

Here the difference with the definition of L(#, A) is that Aft = f is allowed to be 
modified by adding any C ~ section. In particular F(X,  #, A) contains the space 
C ~ ( X - ( D  + w D-),  E) of all C~ of E having a compact support on 
X -- (D + w D-).  

The next space that we need is the space of all possible regularizations of 
sections from F(X, #, A): 

F(X, #, A) = {fi ] fi ~ ~ ' ( X ,  E), Aft e L + + C oo (X, V), (fi, L - )  = 0}. 

Lemma 2.9 The following sequence is exact: 

(2.2) 0 ~ L  + i , F ( X , # , A ) " , F ( X , # , A ) ~ O ,  

where i and r are natural inclusion and restriction maps. 

Proof The statement is obvious from the definitions of all the spaces involved. [] 

Now let us find out what happens if we apply A to a section u e F(X,  #, A). 
Obviously Au can be extended to a C | of F. Let us denote this extension by 
Au. Besides we have 

(Au, L - )  = (u, A*I , - )  ~ (u, L - )  = O. 

This motivates the introduction of the following space: 

(2.3) F~(X, A) = { f [ f e C ~ 1 7 6  F), (f ,  L - )  -- 0}; 

then A defines a linear map 

f f~:r(x ,  #, A) ~ F,(X,  A). 

Note that K e r A  = L(#, A). 

Definition 2.10 The duality 

(2.4) F(X,  #, A) x -~u-,(X, A*) ~ C 

is defined by 
(u, f )  = (r- lu, f ) ,  u e  F(X, #, A), f e Fu- I(X, A*), 

where r is the restriction map from (2.2). 

Note  that this duality is well defined due to the orthogonality condition in (2.3) 
(with # and A replaced by # -1  and A*). 

The duality (2.4) is obviously non-degenerate since both spaces involved can be 
considered as spaces of C~ on X -  ( D + u  D - )  and both include all 
sections with compact support in X - (D + w D-).  
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Replacing A and p by A* and # 1 we get a similar duality 

(2.5) Fu(X, A) x F(X, #-  1, A*) ---* C. 

Lemma 2.11 We have 

(Au, v) = (u, .4*v), ue  r ( x ,  I a, A), ve  r (X ,  #-1,  A*), 

where the dualities on the left and right hand sides are the dualities (2.5) and (2.4) 
respectively. 

Proof The statement becomes obvious if we pass to the extensions ofu and v to the 
distribution sections in F(X, #, A) and/~(X, p 1, A*) respectively. [] 

Now let ( . , .):  9r x X F ' ~  C be a bilinear or sesquilinear duality (or pairing) of 
complex linear spaces. For  any linear subspace L c ~ '  define its annihilator or 
orthogonal complement with respect to the duality (., .) as follows: 

L ~ = { f l f e , , ~ ,  (f, L) = 0.}. 

Hence L ~ is a linear subspace in ~ .  Similarly if L is a linear subspace in ~ then L ~ 
is defined as a linear subspace in ~ ' .  

In the following theorem which is our second main result L ~ will mean the 
annulator of L with respect to the dualities (2.4) or (2.5). So if L ~ F(X, #-1,  A*) 
then L ~ ~ Fu(X, A) etc. 

Theorem 2.12 (Duality theorem) (i) Im,4  = (KerA*) ~ i.e. f ~ I m A  /f and only if 
f e l ' u (X ,  A) and ( f  Ker A*) = 0. (ii) dim CokerA = d imKer  A *. 

This theorem gives solvability conditions of the equation Au = f in the class 
F(X, #, A) which consists of sections which may have some singularities on D + and 
should satisfy some orthogonality conditions on D- .  

C. Now we turn to a local solvability result of the equation Au = f in smooth 
sections near a closed nowhere dense set D ~ X with a finite number of additional 
orthogonality conditions imposed on u. First introduce the space of germs of 
C~ of E on D: 

C~(D, E) = lim C~ E), 

q/ runs through the set of all open neighbourhoods of D. Suppose a finite- 
dimensional linear subspace L ~ 8b(X,  E*) is given. Given f e  C~ F) we want 
to find a solution u e C o~ (D, E) of the equation Au = f such that (u, L) = 0. 

Let us introduce the "secondary" space 

= {v lveS 'o (X ,F*) ,  A ' v e t } .  

Then the obvious necessary condition on f is (f, L ) =  0 since (Au, l , ) =  
(u, A*~,) = (u, L). 

Theorem 2.13 (Local solvability theorem) I f  f e C~(D, F) and (f, L) = 0 then there 
exists u e C~~ (D, E) such that Au = f and (u, L) = O. 
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A part icular  case of Theorem 2.13 when D is a point,  say 0 ~ R", and  L is obta ined 
as L + in Example 2.7 (with k = 1), was discussed in [G-if]. It says tha t  if the 
r ight-hand side of an elliptic equat ion Au = f of order  d has a zero of order m at the 
origin, then locally near  the origin there always exists a solution u having there 
a zero of order m + d. 

In some part icular  cases the necessary condit ions might  become void, so the 
solvability holds wi thout  any condit ions on f We shall give an example of this 
s i tuat ion now. In this example C ~  will denote  the set of germs of all C ~~ 
functions near D (or C~(D, E) with E = X x C). 

Corollary 2.14 Let  A be the standard Laplacian on R", D a compact subset in R" with 
the Lebesgue measure O. Suppose that for  any multiindex ct with let I <= 1 and any 
j = 1 . . . . .  k a complex-valued Borel measure p~j supported on D is given. Then for 
any f 6 C~ ( D ) there exists u e C ~ ( D ), such that Au = l a n d  

(2.6) ~ ~ u<=)dll,j = O, j = 1 . . . . .  k. 
1=161D 

Note  tha t  derivatives of order 2 cannot  be allowed here. For  example the condi t ion 
(du)(0) = 0 (which can be obviously written in a form similar to (2.6) but  with 
second order derivatives) implies f (0)  = 0 for the r ight -hand side of the equat ion 
du  = f  so f canno t  be an arbi t rary  C ~ function then. 

Corol lary 2.14 can be interpreted as an approximate  solution of the Cauchy 
problem for the Poisson equat ion du  - - f  near D (see also In t roduct ion  for addi- 
t ional  comments). 

3 Proofs 

We shall use the nota t ions  from Sect. 2. Let us start  with the proof  of the following 
impor tan t  lemma: 

Lemma 3.1 

(3.1) ind ,4 = ind A + degn(/0. 

Proof  Consider  the following commuta t ive  diagram 

0 , s ' , /~ (X ,# ,A)  ~ ~ F ( X , I  J ,A)  > 0 

0 , L + q ~ ~ ( X , F ) ~ L  + ~ ' ,  Fu(X ,F)  , 0 

where the first row is as in (2.2), il and  n l  are na tura l  inclusion and  projection 
respectively and As,  A are restrictions of A to the corresponding spaces of 
distributions.  Both  rows in the diagram are exact. Due to the well known algebraic 
proper ty  of the Euler characterist ic we have 

i n d A  = ind,, t  - ind As.  

But  

i n d A s  -- d i m L  + - d i m L  + = l ' +  - l +. 
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Hence 

i3.2) i n d A  = ind.4  + (l § - T+). 

Now consider the following space of smooth  sections: 

r~(x, A) = {ulu erix,  E), (u, L ) = 0}. 

Then the following diagram is commutative:  

0 , r~ ix ,  E) , F( x ,  p, A) .2o~ L+ ) ) 0 

~ A u ~L~4 r id  

0 , F,,(X, F) ' I'uiX, F) ~ L + .2 L + ) ) 0 

where re2 is a natural  progection, A~ is the restriction of A. 
The rows of this d iagram are again exact. This is not  obvious in the term L + of 

the first row only. In this term exactness means that  the equat ion Au = 
f e ( ' D + ( X , F )  can be always solved modulo  C ~~ sections (with the solution 
u e F ( X ,  I~, A)). But this follows e.g. from the existence of a pseudodifferential 
parametr ix  (see e.g. [H, vol. 3] or [S] for necessary facts). Namely, let 
B: C ~(X,  F)-~ C ~ (X, E) be a (classical or polyhomogeneous)  pseudodifferential 
operator  such that  BA = I -  T with an infinitely smoothing operator  T (an 
operator  with a C ~ Schwartz kernel). Using the s tandard  extension of B to 
dis t r ibut ion sections we can now take u = B f  to obtain Au = f +  g with 
g e C ~ ( X ,  F). Replacing u by u + v with veC~176 E) suppor ted  near  D -  we can 
make u = 0 near D -  ; then we shall obviously have u e F iX ,  #, A). 

From the last d iagram we find 

(3.3) ind ,4 = ind A~. 

Now consider the commuta t ive  diagram 

0 , F~(X, A) ~" , F(X,  E) P" , ( L - ) '  , 0 

~ 

0 , Fu(X,F)  '" P" , r ( X , F )  , ( L - ) '  ) o 

where for a finite-dimensional complex linear space L we denote its dual  (or 
ant idual)  space by L', iu, iu are na tura l  inclusion maps and  pu, Pu are defined as 
follows: 

(puu)(s) = (u, s), u e F ( X ,  E), s e L - ;  (puf)(t) = i f  t), f e r ( X ,  F), t e L - .  

The maps p , ,  p ,  are surjective since the dual maps L -  ~ N'(X,  E*), L -  ~ @'(X, F*) 
are just  canonical  injections. Hence the rows are exact and we find 

i n d A ,  = i ndA - indiA*) '  = i ndA - (l-  - l '-). 

Now using i3.2) and  i3.3) we obta in  

ind ,4  = i ndA + (l + - T +) - ( l -  - T-) = i n d A  + dega(/~). [] 

Remark 3.2 Lemma 3.1 means tha t  

(3.4) d im Ker  A --- ind A + degA(#) + dim Coker  A, 
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so to prove Theorem 2.5 it suffices to prove the equality (ii) in Theorem 2.12. But it 
is not easy to do it directly since no Hilbert space duality technique is available for 
the spaces involved. So actually Theorems 2.5 and 2.12 will be proved simultan- 
eously. 

Now we need the following abstract lemma from [G-S] which we reproduce 
with the proof  for the sake of completeness: 

Lemma 3.3 Let (.,-): Of ~ • Of ~' ~ C be a non-degenerated bilinear (or sesquilinear) 
pairing between two complex linear spaces ~ ,  ,~' .  Let L be a linear subspace in Of ~', 
L ~ its annihilator in 9~ and (L~ ~ the annihilator of L ~ in Of ~ Then 

(3.5) L = (L~ ~ 

and 

(3.6) codim L > dim L ~ 

Furthermore if F is a linear subspace in ~ '  then 

(3.7) codim F ~ = dim F. 

Proof The inclusion (3.5) is obvious. It follows that codim L > codim(L~ ~ Hence 
(3.7) implies (3.6) and we have only to prove (3.7). Clearly codim F ~ < dim F, so it 
remains to prove that 

codim F ~ > dimF.  

It is sufficient to do it in the case when dim F < ~ .  Consider then the natural map 
j :  F ~ (gf~/F~ ', where L' means the space of all complex linear (or antilinear) maps 
of L to C, 

j ( f ) ( x  + F ~ = ( f  x), x e ~ .  

Then j is injective due to the non-degeneracy of the pairing. Hence 

codim F ~ = dim J r / F  ~ = dim (aug/F~ ' > dim F 

as required. [] 

Lemma 3.4 In the pairing (2.4) 

(Ira .~)o = Ker,4*. 

Proof Clearly 

K e r A *  = {v[v~F(X ,  l t - l ,A*) ,  A*v = 0 on X -  (D + u D - ) } .  

Lemma 3.4 follows because Im.4  contains all sections Au with u ~ F(X,  E) and 
s u p p u c X - - ( D + w D - ) .  [] 

Proof of Theorems 2.5 and 2.12 Due to Lemmas 3.3 and 3.4 we have 

(3.8) I m A  c (Ker A*) ~ 

(3.9) codim Im A > dim Ker ,4" 
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and we have to prove that both these inclusion and inequality are actually 
equalities. Furthermore (3.7) gives that 

codim (Ker ~ . )o  = dim Ker A*, 

hence equality in (3.9) implies equality in (3.8). Since codim Im ,4 = dim Coker A we 
have only to prove that 

(3.10) dim Coker A = dim Ker,4* 

which will immediately give us the proof of Theorems 2.5 and 2.12 due to (3.4). 
Clearly (3.9) and (3.4) imply 

(3.11) dim Ker A = ind A + dega(/~) + dim Coker 

> indA + dega(/~) + dim Ker A*. 

But now we can apply the same results to the divisor/~- ~ (instead of/~) and the 
operator A* (instead of ,4). Then we obtain 

dim Ker A* > indA* + degA.(# -1) + d i m K e r A  

= - ind A - degA(#) + dim Ker A. 

But this is the opposite inequality to (3.11), hence we actually have equalities in 
(3.11) and (3.10). Thus the proofs of Theorems 2.5 and 2.12 are completed. [] 

Proof of Theorem 2.13 The idea is to use Theorem 2.12(i). Suppose that we are 
g ivenf~  C ~ F), where q / i s  a neighbourhood of D, and (f, L) = 0. We want to 
find u ~ C ~ E) in another ~possibly smaller) neighbourhood q/1 of D, so that 
Au = f in ~1. Using a cut-off C ~-function supported in q / a n d  equal 1 in another 
smaller neighbourhood of D we can suppose that fE C~(X, F). 

Now let us consider a rigged divisor p = (0, 0; D, L) i.e. we take 

D + = 0 ,  L + = 0 ,  D-  = D , L -  =L,  

so no singularities are allowed for the sections in F(X, I~, A) but the orthogonality 
condit ionsare imposed on D. Let us consider the operator A and try to solve the 
equation Au = f wheref  is an extension of f from a neighbourhood of D to 
a section in F(X, F) (which will be authomatically in F~(X, A) because (f, L,) = 0). 
We want this extension to satisfy the orthogonality condition (J~ Ker,4*) = 0 to 
apply Theorem 2.12. 

Denote 

No(X, F) = {glg~ C~(X, F), g = 0 in a neighbourhood of D}. 

Then we have to find g~ND(X, F) such that f -  9 ~ (Ker,4*) ~ (hence f -  g will be 
the desired modified section). Consider the natural map 

j:Fu(X, A ) ~  (Ker A*)', j(f)(v) = ( f  v). 

We want to prove that j(f)~j(No(X, F)). But actually j:No(X, F ) ~  (Ker,4*)' is 
surjective because of the obvious injectivity of the dual map j '  : Ker,4* ~ (ND(X, F))' 
which is defined similarly to j, namely: j ' (v)(f)= (v, f). The map j '  is injective 
because Ker A* ~ C ~o (X - D, F*) and ND(X, F) includes all sections g ~ C ~o (X, F) 
w i t h s u p p g c X - D .  [] 
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Proof of Corollary 2.14 First note that instead of considering the Laplacian on R" 
we can consider the Laplacian on the fiat torus T n = Rn/NZ" (with large N) since 
a neighbourhood of D can be considered as an open subset in this torus as well. Let 
us introduce then a space L = ~ ' ( T  ~) spanned by the distributions 

( -- 1)l"lr j = 1 . . . . .  k. 
1~161 

Then the conditions (2.6) acquire the form (u, L) = 0 allowing an application of the 
Theorem 2.13. So we have to check only that the "secondary" space L is trivial. By 
definition 

L = {glgr Ag~L}. 

Obviously L belongs to the dual space to CI(T"). By the standard Sobolev 
embedding theorems Ct(T n) ~ HI+~/P+"P(T ") for any p > 1 and any e > 0. (See 
e.g. [St] or [Tr]). But L obviously belongs to the dual space to CI(T").  Hence 
L is in the dual space to HI+"/P+~'P(T n) that is in H-~-~/P-~'f(T ~) where 
lip + lip' = 1 (let us suppose that n/p + ~ is not an integer). But then the standard 
regularity results for the equation Ag = f imply that L = H 1-n/p " ' f(T") .  Taking 
p sufficiently large (so that 1 - n/p> 0) we see that L = Lf(T  ") then. Therefore 

= 0 because all distributions from L are supported on a set of the Lebesgue 
measure 0. [] 

4 Non-compact case 

In this section we shall briefly describe generalizations of all results formulated in 
Sect. 2 to non-compact manifolds (possibly with boundary). This generalization 
supposes that boundary conditions and conditions at infinity are given, so that the 
operator A on an appropriate domain will still be a Fredholm operator in the usual 
sense. We shall describe the corresponding generalization axiomatically so as to 
avoid technicalities and achieve bigger generality. The corresponding context was 
introduced in [G-S] for the same purpose and we shall follow closely the exposition 
given there. 

In a subsequent paper we shall consider generalizations to the case of elliptic 
operators on covering manifolds and L2-solutions with singularities. But this case 
requires completely different technique since it leads to operators which are 
Fredholm in the sense of Breuer in appropriate von Neumann algebras. 

So let X be a non-compact manifold with boundary aX (which need not be 
compact either). 

Let E, F be complex vector bundles over the open manifold of all interior points 
of X, which we denote Int X. Let 

(4.1) A:C~~ E)~  C~176 X, F) 

be an elliptic differential operator. Let E*, F* be another pair of complex vector 
bundles over Int X, such that non-degenerate bilinear or sesquilinear C~ 
of bundles 

E • E* ~ I2(Int X), F x F* --* t2(Int X)  
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are given. For  any vector bundle E over I n t X  denote C~( In tX ,  E) the set of all 
C~-sections of E over In tX ,  having compact support inside In tX .  So if 
u ~ C~( In t  X, E) then supp u is a compact set in Int X; in particular supp u does not 
intersect dX. 

In this case the adjoint elliptic differential operator 

A*:  C| X, F*)--,  C~(In t  X, E*) 

is defined again by the identity 

(Au, v)v = (u, A*v)E, u~ C ~ ( I n t X ,  E), vE C~( In tX ,  F*), 

where the dualities (-, ' )e,  (-,-)e are defined exactly as for the compact case. 
Now suppose that the domains of A and A* are distinguished as linear 

subspaces Dora A and Dom A* such that 

C~( In t  X, E) c D o m A  c C~(In t  X, E), 

C3( In t  X, F*) c D o m A *  c C~( In tX ,  F*). 

They may be defined e.g. by a choice of boundary conditions and appropriate 
conditions at infinity. Then let us define images of A, A* as 

I m A  = A(DomA),  I m A *  = A*(DomA*).  

Suppose also that linear subspaces D o m ' A  and Dom'  A* are given such that 

C ~ ( I n t X ,  E * ) c  D o m ' A  c C~(In tX ,  E*), I m A *  c Dora'  A, 

C~( In t  X, F) c D o m ' A *  c C~(Int  X, F), I m A  c Dom'A* .  

We shall suppose that the following integrability condition is satisfied: 

(4.2) x ~-* (v, v)x and x ~ (u, fi)x 

are L ~-densities on Int X for any v e Dom'  A*, ~ ~ Dom A*, u e Dom A, fie Dora'  A 
(i.e. these densities are absolutely integrable in Lebesgue sense over Int X). 

Integrating these densities over Int X we obtain bilinear or sesquilinear pairings 

D o m ' A *  x D o m A *  ~ C, D o m A  x Dom'A--*  C 

which will be denoted (., ')v and (- , ' )e,  the same way as for sections with compact 
support. 

Our  next requirement is 

(4.3) (Au, v)F = (u,A*v)E, u e D o m A ,  v e D o m A * .  

Now if we are given a linear subspace L ~ DomA,  then its annihilator L ~ is 
naturally defined as a linear subspace in Dom'  A: 

L~ = {fi I fi ~ Dom'  A, (u, fi)e = 0 for every u ~ L}. 

Similarly for a linear subspace M ~ D o m A *  its annihilator M ~ = D o m ' A *  is 
naturally defined. 

Define also K e r A  and KerA*  as linear subspaces in D o m A  and D o m A *  
respectively, e.g. 

K e r A  = { u l u ~ D o m A ,  Au = 0}. 

Now our next requirement is 
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(4.4) A and A* are Fredholm in the following sense: 
(i) dim K e r A  < 0% dim K e r A *  < oo; 

(ii) Im A = (Ker A*) ~ Im A* = (Ker A) ~ 

Hence 

ind A = dim Ker A - dim Coker A = dim Ker A - dim Ker A* 

is well defined. 

Example 4.t Let X be a compact  Riemannian manifold with a smooth boundary, 
A = A * =  A is the Laplacian of the given Riemannian metric. Then taking 
E = F = E* = F* = Cx (the trivial vector bundle with the fiber C over X) and 
defining the duality by the use of the Riemannian volume, we can take 

D o m A  = D o m A *  = {u lu6C'~(X) ,  ulox = 0} 

and 

D o m ' A  = Dora' A* = C~~ 

i.e. define A as the Laplacian with the Dirichlet boundary condition. Then condi- 
tions (4.2)-(4.4) are satisfied and ind A = 0. 

Similarly the Neuman condition can be also considered. 

Example 4.2 Let X = R", n > 3, A = A * =  A (the standard Laplacian or the 
Laplacian of the fiat metric), E = F = E* = F* = Cx and 

D o m A  = D o m A *  = {ulueC~~ A u e C ~ ( R " )  and u(x) --, 0 as Ixl--, oo} 

D o m ' A  = D o m ' A *  = C2(R").  

Here C~(R")  = C ~  ") n dr'(R") is the set of all C~-functions with a compact  
support. 

Note that the condition u ~  oo as Ix]-~ oo can be replaced by a formally 
stronger but in fact equivalent condition 

u(x) = O(Ixl ~-") as Ixl--, oo 

because u e Dom A is a harmonic function near infinity. It easily follows that all 
conditions (4.2)-(4.4) are satisfied because Ker  A = Ker  A* = {0} by the Liouville 
theorem and I m A  = I m A * =  C2(R")  because the equation du = f with any 
f e C ~ ( R " )  can be solved by taking the convolution of f with the s tandard 
fundamental  solution c,lxl  2-". 

Definition 4.3 Rigged divisor (associated with A) is a tuple 

/~ = (D +, L+; D - ,  L-) ,  

where D + are compact nowhere dense disjoint subsets in In tX,  L + are finite- 
dimensional linear spaces of  distributional sections, 

L + c g b + ( I n t X ,  F), L -  c t f b - ( I n t X ,  E*). 

Denote l • = d i m L  +. 
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The "secondary" spaces [,+ are defined exactly as in Sect. 2, X should be replaced 
by In tX.  We do not change the notation for their dimensions. No change is 
necessary in Definitions 2.2 and 2.3. 

We shall write that u ~ D o m A  outside a compact set K c I n t X  if 
u ~ C ~ 1 7 6  - K, E) and there exists f i ~ D o m A  such that fi = u on X - K. 

Definition 4.4 Denote 
L(/~, A) = {u ] u ~ Dom A outside a compact neighbourhood of  D + ; 

there exists fi~@'(X, E), such that fi = u on X - D + and ArieL+;  

(u, L - )  = 0}; 

r(~t, A) = dim L(kt, A). 

Theorem 4.5 Let A be an elliptic operator (4.1) such that the conditions (4.2)-(4.4) 
are satisfied, and # is a riyged divisor associated with A. Then 

(4.5) r(#, A) = ind A + dega(/0 + r(/~-1, A*). 

Let us introduce necessary spaces to extend the localization and the duality used in 
the compact case. Denote 

F(X,  #, A) = { u l u ~ D o m A  outside a compact neighbourhood of D +, 

3f i~@'( In tX,  E), fi = u on I n t X  - D +, Afi ieL + + C~(In t  X, F), 

(u, L - )  = 0}. 

The space of all possible regularizations fi is naturally introduced as follows: 

F(X, #, A) = {fi I fir @'(Int X, E), fi c Dora A outside a compact neighbourhood of D +, 

A r i e L  + + C ~ ( I n t X ,  F), ( t~ ,L )  = 0}. 

Then the exact sequence (2.2) still holds. 
Denote also 

Fu(X, A) = {ulu ~ D o m A ,  (u, L - )  = 0} 

and 

Fg(X,A)  = { f l f e D o m ' A * ,  (f, L,-) = 0}. 

Then as in the compact case for any u e F ( X ,  #, A) we can consider Au on 
Int X - D + and denote its extension by continuity to Int X by Au. In this way we 
again obtain a linear map 

,~: r (x ,  #, A)--+ ?,,(x, A). 

Now the extensions of Definition 2.8 (duality), Lemma 2.9, Theorem 2.10 and the 
proofs of Theorem 4.4 and the extended duality theorem do not require any 
changes. 

Example 4.6 Let us consider the situation of the Example 4.2 and take 

D + = {xl . . . . .  xk}, D -  = {Yx . . . . .  Y,}, 
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where all the points x l , . . . ,  Xk, y~ . . . . .  yt are distinct. Define the distribution 
spaces L • c ~ ' ( R " )  as follows: 

L + = { i = ~ c i f i ( x - - x i ) , c i ~ C  } ,  

L -  = {s=~ ,,~l cs~, ~ 6(x - Ys), cs~,~C }" 

Consider the rigged divisor/~ = (D § L+; D - ,  L-) .  Then LOt, A) consists of func- 
tions of the form 

k qi 
u(x)  = y~ I x -  x , I  " -  2 i = 1  

(which are generalized Coulomb potentials of point charges q ~ . . . .  , qk ~ C, situated 
at the points x l, �9 � 9  Xk ~ R "), such that V u( y.i ) = O, j = 1 , . . . ,  l, i.e. the points Y s 
are equilibrium positions in the electrostatic field of the given system of charges. 

Note  also that on the other hand L ( # -  *, A) consists of the functions of the form 

i i  0 1 
v(x)= cj~ y.i._ 2, cs~eC 

i=1~ :1  & ~ l x -  , 

(which are dipole potentials of dipoles situated at the points ys) such that v(xi) = 
O , i = l , . . . , k .  

It is easy to check that the secondary spaces L,• vanish in this case. Therefore 
dega(#) = k -  31. Since the index vanishes too, the Theorem 4.5 gives in this 
example 

r(#, A) = k - 3l + r(/~-*, A). 

It follows that 

r(#, A) > k -- 3t, r ( # - * ,  A) > 31 - k, 

though these inequalities have an easy elementary proof. 
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