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CAT(x)-SPACES: CONSTRUCTION
AND CONCENTRATION

To Victor Abramovich Zalgaller

We expose spaces X with negative curvature having in mind applica-
tions to fractally hyperbolic groups, such as random groups and infinite
Burnside groups. Originally these spaces were introduced by Alexandrov
in the axiomatization spirit and a similar class (of conver spaces) was
later isolated by Busemann.

Till relatively recently the major thrust of geometric research was laid
on suppressing singularities, emphasizing the properties equally shared by
smooth and singular spaces and proving regularization theorems claim-
ing, under certain assumptions, that X can be approximated by smooth
manifolds with curvature K < 0. This was accomplished for surfaces in
a famous treatise by Alexandrov and Zalgaller.

But the bulk of spaces with K < 0 is badly singular, starting from
trees and most abundant among 2-polyhedra. Furthermore, almost all
“natural” spaces with K < 0, such as the Bruhat-Tits buildings, are
non-smooth and (unlike trees) cannot be usually approximated by smooth
spaces. But geometers remained unaware of this for a stretch of time.

From another angle, the idea of negative curvature was injected into
the group theory by Dehn and grew up into the small cancellation theory.
In the course of the development, the geometric roots were forgotten and
the role of curvature was reduced to a metaphor. (Algebraists do not
trust geometry.)

It eventually turned out that the geometric language of Dehn and
Alexandrov (sometimes slightly modified and /or generalized) accomplish-
es many needs of combinatorial group theory more efficiently than the
combinatorial language.

Summing up, geometry furnishes a proper language, while the com-
binatorial group theory (especially random groups) provides a pool of
objects for a meaningful usage of this language.
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102 M. GROMOV

In this paper we present basic constructions of spaces X with K < 0
relevant for applications in group theory (see [8]) as well as basic isoperi-
metric concentration properties of maps of metric measure spaces (see
[14] and [11]) into X. We observe, for example, that conical singularities
based on expanders (with K < 1) cannot be smoothed, not even with the
most generous notion of smoothing. (This will be brought into the group
theoretic framework in [8].)

We furnish all necessary definitions and illustrate them by examples
but refer to the textbooks for the details of standard arguments (see [2]
and references therein).

§1. METRICS AND GEODESICS

Given a metric space X = (X, dist) we often abbreviate and write
|z —y| = [z —ylx = dist(z, y).

We call X a geodesic space if every two points « and y in X can be joined,
albeit non-uniquely, by a shortest (geodesic) segment denoted [z,y] C X,
that is an isometric embedding of a real segment of length = distx (z, y)
into X.

Actually, the existence of such a shortest, or minimizing, segment is
not so crucial: it is enough for most purposes to have dist(z,y) equal
to the infimum of the length of paths in X joining = and y, where this
infimum does not have to be achieved.

Also, one could use the middle point condition: the existence of z € X
such that

1
dist(x, z) = dist(z,y) = §dist(x, ).

For complete metric spaces the last condition is equivalent to existence
of a minimizing segment.

Sometimes one could require even less, the existence of z = z, for each
£ > 0, such that both distances dist(z, z) and dist(z, y) are < %dist(x, y)+
£.

From now on we assume the existence of our segments [, y] C X when
we deal with geodesic spaces.

§2. BASIC EXAMPLES

(a) Every metrically complete connected Riemannian manifold X, pos-
sibly with a boundary, is path metric in an obvious way (where the min-
imizing segments may touch the boundary). In particular, every smooth
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connected domain X C R” carries the induced path metric distx which
1s greater than the restricted metric distg~|, and where the equality

distx = distg=|, holds if and only if X is convex.

x

(b) Let X be a simplicial polyhedron. If we identify each simplex in
X with a unit Euclidean simplex, we can speak of the length of a curve
in X using the Euclidean geometry in all A C X. Then we define distx
by taking infima of length of paths between points # and y in X. This
is a true geodesic metric for locally finite polyhedra where the infimum
is achieved by some [z,y] € X, while more general polyhedra sometimes
need a completion in order to become geodesic in the strict sense.

The simplest polyhedra X are the 1-dimensional ones, i.e., graphs,
where the above metric amounts to assigning unit length to all edges.
Of course, one could live with edges of variable lengths, but when the
dimension goes up, one should be careful if one assigns variable sizes and

shapes to simplices in X as these must agree across common k-faces with
k> 1.

(b) Tt is often necessary to assign non-Euclidean geometries to sim-
plices in X, e.g., by identifying each A C X with a regular spherical or
hyperbolic simplex of a certain size. The resulting, e.g., piecewise spherical
and piecewise hyperbolic, geodesic metric in X may reveal some combi-
natorial properties of X invisible in the (piece-wise) Euclidean light.

§3. MODEL-SPACES

The standard or model spaces of constant curvature are

(i) The round 2-sphere of radius R, denoted S?(R). This has (by defi-
nition, if you wish) curvature K(S?(R)) = R™2.

(i) The Euclidean plane R? where K(R?) = 0.

(iii) The hyperbolic plane H, with curvature —x?. This H, can be
represented as the plane with coordinates (¢, y) and the Riemannian met-
ric dt? + 62\/__’”dy2. The t-lines here are geodesic, 1.e., the embeddings
R — (R,y) C H, are isometric for all y € R. On the other hand the
y-lines (t,R) are curved in H, and they shrink exponentially fast as ¢
increases.

(iv) If Kk — oo, then H, converges in a natural way (see [4]) to an
infinite metric tree branching at all points. This serves as the model
space for k = —oo0.
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Fig. 1.

Similarly to (i)—(iii) we have n-dimensional spaces with curvature &,
that are S™(R), R", and H? (with the metric

n—1
dt? + eV N (dy;)?),
i=2

n

denoted in the unified manner by X2 () for all x (including k = +o0),
where X _,(4c0) is the single point space and X[ _,(—0) is the above

mod
tree for alln = 2,3,... .

§4. COMPARISON RELATION BETWEEN THE MODEL SPACES

Let @1,..., 2k, ry1 = @1 be a cyclically ordered k-tuple of points in
X = X! (k) for some k < 0. Then for every &' in the interval [0, k]

mod

there exist points € X' = X2 ('), i=1,...,k, k+1=1, such that

m

! !
|l‘z' l’j|x

> a; — x|y forall i, j=1,...k
and

|x§—x§+1|X, = |z —xip1lx Sfor i=1,... k.

This is standard and elementary, where one chooses #} making a convex
k-gon in the plane HZ (which equals R? for k = 0). Notice that the above
extends to k > 0 if the points z; are contained in a sufficiently small ball
in X.

§5. POSITIVITY RELATIONS

Recall that a symmetric matrix d;;, ¢, j = 1,... , h, can be realized by
the distances between k points z; in R"Z* if and only if the quadratic
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k
form ®{t;} = — >_ d?j t;t; is positive definite on the hyperplane Hy =
i,j=1

k
{L ti=0}cr
i=1
Observe that this imposes infinitely many linear inequalities on the

numbers d?j .

If we interpret ® as the integral of d;; = ||#; — J:j||2 over R™ x R"™ with
the weights #;¢;, then the positivity of ® generalizes as follows.
Let i and v be probability measures on R”™, then

def
Po(p,v) = // [z — yl|” dudv—
RexR"™
1
| ) e =l dwdus [[ o= ol avir) 0.
RexR"™ RrexR™

In fact, ®(p, v) obviously equals the squared distance between the centers
of mass of the measures,

2
D(p,v) = /xdu—/ydy ,
Rn Rn

as a straightforward computation shows.

Example. Given x1,... %, 41,...,% in RY, then the average of the
squared distances ||z; — J:j||2 and ||ly; — yj||2 is bounded by the average
of ||xs — 3/j||2 as follows

1 PR
Ty \ 2wl 2 —wl | < 5 3 e -l (80)
1<j 1<j i,j=1
for A = ﬁ.

The form ®q(p, v) makes sense for an arbitrary metric space X with
|z — y||2 replaced by |z — y|§( Clearly, positivity of ®q for all probability
measures on X 1is necessary and sufficient for the existence of an isometric
embedding of X into a Hilbert space.

Similarly, one can characterize the spaces X embeddable into spaces
of radius R = 1/4/K, & > 0, by looking at the R-cone ¥, = CongX D X,
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where
o —yl, 2 BT for fe =l < 7R
2R for |z —y|x
for all z,y € X CY,. Here the relevant form &, equals
1 2
q)n(tla s atk) = ' Zl: . <R2 — 5 |l‘Z — l‘]|n) tit]'
i,j=1,..,

for z; € X C Y, and it is positive if X is embeddable into the Hilbertian

R-sphere.
If k < 0, then
def e —ylx
— = 2Rsinh ———=
|z —y|,. sin 5
for R =1/+/—% and
é 1
Z 2
@K(tl, . ,tk) = ij_l— <R2 + 5 |l‘l — xj|n) tit]'.

The space X embeds into a hyperbolic space of curvature x < 0 iff the
form @, has at most one negative square (in the diagonalizing basis).
If Kk = —o0 and k& = 4, one considers three numbers

my =di2+dza, ma=daz+dya, and mg=ds;+daa,
and sets my = max;_; ,3m; and m_ = min;_; , 3m;. Then d;; are
resizable by distances in Xpoq(—00) iff

3
3m+—2mi:m+—m_,

i=1
i.e., iff the second maximal among m; equals my. Furthermore, if ev-
ery quadruple of points in a (finite) metric space {x;};=1, . » has this
property, then {z;} isometrically embeds into the tree Xpoq(—00).
All of the above is well known and pretty obvious. But there are amus-
ing corollaries.

§6. WIRTINGER INEQUALITIES
Consider cyclically ordered points

xe€R™ i=1,... )k, k+1=1,
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k
let Wi{zi} = > |os — iy I”, and set W;(k) to be the value of W; on the

i=1
regular k-gon in R? inscribed into the unit circle. Then

Wilwi}/Wilwi} = Wak)/W; (k) (+})
for all {ay, ... 2p} CR™

Proof. According to Fourier (on the group Zjy = Z/k7Z) one needs to
check (>0<)§C only for Zj-equivariant maps {z;} = Z; — RZ where this is
obvious. Q.E.D.

Remarks and corollaries. (a) The Wirtinger inequality for four points
is equivalent to the above (&) for £ = 2. Furthermore, each (>0<)§C can be
algebraically derived from (&) for some ¢ = £(k), but a direct derivation
is rather messy starting from k& = 5. In fact, the negative definiteness
of the distance matrices {d3;} in R” (see §5) harbors infinitely many
linear inequalities non-reducible to anything like Wir; and their linear
combinations. One exhibits particular inequalities by looking at specific
arrangements of points in R”, e.g., coming from ezpanding graphs and
related combinatorial structures.

(b) There are further relations between W;’s. In fact, in order for an
inequality

> Wi} >0

J

with given ¢; € R, ¢ = 1,... k— 1, to hold true for all k-tuples in R”,
one only needs this for equivariant tuples in R?. For example, if k£ = 6,
then ¢ Wy 4+ ¢2aWa + c3Ws3 > 0 provided this holds for the following three
3-tuples of numbers: (1,3,2), (1,1,0), and (1,0, 1).

(¢) Since the spheres S"(R) = X" _4(k), K = R™%, embed into R"+!
with the spherical distance d going to 2R sin % in R+ the Wirtinger
inequality holds for {z;} C S (R) with W; made of

aij:aij(ﬁ):sinﬁ, ,7=1,... k,

instead of d;;. The extremal configurations all lie on circles in S (R) and
they make regular k-gons if k£ is not divisible by 2 and 3.

(c") The hyperbolic space H? is realized by the (halves of the) sphere
of radius R = —1//k in the Lorentz space (R"*! 3 y? —y2) where the
i=1
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Lorentz “distance” equals 2R sinh % for the hyperbolic distance d. One
cannot apply the Euclidean Wirtinger as our R”+! is not Euclidean, but
one can project points x; € H? C R"*! to the hyperplane H normal to
>~ #; = 0 and apply the Wirtinger inequality to the projections Z; € H.
2

The distances Elj = |%; — T;| are expressible in terms of the hyperbolic
di; = |#; — x;|. This gives us Wirtinger-type inequalities between d;;
which are sharp for regular k-gons in H? but not especially elegant.

(d) One can combine the quadratic (i.e., Euclidean) Wirtinger inequal-
ities with the comparison inequality for 0 = ¥’ > x < 0 and conclude to
the quadratic inequalities for Hy. Unfortunately these are not sharp,
except for some k-tuples of points lying on geodesic lines in H].

(e) The Wirtinger inequalities extend to an arbitrary finite group G
in place of Zy. Here, for a real function ¢ on G and a map f: G — X, we

set
We(f) =Y e(h) Y If(9) = Flah)x
heG geG

and we ask for which ¢ and X every map f has W.(f) > @ (where
one may try more sophisticated non-quadratic expressions). Here again
we easily see for X = R” that W.(f) > 0 for all f iff it is > 0 for
all equivariant maps G — R?¥ i.e., orbits of the (irreducible, if you
wish) orthogonal representations of GG. The same equally applies to all
compact groups G and Borel functions ¢ (better measures) and maps f
with the sums replaced by the corresponding integrals. In particular, we
may take G = S', where all this can be derived from the case of Zj, for
the obvious approximation Zyg e St which allows X = H? in the

picture. Also observe that averaging Wirtingers inequalities (*); over j
and then sending k& — oo gives us the traditional Wirtinger inequality:
every smooth map f: ST — X = H? satisfies

%//|f(51)—f(52)|2d51d52 < 27/||df||2ds.

This for X = R amounts to the evaluation of the first eigenvalue (of the
Laplace operator) of S?,
M(Sh) =1

(f) One can generalize further and take a measure space H with a
measure preserving action of G, where one studies weighted integrals of
|f(h)— f(gh)|§( for maps f: H — X and where Wirtinger inequalities
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for H can be derived from those for (G. Here one can allow non-compact
groups (I, especially Kazhdan’s T-groups. Also, one may look at partic-
ular H, such as the unit tangent bundle of Riemannian manifold V' with
the action of the geodesic flow in this case this flow is periodic. Thus
the Wirtinger inequality for all compact symmetric spaces of rank one
mapped into general CAT(0) and more general spaces X follows from
the classical Wirtinger for S' — R. Another example of such inequality
is (¢) in §5, where H = {z;,y;} and G is generated by the permutations
of x;’s of y;’s and the involution z; < ;.

§7. Cvcrng (k) AND WIRy-SPACES

A metric space is called Cycly (k) if, for each cyclically ordered k-tuple
of points #; € X, i = 1,... ,k, there exist comparison points z; € X' =
X2 4(x") for some x’ < &, such that
|$; - $;+1|X’ < |IZ _xi+1|X ) i = 1a aka

and

/

|J:Z»—x > |a; —xj]y foralland j#i4+1.

/
j|X'
(This definition is well suited for £ < 0, while the case & > 0 needs a
modification where the existence of comparison points is required only
for “small” k-tuples {z;} C X.)

The most important case is that of k¥ = 4, where the existence of a
comparison quadruple {z}} implies (at least for &’ < 0) the existence of
{2z} C X" = X2 _4(k") with " < k' < &, such that

" " . ) L.
|xi— j|X,,_|xZ—x]|X foralls, j=1,...,4,
as an elementary argument shows.

Remark. The Cycly(0)-property can be expressed by a family of linear
inequalities between |a; — l‘j|2. Namely, X is Cycly(0) iff the squared
distance function |z — y|2 satisfies (&;) from §5 for every pair of two-
point probability measures p and v on X. (A measure is called two-point
if its support contains at most two points.) This can be checked by a
direct computation and will be proven later on without computation.

Next we introduce Wirg-spaces where, by definition, every k-tuple
{&;} C X, i =1,... k, satisfles the Wirtinger inequalities (%);, j =
1,...,k—1, 1.,

Z i — l‘i+1|§g/2 |z — l‘i+j|§( > WP /W7,
] i
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where W denote the corresponding sums for the regular k-gons in R?
(see 1.2.C). According to our discussion in 6

Cycli(0) = Wirg forall k=4,5,....

§8. GEOMETRIC APPLICATION

Let V be a compact symmetric space of rank 1 (e.g., the n-sphere) and
let T. C V x V denote the subset of points (v1,v2) with |vg — valy, = €.
Since V is two point homogeneous, the isometry group of V is transitive
on 7. and we give the normalized, with the total mass one, invariant
(Haar) measure p. to T,. Let the diameter D of V satisfy D = %k& for
some integer k = 2,3,..., and let p < diamV be of the form p = je for
some 7 =1,2,....

If X is Wiry,, then every (say bounded) Borel map f:V — X satisfies

def
/ Fon) = Fe)l dpe > X / (o) = Fee) i diy,

where A, = Wi(k)/W; (k).

This is seen by integrating the Wirg-inequality over the orbits of Z; C
St in the unit tangent bundle S(V) for S = R/Z acting on S(V') by the
geodesic flow.

Observe that E. /e? converges, for ¢ — 0, to the average squared partial
derivation of f for smooth f,

E. /e — E(f) déf/”asf”?ds,
S

where the measures in the spherical fibers of the unit tangent bundle
S = S(V) are normalized to mass one as well as the Riemannian measure

k
on V. On the other hand, a suitably weighted sum of Ej., ie., > p;Ej.
=1

where kp; equals the reciprocal of the Jacobian of the exponential map
RAMY — 7 (V) — V, on the sphere of radius je in R4V converges to
the mean (average) A(f) of the squared oscillation |f(v1) — f(vz)@( over
V x V. Thus, if X is Wire,, i.e., Wiry, for all k, then E(f) bounds A(f)

by
2E(f) 2 ATHA(S)

where A = A(V) = 1A(fo)/ (fo) for the (isometric!) Veronese em-
bedding of V to RY N = N(V), (where N(S") = n+ 1, N(P") =
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gn—“%”—ﬁz — 1, etc.). If X =R, the above (4) boils down to the familiar

evaluation of the first eigenvalue Ay of (the Laplace operator on) V|

A1 (V) = (dim V)A(V). (+)

The dim V-factor is due to the fact that the average of the square of
a linear function 9: R — R over S"~! C R" equals n~! ||8||2 and,
consequently,

/||gradf||2 dv = E(f) Vol V/dimV
14

for all Riemannian manifolds V' and functions f: V' — R. This yields (4)
since

/ 1£(v1) = f(v2)]]” dvidvy = 2V01V/||f(v)||2dv
Vv

VxV

for all R™valued f with zero mean, [ f(v)dv = 0. (This explains why we
v

brought up this “2” earlier.)

§9. REMARKS

(a) Observe that

AV > (Diam (Veronese(V)))™% > %(Diam vy~

This makes A1(V) & dimV and implies “high concentration” of func-
tions f on V for large dim V. Such concentration persists for maps
f:V — X where X is a Riemannian Wiry,-space of relatively small
dimension dim X = 6 dim V. Namely,

Vol (V) / df||” dv > 5—1A(V)/ |F(v1) = f(va)[x dordvs (%)
v VXV
(compare Ch. 31 in [11]).
(b) The role of the Wires-property is minor in the above discussion: it
is needed only for identifying the explicit value of A(V'). For example, the

inequality (x) holds true for all (non-Wirtinger) Riemannian manifolds
X with the constant A(V') replaced by a slightly smaller number

Avy = (Vol V)Z// |vy — vz|%/ dvydvs,
VxV
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where the proof is identical to (actually easier than) that of (*) and
where it applies to all piecewise smooth Riemannian X. In particular,
every 1-Lipschitz (i.e., distance decreasing) map f: V — X satisfies

/ |F(v1) — fva)|x dvidvs < 5/ vy — val} dvyduy (5 %)

VXV VxV

for é = dim X/ dim V, that signifies “high concentration” of f for small é.

One can generalize further by allowing (arbitrarily singular) non-
Riemannian metric spaces X, where (x*) can be sharpened for Banach
spaces X that are far from being Euclidean. One can identify extremal X
and f: V — X. One can bring in symmetric spaces X of rankg X > 2 and
more general Riemannian (and non-Riemannian) V' with distinguished
families W, C V', ¢ € X, of subvarieties, such as flat tori in symmetric V'
and minimal geodesic segments in V' with Ricci V' > p (where one may
allow singular V' and sometimes use the Brownian orbits for W, ). Even-
tually many results on concentration of functions, e.g., various Sobolev
and 1soperimetric inequalities, extend to maps into rather general spaces
X. For example, Levi’s concentration generalizes to the following

Theorem. Let f: S? — R®™ m > 0, be an arbitrary continuous
map. Then there exists a point & € R"~" such that the pull-back S, =
[~1(x) C S™ is larger than an equatorial sphere S™ C S™ in the following
sense: the volumes of the e-neighborhoods of the two subsets satisly

VolU.(Sy) = VolU.(S™) ()
for alle > 0.

(More generally, one considers pairs of maps, f: ¥ — X and ¢: ¥ —
V', and seeks € X such that the image S, = ¢(f~'(x)) C V has a large
e-neighborhood. For example, if ¥ is a closed manifold of dimension n,
X is a manifold of dimension n — m, the map f is contractible, ¢ has
non-zero degree mod2, then, in the case V = S, there is an « € X such
that VolU.(Sy) = VolU.(S™) for all € > 0.) We shall prove this in [9] by
constructing a suitable convex partition of S™ “transversal” to the fibers
of f: 8" —R"™™ (compare [12] and [11]).

(¢) The role of negative curvature of X in the concentration of maps
f:V — X becomes more pronounced if we look at maps f with large
Lipschitz constants (or, alternatively, scale X with small ¢ > 0). For
example, if K(X) < —# < 0 (or, hyperbolic, in general), then it is ap-
proximately one-dimensional at infinity with a logarithmic error; thus
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maps f to X concentrate as much as maps to trees, up to a logarithmic
error. Similarly, maps to non-compact symmetric spaces of rank & (and to
buildings) concentrate, up to certain error, as do maps to k-dimensional
spaces.

§10
Tt is well known that A1 (V' x V') = min(A(V), A (V")) for products

of Riemannian manifolds. This extends to maps to arbitrary Wirs-spaces

X assuming there is almost everywhere defined [ |gradf|2 dv for our
VXV
maps f and the squared gradient of an f on V' x V'’ equals the sum of the

two squared fiberwise gradients along the V- and V'-fibers (as obviously
holds true, for instance, for smooth V’s, X’s, and f’s). On the other hand,
if X is Wiry, then every map

fW=VxV =X
satisfies
[1£(v1,01) = Fwa, vi)II* + 11 £(vr,v) = Floa, )] <
1 £(v1,01) = Fon, v+ [ F (o, vf) = Flos, )|+
[1£(v, 05) = F(va, o))" + || F(v2, 4) = F(v1, v9)|”

(see Figure below),

vy XY Wy XY
1 Vi) v
o / Vv
(/'/’ﬂ ‘“‘,\
- = Vxvy
vy, va) vy, v3)
Fig. 2.

which integrates to the bound of [ ||f(vi,v})— f(vz,v’z)H2 by the
WxWw
corresponding fiberwise integrals, since our measure on the product
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V x V' x V x V' is symmetric under the permutations of the compo-
nents.
Hence the bounds

Jllrad s 205 [[ 1600 = seali

for all maps f of both V and V' to X imply such a bound with the same
A1 for the maps V x V' — X.

Remarks. (a) The above argument is similar to one used by S. Bobkov
in his thesis for functions on metric probability spaces.

(b) One may use two different metrics on X, one for evaluation of

||lgrad||? and the other for |f(v1) — f(v2)|°.

(¢) The measures used in the double integrals on each V' and V' do
not have to be product measures. Furthermore, one can use L, norms
for p # 2, which may be useful for products with L,-product metrics.
Notice that the fi-metric 1s implicit in the inequality Wiry, where 4-
tuples of points in X may be thought of as maps of the Hamming square
{0,1}? — X. Then one looks at the Hamming cube {0,1}" (where the
Hamming metric is induced from the ¢;-metric on R” > {0,1}") put
to X by some map {0,1}" — X. If X is Wiry, then the standard (and
obvious) computation (similar to our evaluation of A1 (V1 xV3)) shows that
the mean of the squared great diagonals of {0, 1} — X is bounded by n
times squared edge length. (One should keep in mind that the sharpness
of the Lo-estimate depends on the global Wiry for X confronted with the
inverse Wiry for “infinitesimal parallelograms” in X.)

§11

Combining Remark 9 (a) and §10, we obtain concentration for maps of
products V of rank 1 symmetric spaces into (mildly non-singular) Wire,-
spaces X, including polyhedral CAT(0)-spaces, for instance. Namely, such
maps for these V concentrate as much as maps to R* with k& = dim X.

§12

Many standard tricks of the concentration theory for real-valued maps
extend to general Wirtinger (and especially CAT(0))-spaces as targets.
For example, concentration for a V implies that for suitable (e.g., Rieman-
nian) quotients of V' with low dimensional fibers. Also, mildly distorted
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and sufficiently spread subvarieties W C V of low codimension concen-
trate (when mapped to X) almost as strongly as V itself (where one is
additionally aided by the Lipschitz extension theorem of [13] for CAT-
spaces). Thus one sees concentration of maps of Grassmann manifolds to
Wirg, -spaces.

§13. CONCENTRATION IN SMOOTH X

If X is a complete simply connected manifold with non-positive curva-
ture (or a more general smooth CAT(0)-space), then the Ly-concentration
of maps f: V — X is almost as good as that for maps V — RN of all
manifolds V', due to the following simple

Observation. For every f: V — X there exists a map fo: V — RY for
N =dim X (where this dimension is allowed to be +00), such that

(i) ldfo()ll < lldf(v)| for all v €V,

@ [t = foeo)l dusdes > 5 [ [ 15600 = o)y derden

VXV VxV

Proof. Take the Riemannian center of mass g € X of the f-push-
forward measure from V to X and observe that the map fy = exp;D1 f

has [ fo(v)dv = 0. Q.E.D.
v

The inequality (i) now follows from the contracting property of the
inverse exponential map exp™!: X — T, (X) = R (since K < 0), while
(ii) depends upon the non-decreasing (in fact isometric) feature of exp~?
on the rays issuing from zy and on the triangle inequality (where the
latter is responsible for the unfortunate coefficient 1/2).

Remarks. (a) The above remains valid for graphs in the place of man-
ifolds V. For example, if V' is the complete bipartite graph on vertices
z1,...,x¢ and y1, ...y, in X, then the above argument combined with
(K) in 5 shows that the averaged squared distances |z;—z;|* and |y; —y; |*
are bounded by the averaged (over the edges) |x; — y;|* as follows

¢
1 V0
w1 Z|1‘i—l‘j|2+2|yi—yj| Sz Z e — 51> (280)

1<J 1<J i,j=1

_ £
for A = 2m
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(a’) This inequality is sharp as is seen in the Cartesian product of two
hyperbolic spaces, X = H:™1 x HE=1 with k < 0, where the ratio of the
left hand side and the right hand side of (2&,) converges to 1 for {#;} and
{yi} converging to the vertices of regular ideal £-simplices on the ideal
boundaries of H:™! x kg and zg x H.™! respectively. (Bipartite graphs
can be approximated by surfaces, which shows that the extra factor 2 is
unavoidable in the Riemannian category as well.)

(b) There is no Euclidean reduction of the concentration property for
singular CAT(0)-spaces (defined later on). Counter-examples are provid-
ed by cones over expanders. These play an essential role in the study of
random groups (see [8]). However, most elementary (local) bounds on Ay
(e.g., for Ricci < —«) are likely to extend to maps into singular CAT(0)-
spaces (possibly without the 2 factor).

(¢) The essential property of X in the above observation is not so
much K < 0, but rather the existence of “many sufficiently contract-
ing” and “sufficiently proper” maps to RY, that is known as parametric
hyper-Euclidean property involved in most proofs of the strong Novikov
conjecture. (This property is violated by singular X with cones over ar-
bitrary large expanders.)

§14. DIFFUSION, CODIFFUSION, AND HARMONIC MAPS

A prediffusion on V is a map from V to the space of R -paths of
probability measures on V| denoted

V= pe(v,0")dv' e € (0, 00),

such that u.(v,v")dv’ converges to the é-measure §(v)dv for all v € V
and ¢ — 0. A prediffusion is called diffusion if the family {u.} makes a
semigroup under the composition (convolution) of measures:

Hey * ey = Heites

(compare Chap. 7 in [3]).

A codiffusion on X is a retraction ¢ of the space P(X) of probability
measures on X back to X C P(X), where X is embedded to P(X) by  —
8(x)dx. (To be consistent, one should deal with homotopy retractions,
e.g., given by contractive semigroups of maps P(X) < but these do not
enter the present framework.)

If V and X are endowed with prediffusion and codiffusion respectively,
one defines e-harmonic maps f: V — X as those where f,.(p:(v)) € P(X)
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retracts to f(v) € X for all v € V. Traditionally, one defines harmonic
maps by the equality e(fi(pe(v))) = f(v) for an infinitesimal ¢, i.e., in
the limit for ¢ — 0. Another attractive possibility i1s passing to the limit
¢ — oo and augmenting the spaces P(V) and P(X) by the measures
on suitable ideal boundaries of the spaces V' and X. In any case, the
harmonicity amounts to f: V — X being a fized point of the diffusion-
codiffusion flow map

f(0) = e (fx(pe(v)))

at some ¢ € [0,00]. (This brings harmonic maps on equal footing with
classifying maps into spaces supporting expanding maps.)

If X has negative curvature, one defines codiffusion as the center of
mass: first, a measure v € P(X) is mapped to the function on X that
equals the v-average of the squared distance functions on X,

visd,(z') def / |z — x/|§( dv(z).
X

For K(X) < 0, this function d, is strictly convex on X and, hence, has
a wnigue minimum point Tniy = #(v) € X: this is taken for ¢(v) € X.
The essential feature of this ¢ is the contraction property for the Lo-
transportation metric (see [11]). This contraction property, when con-
fronted with the smoothing properties of the diffusion in V' (characteristic
to curvature > —& > —oo, compare [1]), allows “good” (e.g., Lipschitz
regular) harmonic maps V' — X (where in interesting cases these maps
commute with a given symmetry group operating on V' and on X).

§15. GEODESIC TRIANGLES AND CAT(k)-SPACES

A metric space X is called CAT(&) if it is geodesic and Cycly(x). The
geodesic property, essentially equivalent to the existence of a middle point
x between arbitrary 1 and zs, i.e., satisfying

|y — @| + [z — 22| = |w1 — @2,

enhances the power of distance inequalities. For example, if X is geodesic,
then the general Cycly(x)-inequality follows (by an easy argument) from
that for the special quadruples {@;} C X where 23 lies between x5 and
24, .., on a (shortest geodesic) segment [z, 24], which amounts to the
equality

|l‘2 — l‘3| + |l‘3 — l‘4| = |l‘2 — l‘4| .
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If one thinks of |#; — #;|, i = 2, 3,4, as the values of the distance func-
tion X +— d(x) = dist(xy, x), then one can interpret this inequality as
a converity property of d(z) saying that it is “more convex” than the
corresponding distance function on the model space of curvature .

Another, apparently stronger but, in fact, equivalent characterization
of CAT(k)-spaces X expresses the idea of geodesic triangles in X be-
ing narrower than the comparison triangles. Here a geodesic triangle
Az, 22,23) in a geodesic space X is defined as the union of the three
edges [z;,2;] C X, 1 € i< j <3, where one allows every edge between
two points if there are several of them. A comparison triangle A’ in a
space X' (which will be taken of constant curvature later on) is, by defi-
nition, a geodesic triangle A’ = A(z}) C X', #}, € X', i =1,...,3 such
that

le; — x|y = |x§—x}|X,.

This A’ C X’ does not necessarily exist. If it does, it comes along with
a canonical map ¢: A" — A, where &} — x; and each segment [z}, 2]
isometrically goes to [x;, x;].

A space X is CAT(x) iff each D in X admits a comparison triangle
A’ In a model space X’ with constant curvature x’ < & such that the
comparison map ¢: A’ — A is (non-strictly) distance decreasing with
respect to the (non-path) metrics distx:|as and distx|a,

le(@’) = c(W)lx < ' =¥ [x (Ax)

for all 2/, ¢y € A",

This is a fundamental, albeit easy to prove, result by Alexandrov.

If kK = 0, then a comparison triangle always exists in X/ and is unique
up to 1sometry; the same is true for x > 0 if

™ 27
|z; — zj| < —= and Z loi — 2] < —=.

G 1€i<j<3 Vi

In general, the existence of A’ can be dropped from the definition as we
allow &’ < k.

Basic examples. (a) The standard space X! is CAT(x’) for all &' > &.
This is the essential feature of these model spaces allowing a meaningful
definition of general CAT-spaces.

(a’) A complete simply connected Riemannian manifold withconstant
(as well as variable) sectional curvature < & is CAT(k): the n-spheres of
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radii > k=12 are CAT(k); R™ is CAT(0); the hyperbolic spaces

n—1
H = (R x RMTL dt? e VE Y dyf), k>0
i=1
are CAT(—«) for alln =2,3,... 0.
(b) Every (simplicial or non-simplicial) tree is CAT(—00), i.e., CAT (&)
for all k € R.
(¢c) Every smooth domain X in R? is CAT(0) for the induced path

metric and such domains in HZ are CAT(—x). (This is an easy but useful
property which does not directly extend to higher dimensions.)

Remarks. (a) Cycly as well as Cycly, for all £ are instances of concen-
tration (of isoperimetric kind) inequalities which can be defined with
an arbitrary (measuring rod) graph with the vertex set V and edges
E C V xV by requiring a certain bound on distances | f(v1) — f(v2)| for
maps f: V — X in terms of distances |f(v1) — f(v2)|x for (vi,vs) € E.
It is convenient to allow infinitesimal graphs V where E consists of pairs
of infinitesimally close points. We have met such a bound for maps of Rie-
mannian manifolds V into X, where £ was represented by unit tangent
vectors in V' and the relevant bound(s) was/were of the form

/ If(v1) = f(v)|* dvidvy < F /||df||5de
E

VxV

We have also seen that smooth X with K < 0 satisfy additional inequal-
ities of this type but one does not know what is the full set of such
inequalities characterizing a given class (e.g., of smooth X) of spaces
with K < 0.

(b) The geodesic property is one logical level up from concentration
inequalities as 1t involves the existential quantifier. It is unclear if there
is a simple 3-free description of (non-geodesic!) subspaces in CAT(k)-
spaces. (We shall see later on that Cycly = Cycly for all & > 5 in the
geodesic case but this is apparently not so in general.)

(¢c) Consider two probability measures p and v in X, let ¢(p), ¢(v) € X
be their centers of mass, and let

<I>X(/w/)=// o — y|* dudv

XxX
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1
- ((// |x—y|2dpdp—|—// |z — y|” dvdv
XX

XxX

If X =R", then
Ox (1, v) = le(n) — ()],

(see §5), and if X is CAT(0), then

le(k) = c()I < ®x(p,v) (&(0))

for two-point measures p and v. This follows from the fact that the
squared distance functions d on X, and hence the convex combinations
of d¥’s, are “more convex” on geodesic lines than the function z? on R.
This means the second derivatives of d?’s are > 2, or equivalently, the
difference of two squared distance functions, d; — d2, is convex on each
geodesic in X passing through z (and concave on geodesics through y).

(¢") The inequality & (0) fails for general (non-two-point) measures in
CAT(0)-spaces but does hold true if the supports of yz and v are contained
in (possibly different) flat convex subspaces in X.

(c"") The general CAT(k) (i.e., Cycls) property can be brought to the
& (k)-form. Yet, this does not (7) appear sufficiently illuminating.

§16. (GEODESIC CONVEXITY AND CONVEX GLUING OF SPACES

A subset Y C X is called (geodesically) convex if it contains every
segment with the ends in Y.

Examples. (a) Every geodesic segment in the CAT(0)-space is convex,
and every segment strictly shorter than 7/k is convex in a CAT(x > 0)-
space.

(b) Every subtree in a tree is convex.

(¢) Every ball B in a CAT(0)-space is convex, where

B = Byy(R)E {x € X | |z — o < R}.

Let YV; C X;, ¢ = 1,2, be non-empty convex spaces, ¢: Y] — Y5 a
bijective isometry, and denote by X; V, X5 the disjoint union of X; and
X, where Y7 is identified with Y5 via ¢.
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Gluing theorem. If X and X, are CAT(k), then so is X1 V, X».

The proof is straightforward, modulo elementary geometry of the mod-
el spaces (see [2]).

Examples. (a) To apply the theorem one needs X; with mutually iso-
metric convex Y; C X;. One can use, for instance, segments in X; of
equal lengths (which are always convex for k < 0). Or, if X happens to
be isometric to X5, one can use the restriction of the implied isometry
X7 — X3 to some convex subset Y7 C X, e.g., to a ball B C X3 (which
is always convex for k < 0).

(b) Tree-like polyhedra. A connected simplicial polyhedron P is called
tree-like if
p=Jp

for ¢ ranging over a well-ordered set I, such that P,y; = PLUA; ¢ € 1,
where the simplex A; meets P; over a single face A} C A;. (Clearly, trees
are tree-like.) If we give to such P the metric where each simplex A C P
is i1sometric to a regular simplex of a fixed size in a simply connected
space of constant curvature x (i.e., spherical, Euclidean, or hyperbolic),
then P becomes a CAT(x)-space by the Gluing theorem.

(b") Nerves of subtrees. Let () be a tree, Q;, j = 1,...,k, a finite
collection of subtrees, and P be the nerve of this family {@Q;}.

If P is connected, then it is tree-like.
Proof. Assume there is a point ¢ € Q\[)Q; and let Q;« be the farthest
J

subtree from ¢. Then, clearly, P is obtained from the nerve P*® of

(Qla"' an'—lan'-I—la"' an‘)

by attaching a simplex to P*® across a single face, and an obvious induction
concludes the proof. Q.E.D.

Remark. Another significant property of this P (shared by all tree-like
polyhedra and possibly characterizing them) is the following sharp com-
binatorial isoperimetric inequality: every cyclic path of k-edges bounds a
(possibly degenerate) disk made of at most k — 2 triangles.

§17. CONVEXITY AND CAT;-CONVEXITY

Take a geodesic line ¢ in the model space X’ of curvature « (this line
is a topological circle for £ > 0) and consider the distance function to ¢,

de(2') = infcp &' — o0
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The restriction of this function to a segment [a’, b'] in a connected compo-
nent (half-plane) of the complement X'\ ¢ is uniquely determined by the
values dy(a'), d,(b') and the length &’ — b'| of [/, b]. So we can regard
d, as a real function, called x-function. Notice that the k-functions are
positive and 1-Lipschitz, i.e.,

|dn(t1) - dn(t2)| < |t1 - t2|'

Next, a positive 1-Lipschitz function d defined on some segment in R
is called &-convez, if, for every two points a and b in this segment, there
is a k’-function d.: on [a,b] with k" < &, such that

ds(a) = d(a), du(b) = d(b)

and

de (1) = d(t) for t € [a,b].

In other words, d must be more conver than d;. For example, if k =
0, then the k-convexity amounts to ordinary convexity for positive 1-
Lipschitz functions.

One checks elementarily that the x-convexity is a local property: if d
1s k-convex in a small subinterval around each point, then it is x-convex.

About £ = —oo. This convexity means the k-convexity, for all k € R,
which corresponds to the behavior of the distance to a geodesic line in a
tree. Clearly, every (—oo)-convex function d(?) on [a, b] equals

max (d(a) —|a —t], 0, d(b) — [b—1|).

A (positive, 1-Lipschitz) function on a geodesic space is called CAT,-
convez if 1ts restriction to every geodesic segment is x-convex. Then a
space X is called CAT-convez if the distance function to each segment
Y C X,ie.,d(x) =inf,cy |z—yl, is k-convex on X. If X is CAT,-convex,
then, clearly,

(i) the distance function to every conver subset Y C X is k-conver;

(i1) the R-balls in X are convexr for all R if £ < 0 and for R < n/\/k
for k > 0;

(iii) the p-neighborhood Y + p of each conver subset’ Y C X is convex
for k < 0, where, recall

V4p% {r € X | dist(z,Y) < p}.
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Convexity theorem. Every CAT(x)-space is CAT-convex.

This is well-known and the proof is straightforward (see [2]). Notice
that the converse is true (and rather obvious) for Riemannian manifolds
but not for general X. For example, Banach spaces are 0-convex; yet
these are not CAT(0) unless they are Hilbertian. But for x — —oco the
distinctions between the classes of spaces disappear:

CAT(—00) = (—o0)-convexity.

On the topology of CAT(k). If x < 0, then every two points in a
CAT(k)-convex space X are joined by a unique geodesic segment and
so CAT(0)-convex spaces are contractible. Moreover, the balls in these
spaces are convex and contractible. (If & > 0, then convexity of the R-

balls is ensured only for R < 7/(2+/k) and contractibility for R < x/+/k.)

Fig. 4.

§18. CAT-(k) AND CURVATURE

If a geodesic triangle A in X is subdivided into (smaller) triangles
A; with all vertices on A then the CAT(x)-comparison inequalities for
A; imply (by an easy and well-known argument) that for A itself. Then
such subdivision can be applied to all A; etc., thus reducing verification
of CAT(x)-property to arbitrary small triangles.
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There is a catch in this however: such subdivisions are rather special
as every vertex must lie inside a geodesic edge and there is no guarantee
that the new triangles will be smaller than the original A. Yet, everything
works if X contains no almost minimal closed curves (geodesics), which
amounts to requiring that the extrinsic distance dist x A is “significantly”
smaller than the induced path metric on A. This means, by definition,
that every geodesic A contains a pair of points  and y such that

distx (z,y) < (1 — g)dista(z,y)
for the path metric dista on A, and
dista(z,y) > ediam A

for some ¢ = ¢(X) > 0 independent of A.
These considerations suggest the following

Definition. We say that X has curvature K < k at @ € X if there is
a neighborhood U C X of « such that every A contained in U is more
narrow than the model triangle A’, i.e., the comparison map c: A" — A
is distance decreasing. (Equivalently, one could say that a small e-ball
around x is CAT(x).) Next we define spaces X with K(X) < &, lLe., with
curvatures < &, by requiring this property at every point v € X.

§19. EXAMPLES

(a) Riemannian manifolds X (of finite or infinite dimension) with sec-
tional curvature < & have K(X) < & in our (i.e., Alexandrov’s) sense.

(b) Let X be a polyhedron built of (convex) simplices of constant
curvature £ (i.e., simplices from a complete simply connected space with
constant curvature k). The link L, of every vertex & € X is again a
space of this kind, built of spherical simplices, i.e., those with x = 1.
Then K(X) < « if and only if every such link is CAT(1).

In particular, if dim X = 2 and thus every L, is a 1-polyhedron, i.e.,
a graph with the length of the edges measured by the angles of the cor-
responding triangles. Here the CAT(1) condition for L, says that every
cycle in L, has length > 2.

More generally, CAT(1) needs, besides K < 1, the uniqueness property
for geodesic segments between the pairs of points with distance < #
between them. For instance, if X is CAT(x) for k < 1 and Y = X/T for
an isometry group I' with |# — y(z)| > 27 for all x € X and id # y € T,
then YV is CAT(1).



CAT(x)-SPACES: CONSTRUCTION AND CONCENTRATION 125

§20. RAMIFIED COVERS

Let X be a 2-polyhedron and let f: X — X be a ramified covering, i.e.,
the pull-backs f~!(z) C X are discrete for all € X and, furthermore,
there are discrete subsets Xo C X and Xy C X such that f maps the
complement X\ X; to X\ X, with X\ Xy — X\ X, being a covering map.

Every path-metric in X (obviously) induces such a metric in )N(, and
if the former had K < 0, so, obviously, does the latter. Moreover, if
the metric in X is flat (Euclidean) on all 2-simplices in X, then “most”
ramified coverings X — X have K(X) < 0, regardless of the curvature

of X.

For example, let X be built of plane equilateral triangles and X=X
ramified at each vertex in X with order > 2. This means Xy contains all
vertices in X and for every pair of points € Xy and z € Xy the induced
covering map fz of the link L; C Xo to Ly C Xnon- trivially covers each
simple cycle C' C Ly, i.e., there is no cycle C C L; injectively sent by
f# to C. Then, clearly, each cycle in L has at most 6 edges and thus
K(X)<0.

Notice that whenever X contains all vertices in X, there are plenty of
ramified covers X — X with the above property. In fact the fundamental
group 7’ of the complement X’ = X\ Xy is free and therefore it contains
lots of subgroups @ C 7’ such that the classes of the simple cycles C' C
Lz, * € Xp, are not contained in 7. Then the completions of the 7-
coverings of X’ are our X with K(X) < 0.

If we are concerned with finite polyhedra X and X, we need subgroups
7 C 7« of finite index in order to have finitely sheeted ramified covers
X — X. Since free groups are residually finite, we do have plenty of such
7 C ' and, consequently, we have as many finite 2-polyhedra X with

K(X)<0.

To be specific, let X be the 2-skeleton of the (n—1)-simplex. This X is
simply connected and is built of (g) = % triangles. If we remove
the set Xy C X of the vertices of X, the complement X\ X contracts
to the graph X’ C X\Xo spanned by the baricenters of the triangles
and edges in X. This X’ has 3 (%) edges and (%) + (%) vertices, where
(g) = ﬂnz—_lz is the number of edges in X. Thus the fundamental group
of X\ Xy is free with m =2 (%) — (5) +1 generators. The most obvious

subgroup T C @' = Fyy which makes K(X) < 0 is the kernel of the
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canonical homomorphism

Fon — (Z)2Z)™

(while every m > 2 makes K(X) < 0). The multiplicity of the corre-

2m—£

sponding ramified cover X — X equals 2”7 away from X, and at

Xy, where
v—0, = (n—1)(n—-2)
2
is the rank of the fundamental group of the 1-skeleton of the (n — 1)-
simplex.
(There are smaller ramified covers of this X with K < 0, and one,
probably, can enlist the minimal ones. Similarly, one can ramify other
symmetric 2-polyhedra, such as the 2-skeletons of the cubes and octahe-

dra.)

—(n—1+1

§21. ON CONSTRUCTION OF POLYHEDRA
X witH K < 0 ForR dimX > 3

As dimension grows, there seem to appear fewer and fewer new spaces
with K < 0 and getting them with K < 0 is especially difficult. (In fact,
all known high-dimensional hyperbolic groups are built out of “arithmetic
blocks” but we are far from stating and proving any definite result in this
direction.)

For example, if we sufficiently ramify 3-polyhedra X over 1-dimensional
loci X7 C X, the resulting X will have negative curvature everywhere
except the vertices z € )N(, where we can ensure curvature < 1 of the
(2-dimensional) links Lz, but not the CAT(1)-property.

(The latter could be achieved if these links had sufficiently many coher-
ent finite coverings, i.e., if the fundamental groups of X\{vertices} were
residually finite. In fact, a suitable residual finiteness of n-dimensional
groups with K < 0 (or K < 0) would lead to many examples of (n + 1)-
dimensional groups with K < 0 (or K < 0); this indicates, in my view,
that typical groups with K < 0 (or K < 0) have no non-trivial finite
quotients.)

The spaces like X, where the curvature is negative away from the
vertices, can be modified to have K < 0 (or K < 0) everywhere in two
ways.

(1) Remove the vertices and replace all simplices by the ideal hyper-
bolic simplices. Then the resulting space X’ becomes a complete space
of finite volume and K < 0 (or K < 0).
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(2) Suitably truncate the hyperbolic simplices and double the resulting
space. This results in a compact X with K < 0 (or K < 0), homeomor-
phic to the double of

X\{small balls around the vertices},

where the “double” gluing takes place over the boundaries of these balls.
In particular, one obtains in this way some (not especially exciting) 3-
polyhedra with K < 0.

Finally, if we depart from a 3-dimensional pseudomanifold X, then we
always can arrange ramified coverings with K < 0. In fact, such an X
can be obtained from a compact 3-manifold X, by attaching cones to
the boundary components of X, (followed by some irrelevant identifica-
tions). If X, happens to have constant negative curvature with mildly
curved boundary, then, after passing to finite covering X, and coning the
boundary of )N(., we get a compact pseudomanifold with K < 0.

Of course, not every X gives us such an X, but the desired property
1s satisfied by a suitable preliminary ramified cover of X as can be easily
derived from Thurston’s theory. So, with Thurston, we have a huge pool
of compact 3-dimensional pseudomanifolds with K < 0.

§22. ASSEMBLING (K < 0)-SPACES OVER GEODESIC GRAPHS

It is hard to construct high dimensional spaces X with K < 0 (and,
especially, with K < 0) from scratch, but given such an X one can con-
struct many others as follows.

Let X7 C X be a geodesic subgraph in X, i.e.; a union of geodesic
segments e;, ¢ € I, where every two segments meet, if at all, at one of
their end points. Take several copies of X (where, more generally, one
may take various numbers of different connected components of X, in
case X was disconnected) and then glue together some among edges of
equal length in the corresponding union of the copies of X7, where we
do not exclude gluing edges in the same connected component in (the
union of copies of) X. (There are exactly two ways to glue together two
equilong edges, where a particular gluing can be specified if we orient our
graph.)

It is easy to figure out when the resulting space, say ¥, has K < 0 (or
K < 0). Namely, if K(X) < 0 (or < 0), the same inequality holds at all
points in Y except, possibly, the (points coming from the) vertices of our
graph X;. Now, at every vertex points y € Y consider all edges ¢;, j € Jo,
from the union of copies of X7 adjacent to some point in (a copy of) X
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and call two such edges z-neighbors if they come from edges adjacent to
the same point « in X. In this case there is a well (and obviously) defined
angle measured in X between these edges, denoted <t (eg;,, €;,). Observe
that the same pair of adjacent edges in Y may come from different =’s in
X and the resulting angle depends on which  is used. Just look at the
pair of triangles glued over two pairs of edges.

Y

=
| =
»“’A - -

\

Fig. 5.
Next consider cyclic chains of edges at y, say e1,ea, ..., epq1 = €1,
where €,11 1s z;-adjacent to e; for all ¢ = 1,...  k, and where ; # 2,41

for all 2.
Clearly, Y has K < 0 (or K < 0) iff the total sum of angles,

Lpy(€1,€2) + .o+ g (er, €1),

is > 27 (or > 27 if we want K < 0) for all such chains of edges. This
(trivially) generalizes the case of 2-polyhedra, where X equals the union
of Euclidean triangles with X; C X being the union of the edges of these
triangles (and where something new enters the picture if we take, for
instance, 3-simplices with their edges instead of the triangles).

All of the above would be rather pointless if we had no simple way to
arrange gluings satisfying the (> 2)-condition. Fortunately, there are,
roughly, as many such gluings for general (X, X1) as for triangles (A, 9A);
in particular the ramified covering trick works for all (X, X1) as follows.

Start with an arbitrary Y, e.g., obtained by doubling X across Xj.
This Y has K < 0 everywhere except the vertices of X7 and then we take
a ramified cover Y — Y which ramifies at these vertices. Technically
speaking, we remove Xy = {vertices of X} from Y, take a (finite if
you wish) covering of the complement Y\ Xy which is trivial over each of
the two copies of X in Y, and then metrically complete this covering by
adding back the vertices.

The triviality condition says, in effect, that our covering comes from an
auxiliary 2-polyhedron where each copy of X is replaced by the cone over
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X7 C X. After removing the vertices in X; the resulting 2-polyhedron
contracts to a graph, and so coverings are determined by subgroups of
a free group so that we have the same freedom of choosing them as for
2-polyhedra. In particular, we can construct finite ramified covers of Y
with K < 0 (or K < 0), provided all angles between the edges of X; at
the vertices are strictly positive. (This is a rather mild condition; actually
it takes a special effort to make up examples where it is violated.)

Remark. One can look at gluing across k-dimensional subpolyhedra
X C X with totally geodesic simplices but making specific examples
becomes rather difficult for £ > 3.

§23

Let us 1solate a purely combinatorial aspect of the above construction.
Say that a graph (f/, E) is tessilated by (copies of) a graph (V, ) (where
V and V stand for the sets of vertices and E’s for the edges) if we are
given embeddings ¢;: V' — V,i eI, such that

(a) ZLGJI pi(V) =V;

(b) card (¢;(V)Neg;(V)) L Lforalli#jel;

(c) edges go to edges, i.e., the Cartesian squares
02V xV — VXV

map £ C V xV to E C V x V; furthermore, the images of 0 (E) C
E are mutually disjoint and

i€l
Proposition. Given finitely many finite graphs, V1, B, ooy (Vie, By,
there exists a finite graph (V,FE) tessilated by each of (V1,FE),...,
Vi, Ex).

In fact, such a (f/, E) is obtained by factoring some universal infinite
graph (V, E) by a suitable cofinite subgroup of the free group operating
on (V, E) To make it clear, we shall state a more precise form of the above
proposition, where we assume, for simplicity’s sake that there are only
two graphs, (V1, E1) and (Va, Fs), with cardE; = cardEa. We assume,
moreover, that there is given a bijection £y < F5, where the edges £7 3
€1 < es € Fy are regarded as equivalent. We also fix directions on all
edges and require the above correspondence to preserve the directions.
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Furthermore, we assign positive lengths to the edges, thus turning Vi and
V3 into metric spaces (presuming the graphs are connected) and assume
that the corresponding (equivalent) edges have equal length. Then we
shall speak of marked directed isometric tessilations of (f/, E) by (V1, E1)
and (Va2, F2) meaning that

“esometric”: the implied embeddings ¢; of V4 and V5 into V' are isome-
tries;

“directed”: the graph (f/, E) is directed and the maps ¢; (both for Fy
and E3) preserve the direction of edges;

“marked”: if an edge € € E comes from some e1 € F1 and e5 € E5,
then edges are equivalent, i.e., e; < es. (In other words, the tessilations
agree with a marking of £ by equivalence classes of edges.)

Propositiont. There exists a finite graph (f/, E) with marked directed
isometric tessilations by (V1, E1) and by (Va, Eq).

Proof. Attach acopy of (Va, Es2) to (V1, E7) at each edge in Fy according
to “—=”. Then attach copies of (V1, F1) to all newly created FEa-edges
and continue ad infinitum. Thus we get a tree-like graph (V, E) suitably
tessilated by (V1, F1) and (Va, E2) with an obvious cocompact action of
the free group Fy with £ = gcz_—ll for ¢ = cardF; = cardF5. This is
the automorphism group of the tree with 2-colored vertices and c-colored
edges as sketched for ¢ = 3 below.

\
d

Fig. 6.

Then a quotient of (f/, E) by a sufficiently small co-finite subgroup
in Fy is our (V, F). (This can be used for construction of Enflo type
expanders departing from bipartite graphs of Remark 13(a).)



CAT(x)-SPACES: CONSTRUCTION AND CONCENTRATION 131

§24. EFFECTIVE UNIVERSAL COVERINGS OF SPACES WITH K < 0

If X has K(X,zg) <0, then small balls B(zg,e) C X are convex and
if K(X) < 0 everywhere, then such a ball remains locally convex in-so-far
as 1t does not meet itself somewhere.

Fig. 7.

If this happens, we ignore the meeting points and continue to en-
large the ball, but not as a subset in X but rather as an abstract metric
space along with a locally isometric map to X. These are called over-
balls B(xo,R) — X, R > 0, which all have locally convex boundaries
since K(X) < 0 and so one can go from B(J:o,R) to B(wxg, R+ ¢) for
small ¢ (where a little extra care is needed if X is not locally compact).
Thus we obtain a space X = B(xo, R = o0) along with a locally isometric
map p: X — X. This X, being locally isometric to X, has K()N() < 0 and
it is exhausted by locally convex balls. Tt follows (by the above considera-
tions) that, in fact, X is CAT(0) and it is easy to see that p: X —Xisa
covering map. In particular, if a simply connected space X has K(X) <0,
then it is a CAT(0)-space. This is the classical Cartan-Hadamard theo-
rem (usually stated for non-singular spaces). Here are additional remarks
clarifying the picture.

(a) If a space X with K(X) < k < 0 admits a filtration by locally
convex subsets Xy C X, t € Ry, where X; C Xy for ¢t < ¢ and Xyq.
is contained in the ¢-neighborhood X; + ¢ of X; for all ¢ > 0 and some
g =¢(t) > 0, then X (= |J X;) is CAT(x) provided Xy is CAT(x).

teR 4
(Recall that “locally convex” signifies convexity of some neighborhood of
each point of the subset in question.)

(b) If X is CAT(0)-convex, then every connected locally convex subset
in X is convex. Moreover, if Y is an abstract connected metric space and
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p: Y — X is a locally isometric map sending a small neighborhood of
each y € Y onto a convex subset in X, then p is one-to-one and the
image p(Y) C X is convex. (This is easy but not totally trivial even for
X =R")

(¢) The Cartan-Hadamard theorem remains valid for certain orbis-
paces with K < 0 (see [5]) and a version of this underlies the small
cancellation theory (see below and [2]).

§25. FILLING CLOSED CURVES BY DISKS IN CAT-SPACES

There 1s an alternative, in effect, more functorial, definition of CAT-
spaces, at least for & < 0 (due to Reshetnyak (7)), which says that X
is CAT(k) if every closed curve in X bounds a disk with curvature < «.
Actually one only needs Riemannian disks D with metrics of constant cur-
vature k (every such D appears as a multi-domain over H?(x)). Namely,

X is CAT(x) if and only if for every ¢ > 0 and every distance (non-
strictly) decreasing map o of the circle S =S, of length £ to X there
exists a metric y of constant curvature k on D with length (0D) = £
and a distance decreasing map f: (D, p) — X extending «, where the
boundary 0D is naturally identified with S,.

Sketch of the proof. If a geodesic triangle, viewed as a (mapped) circle
in X, can be filled by (D, i), then, in the case x < 0, it is k-narrow since
(D, p) is CAT(k) for every metric with curvature < & as an elementary
argument shows. Conversely, every closed curve S in a CAT(k)-space X
can be “subdivided” into “infinitesimally small” geodesic triangles as in
Fig. 3 giving in the limit a filling disk D’ with curvature < &, which can
then be “enlarged” to (D, u) with curvature = «.

Then one can define spaces with K (X) < 0 by requiring the existence
of (D,p) and S for all contractible closed curves in X. It is not hard
to show (by using, for instance, suitable minimal disks filling in curves)
that the existence of (D, p)-fillings for short curves in X (with shortness
£ ={(x) > 0 depending on # € X for curves contained in a ball of radius
2¢ around ) implies that for all closed curves, and so this definition is
essentially local.

Reshetnyak theorem and application. The above disk D of constant
negative curvature k, a priori, only immerses into the model k-plane H.
But, according to Reshetnyak, one can find a convex domain D!, C X,
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with
length(9D% ) = length (D) = ¢

and a distance non-decreasing homeomorphism D' — D. Thus our S =
Se C X can be filled in by a conver disk D' C H,.

Consequently CAT(k)-spaces are Cycly(x) for all i = 4,5,..., and
thus they all are Wiry, for £ = 0, and our bounds on A; for various maps

V — X from §8-12 apply to CAT(0)-spaces.

Question. Does the Cycly-inequality imply all Wirg, k = 5,6 ..., without
assuming the space in question is geodesic?

§26. CAT-FAMILIES OF GROUPS

Consider a closed subset P C X and isometry groups I', of X assigned
to all p € P (where one could suppress P by defining T, = {id} for
z € X\P). Call {T', } a rotation family if the following two conditions are
satisfied:

(1) T, fixes p for all p € P;
(i1) each T',, maps P — P and acts on the family {T',} by conjugation:

ALy~ =Ty for p’ = y(p) and all y € T,

Examples. (a) Take a finite subset P € C and let X be the universal
cover of C ramified at P. Then the (cyclic) monodromy groups around
the lifts p € X of the points p € P make a rotation family generating the
full Galois group acting on X.

(b) Take a union P of finitely many lines in CP?. Here again the Galois
group of the universal cover ramified at P is generated by “rotations”
about intersections of lines. (The Galois group of Q/Q is also generated
by “rotations” corresponding to the Frobenius automorphisms.)

Denote by I'p C IsoX the rotation group generated by all I', and let
us reduce the CAT(0)-property of the quotient space X/T'p to that of
the spaces X/I',, p € P, under the following disjointness assumption:

(iii) The set P is discrete and I', acts freely and discretely on the com-
plement X\{p} for all p € P. (This is the case for the above (a) but
not for (b).)
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§27. PROPOSITION

Let {T',} satisfy (1)-(iii), the space X be CAT(x) for some x < 0, and
K(X/T,) < & for all p € P. Then the group I'p is discrete and the
quotient space X/T'p is CAT(k). Furthermore,

(a) T'p acts freely on the complement X\ P and the isotropy subgroup
of each p € P equals (exactly!) T',. Moreover, if a ball B, C X around
a point p € P contains no p' # p in P, then the obvious map B, /T, —
X/Tp is one-lo-one.

(b) If P is separated on bounded subsets, i.e., [p1 — p2| = r for some
positive monotone decreasing function r = ry (R) > 0 depending on the
distance R = |p1 — xo| from a chosen point o € X, and for all p1 # ps
m P, then there is a subset () C P such that I'p is freely generated by
the groups I'y, ¢ € Q. That is, the natural homomorphism from the free
product *ql'q to T'p is an 1somorphism.

Proof. Take a convex subset ¥ C X and see how it behaves under the
projection to X/T', for some p € P.

If p does not lie in the closure of Y, our map ¥ — X/T',, is locally
isometric with locally convex boundary, and since X/I', is CAT(0), our
Y isometrically maps onto a conver subset in X/T',. In other words, the
y-translates v(Y') do not meet Y for all id # v € T',,.

Next, let us assume p lies in the boundary dY and suppose Y is strictly
convex at p, 1.e., there is no geodesic segment in the closure of ¥ con-
taining p as an tnterior point of this segment. Then every such segment,
apart from one of its ends, is locally convex in X/T, and, hence, con-
vex. Consequently, Y injects to X/T', away from p, and thus the I'p-orbit
I',(Y) C X consists of the translates y(Y') meeting at p and nowhere
else. This applies, in particular, to e-neighborhoods of convex subsets in
X\{p} for £ > 0 as these are strictly convex at all their boundary points
in CAT(0)-spaces.

We denote the e-neighborhood of Y by Y +¢, observe that I',(Y +¢) =
I',(Y)+ ¢, and see that T',(Y 4 ¢) consists of disjoint translates of Y 4 ¢
for ¢ < dist(p,Y) which meet together at p for ¢ = dist(p,Y) so that
I',(Y 4 ¢) becomes convex as well as T'p-invariant for ¢ > dist(p,Y).

Now see what happens when such a I'p-invariant growing e-neighbor-
hood hits another point p’ € P. More generally, let Y C X be a strictly
convex subset invariant under the group I'ye generated by all p in P
contained in the interior of Y and let 'y be generated by I'ye and all
p € P contained in the boundary of Y. Two 7-translates of Y for vy € I'y
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may be in three kinds of mutual positions:
(1) 71(Y) = 72(Y) for 1175 " € Tye;
(2) 1Y) meets 2(Y) at a single point, e.g., y(V') meets Y at p for
every v € I', and p € PN JY;
(3) 1 (Y) is digjoint from y2(Y).

Since the local convexity is preserved at the meeting points p, the orbit
Iy (Y) is convex and the map Y/T'y. — X/Ty is injective. Furthermore,
the group I'y is freely generated by I'ye and the groups I', for p € R,
where R C PN JY intersects each I'yo-orbit of p N JY at a single point.
This is sufficient to prove (a).

Indeed, take R-balls B(R) C X around some point #, € X (e.g., some
po € P) and let

B(R) = Upe(r)(B(R))

(where “balls” are assumed closed,
B(R) = {e € X: |o— aa] < R),

and B°(R) denotes the interior where |& — z,] < R). These B(R) are
convex as well as I'go(g) invariant and their projections to X/FB(R) are
injective and convex. Therefore, these remain locally convex as we pass to
X/Tp and so B(R) injectively project to ballsin X/T'p. This ensures the
inequality K(X/T'p) < 0 at the (suspicious) points coming from p € P
and proves the local, and hence global, convexity of balls in X/Tp as
these are isometric to B(R)/FB(R).

Finally, we turn to (b) and notice that the above suffices to show that
every finite subset P’ C P contains a subset @)’ C P’ such that the group
I’ generated by I'y, p € P, is freely generated by I'y, ¢’ € Q'. However,
if, for example, points in P\ B(R) accumulate to the boundary of B, then
we cannot (7) claim the freedom property. (Yet the injectivity of the map
B(R)/T'po(ry — X/T'p follows from what happens to finite subset P’ C
P.) We need at this stage the separation property of P along with the
uniform convexity of the balls that yields (this is all we need) a universal

upper bound on the diameter of the intersection (B(R)+¢)Ny(B(R)+¢)
in terms of R and ¢, where B(R) is supposed to be disjoint from 'yB(R).

It follows that for every R < oo and & > 0 there exists ¢ > 0 such that
there is no non-trivial triple intersection between 7-translates of B(R)

for v € FPﬂ(B(R)-I—a): that 1s, if

1B(R)Ny:B(R)Ny3B(R) £ 0,
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then 'yiB(R) = ij(R) for some ¢ £ j = 1,2,3, provided the subset
Pn (B(R) + 1) C X is é-separated or, equivalently, P N B(R + 1) is
d-separated. Hence, the group FB(R)+5 is freely generated by FB(R) and

Iy, p € R, where R C P N (B(R) + ¢) intersects each FB(R) orbit of

PN (B(R)+ ¢)\B(R) at a single point and (e) follows as in the case of
finite sets P N B(R). Q.E.D.

§28. REMARKS

(a) The above argument shows that strict convexr independence of
points p € P’ C P implies free independence of subgroups I',r, p' € P/,
where “strict convex independence” refers to the existence of a strictly
convex subset Y C X with P’ C 9Y.

(b) Let us indicate a generalization of Proposition 27 (in the spirit of
the Cartan—Hadamard theorem for non-rigid orbispaces, compare [5] and
[2], where the relevant subsets (e.g., B(R)) may be non-convex in X but
project to (locally) convex subsets in X/T).

A rotation family {I',} is called regular if the subset P is closed and
the function p — I', is semicontinuous, i.e., each p € P admits a neigh-
borhood U, C P such that T',y C T, for all p’ € U,. (There often exists
a rather regular stratification of P such that I', is constant on each stra-
tum.)

Generalization of Proposition 27. If {T',} s reqular, free away from
P and the quotient spaces X/T, are CAT(x) for some k£ < 0 and all
p € P, then the rotation group I'p s discrete and the quotient space
X/Tp is CAT(x).

(¢) Proposition 27 in its present form has rather limited applications
see below) but it gains in significance when generalized to spaces X with
g g g
“approximately negative curvature” (see [6]).

§29. CONING CAT-SPACES AND THEIR SUBSPACES

Let us look at the disk of radius r in the standard space of constant
curvature s as the cone over its boundary, Dy, = Cx (0D ), where
we are mainly interested in £ < 0 (and where one should restrict to
r < w/\/k for & > 0). Then, for an arbitrary geodesic (path) metric
space X, one defines the (path) metric cone Cy ,(X) as X x [0, 7] with
the base X x 0 shrunk to a single point: the apex, also called the center of
the cone, where the metric is given by the same rule as in D, .. Namely,
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every short geodesic segment S in Oy ,(X) away from the apex projects
to a geodesic segment in X, say S C X, and the cone C, ,.(5) C Cx »(X)
is isometric to the sector in D, , over the arc S c 0Dy, with length
equal that of S.

The curvature K of C (X) away from the apex can be evaluated in
terms of K(X): this curvature K is < & if (and only if) the curvature
K(X) is bounded by the curvature x, of the 2-sphere of radius r in the
standard 3-space with curvature . In particular, K < 0 if K(X) < 0.
Furthermore, if X is CAT(k,), then K < & also at the apex of the
cone. (All this is well known and rather obvious.) In particular, the unit
Euclidean cone Cp1(X) has K < 0 for all CAT(0)-spaces X. (One may
think of Cj1(X) as the ordinary Euclidean cone over X, where X is
isometrically immersed into the unit sphere in some R".)

Next, let U; C X, ¢ € I, be a collection of subsets in X and

X E O (X U

be obtained by attaching the cones U? = Cy . (U;) to X across U; = U; xr,
for all ¢ € I. Notice that every two cones U? and U? in X°* intersect
across U; NU; C X C X°*. One can artificially enlarge these intersections
by gluing pairs U? and U} across larger subsets in Cyr(U;NT;). For
example, given a positive function ¢(d), we define functions ¢;; on U;NU;,
as ¢ of the distance d = d(z), # € U; N, to the boundary of U; NU; in
Ui UU;, e,
d(l‘) = dist(l‘, (UZ' U Uj)\(UZ' N U]')).

Then we glue U? to U? across the subset of pairs (z, p) where p < ¢;5()
and observe that this “gluing” defines an equivalence relation on the
disjoint union of the cones U?, and hence on X*, provided the function
¢(d) is monotone increasing.

§30. USEFUL EXAMPLE

Let X be a tree and U; be double infinite geodesic lines in X, where
all intersections are segments of lengths £;; < £p < oo. Take ¢ = @, r ¢,
such that

Wij C Cy (Ui NUj) C Cyr(Uj) = Crp(Ui) = Cr r(R)

)

looks as in the picture below.
Consider the space X% obtained from X* = Cy (X, {U;}) by gluing
every U? to U? across the above W;;.
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Fig. 8.

If the angle o = vy = @y p g, in Figure 8 is < 21/3, then the space
X¢ is CAT(x). In particular, if &ty < 27 r/o, then the space X% for
© = @ore, s CAT(0).

Proof. It is clear that X remains CAT(x) if we attach our cones to dis-
joint lines U; or, more generally, if there are no triple meeting points
between Uj, since the intersections W;; are convez in U. The problem
may appear when three (or more) lines come together as three lines join-
ing the pairs of ends in the infinite tripod do. But the condition « > 27/3
makes the cycles in the links of such meeting point longer than 27, which
implies K(X*) < & at all points. This yields CAT(x)-property since X¥
is (obviously) simply connected. Q.ED.

§31

Corollary. Let I';, ¢ € I, be isometry groups acting on X, where each
I'; is generated by a single isometry v;: X — X mapping the line U; = R
into itself via a translation ¢ — x + R;, and let Iy be generated by the
groups I';, i € I. If R > 6{y, then the space X¥ /T is CAT(0) for a suitable
¢ and if R > 64y, one can achieve CAT(x > 0) for X¥/T'. Consequently,
I' is freely generated by some subgroups I'; among I';.

Proof. Take r = 3¢y/7, apply the coning construction Cp,. Then the
corresponding X% is CAT(0) for R > 64,. And if R > 64y, we use Cy ,
with k < 0 with || being small compared to R—6£y, and r slightly larger
than 3¢y /7, thus getting K(X¥/T,) < k < 0. Q.E.D.

§32. REMARKS

(a) This Corollary shows, in particular, that the small cancellation
groups T with the metric 1/s-condition are CAT(0) serving as fundamen-
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tal groups of 2-polyhedra with K < 0, while the !/, .-condition ensures
CAT(k < 0)-property.

Recall, that such a I' is given by finitely many relations that are just
some elements, say 71,...,7v% 1n the free group F' on some generators.
This F acts on the standard tree X, and T; are generated by the (in-
finitely many) F-conjugates of y1,...,7;. Then T = F/T, freely and
isometrically acts on our space X% /T that is CAT(0) in the 1/g-case
by the above discussion, where the quotient (X/T,)/T is obtained from
the standard 2-polyhedron P representing I' by little geometric tinkering
(corresponding to X* ~» X¥) making K < 0 while keeping the homotopy
type (and the dimension) of P intact.

(b) The above approach to small cancellation groups (which is essen-
tially well known) will be extended in another paper to spaces X with
approximately negative curvature and general “convex” groups ;.

(¢) There is another way of turning X/Ty into a CAT(0)-space, con-
sisting in taking the nerve Y of the covering of X by U; and then dividing
Y by T’y (compare §16). Unfortunately, the upper curvature bound at the
fixed vertices of I'; depends, besides R, on the dimension of Y, i.e., the
maximal multiplicity of intersection of U;, which makes the nerve con-
struction unsuitable for most interesting I'. I do not exclude, however, an
improvement of this making all combinatorially '/s-groups CAT(0), but
this seems hard to achieve for general small cancellation groups (see [7]),
where the traditional approach via Dehn’s diagrams remains indispens-

able.
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