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We expose spaces X with negative curvature having in mind applica�
tions to fractally hyperbolic groups� such as random groups and in�nite
Burnside groups� Originally these spaces were introduced by Alexandrov
in the axiomatization spirit and a similar class �of convex spaces� was
later isolated by Busemann�

Till relatively recently the major thrust of geometric research was laid
on suppressing singularities� emphasizing the properties equally shared by
smooth and singular spaces and proving regularization theorems claim�
ing� under certain assumptions� that X can be approximated by smooth
manifolds with curvature K � �� This was accomplished for surfaces in
a famous treatise by Alexandrov and Zalgaller�

But the bulk of spaces with K � � is badly singular� starting from
trees and most abundant among ��polyhedra� Furthermore� almost all
�natural	 spaces with K � �� such as the Bruhat�Tits buildings� are
non�smooth and �unlike trees� cannot be usually approximated by smooth
spaces� But geometers remained unaware of this for a stretch of time�

From another angle� the idea of negative curvature was injected into
the group theory by Dehn and grew up into the small cancellation theory�
In the course of the development� the geometric roots were forgotten and
the role of curvature was reduced to a metaphor� �Algebraists do not
trust geometry��

It eventually turned out that the geometric language of Dehn and
Alexandrov �sometimes slightlymodi
ed and�or generalized� accomplish�
es many needs of combinatorial group theory more e�ciently than the
combinatorial language�

Summing up� geometry furnishes a proper language� while the com�
binatorial group theory �especially random groups� provides a pool of
objects for a meaningful usage of this language�

���
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In this paper we present basic constructions of spaces X with K � �
relevant for applications in group theory �see 
��� as well as basic isoperi�
metric concentration properties of maps of metric measure spaces �see

��� and 
���� into X� We observe� for example� that conical singularities
based on expanders �with K � �� cannot be smoothed� not even with the
most generous notion of smoothing� �This will be brought into the group
theoretic framework in 
����

We furnish all necessary de
nitions and illustrate them by examples
but refer to the textbooks for the details of standard arguments �see 
��
and references therein��

x�� Metrics and geodesics

Given a metric space X � �X� dist� we often abbreviate and write

jx� yj � jx� yjX � dist�x� y��

We callX a geodesic space if every two points x and y inX can be joined�
albeit non�uniquely� by a shortest �geodesic� segment denoted 
x� y� � X�
that is an isometric embedding of a real segment of length � distX �x� y�
into X�

Actually� the existence of such a shortest� or minimizing � segment is
not so crucial� it is enough for most purposes to have dist�x� y� equal
to the in
mum of the length of paths in X joining x and y� where this
in
mum does not have to be achieved�

Also� one could use the middle point condition� the existence of z � X
such that

dist�x� z� � dist�z� y� �
�

�
dist�x� y��

For complete metric spaces the last condition is equivalent to existence
of a minimizing segment�

Sometimes one could require even less� the existence of z � z� for each
� � �� such that both distances dist�x� z� and dist�z� y� are � �

�dist�x� y��
��

From now on we assume the existence of our segments 
x� y� � X when
we deal with geodesic spaces�

x�� Basic examples

�a� Every metrically complete connected RiemannianmanifoldX� pos�
sibly with a boundary� is path metric in an obvious way �where the min�
imizing segments may touch the boundary�� In particular� every smooth
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connected domain X � Rn carries the induced path metric distX which
is greater than the restricted metric distRn

��
X

and where the equality

distX � distRn
��
X

holds if and only if X is convex�

�b� Let X be a simplicial polyhedron� If we identify each simplex in
X with a unit Euclidean simplex� we can speak of the length of a curve
in X using the Euclidean geometry in all � � X� Then we de
ne distX
by taking in
ma of length of paths between points x and y in X� This
is a true geodesic metric for locally 
nite polyhedra where the in
mum
is achieved by some 
x� y� � X� while more general polyhedra sometimes
need a completion in order to become geodesic in the strict sense�

The simplest polyhedra X are the ��dimensional ones� i�e�� graphs�
where the above metric amounts to assigning unit length to all edges�
Of course� one could live with edges of variable lengths� but when the
dimension goes up� one should be careful if one assigns variable sizes and
shapes to simplices in X as these must agree across common k�faces with
k � ��

�b�� It is often necessary to assign non�Euclidean geometries to sim�
plices in X� e�g�� by identifying each � � X with a regular spherical or
hyperbolic simplex of a certain size� The resulting� e�g�� piecewise spherical
and piecewise hyperbolic� geodesic metric in X may reveal some combi�
natorial properties of X invisible in the �piece�wise� Euclidean light�

x�� Model�spaces

The standard or model spaces of constant curvature are

�i� The round ��sphere of radius R� denoted S��R�� This has �by de
�
nition� if you wish� curvature K�S��R�� � R���

�ii� The Euclidean plane R�� where K�R�� � ��

�iii� The hyperbolic plane H� with curvature ���� This H� can be
represented as the plane with coordinates �t� y� and the Riemannian met�

ric dt� � ��
p��tdy�� The t�lines here are geodesic� i�e�� the embeddings

R� �R� y� � H� are isometric for all y � R� On the other hand the
y�lines �t�R� are curved in H� and they shrink exponentially fast as t
increases�

�iv� If � � �� then H� converges in a natural way �see 
��� to an
in
nite metric tree branching at all points� This serves as the model
space for � � ���
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Fig� ��

Similarly to �i���iii� we have n�dimensional spaces with curvature ��
that are Sn�R�� Rn� and Hn

� �with the metric

d t� � e�
p��t

n��X
i��

�dyi�
���

denoted in the uni
ed manner by Xn
mod��� for all � �including � � ����

where Xn
mod���� is the single point space and Xn

mod���� is the above
tree for all n � �� �� � � � ���

x�� Comparison relation between the model spaces

Let x�� � � � � xk� xk�� � x� be a cyclically ordered k�tuple of points in
X � Xn

mod��� for some � � �� Then for every �� in the interval 
�� ��
there exist points x�i � X� � X�

mod��
��� i � �� � � � � k� k � � � �� such that

��x�i � x�j
��
X
� jxi � xjjX for all i� j � �� � � � � k

and ��x�i � x�i��
��
X�

� jxi � xi��jX for i � �� � � � � k�

This is standard and elementary� where one chooses x�i making a convex
k�gon in the plane H�

�� �which equals R� for � � ��� Notice that the above
extends to � � � if the points xi are contained in a su�ciently small ball
in X�

x�� Positivity relations
Recall that a symmetric matrix dij� i� j � �� � � � � h� can be realized by

the distances between k points xi in R
n�k if and only if the quadratic
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form �ftig � �
kP

i�j��
d�ij titj is positive de�nite on the hyperplane H� �

n kP
i��

ti � �
o
� Rk�

Observe that this imposes in
nitely many linear inequalities on the
numbers d�ij�

If we interpret � as the integral of dij � kxi � xjk� over Rn�Rn with
the weights titj � then the positivity of � generalizes as follows�

Let � and � be probability measures on Rn� then

����� ��
def
�

ZZ
Rn�Rn

kx� yk� d�d��

�

�

�
� ZZ
Rn�Rn

kx� yk� d�d��

ZZ
Rn�Rn

kx� yk� d�d�
�
A� ��

In fact� ���� �� obviously equals the squared distance between the centers
of mass of the measures�

���� �� �

�
� Z
Rn

xd��
Z
Rn

yd�

�
A

�

�

as a straightforward computation shows�

Example� Given x�� � � � � x�� y�� � � � � y� in RN� then the average of the
squared distances kxi � xjk� and kyi � yjk� is bounded by the average

of kxi � yjk� as follows

�

��� � ��

�
�X

i�j

kxi � xjk� �
X
i�j

kyi � yjk�
�
A � 	

��

�X
i�j��

kxi � yjk� � �����

for 	 � �
��� �

The form ����� �� makes sense for an arbitrary metric space X with

kx� yk� replaced by jx� yj�X � Clearly� positivity of �� for all probability
measures on X is necessary and su�cient for the existence of an isometric
embedding of X into a Hilbert space�

Similarly� one can characterize the spaces X embeddable into spaces
of radius R � �


p
�� � � �� by looking at the R�cone Y� � ConRX 	 X�
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where

jx� yj�
def
�

��
�

�R sin
jx� yjX

�R
for jx� yjX � �R

�R for jx� yjX � �R

for all x� y � X � Y�� Here the relevant form �� equals

���t�� � � � � tk� �
X

i�j������ �k

�
R� � �

�
jxi � xjj��

	
titj

for xi � X � Y� and it is positive if X is embeddable into the Hilbertian
R�sphere�

If � � �� then

jx� yj� def
� �R sinh

jx� yjX
�R

for R � �

p�� and

���t�� � � � � tk� �
kX

i�j��

�
�
R� �

�

�
jxi � xjj��

	
titj�

The space X embeds into a hyperbolic space of curvature � � � i� the
form �� has at most one negative square �in the diagonalizing basis��

If � � �� and k � �� one considers three numbers

m� � d��� � d���� m� � d��� � d���� and m� � d��� � d����

and sets m� � maxi������mi and m� � mini������mi� Then di�j are
resizable by distances in Xmod���� i�

�m� �
�X
i��

mi � m� �m��

i�e�� i� the second maximal among mi equals m�� Furthermore� if ev�
ery quadruple of points in a �
nite� metric space fxigi������ �k has this
property� then fxig isometrically embeds into the tree Xmod�����

All of the above is well known and pretty obvious� But there are amus�
ing corollaries�

x�� Wirtinger inequalities

Consider cyclically ordered points

xi � Rn� i � �� � � � � k� k � � � ��
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let Wjfxig �
kP
i��

jxi � xi�j j�� and set Wj�k� to be the value ofWj on the

regular k�gon in R� inscribed into the unit circle� Then

W�fxig
Wjfxig � W��k�
Wj�k� �
kj �
for all fx�� � � � � xkg � Rn�
Proof� According to Fourier �on the group Zk � Z
kZ� one needs to
check �
�kj only for Zk�equivariant maps fxig � Zk � R�� where this is
obvious� Q�E�D�

Remarks and corollaries� �a� The Wirtinger inequality for four points
is equivalent to the above ����� for � � �� Furthermore� each �
�kj can be
algebraically derived from ����� for some � � ��k�� but a direct derivation
is rather messy starting from k � �� In fact� the negative de
niteness
of the distance matrices fd�ijg in Rn �see x�� harbors in
nitely many
linear inequalities non�reducible to anything like Wir� and their linear
combinations� One exhibits particular inequalities by looking at speci
c
arrangements of points in Rn� e�g�� coming from expanding graphs and
related combinatorial structures�

�b� There are further relations between Wj �s� In fact� in order for an
inequality X

j

cjWjfxig � �

with given ci � R� i � �� � � � � k � �� to hold true for all k�tuples in Rn�
one only needs this for equivariant tuples in R�� For example� if k � ��
then c�W�� c�W�� c�W� � � provided this holds for the following three
��tuples of numbers� ��� �� ��� ��� �� ��� and ��� �� ���

�c� Since the spheres Sn�R� � Xn
mod���� � � R��� embed into Rn��

with the spherical distance d going to �R sin d
�R in Rn��� the Wirtinger

inequality holds for fxig � Sn�R� with Wj made of

aij � aij��� � sin
dij
�R

� i� j � �� � � � � k�

instead of dij� The extremal con
gurations all lie on circles in Sn�R� and
they make regular k�gons if k is not divisible by � and ��

�c�� The hyperbolic space Hn
� is realized by the �halves of the� sphere

of radius R � ��
p� in the Lorentz space �Rn���
nP
i��

y�i �y��� where the
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Lorentz �distance	 equals �R sinh d
�R for the hyperbolic distance d� One

cannot apply the Euclidean Wirtinger as our Rn�� is not Euclidean� but
one can project points xi � Hn

c � Rn�� to the hyperplane H normal toP
i

xi � � and apply the Wirtinger inequality to the projections xi � H�

The distances dij � jxi � xjj are expressible in terms of the hyperbolic
dij � jxi � xjj� This gives us Wirtinger�type inequalities between dij
which are sharp for regular k�gons in Hn

� but not especially elegant�

�d� One can combine the quadratic �i�e�� Euclidean� Wirtinger inequal�
ities with the comparison inequality for � � �� � � � � and conclude to
the quadratic inequalities for Hn

� � Unfortunately these are not sharp�
except for some k�tuples of points lying on geodesic lines in Hn

� �

�e� The Wirtinger inequalities extend to an arbitrary 
nite group G
in place ofZk� Here� for a real function c on G and a map f � G� X� we
set

Wc�f� �
X
h�G

c�h�
X
g�G

jf�g� � f�gh�j�X

and we ask for which c and X every map f has Wc�f� � Q �where
one may try more sophisticated non�quadratic expressions�� Here again
we easily see for X � Rn that Wc�f� � � for all f i� it is � � for
all equivariant maps G � RN� i�e�� orbits of the �irreducible� if you
wish� orthogonal representations of G� The same equally applies to all
compact groups G and Borel functions c �better measures� and maps f
with the sums replaced by the corresponding integrals� In particular� we
may take G � S�� where all this can be derived from the case of Zk for
the obvious approximation Zk �

k��
S�� which allows X � Hn

� in the

picture� Also observe that averaging Wirtingers inequalities �
�j over j
and then sending k � � gives us the traditional Wirtinger inequality�
every smooth map f � S� � X � Hn

� satis�es

�

�

ZZ
jf�s��� f�s��j� ds�ds� � ��

Z
kdfk�ds�

This for X � R amounts to the evaluation of the 
rst eigenvalue �of the
Laplace operator� of S��

	��S
�� � ��

�f� One can generalize further and take a measure space H with a
measure preserving action of G� where one studies weighted integrals of
jf�h� � f�gh�j�X for maps f � H � X and where Wirtinger inequalities
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for H can be derived from those for G� Here one can allow non�compact
groups G� especially Kazhdan�s T �groups� Also� one may look at partic�
ular H� such as the unit tangent bundle of Riemannian manifold V with
the action of the geodesic �ow in this case this �ow is periodic� Thus
the Wirtinger inequality for all compact symmetric spaces of rank one
mapped into general CAT��� and more general spaces X follows from
the classical Wirtinger for S� � R� Another example of such inequality
is ��� in x�� where H � fxi� yig and G is generated by the permutations
of xi�s of yi�s and the involution xi � yi�

x	� Cyclk��� and Wirk�spaces

A metric space is called Cyclk��� if� for each cyclically ordered k�tuple
of points xi � X� i � �� � � � � k� there exist comparison points x�i � X� �
X�
mod��

�� for some �� � �� such that��x�i � x�i��
��
X�
� jxi � xi��jX � i � �� � � � � k�

and ��x�i � x�j
��
X�
� jxi � xjjX for all and j �� i � � �

�This de
nition is well suited for � � �� while the case � � � needs a
modi
cation where the existence of comparison points is required only
for �small	 k�tuples fxig � X��

The most important case is that of k � �� where the existence of a
comparison quadruple fx�ig implies �at least for �� � �� the existence of
fx��i g � X�� � X�

mod��
��� with ��� � �� � �� such that��x��i � x��j
��
X��

� jxi � xj jX for all i� j � �� � � � � ��

as an elementary argument shows�

Remark� The Cycl�����property can be expressed by a family of linear

inequalities between jxi � xj j�� Namely� X is Cycl���� i� the squared

distance function jx� yj� satis
es ����� from x� for every pair of two�
point probability measures � and � on X� �A measure is called two�point
if its support contains at most two points�� This can be checked by a
direct computation and will be proven later on without computation�

Next we introduce Wirk�spaces where� by de
nition� every k�tuple
fxig � X� i � �� � � � � k� satis
es the Wirtinger inequalities �
�j � j �
�� � � � � k � �� i�e��X

i

jxi � xi��j�X

X

i

jxi � xi�jj�X � W �
� 
W

�
j �
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where W �
k denote the corresponding sums for the regular k�gons in R�

�see ����C�� According to our discussion in �

Cyclk���
Wirk for all k � �� �� � � � �

x
� Geometric application

Let V be a compact symmetric space of rank � �e�g�� the n�sphere� and
let T� � V � V denote the subset of points �v�� v�� with jv� � v�jV � ��
Since V is two point homogeneous� the isometry group of V is transitive
on T� and we give the normalized� with the total mass one� invariant
�Haar� measure �� to T�� Let the diameter D of V satisfy D � �

�k� for
some integer k � �� �� � � � � and let 
 � diamV be of the form 
 � j� for
some j � �� �� � � � �

If X is Wirk� then every �say bounded� Borel map f � V � X satis�es

E�
def
�

ZZ
T�

jf�v��� f�v��j�X d�� � 	��

ZZ
T�

jf�v��� f�v��j�X d���

where 	�� � W��k�
Wj�k��
This is seen by integrating the Wirk�inequality over the orbits ofZk �

S� in the unit tangent bundle S�V � for S� � R
Zacting on S�V � by the
geodesic �ow�

Observe thatE�
�
� converges� for �� �� to the average squared partial

derivation of f for smooth f �

E�
�� E�f�
def
�

Z
S

k�sfk� ds�

where the measures in the spherical 
bers of the unit tangent bundle
S � S�V � are normalized to mass one as well as the Riemannian measure

on V � On the other hand� a suitably weighted sum of Ej�� i�e��
kP
j��

pjEj�

where kpj equals the reciprocal of the Jacobian of the exponential map
RdimV � Tv�V �� V � on the sphere of radius j� in RdimV � converges to

the mean �average� A�f� of the squared oscillation jf�v��� f�v��j�X over
V � V � Thus� if X is Wir�� i�e�� Wirk for all k� then E�f� bounds A�f�
by

�E�f� � 	��A�f�

where 	 � 	�V � � �
�A�f��
E�f�� for the �isometric�� Veronese em�

bedding of V to RN� N � N �V �� �where N �Sn� � n � �� N �Pn� �
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�n��	�n��	
� � �� etc��� If X � R� the above ��� boils down to the familiar

evaluation of the 
rst eigenvalue 	� of �the Laplace operator on� V �

	��V � � �dimV �	�V �� ���

The dimV �factor is due to the fact that the average of the square of
a linear function � � Rn � R over Sn�� � Rn equals n�� k�k� and�
consequently� Z

V

kgradfk� dv � E�f�VolV
 dimV

for all Riemannian manifolds V and functions f � V � R� This yields ���
since ZZ

V�V

kf�v��� f�v��k� dv�dv� � �VolV

Z
V

kf�v�k� dv

for all Rn�valued f with zero mean�
R
V

f�v�dv � �� �This explains why we

brought up this ��	 earlier��

x�� Remarks
�a� Observe that

	�V � � �Diam�Veronese�V ����� �
��

�
�DiamV ����

This makes 	��V � � dimV and implies �high concentration	 of func�
tions f on V for large dimV � Such concentration persists for maps
f � V � X where X is a Riemannian Wir��space of relatively small
dimension dimX � � dimV � Namely�

Vol �V �

Z
V

kdfk� dv � ���	�V �

ZZ
V�V

jf�v�� � f�v��j�X dv�dv� ���

�compare Ch� ��� in 
�����

�b� The role of the Wir��property is minor in the above discussion� it
is needed only for identifying the explicit value of 	�V �� For example� the
inequality ��� holds true for all �non�Wirtinger� Riemannian manifolds
X with the constant 	�V � replaced by a slightly smaller number

	��V 	 � �VolV ��

ZZ
V�V

jv� � v�j�V dv�dv��
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where the proof is identical to �actually easier than� that of �
� and
where it applies to all piecewise smooth Riemannian X� In particular�
every ��Lipschitz �i�e�� distance decreasing� map f � V � X satis
esZZ

V�V

jf�v�� � f�v��j�X dv�dv� � �

ZZ
V�V

jv� � v�j�V dv�dv� �� ��

for � � dimX
 dimV � that signi
es �high concentration	 of f for small ��
One can generalize further by allowing �arbitrarily singular� non�

Riemannian metric spaces X� where �� �� can be sharpened for Banach
spaces X that are far from being Euclidean� One can identify extremalX
and f � V � X� One can bring in symmetric spaces X of rankRX � � and
more general Riemannian �and non�Riemannian� V with distinguished
familiesW	 � V � � � �� of subvarieties� such as �at tori in symmetric V
and minimal geodesic segments in V with Ricci V � 
 �where one may
allow singular V and sometimes use the Brownian orbits for W	�� Even�
tually many results on concentration of functions� e�g�� various Sobolev
and isoperimetric inequalities� extend to maps into rather general spaces
X� For example� Levi�s concentration generalizes to the following

Theorem� Let f � Sn � Rn�m� m � �� be an arbitrary continuous
map� Then there exists a point x � Rn�m such that the pull�back Sx �
f���x� � Sn is larger than an equatorial sphere Sm � Sn in the following
sense� the volumes of the ��neighborhoods of the two subsets satisfy

VolU��Sx� � VolU��S
m� �
�

for all � � ��

�More generally� one considers pairs of maps� f � � � X and � � � �
V � and seeks x � X such that the image Sx � ��f���x�� � V has a large
��neighborhood� For example� if � is a closed manifold of dimension n�
X is a manifold of dimension n � m� the map f is contractible� � has
non�zero degree mod�� then� in the case V � Sn� there is an x � X such
that VolU��Sx� � VolU��S

m� for all � � ��� We shall prove this in 
 � by
constructing a suitable convex partition of Sn �transversal	 to the 
bers
of f � Sn � Rn�m �compare 
��� and 
�����

�c� The role of negative curvature of X in the concentration of maps
f � V � X becomes more pronounced if we look at maps f with large
Lipschitz constants �or� alternatively� scale X with small � � ��� For
example� if K�X� � �� � � �or� hyperbolic� in general�� then it is ap�
proximately one�dimensional at in
nity with a logarithmic error! thus
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maps f to X concentrate as much as maps to trees� up to a logarithmic
error� Similarly�maps to non�compact symmetric spaces of rank k �and to
buildings� concentrate� up to certain error� as do maps to k�dimensional
spaces�

x��
It is well known that 	��V � V �� � min�	��V �� 	��V ��� for products

of Riemannian manifolds� This extends to maps to arbitrary Wir��spaces
X assuming there is almost everywhere de
ned

R
V�V �

jgradf j� dv for our

maps f and the squared gradient of an f on V �V � equals the sum of the
two squared 
berwise gradients along the V � and V ��
bers �as obviously
holds true� for instance� for smooth V �s�X�s� and f �s�� On the other hand�
if X is Wir�� then every map

f � W � V � V � � X

satis
es

kf�v�� v��� � f�v�� v
�
��k� � kf�v�� v���� f�v�� v

�
��k� �

kf�v�� v��� � f�v�� v
�
��k� kf�v�� v��� � f�v�� v

�
��k��

kf�v�� v��� � f�v�� v��k� � kf�v�� v���� f�v�� v��k�

�see Figure below��

Fig� ��

which integrates to the bound of
RR

W�W
kf�v�� v���� f�v�� v

�
��k� by the

corresponding 
berwise integrals� since our measure on the product
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V � V � � V � V � is symmetric under the permutations of the compo�
nents�

Hence the boundsZ
kgradfk� � 	�

�

�

ZZ
jf�v�� � f�v��j�X

for all maps f of both V and V � to X imply such a bound with the same
	� for the maps V � V � � X�

Remarks� �a� The above argument is similar to one used by S� Bobkov
in his thesis for functions on metric probability spaces�

�b� One may use two di�erent metrics on X� one for evaluation of

kgradk� and the other for jf�v�� � f�v��j��
�c� The measures used in the double integrals on each V and V � do

not have to be product measures� Furthermore� one can use Lp norms
for p �� �� which may be useful for products with Lp�product metrics�
Notice that the ���metric is implicit in the inequality Wir�� where ��
tuples of points in X may be thought of as maps of the Hamming square
f�� �g� � X� Then one looks at the Hamming cube f�� �gn �where the
Hamming metric is induced from the ���metric on Rn 	 f�� �gn� put
to X by some map f�� �gn � X� If X is Wir�� then the standard �and
obvious� computation �similar to our evaluation of 	��V��V��� shows that
the mean of the squared great diagonals of f�� �gn� X is bounded by n
times squared edge length� �One should keep in mind that the sharpness
of the L��estimate depends on the global Wir� for X confronted with the
inverse Wir� for �in
nitesimal parallelograms	 in X��

x��
Combining Remark  �a� and x��� we obtain concentration for maps of

products V of rank � symmetric spaces into �mildly non�singular� Wir��
spaces X� including polyhedral CAT����spaces� for instance� Namely� such
maps for these V concentrate as much as maps to Rk with k � dimX�

x��
Many standard tricks of the concentration theory for real�valued maps

extend to general Wirtinger �and especially CAT�����spaces as targets�
For example� concentration for a V implies that for suitable �e�g�� Rieman�
nian� quotients of V with low dimensional 
bers� Also� mildly distorted
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and su�ciently spread subvarieties W � V of low codimension concen�
trate �when mapped to X� almost as strongly as V itself �where one is
additionally aided by the Lipschitz extension theorem of 
��� for CAT�
spaces�� Thus one sees concentration of maps of Grassmann manifolds to
Wir��spaces�

x��� Concentration in smooth X

If X is a complete simply connected manifold with non�positive curva�
ture �or a more general smooth CAT����space�� then the L��concentration
of maps f � V � X is almost as good as that for maps V � RN of all
manifolds V � due to the following simple

Observation� For every f � V � X there exists a map f� � V � RN for
N � dimX �where this dimension is allowed to be ���� such that

�i� kdf��v�k � kdf�v�k for all v � V�

�ii�

ZZ
V�V

kf��v��� f��v��k� dv�dv� � �

�

ZZ
V�V

jf�v��� f�v��j�X dv�dv��

Proof� Take the Riemannian center of mass x� � X of the f�push�
forward measure from V to X and observe that the map f� � exp��x� f
has

R
V

f��v�dv � �� Q�E�D�

The inequality �i� now follows from the contracting property of the
inverse exponential map exp�� � X � Tx��X� � RN �since K � ��� while
�ii� depends upon the non�decreasing �in fact isometric� feature of exp��

on the rays issuing from x� and on the triangle inequality �where the
latter is responsible for the unfortunate coe�cient �����

Remarks� �a� The above remains valid for graphs in the place of man�
ifolds V � For example� if V is the complete bipartite graph on vertices
x�� � � � � x� and y�� � � � � y� in X� then the above argument combined with
����� in � shows that the averaged squared distances jxi�xjj� and jyi�yj j�
are bounded by the averaged �over the edges� jxi � yj j� as follows

�

��� � ��

�
�X

i�j

jxi � xjj� �
X
i�j

jyi � yj j�
�
A � 	

��

�X
i� j��

kxi � yjk� ������

for 	 � � �
��� �
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�a�� This inequality is sharp as is seen in the Cartesian product of two
hyperbolic spaces� X � H���

� �H���
� with � � �� where the ratio of the

left hand side and the right hand side of ������ converges to � for fxig and
fyig converging to the vertices of regular ideal ��simplices on the ideal
boundaries of H���

� � �� and x� � H���
� respectively� �Bipartite graphs

can be approximated by surfaces� which shows that the extra factor � is
unavoidable in the Riemannian category as well��

�b� There is no Euclidean reduction of the concentration property for
singular CAT����spaces �de
ned later on�� Counter�examples are provid�
ed by cones over expanders� These play an essential role in the study of
random groups �see 
���� However� most elementary �local� bounds on 	�
�e�g�� for Ricci � ��� are likely to extend to maps into singular CAT����
spaces �possibly without the � factor��

�c� The essential property of X in the above observation is not so
much K � �� but rather the existence of �many su�ciently contract�
ing	 and �su�ciently proper	 maps to RN� that is known as parametric
hyper�Euclidean property involved in most proofs of the strong Novikov
conjecture� �This property is violated by singular X with cones over ar�
bitrary large expanders��

x��� Diffusion
 codiffusion
 and harmonic maps

A predi	usion on V is a map from V to the space of R��paths of
probability measures on V � denoted

V �� ���v� v
��dv�� � � ������

such that ���v� v
��dv� converges to the ��measure ��v�dv for all v � V

and � � �� A predi�usion is called di	usion if the family f��g makes a
semigroup under the composition �convolution� of measures�

��� 
 ��� � ������

�compare Chap� " in 
����
A codi	usion on X is a retraction c of the space P�X� of probability

measures onX back toX � P�X�� where X is embedded to P�X� by x ��
��x�dx� �To be consistent� one should deal with homotopy retractions�
e�g�� given by contractive semigroups of maps P�X��� but these do not
enter the present framework��

If V and X are endowed with predi�usion and codi�usion respectively�
one de
nes ��harmonic maps f � V � X as those where f�����v�� � P�X�
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retracts to f�v� � X for all v � V � Traditionally� one de
nes harmonic
maps by the equality c�f�����v��� � f�v� for an in�nitesimal �� i�e�� in
the limit for �� �� Another attractive possibility is passing to the limit
� � � and augmenting the spaces P�V � and P�X� by the measures
on suitable ideal boundaries of the spaces V and X� In any case� the
harmonicity amounts to f � V � X being a �xed point of the di�usion�
codi�usion �ow map

f�v� �� c �f�����v���

at some � � 
����� �This brings harmonic maps on equal footing with
classifying maps into spaces supporting expanding maps��

If X has negative curvature� one de
nes codi�usion as the center of
mass� 
rst� a measure � � P�X� is mapped to the function on X that
equals the ��average of the squared distance functions on X�

� �� d
�x
��

def
�

Z
X

jx� x�j�X d��x��

For K�X� � �� this function d
 is strictly convex on X and� hence� has
a unique minimum point xmin � x��� � X� this is taken for c��� � X�
The essential feature of this c is the contraction property for the L��
transportation metric �see 
����� This contraction property� when con�
fronted with the smoothing properties of the di�usion in V �characteristic
to curvature � �� � ��� compare 
���� allows �good	 �e�g�� Lipschitz
regular� harmonic maps V � X �where in interesting cases these maps
commute with a given symmetry group operating on V and on X��

x��� Geodesic triangles and CAT����spaces

A metric space X is called CAT��� if it is geodesic and Cycl����� The
geodesic property� essentially equivalent to the existence of amiddle point
x between arbitrary x� and x�� i�e�� satisfying

jx� � xj� jx� x�j � jx� � x�j�
enhances the power of distance inequalities� For example� ifX is geodesic�
then the general Cycl�����inequality follows �by an easy argument� from
that for the special quadruples fxig � X where x� lies between x� and
x�� i�e�� on a �shortest geodesic� segment 
x�� x��� which amounts to the
equality

jx� � x�j� jx� � x�j � jx� � x�j �



��� M� GROMOV

If one thinks of jx� � xij � i � �� �� �� as the values of the distance func�
tion X �� d�x� � dist�x�� x�� then one can interpret this inequality as
a convexity property of d�x� saying that it is �more convex	 than the
corresponding distance function on the model space of curvature ��

Another� apparently stronger but� in fact� equivalent characterization
of CAT����spaces X expresses the idea of geodesic triangles in X be�
ing narrower than the comparison triangles� Here a geodesic triangle
��x�� x�� x�� in a geodesic space X is de
ned as the union of the three
edges 
xi� xj� � X� � � i � j � �� where one allows every edge between
two points if there are several of them� A comparison triangle �� in a
space X� �which will be taken of constant curvature later on� is� by de
�
nition� a geodesic triangle �� � ��x�i� � X�� x�i � X�� i � �� � � � � � such
that

jxi � xj jX �
��x�i � x�j

��
X�

�

This �� � X� does not necessarily exist� If it does� it comes along with
a canonical map c � �� � �� where x�i �� xi and each segment 
x�i� x

�
j�

isometrically goes to 
xi� xj��
A space X is CAT��� i� each D in X admits a comparison triangle

�� in a model space X� with constant curvature �� � � such that the
comparison map c � �� � � is �non�strictly� distance decreasing with
respect to the �non�path� metrics distX� j
� and distX j
�

jc�x��� c�y��jX � jx� � y�jX� ����

for all x�� y� � ���
This is a fundamental� albeit easy to prove� result by Alexandrov�
If � � �� then a comparison triangle always exists in X�

� and is unique
up to isometry! the same is true for � � � if

jxi � xjj � �p
�

and
X

��i�j��

jxi � xjj � ��p
�
�

In general� the existence of �� can be dropped from the de
nition as we
allow �� � ��

Basic examples� �a� The standard space X�
� is CAT���� for all �� � ��

This is the essential feature of these model spaces allowing a meaningful
de
nition of general CAT�spaces�

�a�� A complete simply connected Riemannian manifold withconstant
�as well as variable� sectional curvature � � is CAT���� the n�spheres of
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radii � ����� are CAT���! Rn is CAT���! the hyperbolic spaces

Hn
� �

�
R�Rn��� dt� � e��t

p
�
n��X
i��

dy�i

	
� � � �

are CAT���� for all n � �� �� � � � ���

�b� Every �simplicial or non�simplicial� tree is CAT����� i�e�� CAT���
for all � � R�

�c� Every smooth domain X in R� is CAT��� for the induced path
metric and such domains in H�

� are CAT����� �This is an easy but useful
property which does not directly extend to higher dimensions��

Remarks� �a� Cycl� as well as Cyclk for all k are instances of concen�
tration �of isoperimetric kind� inequalities which can be de
ned with
an arbitrary �measuring rod� graph with the vertex set V and edges
E � V �V by requiring a certain bound on distances jf�v��� f�v��jX for
maps f � V � X in terms of distances jf�v�� � f�v��jX for �v�� v�� � E�
It is convenient to allow in
nitesimal graphs V where E consists of pairs
of in
nitesimally close points� We have met such a bound for maps of Rie�
mannian manifolds V into X� where E was represented by unit tangent
vectors in V and the relevant bound�s� was�were of the form

ZZ
V�V

jf�v��� f�v��j� dv�dv� � F

�
�Z
E

kdfk
 de
�
A �

We have also seen that smooth X with K � � satisfy additional inequal�
ities of this type but one does not know what is the full set of such
inequalities characterizing a given class �e�g�� of smooth X� of spaces
with K � ��

�b� The geodesic property is one logical level up from concentration
inequalities as it involves the existential quanti�er� It is unclear if there
is a simple ��free description of �non�geodesic�� subspaces in CAT����
spaces� �We shall see later on that Cycl� 
 Cyclk for all k � � in the
geodesic case but this is apparently not so in general��

�c� Consider two probability measures � and � in X� let c���� c��� � X
be their centers of mass� and let

�X ��� �� �

ZZ
X�X

jx� yj� d�d�
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��

�

�
� ZZ
X�X

jx� yj� d�d��

ZZ
X�X

jx� yj� d�d�
�
A �

If X � Rn� then

�X��� �� � jc��� � c���j� �
�see x��� and if X is CAT���� then

jc���� c���j� � �X��� �� ��� ����

for two�point measures � and �� This follows from the fact that the
squared distance functions d on X� and hence the convex combinations
of d��s� are �more convex	 on geodesic lines than the function x� on R�
This means the second derivatives of d��s are � �� or equivalently� the
di�erence of two squared distance functions� d�y � d�x� is convex on each
geodesic in X passing through x �and concave on geodesics through y��

�c�� The inequality �� ��� fails for general �non�two�point� measures in
CAT����spaces but does hold true if the supports of � and � are contained
in �possibly di�erent� 
at convex subspaces in X�

�c��� The general CAT��� �i�e�� Cycl�� property can be brought to the
�� ����form� Yet� this does not �#� appear su�ciently illuminating�

x��� Geodesic convexity and convex gluing of spaces

A subset Y � X is called �geodesically� convex if it contains every
segment with the ends in Y �

Examples� �a� Every geodesic segment in the CAT����space is convex�
and every segment strictly shorter than �
� is convex in a CAT�� � ���
space�

�b� Every subtree in a tree is convex�

�c� Every ball B in a CAT����space is convex� where

B � Bx��R�
def
� fx � X j jx� x�j � Rg�

Let Yi � Xi� i � �� �� be non�empty convex spaces� � � Y� � Y� a
bijective isometry� and denote by X� ��X� the disjoint union of X� and
X� where Y� is identi
ed with Y� via ��
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Gluing theorem� If X� and X� are CAT���� then so is X� �� X��

The proof is straightforward� modulo elementary geometry of the mod�
el spaces �see 
����

Examples� �a� To apply the theorem one needs Xi with mutually iso�
metric convex Yi � Xi� One can use� for instance� segments in Xi of
equal lengths �which are always convex for � � ��� Or� if X� happens to
be isometric to X�� one can use the restriction of the implied isometry
X� � X� to some convex subset Y� � X�� e�g�� to a ball B � X� �which
is always convex for � � ���

�b� Tree�like polyhedra� A connected simplicial polyhedron P is called
tree�like if

P �
�
i

Pi

for i ranging over a well�ordered set I� such that Pi�� � Pi ��i� i � I�
where the simplex �i meets Pi over a single face ��

i � �i� �Clearly� trees
are tree�like�� If we give to such P the metric where each simplex � � P
is isometric to a regular simplex of a 
xed size in a simply connected
space of constant curvature � �i�e�� spherical� Euclidean� or hyperbolic��
then P becomes a CAT����space by the Gluing theorem�

�b�� Nerves of subtrees� Let Q be a tree� Qj � j � �� � � � � k� a 
nite
collection of subtrees� and P be the nerve of this family fQjg�

If P is connected� then it is tree�like�

Proof� Assume there is a point q � QnT
j

Qj and let Qj� be the farthest

subtree from q� Then� clearly� P is obtained from the nerve P 	 of

�Q�� � � � � Qj���� Qj���� � � � � Qk�

by attaching a simplex to P 	 across a single face� and an obvious induction
concludes the proof� Q�E�D�

Remark� Another signi
cant property of this P �shared by all tree�like
polyhedra and possibly characterizing them� is the following sharp com�
binatorial isoperimetric inequality� every cyclic path of k�edges bounds a
�possibly degenerate� disk made of at most k � � triangles�

x�	� Convexity and CAT��convexity

Take a geodesic line �� in the model space X� of curvature � �this line
is a topological circle for � � �� and consider the distance function to ���

d��x
�� � infy���� jx� � y�jX� �
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The restriction of this function to a segment 
a�� b�� in a connected compo�
nent �half�plane� of the complementX�n�� is uniquely determined by the
values d��a��� d��b�� and the length ja� � b�j of 
a�� b��� So we can regard
d� as a real function� called ��function� Notice that the ��functions are
positive and ��Lipschitz� i�e��

jd��t��� d��t��j � jt� � t�j�
Next� a positive ��Lipschitz function d de
ned on some segment in R

is called ��convex� if� for every two points a and b in this segment� there
is a ���function d�� on 
a� b� with �� � �� such that

d���a� � d�a�� d���b� � d�b�

and

d���t� � d�t� for t � 
a� b��

In other words� d must be more convex than d�� For example� if � �
�� then the ��convexity amounts to ordinary convexity for positive ��
Lipschitz functions�

One checks elementarily that the ��convexity is a local property � if d
is ��convex in a small subinterval around each point� then it is ��convex�

About � � ��� This convexity means the ��convexity� for all � � R�
which corresponds to the behavior of the distance to a geodesic line in a
tree� Clearly� every �����convex function d�t� on 
a� b� equals

max�d�a�� ja� tj� �� d�b�� jb� tj� �
A �positive� ��Lipschitz� function on a geodesic space is called CAT��

convex if its restriction to every geodesic segment is ��convex� Then a
space X is called CAT��convex if the distance function to each segment
Y � X� i�e�� d�x� � infy�Y jx�yj� is ��convex onX� IfX is CAT��convex�
then� clearly�
�i� the distance function to every convex subset Y � X is ��convex�
�ii� the R�balls in X are convex for all R if � � � and for R � �


p
�

for � � ��
�iii� the 
�neighborhood Y � 
 of each convex subset Y � X is convex

for � � �� where� recall

Y � 

def
� fx � X j dist�x� Y � � 
g�
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Convexity theorem� Every CAT����space is CAT��convex�

This is well�known and the proof is straightforward �see 
���� Notice
that the converse is true �and rather obvious� for Riemannian manifolds
but not for general X� For example� Banach spaces are ��convex! yet
these are not CAT��� unless they are Hilbertian� But for � � �� the
distinctions between the classes of spaces disappear�

CAT���� � �����convexity�

On the topology of CAT���� If � � �� then every two points in a
CAT����convex space X are joined by a unique geodesic segment and
so CAT����convex spaces are contractible� Moreover� the balls in these
spaces are convex and contractible� �If � � �� then convexity of the R�
balls is ensured only for R � �
��

p
�� and contractibility for R � �


p
���

Fig� ��

Fig� ��

x�
� CAT���� and curvature

If a geodesic triangle � in X is subdivided into �smaller� triangles
�i with all vertices on � then the CAT����comparison inequalities for
�i imply �by an easy and well�known argument� that for � itself� Then
such subdivision can be applied to all �i etc�� thus reducing veri
cation
of CAT����property to arbitrary small triangles�
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There is a catch in this however� such subdivisions are rather special
as every vertex must lie inside a geodesic edge and there is no guarantee
that the new triangles will be smaller than the original �� Yet� everything
works if X contains no almost minimal closed curves �geodesics�� which
amounts to requiring that the extrinsic distance distX� is �signi
cantly	
smaller than the induced path metric on �� This means� by de
nition�
that every geodesic � contains a pair of points x and y such that

distX�x� y� � ��� ��dist
�x� y�

for the path metric dist
 on �� and

dist
�x� y� � � diam�

for some � � ��X� � � independent of ��
These considerations suggest the following

De�nition� We say that X has curvature K � � at x � X if there is
a neighborhood U � X of x such that every � contained in U is more
narrow than the model triangle ��� i�e�� the comparison map c � �� � �
is distance decreasing� �Equivalently� one could say that a small ��ball
around x is CAT����� Next we de�ne spaces X with K�X� � �� i�e�� with
curvatures � �� by requiring this property at every point x � X�

x��� Examples
�a� Riemannian manifolds X �of 
nite or in
nite dimension� with sec�

tional curvature � � have K�X� � � in our �i�e�� Alexandrov�s� sense�

�b� Let X be a polyhedron built of �convex� simplices of constant
curvature � �i�e�� simplices from a complete simply connected space with
constant curvature ��� The link Lx of every vertex x � X is again a
space of this kind� built of spherical simplices� i�e�� those with � � ��
Then K�X� � � if and only if every such link is CAT����

In particular� if dimX � � and thus every Lx is a ��polyhedron� i�e��
a graph with the length of the edges measured by the angles of the cor�
responding triangles� Here the CAT��� condition for Lx says that every
cycle in Lx has length � ���

More generally� CAT��� needs� besides K � �� the uniqueness property
for geodesic segments between the pairs of points with distance � �
between them� For instance� if X is CAT��� for � � � and Y � X
$ for
an isometry group $ with jx� ��x�j � �� for all x � X and id �� � � $�
then Y is CAT����
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x��� Ramified covers

LetX be a ��polyhedron and let f � %X � X be a rami�ed covering � i�e��
the pull�backs f���x� � X are discrete for all x � X and� furthermore�

there are discrete subsets X� � X and %X� � %X such that f maps the
complement %Xn %X� to XnX� with %Xn %X� � XnX� being a covering map�

Every path�metric in X �obviously� induces such a metric in %X� and
if the former had K � �� so� obviously� does the latter� Moreover� if
the metric in X is �at �Euclidean� on all ��simplices in X� then �most	
rami
ed coverings %X � X have K� %X� � �� regardless of the curvature
of X�

For example� let X be built of plane equilateral triangles and %X � X
rami�ed at each vertex in X with order � �� This means X� contains all
vertices in X and for every pair of points %x � %X� and x � X� the induced
covering map f�x of the link %L�x � %X� to Lx � Xnon�trivially covers each
simple cycle C � Lx� i�e�� there is no cycle %C � %L�x injectively sent by
f�x to C� Then� clearly� each cycle in %L�x has at most � edges and thus
K� %X� � ��

Notice that whenever X� contains all vertices in X� there are plenty of
rami
ed covers %X � X with the above property� In fact the fundamental
group �� of the complement X� � XnX� is free and therefore it contains
lots of subgroups %� � �� such that the classes of the simple cycles C �
Lx� x � X�� are not contained in %�� Then the completions of the %��
coverings of X� are our %X with K� %X� � ��

If we are concerned with �nite polyhedra X and %X� we need subgroups
%� � �� of 
nite index in order to have �nitely sheeted rami
ed covers
%X � X� Since free groups are residually �nite� we do have plenty of such
%� � �� and� consequently� we have as many �nite ��polyhedra %X with
K� %X� � ��

To be speci
c� let X be the ��skeleton of the �n����simplex� This X is

simply connected and is built of
�
n
�



�

n�n��	�n��	
� triangles� If we remove

the set X� � X of the vertices of X� the complement XnX� contracts
to the graph X� � XnX� spanned by the baricenters of the triangles
and edges in X� This X� has �

�
n
�



edges and

�
n
�



�
�
n
�



vertices� where�

n
�



� n�n��	

� is the number of edges in X� Thus the fundamental group

of XnX� is free with m � �
�
n
�


� �n� 
� � generators� The most obvious

subgroup %� � �� � Fm� which makes K� %X� � � is the kernel of the
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canonical homomorphism

Fm � �Z
�Z�m

�while every m � � makes K� %X� � ��� The multiplicity of the corre�

sponding rami
ed cover %X � X equals �m away from X� and �m�� at
X�� where

� � �n �
�n � ���n� ��

�
� �n � �� � �

is the rank of the fundamental group of the ��skeleton of the �n � ���
simplex�

�There are smaller rami
ed covers of this X with K � �� and one�
probably� can enlist the minimal ones� Similarly� one can ramify other
symmetric ��polyhedra� such as the ��skeletons of the cubes and octahe�
dra��

x��� On construction of polyhedra

X with K � � for dimX � �

As dimension grows� there seem to appear fewer and fewer new spaces
with K � � and getting them with K � � is especially di�cult� �In fact�
all known high�dimensional hyperbolic groups are built out of �arithmetic
blocks	 but we are far from stating and proving any de
nite result in this
direction��

For example� if we su�ciently ramify ��polyhedraX over ��dimensional
loci X� � X� the resulting %X will have negative curvature everywhere
except the vertices %x � %X � where we can ensure curvature � � of the
���dimensional� links L�x� but not the CAT����property�

�The latter could be achieved if these links had su�ciently many coher�
ent 
nite coverings� i�e�� if the fundamental groups of %Xnfverticesg were
residually 
nite� In fact� a suitable residual 
niteness of n�dimensional
groups with K � � �or K � �� would lead to many examples of �n � ���
dimensional groups with K � � �or K � ��! this indicates� in my view�
that typical groups with K � � �or K � �� have no non�trivial 
nite
quotients��

The spaces like %X� where the curvature is negative away from the
vertices� can be modi
ed to have K � � �or K � �� everywhere in two
ways�

��� Remove the vertices and replace all simplices by the ideal hyper�

bolic simplices� Then the resulting space %X� becomes a complete space
of �nite volume and K � � �or K � ���
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��� Suitably truncate the hyperbolic simplices and double the resulting
space� This results in a compact %X�� with K � � �or K � ��� homeomor�
phic to the double of

%Xnfsmall balls around the verticesg�
where the �double	 gluing takes place over the boundaries of these balls�
In particular� one obtains in this way some �not especially exciting� ��
polyhedra with K � ��

Finally� if we depart from a ��dimensional pseudomanifold X� then we
always can arrange rami
ed coverings with K � �� In fact� such an X
can be obtained from a compact ��manifold X	 by attaching cones to
the boundary components of X	 �followed by some irrelevant identi
ca�
tions�� If X	 happens to have constant negative curvature with mildly

curved boundary� then� after passing to 
nite covering %X	 and coning the
boundary of %X	� we get a compact pseudomanifold with K � ��

Of course� not every X gives us such an X	 but the desired property
is satis
ed by a suitable preliminary rami
ed cover of X as can be easily
derived from Thurston�s theory� So� with Thurston� we have a huge pool
of compact ��dimensional pseudomanifolds with K � ��

x��� Assembling �K � ���spaces over geodesic graphs

It is hard to construct high dimensional spaces X with K � � �and�
especially� with K � �� from scratch� but given such an X one can con�
struct many others as follows�

Let X� � X be a geodesic subgraph in X� i�e�� a union of geodesic
segments ei� i � I� where every two segments meet� if at all� at one of
their end points� Take several copies of X �where� more generally� one
may take various numbers of di�erent connected components of X� in
case X was disconnected� and then glue together some among edges of
equal length in the corresponding union of the copies of X�� where we
do not exclude gluing edges in the same connected component in �the
union of copies of� X� �There are exactly two ways to glue together two
equilong edges� where a particular gluing can be speci
ed if we orient our
graph��

It is easy to 
gure out when the resulting space� say Y � has K � � �or
K � ��� Namely� if K�X� � � �or � ��� the same inequality holds at all
points in Y except� possibly� the �points coming from the� vertices of our
graphX�� Now� at every vertex points y � Y consider all edges ej� j � Jx�
from the union of copies of X� adjacent to some point in �a copy of� X
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and call two such edges x�neighbors if they come from edges adjacent to
the same point x in X� In this case there is a well �and obviously� de
ned
angle measured in X between these edges� denoted �x�ej� � ej��� Observe
that the same pair of adjacent edges in Y may come from di�erent x�s in
X and the resulting angle depends on which x is used� Just look at the
pair of triangles glued over two pairs of edges�

Fig� ��

Next consider cyclic chains of edges at y� say e�� e�� � � � � ek�� � e��
where ei�� is xi�adjacent to ei for all i � �� � � � � k� and where xi �� xi��
for all i�

Clearly� Y has K � � �or K � �� i� the total sum of angles�

�x��e�� e�� � � � �� �xk�ek� e���

is � �� �or � �� if we want K � �� for all such chains of edges� This
�trivially� generalizes the case of ��polyhedra� where X equals the union
of Euclidean triangles with X� � X being the union of the edges of these
triangles �and where something new enters the picture if we take� for
instance� ��simplices with their edges instead of the triangles��

All of the above would be rather pointless if we had no simple way to
arrange gluings satisfying the �� ����condition� Fortunately� there are�
roughly� as many such gluings for general �X�X�� as for triangles ��� ���!
in particular the rami
ed covering trick works for all �X�X�� as follows�

Start with an arbitrary Y � e�g�� obtained by doubling X across X��
This Y has K � � everywhere except the vertices of X� and then we take
a rami
ed cover %Y � Y which rami
es at these vertices� Technically
speaking� we remove X� � fvertices of X�g from Y � take a �
nite if
you wish� covering of the complement Y nX� which is trivial over each of
the two copies of X in Y � and then metrically complete this covering by
adding back the vertices�

The triviality condition says� in e�ect� that our covering comes from an
auxiliary ��polyhedron where each copy of X is replaced by the cone over
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X� � X� After removing the vertices in X� the resulting ��polyhedron
contracts to a graph� and so coverings are determined by subgroups of
a free group so that we have the same freedom of choosing them as for
��polyhedra� In particular� we can construct 
nite rami
ed covers of Y
with K � � �or K � ��� provided all angles between the edges of X� at
the vertices are strictly positive� �This is a rather mild condition! actually
it takes a special e�ort to make up examples where it is violated��

Remark� One can look at gluing across k�dimensional subpolyhedra
Xk � X with totally geodesic simplices but making speci
c examples
becomes rather di�cult for k � ��

x��
Let us isolate a purely combinatorial aspect of the above construction�

Say that a graph �%V � %E� is tessilated by �copies of� a graph �V�E� �where

V and %V stand for the sets of vertices and E�s for the edges� if we are

given embeddings �i � V � %V � i � I� such that
�a�

S
i�I

�i�V � � %V !

�b� card ��i�V � � �j�V �� � � for all i �� j � I!
�c� edges go to edges� i�e�� the Cartesian squares

��i � V � V � %V � %V

map E � V �V to %E � %V � %V ! furthermore� the images of ��i �E� �
%E are mutually disjoint and�

i�I
��i �E� � %E�

Proposition� Given �nitely many �nite graphs� �V�� E��� � � � � �Vk� Ek��

there exists a �nite graph � %V � %E� tessilated by each of �V�� E��� � � � �
�Vk� Ek��

In fact� such a � %V � %E� is obtained by factoring some universal in
nite
graph �&V � &E� by a suitable co
nite subgroup of the free group operating
on � &V � &E�� To make it clear� we shall state a more precise formof the above
proposition� where we assume� for simplicity�s sake that there are only
two graphs� �V�� E�� and �V�� E��� with cardE� � cardE�� We assume�
moreover� that there is given a bijection E� � E�� where the edges E� �
e� � e� � E� are regarded as equivalent� We also 
x directions on all
edges and require the above correspondence to preserve the directions�
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Furthermore� we assign positive lengths to the edges� thus turning V� and
V� into metric spaces �presuming the graphs are connected� and assume
that the corresponding �equivalent� edges have equal length� Then we

shall speak of marked directed isometric tessilations of � %V � %E� by �V�� E��
and �V�� E�� meaning that

�isometric	� the implied embeddings �i of V� and V� into V are isome�
tries!

�directed	� the graph �%V � %E� is directed and the maps �i �both for E�

and E�� preserve the direction of edges!

�marked	� if an edge %e � %E comes from some e� � E� and e� � E��
then edges are equivalent� i�e�� e� � e�� �In other words� the tessilations
agree with a marking of %E by equivalence classes of edges��

Proposition�� There exists a �nite graph � %V � %E� with marked directed
isometric tessilations by �V�� E�� and by �V�� E���

Proof� Attach a copy of �V�� E�� to �V�� E�� at each edge in E� according
to ��	� Then attach copies of �V�� E�� to all newly created E��edges
and continue ad in
nitum� Thus we get a tree�like graph �&V � &E� suitably
tessilated by �V�� E�� and �V�� E�� with an obvious cocompact action of

the free group F� with � � c�c��	
� for c � cardE� � cardE�� This is

the automorphism group of the tree with ��colored vertices and c�colored
edges as sketched for c � � below�

Fig� ��

Then a quotient of � &V � &E� by a su�ciently small co�
nite subgroup

in F� is our � %V � %E�� �This can be used for construction of En�o type
expanders departing from bipartite graphs of Remark ���a���
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x��� Effective universal coverings of spaces with K � �

If X has K�X�x�� � �� then small balls B�x�� �� � X are convex and
ifK�X� � � everywhere� then such a ball remains locally convex in�so�far
as it does not meet itself somewhere�

Fig� 	�

If this happens� we ignore the meeting points and continue to en�
large the ball� but not as a subset in X but rather as an abstract metric
space along with a locally isometric map to X� These are called over�
balls %B�x�� R� � X� R � �� which all have locally convex boundaries
since K�X� � � and so one can go from %B�x�� R� to B�x�� R � �� for
small � �where a little extra care is needed if X is not locally compact��

Thus we obtain a space %X � &B�x�� R ��� along with a locally isometric

map p � %X � X� This %X � being locally isometric to X� has K� %X� � � and
it is exhausted by locally convex balls� It follows �by the above considera�
tions� that� in fact� %X is CAT��� and it is easy to see that p � %X � X is a
covering map� In particular� if a simply connected space X has K�X� � ��
then it is a CAT����space� This is the classical Cartan�Hadamard theo�
rem �usually stated for non�singular spaces�� Here are additional remarks
clarifying the picture�

�a� If a space X with K�X� � � � � admits a 
ltration by locally
convex subsets Xt � X� t � R�� where Xt � Xt� for t � t� and Xt��

is contained in the ��neighborhood Xt � � of Xt for all t � � and some
� � ��t� � �� then X ��

S
t�R�

Xt� is CAT��� provided X� is CAT����

�Recall that �locally convex	 signi
es convexity of some neighborhood of
each point of the subset in question��

�b� If X is CAT����convex� then every connected locally convex subset
in X is convex� Moreover� if Y is an abstract connected metric space and
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p � Y � X is a locally isometric map sending a small neighborhood of
each y � Y onto a convex subset in X� then p is one�to�one and the
image p�Y � � X is convex� �This is easy but not totally trivial even for
X � Rn��

�c� The Cartan�Hadamard theorem remains valid for certain orbis�
paces with K � � �see 
��� and a version of this underlies the small
cancellation theory �see below and 
����

x��� Filling closed curves by disks in CAT�spaces

There is an alternative� in e�ect� more functorial� de
nition of CAT�
spaces� at least for � � � �due to Reshetnyak �#��� which says that X
is CAT��� if every closed curve in X bounds a disk with curvature � ��
Actually one only needs Riemannian disksD with metrics of constant cur�
vature � �every such D appears as a multi�domain over H������ Namely�

X is CAT��� if and only if for every � � � and every distance �non�
strictly� decreasing map � of the circle S � S� of length � to X there
exists a metric � of constant curvature � on D with length ��D� � �
and a distance decreasing map � � �D���� X extending �� where the
boundary �D is naturally identi�ed with S��

Sketch of the proof� If a geodesic triangle� viewed as a �mapped� circle
in X� can be 
lled by �D���� then� in the case � � �� it is ��narrow since
�D��� is CAT��� for every metric with curvature � � as an elementary
argument shows� Conversely� every closed curve S in a CAT����space X
can be �subdivided	 into �in
nitesimally small	 geodesic triangles as in
Fig� � giving in the limit a 
lling disk D� with curvature � �� which can
then be �enlarged	 to �D��� with curvature � ��

Then one can de�ne spaces with K�X� � � by requiring the existence
of �D��� and � for all contractible closed curves in X� It is not hard
to show �by using� for instance� suitable minimal disks 
lling in curves�
that the existence of �D����
llings for short curves in X �with shortness
� � ��x� � � depending on x � X for curves contained in a ball of radius
�� around x� implies that for all closed curves� and so this de
nition is
essentially local�

Reshetnyak theorem and application� The above diskD of constant
negative curvature �� a priori� only immerses into the model ��plane H��
But� according to Reshetnyak� one can �nd a convex domain D�

x � Xx



CAT����SPACES� CONSTRUCTION AND CONCENTRATION �		

with

length��D�
X � � length ��D� � �

and a distance non�decreasing homeomorphism D� � D� Thus our S �
S� � X can be �lled in by a convex disk D� � H��

Consequently CAT����spaces are Cycli��� for all i � �� �� � � � � and
thus they all are Wir� for � � �� and our bounds on 	� for various maps
V � X from x���� apply to CAT����spaces�

Question�Does the Cycl��inequality imply all Wirk� k � �� � � � � � without
assuming the space in question is geodesic#

x��� CAT�families of groups
Consider a closed subset P � X and isometry groups $p of X assigned

to all p � P �where one could suppress P by de
ning $x � fidg for
x � XnP �� Call f$pg a rotation family if the following two conditions are
satis
ed�

�i� $p 
xes p for all p � P !

�ii� each $p� maps P � P and acts on the family f$pg by conjugation�

�$p�
�� � $p� for p

� � ��p� and all � � $p� �

Examples� �a� Take a 
nite subset P � C and let X be the universal
cover of C rami
ed at P � Then the �cyclic� monodromy groups around
the lifts p � X of the points p � P make a rotation family generating the
full Galois group acting on X�

�b� Take a union P of 
nitely many lines in CP � � Here again the Galois
group of the universal cover rami
ed at P is generated by �rotations	
about intersections of lines� �The Galois group of Q
Q is also generated
by �rotations	 corresponding to the Frobenius automorphisms��

Denote by $P � IsoX the rotation group generated by all $p and let
us reduce the CAT����property of the quotient space X
$P to that of
the spaces X
$p� p � P � under the following disjointness assumption�

�iii� The set P is discrete and $p acts freely and discretely on the com�
plement Xnfpg for all p � P � �This is the case for the above �a� but
not for �b���
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x�	� Proposition
Let f$pg satisfy �i���iii�� the space X be CAT��� for some � � �� and
K�X
$p� � � for all p � P � Then the group $P is discrete and the
quotient space X
$P is CAT���� Furthermore�

�a� $P acts freely on the complement XnP and the isotropy subgroup
of each p � P equals �exactly�� $p� Moreover� if a ball Bp � X around
a point p � P contains no p� �� p in P � then the obvious map Bp
$p �
X
$P is one�to�one�

�b� If P is separated on bounded subsets� i�e�� jp� � p�j � r for some
positive monotone decreasing function r � rx��R� � � depending on the
distance R � jp� � x�j from a chosen point x� � X� and for all p� �� p�
in P � then there is a subset Q � P such that $P is freely generated by
the groups $q� q � Q� That is� the natural homomorphism from the free
product 
Q$q to $P is an isomorphism�

Proof� Take a convex subset Y � X and see how it behaves under the
projection to X
$p for some p � P �

If p does not lie in the closure of Y � our map Y � X
$p is locally
isometric with locally convex boundary� and since X
$p is CAT���� our
Y isometrically maps onto a convex subset in X
$p� In other words� the
��translates ��Y � do not meet Y for all id �� � � $p�

Next� let us assume p lies in the boundary �Y and suppose Y is strictly
convex at p� i�e�� there is no geodesic segment in the closure of Y con�
taining p as an interior point of this segment� Then every such segment�
apart from one of its ends� is locally convex in X
$p and� hence� con�
vex� Consequently� Y injects to X
$p away from p� and thus the $p�orbit
$p�Y � � X consists of the translates ��Y � meeting at p and nowhere
else� This applies� in particular� to ��neighborhoods of convex subsets in
Xnfpg for � � � as these are strictly convex at all their boundary points
in CAT����spaces�

We denote the ��neighborhood of Y by Y ��� observe that $p�Y ��� �
$p�Y �� �� and see that $p�Y � �� consists of disjoint translates of Y � �
for � � dist�p� Y � which meet together at p for � � dist�p� Y � so that
$p�Y � �� becomes convex as well as $p�invariant for � � dist�p� Y ��

Now see what happens when such a $p�invariant growing ��neighbor�
hood hits another point p� � P � More generally� let Y � X be a strictly
convex subset invariant under the group $Y � generated by all p in P
contained in the interior of Y and let $Y be generated by $Y � and all
p � P contained in the boundary of Y � Two ��translates of Y for � � $Y
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may be in three kinds of mutual positions�

��� ���Y � � ���Y � for ���
��
� � $Y � !

��� ���Y � meets ���Y � at a single point� e�g�� ��Y � meets Y at p for
every � � $p and p � P � �Y !

��� ���Y � is disjoint from ���Y ��

Since the local convexity is preserved at the meeting points p� the orbit
$Y �Y � is convex and the map Y
$Y � � X
$Y is injective� Furthermore�
the group $Y is freely generated by $Y � and the groups $p for p � R�
where R � P � �Y intersects each $Y ��orbit of p � �Y at a single point�
This is su�cient to prove �a��

Indeed� take R�balls B�R� � X around some point x	 � X �e�g�� some
p� � P � and let

%B�R� � $B��R	�B�R��

�where �balls	 are assumed closed�

B�R� � fx � X � jx� x	j � Rg�
and B��R� denotes the interior where jx � x	j � R�� These %B�R� are
convex as well as $B��R	 invariant and their projections to X
$B�R	 are
injective and convex� Therefore� these remain locally convex as we pass to
X
$P and so %B�R� injectively project to balls in X
$P � This ensures the
inequality K�X
$P � � � at the �suspicious� points coming from p � P
and proves the local� and hence global� convexity of balls in X
$P as

these are isometric to %B�R�
$B�R	�
Finally� we turn to �b� and notice that the above su�ces to show that

every �nite subset P � � P contains a subset Q� � P � such that the group
$� generated by $p� p � P �� is freely generated by $q � q� � Q�� However�
if� for example� points in PnB�R� accumulate to the boundary of B� then
we cannot �#� claim the freedom property� �Yet the injectivity of the map
B�R�
$B��R	 � X
$P follows from what happens to 
nite subset P � �
P �� We need at this stage the separation property of P along with the
uniform convexity of the balls that yields �this is all we need� a universal
upper bound on the diameter of the intersection � %B�R������� %B �R����

in terms of R and �� where %B�R� is supposed to be disjoint from � %B�R��
It follows that for every R �� and � � � there exists � � � such that

there is no non�trivial triple intersection between ��translates of %B�R�
for � � $P
� �B�R	��	� that is� if

�� %B�R� � �� %B�R� � �� %B�R� �� ��
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then �i %B�R� � �j %B�R� for some i �� j � �� �� �� provided the subset

P � � %B�R� � �

 � X is ��separated or� equivalently� P � B�R � �� is

��separated� Hence� the group $ �B�R	�� is freely generated by $ �B�R	 and

$p� p � R� where R � P � � %B�R� � �� intersects each $ �B�R	 orbit of

P � � %B�R� � ��n %B�R� at a single point and �e� follows as in the case of

nite sets P �B�R�� Q�E�D�

x�
� Remarks
�a� The above argument shows that strict convex independence of

points p � P � � P implies free independence of subgroups $p� � p� � P ��
where �strict convex independence	 refers to the existence of a strictly
convex subset Y � X with P � � �Y �

�b� Let us indicate a generalization of Proposition �" �in the spirit of
the Cartan�Hadamard theorem for non�rigid orbispaces� compare 
�� and


��� where the relevant subsets �e�g�� %B�R�� may be non�convex in X but
project to �locally� convex subsets in X
$p��

A rotation family f$pg is called regular if the subset P is closed and
the function p �� $p is semicontinuous� i�e�� each p � P admits a neigh�
borhood Up � P such that $p� � $p for all p� � Up� �There often exists
a rather regular strati
cation of P such that $p is constant on each stra�
tum��

Generalization of Proposition ��� If f$pg is regular� free away from
P and the quotient spaces X
$p are CAT��� for some � � � and all
p � P � then the rotation group $P is discrete and the quotient space
X
$P is CAT����

�c� Proposition �" in its present form has rather limited applications
�see below� but it gains in signi
cance when generalized to spaces X with
�approximately negative curvature	 �see 
����

x��� Coning CAT�spaces and their subspaces

Let us look at the disk of radius r in the standard space of constant
curvature � as the cone over its boundary� D��r � C��r��D��r �� where
we are mainly interested in � � � �and where one should restrict to
r � �


p
� for � � ��� Then� for an arbitrary geodesic �path� metric

space X� one de
nes the �path� metric cone C��r�X� as X � 
�� r� with
the base X�� shrunk to a single point� the apex� also called the center of
the cone� where the metric is given by the same rule as in D��r � Namely�
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every short geodesic segment S in C��r�X� away from the apex projects
to a geodesic segment in X� say S � X� and the cone C��r�S� � C��r�X�
is isometric to the sector in D��r over the arc S� � �D��r with length
equal that of S�

The curvature K of C��r�X� away from the apex can be evaluated in
terms of K�X�� this curvature K is � � if �and only if� the curvature
K�X� is bounded by the curvature �r of the ��sphere of radius r in the
standard ��space with curvature �� In particular� K � � if K�X� � ��
Furthermore� if X is CAT��r�� then K � � also at the apex of the
cone� �All this is well known and rather obvious�� In particular� the unit
Euclidean cone C����X� has K � � for all CAT����spaces X� �One may
think of C����X� as the ordinary Euclidean cone over X� where X is
isometrically immersed into the unit sphere in some Rn��

Next� let Ui � X� i � I� be a collection of subsets in X and

X	 def
� C��r�X� fUig�

be obtained by attaching the cones U	i � C��r�Ui� toX across Ui � Ui�r�
for all i � I� Notice that every two cones U	i and U	j in X	 intersect
across Ui �Uj � X � X	� One can arti
cially enlarge these intersections
by gluing pairs U	i and U	j across larger subsets in C��r�Ui � Uj�� For
example� given a positive function ��d�� we de
ne functions �ij on Ui�Uj�
as � of the distance d � d�x�� x � Ui �Uj � to the boundary of Ui �Uj in
Ui � Uj � i�e��

d�x� � dist�x� �Ui � Uj�n�Ui � Uj���
Then we glue U	i to U	j across the subset of pairs �x� 
� where 
 � �ij�x�
and observe that this �gluing	 de
nes an equivalence relation on the
disjoint union of the cones U	i � and hence on X	� provided the function
��d� is monotone increasing�

x��� Useful example
Let X be a tree and Ui be double in
nite geodesic lines in X� where

all intersections are segments of lengths �ij � �� � �� Take � � ���r���
such that

Wij � C��r�Ui � Uj� � C��r�Uj� � C��r�Ui� � C��r�R�

looks as in the picture below�
Consider the space X� obtained from X	 � C��r�X� fUig� by gluing

every U	i to U	j across the above Wij�
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Fig� 
�

If the angle � � �� � ���r��� in Figure � is � ��
�� then the space
X� is CAT���� In particular� if �� � �� r
�� then the space X� for
� � ���r��� is CAT����

Proof� It is clear that X remains CAT��� if we attach our cones to dis�
joint lines Ui or� more generally� if there are no triple meeting points
between Ui� since the intersections Wij are convex in U	i � The problem
may appear when three �or more� lines come together as three lines join�
ing the pairs of ends in the in
nite tripod do� But the condition � � ��
�
makes the cycles in the links of such meeting point longer than ��� which
implies K�X�� � � at all points� This yields CAT����property since X�

is �obviously� simply connected� Q�E�D�

x��
Corollary� Let $i� i � I� be isometry groups acting on X� where each
$i is generated by a single isometry �i � X � X mapping the line Ui � R
into itself via a translation x �� x� Ri� and let $	 be generated by the
groups $i� i � I� If R � ���� then the space X�
$ is CAT��� for a suitable
� and if R � ���� one can achieve CAT�� � �� for X�
$� Consequently�
$ is freely generated by some subgroups $j among $i�

Proof� Take r � ���
�� apply the coning construction C��r� Then the
corresponding X� is CAT��� for R � ���� And if R � ���� we use C��r

with � � � with j�j being small compared to R����� and r slightly larger
than ���
�� thus getting K�X�
$	� � k � �� Q�E�D�

x��� Remarks
�a� This Corollary shows� in particular� that the small cancellation

groups $ with the metric �
��condition are CAT��� serving as fundamen�
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tal groups of ��polyhedra with K � �� while the �
����condition ensures
CAT�� � ���property�

Recall� that such a $ is given by 
nitely many relations that are just
some elements� say ��� � � � � �k in the free group F on some generators�
This F acts on the standard tree X� and $i are generated by the �in�

nitely many� F �conjugates of ��� � � � � �k� Then $ � F
$	 freely and
isometrically acts on our space X�
$	 that is CAT��� in the �
��case
by the above discussion� where the quotient �X
$	�
$ is obtained from
the standard ��polyhedron P representing $ by little geometric tinkering
�corresponding to X	 � X�� makingK � � while keeping the homotopy
type �and the dimension� of P intact�

�b� The above approach to small cancellation groups �which is essen�
tially well known� will be extended in another paper to spaces X with
approximately negative curvature and general �convex	 groups $i�

�c� There is another way of turning X
$	 into a CAT����space� con�
sisting in taking the nerve Y of the covering of X by Ui and then dividing
Y by $	 �compare x���� Unfortunately� the upper curvature bound at the

xed vertices of $i depends� besides R� on the dimension of Y � i�e�� the
maximal multiplicity of intersection of Ui� which makes the nerve con�
struction unsuitable for most interesting $� I do not exclude� however� an
improvement of this making all combinatorially �
��groups CAT���� but
this seems hard to achieve for general small cancellation groups �see 
"���
where the traditional approach via Dehn�s diagrams remains indispens�
able�
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