
GROUPS OF POLYNOMIAL GROWTH 

AND EXPANDING MAPS 

by MIKHA~.L G R O M O V  

Introduct ion 

Consider a group F generated by  Y 1 , . . - ,  Yk ~F- Each  element y e F  can be 

represented by a word  y~P~yi,P2.., yi tpt and the n u m b e r  IP t I+[P~[+ �9 . .  %'lPtl is called 

the length of  the word.  The norm ][YI[ (relative to 71, . . . ,  Ye) is defined as the minimal  
length of  the words representing Y. Notice, that  one can have several shortest words 
representing the same yEF.  

Examples. - -  Let  P be the free Abelian group of  rank 2 generated by  Y1, Y~. Each  
P q y ~ F  can be represented as 7~7~, p, q e Z ,  and l ] v l I - - l p l + l q ] .  (For the identi ty 

element eEF we set I ]e l ]~o . )  
Let  F be the free (non-Abelian) group of  rank 2 generated b y  y~, y~. Each  y . e  

can be uniquely wri t ten as Y~Y~Y~ � 9  YilPk, or as ~J~-,~'-.P"I1 ~2 . . .  y~k, where  ij----I, 2 
k 

and Pl,  . . - , P ~  are non-zero integers. The  norm of  such a y is equal  to ~; ]p~.[. 

Let  F be the free cyclic group generated by  Y0 by let us use the generators  yt ~-= y0 z, 

Y2 -= Y03 and Y3 =- Y04. Relat ive to these Y1, Y3, Ya we obviously have I[ Y0 [[ ---= 2, I/y0~ll = i, 
[1~,0611-=-2 (because Yg=Y~=V~Y3), I[Y~~176 and so on. 

Elementary properties of the norm. ~ For any group one obviously has 

I I v t l = l / v - ~ 1 1 ,  

I[vv'/f < J[v[I + Ifv'll. 

Let Y1, �9 �9 -, Ye and Sa, . . . ,  b t be two systems of  generators in F. The  corres- 
ponding norms II I I ~ and I III  ~176 a re  not necessarily equal  bu t  there obviously exists 
a positive constant  C such that  for each y e F  one has 

c II v I1o'~> II v rl~176 c -~ Ilvll ~ 

For a group F w i t h  fixed generators we denote  by  B(r) C F, r > o ,  the ball of  radius r 

centered at  the ident i ty  element e. In  o ther  words, B(r) consists of  all ~,eF with 
I Iy l l< r .  We denote  by  SB(r)  the n u m b e r  of  elements in B(r). 
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54 MIKHAEL G R O M O V  

For a free Abelian group of rank two generated by Y1, Y2 one has 

B ( r ) = 2 N 2 + 2 N + I  for reiN, N @ I ) .  

For the free (non-Abelian) group with two generators one has 

B(r) = 2 . 3 ~ - - i  for re[N, N + I ) .  

Growth of a group. - -  One says that a group P with generators ?'1, - . . ,  Yk has 
polynomial growth if there are two positive numbers d and C such that for all balls B(r), 

r > I ,  one has 

B (r) < Cr a. 

One can easily see that this definition does not depend on the particular choice of the 
generators and so this notion is correctly defined for the finitely generated groups. 

Examples. - -  The finitely generated Abelian groups are easily seen to be of poly- 
nomial growth. Also the finitely generated nilpotent groups are of polynomial growth 

(see [i4] and the appendix). 
I f  I' is a finite extension of a group of polynomial growth, then P itself has poly- 

nomial growth. So we conclude: 

I f  a finitely generated group P has a nilpotent subgroup of finite index then F has polynomiat 
growth. 

The free groups with k >  2 generators do not have polynomial growth. They 

even have exponential growth, i.e. 

B( r )>C ' ,  r > i  

for some real constant C > I .  One can immediately see that this property does not 

depend on the choice of the generators. 

The following theorem settles the growth problem for the solvable groups: 

(Milnor-Wolf [8] [ I4 ] .  ) - -  ./1 finitely generated solvable group F has exponentzal growth unless 
P contains a nilpotent subgroup of finite index. 

This result together with a theorem of Tits (see [i3] and w 4) implies: 

(Tits.) - -  A finitely generated subgroup P of a connected Lie group has exponential growth unless 
P contains a nilpotent subgroup of finite index. 

In this paper we prove the following. 

Main theorem. ~ I f  a finitely generated group r has polynomial growth then P contains a 

nilpotent subgroup of finite index. 

The proof if given in w 8. 
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GROUPS OF POLYNOMIAL G R O W T H  AND EXPANDING MAPS 55 

One can combine this theorem with Shub's criterion (see w i) and obtains the 

Geometric corollary. - -  An expanding self-map of an arbitrary compact manifold is topo- 
logically conjugate to an infra-nil-endomorphism. 

The proof and the definitions are given in w i. 

x. Expanding  m a p s  

A map f from a metric space X to a metric space Y is called globally expanding 
if for any two points xl, x2aX , x14:x2, one has 

dist(f(xl) , f(x2) ) >dist(xl ,  x2)- 

We callfexpanding if each point x a X  has a neighbourhood U C  X such that the restric- 
tion o f f  to U is globally expanding. 

Suppose that X and Y are connected Riemannian manifolds of the same dimen- 
sion. If  X is a complete manifold without boundary,  then each expanding map is 
a covering. In particular, when Y is simply connected such a map is a globally 

expanding homeomorphism. 

Let X be a compact connected Riemannian manifold and let f :  X ~ X  be an 

expanding map. One can see that X has no boundary,  and hence, the map 3~ Y-+Y 
induced on the universal covering Y-->X is a globally expanding homeomorphism. 

The inverse map f - l : y _ _ _ ~ y  is contracting. Moreover, for each 8 > 0  there is a 
positive ~ such that for any two points y l , y 2 c Y  with d is t (y l ,y2)>  S one has 

d i s t ( f - l (y~) ,  f - l ( y ~ )  < (I - -  ~) dist(yl,y2).  

This is obvious. (Notice, that we use in Y the Riemannian metric induced from X 

by the covering map Y-->X.) It  follows t h a t f  -1 has a unique fixed point and that Y 
is homeomorphic to the Euclidean space R '~, n = d i m  X. Now, it is clear that f :  X---~X 
also has a fixed point. 

All these facts were established by M. Shub (see [I I]). (Notice that the definitions 
used in [I I] are slightly different from ours.) 

Examples. - -  Consider the torus T n = R ~ / Z  n. Each linear map Rn-+R ~ which 

sends the lattice Z ~ C R  ~ into itself induces a map Tn-+T ~. This map is expanding 
if and only if all eigenvalues of the covering linear map Rn-~R n have absolute values 

greater than one. 

Flat manifolds. - -  Let I' be a discrete fixed point free group of  motions of R ~ with 
compact quotient X=R'~ /E .  A linear map R"--~IIP which respects I" induces a 

map X ~ X  and this map is expanding if  and only if the covering linear map R " ~ R "  
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5 6 M I K H A E L  G R O M O V  

has only eigenvalues of absolute value greater than one. It is known (see [4]) that 
any flat manifold X has an expanding map of the type we have just described. 

Nil-manifolds. - -  Let L be a simply connected nilpotent Lie group with a left 
invariant Riemannian metric and let F C L be a discrete subgroup with compact 
quotient X = L / P .  (Such an X is called a nil-manifold.) An automorphism A : L - + L  
which sends P into itself induces a map X ~ X  and this map is expanding if and only 
if the linear map a : t - + t  induced by A in the Lie algebra g of L has all its eigenvalues 
greater than one in absolute value. Observe, that not all nilpotent Lie groups admit 
an expanding automorphism. 

Infra-nil-manifolds. - -  Let L be as above and denote by Aft(L) the group of trans- 
formations of L generated by the left translations and by all automorphisms L-+L.  
Let F C Aft(L) be a group which acts freely and discretely on L. When the quo- 
tient X = L /F  is compact it is called an infra-nil-manifold. Each expanding automor- 
phism L - + L  which respects I' induces an expanding map X - + X .  Such maps are 
called expanding infra-nil-endomorphisms. 

Topological conjugacy. - -  Two maps f :  X - + X  and g : Y-+Y are called topolo- 
gically conjugate if there exists a homeomorphism h : X ~ Y  such that h o f = g o h ,  
i.e. the following diagram commutes 

t 
X .  > X 

i 
Y > Y. 

g 

M. Shub discovered the following remarkable fact (see [i I]): 

An expanding self-map of a compact manifold X is uniquely determined, up to topological 
conjugacy, by its action on the fundamental group nl(X). 

The following two results of Shub and Franks (see [i i]) are especially important 
for our paper. 

Shub's criterion. - -  An expanding self-map of a compact manifold X is topologically conju- 
gate to an expanding infra-nil-endomorphism i f  and only i f  the fundamental group nl(X) contains 
a nilpotent subgroup of finite index. 

The polynomial growth property (Franks). - -  I f  a compact manifold X admits an expanding 
self-map then the fundamental group ~I(X) has polynomial growth. 

We prove this in the next section. 
These two facts explain why the geometric corollary is a consequence of the main 

theorem. 
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GROUPS OF POLYNOMIAL G R O W T H  AND EXPANDING MAPS 57 

Some partial results on the classification of the expanding maps were obtained 
earlier by Shub [x i] and Hirsch [6]. An idea of Hirsch's paper plays an important 
role in our approach (see w 5). 

2. Geometric  growth 

Consider a Riemannian manifold Y and denote by Voly(r), y~Y, the  volume 
of the ball of radius r around y. The growth of Y is defined as the asymptotic behavior 
of Vo�89 as r-+oo. 

This concept is due to Efremovi6 (see [3]) who pointed out that the growth of 
a manifold Y, which covers a compact manifold X, depends only on the fundamental 
groups ~I(X), r~l(Y ) and the inclusion nl(Y)Cnl(X).  

The corresponding algebraic notion of the growth was introduced by gvarc and 
by Milnor who, in particular, Proved the following theorem. 

(~varc, Milnor). - -  Let Y ~ X  be the universal covering and let us fix a set of generators 
in the fundamental group P=~:I(X). Then there is a constant C > o  such that for each y ~ Y  
and all r > I one has 

Volu(Cr + C) >I ~ B(r)/> Volu(C-lr), 

where B(r) denotes the ball in F (see the introduction). 

Proof. - -  Let us identify F with the orbit of y~Y under the action of F, so that 
y corresponds to the identity. Denote by Bu(r) the intersection of P with the Riemannian 
ball of radius r in Y centered a ty .  It is not hard to show (see [8], [I2]) that 

Ca Volu(r ) > t$ B~(r) _> C~ -1 Volu(r), r_> I 

and $ Bu(C~r)~> $ B(r)~> $ By(C~-~r), r_>o. 

This implies the theorem. 

Corollary. - -  The fundamental group of a compact manifold X has polynomial growth i f  
and only i f  the universal covering Y of X has polynomial growth, i.e. i f  for some C and d one has 

Volu(r) < Cra , re[i ,  oo). ' 

Observe that most (completel non-compact) manifolds have exponential growth, 
i.e. Volu(r)>C~--~, C > I ,  re[i ,  oo), but there are some interesting instances of 

i - - ' - 7 '  ' " 

polynomial growth. 

Examples o f  manifolds of polynomial growth: 

(a) Complete manifolds of non-negative Ricci curvature; 
(b) Real algebraic submanifolds in Rq; 
(c) Nilpotent Lie groups with left invariant metrics; 
(d)  Leaves of Anosov foliations. 
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58 M I K H A E L  G R O M O V  

Remarks. - -  Polynomial growth for a manifold of non-negative Ricci curvature 
follows from Ranch's comparison theorem (see [~]); (b) and (c) are easy exercises; 
(d) has the same nature as the polynomial growth in the presence of an expanding map: 
a slight modification (required by a minor discrepancy between the notion of expansion) 
of the following simple lemma yields both facts. 

Let f :  Y ~ Y  be a totally expanding smooth map. Suppose that the oTacobian of  this map 
is bounded by a constant C and that f is uniformly expanding, i.e. for any two points x, y e Y  with 
dis t (x ,y)>i  one has 

d i s t ( f ( x ) , f ( y ) ) > ( I - k  z)dist(x,y), ~>o. 

Then Y has polynomial growth. 

Proof. - -  Each ball B of radius r >  I is sent by f onto a set containing a ball of 
radius ( I + z ) r  and whose volume is at most CVol(B). It follows that 

Volv((I A- r < C  Volu(r), r >  x, 

where y is the fixed point o f f .  This inequality implies polynomial growth. 

3. Elementary properties of the growth 

Let I ~ be a group with a fixed finite system of generators. The norm [I [1 (see 
the introduction) provides I' with a left invariant metric 

dist(a, ~)----[[ ~-113 I[. 

Consider a subgroup F' and the left action of F' on F. Denote by X the corres- 
ponding factor space F/F '  and by f :  F--+X the natural projection. Define dist(x,y), 
x, y e X  as infdist(0c, [3), 0~ef-l(x), ~ e f - l ( y ) .  Since the action o f F '  on F is isometric, 

eL, [3 

the function dist(x,y) is a metric in X. 

Connectivity. - -  The space X = F / I "  has the following two equivalent properties: 

(a) for any two points x , y ~ X  with dis t (x , y )=p ,  where p is an integer, there exist 
points x = x o ,  xl ,  . . . ,  xp=y,  such that dist(x~,x~_l)=I, i--=i, . . . , p ;  

(b) take a ball B C X of radius p, where p is an integer, and take its r-neighbourhood 
U,(B) C X where r is also a non-negative integer. Then U~(B) is exactly the ball 
of  radius p + r concentric to B. 

Both properties (as well as their equivalence) are obvious for 1" itself and they are 

preserved when we pass to X. 

As an immediate application we have: 

I f  X is infinite then each ball in X of  radius r = o, I, . . . ,  contains at least r-4-I elements. 
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QROU'PS OF POLYNOMIAL QROWTH AND EXPANDING MAPS 59 

This simple fact provides a useful relation between the growth of a group and 
its subgroups. 

We define growth(i,) as the lower bound of the numbers d ~ o ,  such that 

B(r) <cons t .  r a, r ~ i .  

Split t ing lemma. - -  I f  I, '  C I, is a finitely generated subgroup o f  infinite index, then 

growth(I") < (growth(i,)) --  I 

Proof. - -  The connectivity propeIties of X = i , / i , '  imply that each ball B(r), 

r = o ,  I,  . . . ,  in I' contains at least r + i  elements ~o, . . . ,  ,t, e i ,  such that f (e~)4~f(ei)  

for i 4 : j  (recall that f :  I , ~ X  is the factor-map). Consider the intersection B '=B(r)  c~i,' 
and its translates B'ei, i = o ,  . . . ,  r. These sets are disjoint and they are contained 
in the ball B(2r). It  follows that S B ( 2 r ) > ( r + I )  (~B') .  This yields the lemma. 

Regular growth. - -  All balls in I, of a given radius r have the same number of 
elements. We denote this number by b ( r ) =  $ B(r). For a group of growth d <  oo 
we call a number r i-regular i = I ,  2, . . . ,  if it satisfies the following two conditions: 

(a) l o g ( b ( 2 - S r ) ) > l o g ( b ( r ) ) - - j ( d + I ) l o g  2, j = i ,  2, . . . ,  i, 

(b) log (b (2Jr ) )<__log(b(r ) )+~j ,  j = I ,  2, . . . ,  i, where [~ j=I6J+ l (d+i ) .  

Regularity lerama. - -  There is a sequence (r~) tending to oo such that each r i is i-regular. 

Proof. - -  Start with the sequence r~-=2 k. Since g r o w t h ( i , ) = d  we have 

log(b(r;,)) <__C + k  d log 2. 

This inequality implies that there is an infinite subsequence r i = 2 ki which satisfies (a), i.e. 

log(b(2ki-J)) > log(b(2k0)-- j (d+ I)log 2, j = i . . . ,  i. 

Let us show that this sequence must also satisfy (b); in other words (a) implies (b) for 
large r. 

We first prove the following general inequality which is valid for all finitely 

generated groups 

b, , <  ( b(4r))~ 
~5r)-- b ~  ' r = I ,  2, . . . .  (*) 

Proof. - -  Consider a maximal system of points Y1, Ya, . . .  EB(3r) such that the 
distance between any two of them is at least 2r + ~. I t  is clear that the balls of radius r 
centered at 2"1, 2"2, . . . ,  do not intersect and the concentric balls of  radius 2r cover 
B(3r ). Using the connectivity property of I' we conclude that the concentric balls of 

radius 4 r cover B(5r). This proves (*), because the original balls of radius r were 
contained in B(4r ) and the total number of their points could not exceed b(4r ). 
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We simplify :the notations by setting 
becomes 

~(5r) < 2 / ( 4 r ) -  t(r). 

When r is divisible by 4 this implies 

t(6r) < , ( 5 r §  

and so 
t(6r) 54g(4 r) --  3t(r). 

In the same way we get 

t(8r) <_t(6. ~ )  <_ ~6'( 4r)-- I J(r) .  

It means that for an r divisible by I6 we have 

~~ (2r) ~16e(r) - - i  5 e (i)" 

Applying this inequality j times we get 

(,, t (2Jr)<I6 '  r ) - - t  t . 

In our case g ( r ) - -g ( r - ]<2(d+I ) log2  and so 
\4/ 

M I K H A E L  G R O M O V  

e(r) = Iog(b(r)). 

q.e.d. 

Then the inequality (*) 

t(2Jr) < i6 i+ l (d+  i) + t ( 4  ) < I6J+l(dq - i) + g(r), 

4. Linear representat ions  

A group P is called, for brevity, almost nilpotent (almost solvable) if it contains a 
nilpotent (solvable) subgroup of finite index. 

This section is devoted to the proof of the following. 

Algebraic lemma. - -  Let I" be a finitely generated group of polynomial growth and let L be a 
Lie group with finitely ! many connected components. Suppose that for each finitely generated infinite 
subgroup I" f r there is a subgroup A C P' of finite index in P' with the following property: 

for every p = i ,  2, . . . ,  there is a homomorphism A-+L such that its image contains at least 
p elements. Then P is almost nilpotent. 

Our proof is based on the following fundamental facts. 
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(Jordan).  -- For each Lie group L with finitely many components there is a number q such that every 
finite subgroup in L contains an Abelian subgroup of index at most q. (See [io].) 

(Tits). - -  Let L be as above and let G C L be an arbitrary finitely generated subgroup. Then 
there are only two possibilities: 

(a) G contains a free group of rank 2. In this case G has exponential growth. 
(b) G is almost solvable. In this case G has exponential growth unless it is almost nilpotent. 

(See [ig].) 

We first prove two simple lemmas. 

(a) Let L be as above and let G be an arbitrar~ finitely generated group. Suppose that for every 
number p = i ,  2, . . . ,  there is a homomorphism G ~ L  such that its image is finite and has 
at least p elements. Then G contains a subgroup G' C G of finite index such that the commu- 
tator group [G', G'] C G'  has infinite index and, consequently, G' admits a non-trivial homo- 
morphism in Z. 

Proof. - -  Let q be as in Jordan ' s  theorem. Take for G ' C  G the intersection of  
all subgroups in G of index at most q. I t  is Clear that  G'  satisfies all the requirements.  

(b) Let I' be a finitely generated group of polynomial growth. Then the commutator subgroup [P, F] 

is also finitely generated. 

Proofl - -  I t  is sufficient to show that  the kernel A C F of  any  surjective homo- 
morphism g : P --~Z is finitely generated.  

Take a system of generators 3'0, Y t , . . . ,  7k EF with the following properties: 

g(yo)=zoEZ,  where z 0 denotes the generator in Z, 

7/cA, i = i ,  . . . , k .  

Denote by A,nC A the subgroup generated by 

{yoJTiToQ, i = i ,  . . . , k ;  j = - - m ,  . . . , o ,  I, . . . , m .  

One obviously has 

6 A m = A .  
0 

I f  for some number  m one has A m = A m + 1 then A m = A and the proof  is finished. 
Otherwise, there is a sequence emeA, m - - o ,  I, . . . ,  such that  each ~,~ is of the 

- - m  m 0~,~=y~y~yo m or am=Y0 YiY0, for some i = i ,  . . . , k  and  ~,~is not  contained form 

in the group generated by ~o, al ,  . - - ,  a , , -1-  
Consider all the products ~=-~(%, �9 �9 -, era)= 0%~~ a~, where 

t I is clear that  the equali ty ~(~o, . - . ,  r162 era) implies ~o=~o, 
~ , ~ = ~ .  So we have 2 ~+1 different ~'s. 

~ = o ,  I. I t  
t 

~'I ~I, " " ", 
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62 M I K H A E L  G R O M O V  

On the other hand  II~ll~lt~0ll +11~111+...-~-]l~m[]~__(m-]-I)(2m-~ -I) 
the ball B( (m+x)  ( 2 m + I ) ) C F  we have 

S B ( ( m + I ) ( 2 m + i ) ) > 2  "+1, m = x ,  2 , . . .  

This contradicts the polynomial growth, q.e.d. 

and for 

Proof of  the algebraic lemma. - -  According to the splitting lemma (see w 3) we can 
use induction and assume that all finitely generated subgroups in I" of infinite index 
are almost nilpotent. Let A C 1-' be a subgroup of finite index which has the required 
homomorphisms into L. If" all these homomorphisms have finite images we use 
lemma (a) and get a subgroup A 'CA of finite index such that  the commutator  
subgroup [A', A'] C A' has infinite index. 

I f  there is a homomorphism A-~L with infinite image, we apply Tits' theorem 
to this image and again obtain A'C A with the same property. 

According to lemma (b) the commutator  subgroup [A', A'] is finitely generated 
and by the induction hypothesis it is almost nilpotent. I t  follows that  I" is almost 
solvable and, by the theorem of Milnor-Wolf, IF' is almost nilpotent, q.e.d. 

Corollary. - -  Let I' and P' be as in the algebraic lemma. I f  each P' has a subgroup A 

of finite index such that either A satisfies the condition of the lemma or A is Abelian, then I" is 
almost nilpotent. 

This is a trivial consequence of the lemma. 

5. Topological transformation groups 

The following deep theorem plays a crucial role in our proof. 

(Montgomery-Zippin).  - -  Let Y be a fni te  dimensional, locally compact, connected and locally 
connected metric space. I f  the group L of the isometrics of Y is transitive (on Y )  then L is a Lie 

group with finitely many connected components. 

The proof  immediately follows from the first corollary in w 6.3 of the book [9]- 

We shall also need an obvious corollary of this theorem. 

Localization lemma. - -  Let Y be as above, let U C Y be a non-empty open set and let 

p = I, 2, . . .  There exists a positive ~ with the following property: 

I f  f : Y-+Y is a non-trivial (i.e. r is not the identity) isometry such that dist(u, t (u))<~,  
u~U,  then r generates in L a subgroup of  order at least p. 

The  idea of applying the theory of Montgomery-Zippin to the classification of 
expanding maps is due to Hirsch (see [6]). t i e  proceeds as follows. 
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GROUPS OF POLYNOMIAL GROWTH AND EXPANDING MAPS 63 

An expanding map X ~ X  lifts to a globally expanding homeomorphism f :  Y ~ Y  
of the universal covering Y ~ X  and f respects the action of F = ~ t ( X  ) on Y. Hirsch 
views I' as a subgroup of the group of all homeomorphisms of Y and he constructs 
subgroups F = F o C  F:C . . .  C F~C . . .  by setting F ~ = f - ~ F f  ~. 

The closure of the union [.J I~ is a topological group acting on Y, and Hirsch 

shows that, in some cases, this group satisfies the requirements of the theory of Montgo- 
mery-Zippin (the same corollary in w 6.3 of their book) and thus, he realizes I" as a 
subgroup of a Lie group. 

In our approach we do not use the universal covering but construct Y as a limit 
of  discrete spaces. 

6. Limits  o f  metr ic  spaces 

Consider a space Z with a metric ~ and take two sets X,  Y C Z. The Hausdorff 
distance Ha(X, Y) is defined as the lower bound of the numbers e~>o such that the 
z-neighbourhood of X contains Y and the e-neighbourhood of Y contains X. The 
Hausdorff  distance can be infinite but it has all properties of a metric. 

Consider now two arbitrary metric spaces X and Y and denote by Z their disjoint 
union. A metric ~ on Z is called admissible if its restrictions to X and Y are equal to 
the original metrics in X and Y respectively. 

We define the Hausdorffdistance H(X,  Y) as the lower bound infHS(X, Y) where 
runs over all admissible metrics on Z = X t J Y .  

When X and Y are compact spaces the Hausdorff  distance enjoys all the properties 
of a metric. In  particular, one has: 

H(X,  Y ) =  o / f  and only i f  X and Y are isometric. 

When the spaces are not compact, it is convenient to have reference points in 
them and to use the following " modified Hausdorff  distance " (1). For two metric 
spaces X, Y with distinguished points x~X and yEY, we define ~ ( ( X ,  x), (Y,y)) as 
the infimum of all e > o  with the following property: there exists an admissible metric 
on the disjoint union X w Y  such that ~(x,y)<e, that the ball B,(I/e) of radius t/e 
centered at x in X is contained in the z-neighborhood of Y (with respect to 8) and, 
similarly, that By(:/e) in Y is contained in the e-neighborhood of X. For three spaces 
with distinguished points, the function ~ satisfies the triangular inequality provided 

that at least two of the three " distances " involved are small enough (say, ~< ~) .  

Proper spaces. - -  A metric space X is called proper if for each point x0eX , the 
distance function x-+dist(x0, x) is a proper map X-+R,  i.e. if each closed ball (of 

(1) The definition of the modified distance H is due to O. Gabber who kindly pointed out that another 

function H introduced in an earlier version of this paper was inadequate. 
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64 M I K H A E L  G R O M O V  

finite radius) in X is compact. Observe that a Riemannian manifold is proper if 
and only if it is complete. This is the theorem of  Hopf-Rinow (see [2]). 

Convergence. - -  We say that a sequence of spaces Xj with distinguished points x y  Xj 
converges to (Y,y), and we write (Xj, xj)j_---~ (Y,y) if l imH((Xj ,  xj), ( Y , y ) ) = o .  If  

the spaces Xi axe compact with uniformly bounded diameter, this implies that I-I(Xj, Y) -+o. 
It is not difficult to see that if the spaces Xj are proper and if there exist arbitrarily large 
real numbers r such that the sequence (B~i(r)) of  balls of  radius r in the X i converges 
for the Hausdorff distance H, then a subsequence of (Xj, xj) converges (in the above 
sense) to a proper space with distinguished point. 

Uniform compactness. - -  A family {Xj}, j s J ,  of compact metric spaces is called 
uniformly compact if their diameters are uniformly bounded and one of the following two 
equivalent conditions is satisfied: 

(a) for each ~>o there is a number N = N ( ~ )  such that each space Xj , j~J ,  can be 
covered by N balls of radius ~; 

(b) for each ~>o  there is a number M = M(~) such that in each space X~,jEJ, one 
can find at most M disjoint balls of radius -z. 

Compactness criterion. - -  Let (Xi, xj)j=l, z .... , be a sequence of proper metric spaces with 

distinguished points. I f  for each r > o  the corresponding family of balls {Bj(r)}j=~, 2 .... , is 
uniformly compact, then there is a subsequence (Xjk , X~k)k=l,2, with l i m j k = o o ,  which 

converges to a proper metric space (Y,y). 

Proof. ~ To prove the criterion it is sufficient to find a convergent subsequence 
of (Bj(r)) for an arbitrary but fixed number r and thus we can assume without loss of 
generality that all Xj are compact and that the family {Xj}i=l,z, is uniformly 

compact. 
Take the sequence ~ = 2  - i  and let N~ be natural numbers such that each X. 

1 

can be covered by N, balls of  radius ~. Denote by A~ the set of all finite sequences of 
the form (nl, n , , . . . , n~ ) ,  i < n l ~ N 1 ,  I<_n2<_N2, . . . ,  ~ < n , < N , ,  and denote by 
p~ : A~+I-+A ~ the natural projection. 

For each space X j , j = I , . . .  there are maps I~: A,---~X. with the following ' j 

properties: 

(a) the image of I~ forms an r in Xi, i.e. the r centered at the points of this 

image cover Xj; 

(b) for each aaAi+l ,  i = i ,  2, . . ,  the point I~§ is contained in the 2el-bait centered 

at I~(p,(a)). 

T h e s e  maps are constructed as follows. FiIst we cover X~ by Na balls of radius --1 
and we take any bijective map from A1 onto the  set of cente!s of these balls. Th i s  is 
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our map I~. After that we cover each r by N 2 balls of radius r and map A 2 on 
the set of centers of these cz-balls so that (nl, n2) goes to the center of a ball which we 
used to cover the r centered at I~((nl) ). This is our I~. Then we cover each 
r by N 3 balls of radius z 3 and map A 3 onto the set of centers of these r so 
that (na, n2, %)~A 3 goes to the center of a ball which was used in covering the r 
centered at I~((nl, n2)), and so on. 

Denote by A the union 6 A~ and by Is: A - + X  s the map corresponding to 
i = 1  

all I], i = i ,  . . .  Denote by F' the space of all bounded functions f :  A - + R  with the 
norm ] ] f [ [=sup  [f(a)[. Denote by F C F' the set which consists of all functions saris- 

aGA 

fying the following inequalities: 

if a~A 1 C A, then 

if a~A~, i > I ,  then 

The set F is compact. 

Let us define a map h j : X j ~ F '  

(hj(x))(a) = dist(x, Is(a)) , 

o <__f(a) ~ sup Diam Xs, 
S 

If(a) - - f ( p , _ l  (a))] ~ 2r 

as follows 

x~Xs, aeA,  

and " dist " is taken relative to the metric in Xj. 
The property (a) of Ij implies that the map hj is isometric and the property (b) 

shows that the image of hj is contained in F. So we have proved: 

I f  the family {Xj} is uniformly compact then there is a compact metric space F such that 
each Xj  can be isometrically embedded into F. 

To complete the proof of the compactness criterion we invoke the following well- 
known fact. 

Let F be a compact metric space with metric ~. Then the space of all compact subsets of F 
is a compact space relative to the Hausdorff distance H 8. 

We now identify each Xj with its image hj(X~) C F and take a subsequence Xjk 
which converges to a compact set Y C F ,  i.e. lira t-Is(Xsk, Y ) = o ,  where ~ is the 

k.-*- oo 

metric associated to the norm in F 'DF.  It  is clear that the distance H(Xjk, Y) also 
converges to zero as k ~ ,  q.e.d. 

Example. - -  Let (Xs) be a system of complete n-dimensional Riemannian mani- 
folds with Ricci curvature bounded from below by a negative constant. Then the 
sequence (Xj, xj) has a subsequence which converges to a metric space (Y,y), but this 
space is not, in general, a manifold. (See [5] for additional examples.) 

Definite convergence. - -  Let (Xj, xs) be a sequence of spaces which converges to (Y,y). 
By definition, there exists a system of metrics ~ in the disjoint unions X~t3Y such that, 

for any given r~>o and r  the following properties hold for almost all j: one has 
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bj(xj,.)')~<e, the ball B,~(r) in X~ is contained in the e-neighborhood of Y (with respect 
to 3j) and the ball Bu(r ) in Y is contained in the z-neighborhood of X~. When such 
metrics ~i are chosen and fixed, we say that there is definite convergence and we write 

(Xj, x~.) => (Y,y). 
j---~ 0o 

Now it makes sense to speak about convergence of a sequence x~eX~ to a 
point y ' e Y :  this just means that l . imSj(x ; ,y ' )=o .  In particular, the reference 

3 ---> oO 
points .r~ converge to yeY.  

Convergence of  maps. - -  Consider a sequence (Xj xj) => (Y,y) and a system of 

maps f :  Xj-+Xj. We say that the maps f converge to a map f :  Y-+Y if for each 
r > o  and each positive e there is a number ~=~x(r, e)>o and an integer N = N ( r ,  e) 
such that, for all j > N ,  one has: 

If  the points x'eB~j(r)  C X j  and y 'eBu(r)  C Y  satisfy ~ i ( x ' , y ' ) < ~ z  then 

3~(f(x ) , f ( y  )) e. 

Isometry Lemma. - -  Let (Xj, x j ) j ~  (Y,y) and let Y be a proper space. Let f j :  Xj-+Xj 

be isometries such that distj(xj,f(x~)) < C (where C is a constant which does not depend on j 
and distj denotes the metric in Xj) .  Then there is a subsequence (X~k , xjk ) such that the maps f k  
converge to an isometry Y--+u 

Proof. - -  Take a sequence (ei) , with lim e~=o and ei~<i/4 , and a sequence (r~) 

such that r i+ ~ i> r~ + C § I. Upon passing to a subsequence, we m a y - - a n d  shall--assume 
that, for all j ,  8j(xj,y)~e~, that the ball By(5.) is contained in the e~-neighborhood 

of Xj and that the ball B , j ( r j + C §  is contained in the e~-neighborhood of Y. 
\ 

For all i, choose a finite ~i-net in Bu(ri). Now, construct a system of maps gq : Ei-+Ei+ 1 

a s  f o l l o ~ s .  For 

Finally, take for go(e) any point e' of E~+ 1 such that dist(x', e),.<ei+ 1. 
There exists a sequence J l , - - . , J k , - - . ,  such that for each i = I ,  2 , . . . ,  the 

map gi~ does not depend on h for h~> i, i.e. for any two sufficiently large k and t we 
have gq~=g~.  I t  is clear that the corresponding sequence f~ converges to an iso- 

metry g : Y--~Y. 

Corollary. - -  I f  each space X.i is homogeneous (i.e. the group of all isometries of  X i is 
transitive) then Y is also homogeneous. 

Proof. - -  Let us construct an isometry Y ~ Y  which sendsy to y ' e Y .  Take an 
arbitrary sequence (xj) with g x,. which converges to y '  and take a system of isome- 
trics f : N - - > X /  such that f~(x~)=x~. According to the lemma we can assume 
that (f/) converges to an isometry g : Y-+Y, and g ( y ) = y ' .  
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7. L imi t s  o f  discrete  groups  

We start with a general construction. Let  X be a metric space with metric 
" dist " We denote by ZX, X>o, the same X but  with a new metric 

(dist) he* = k(dist). 

Examples .  - -  When X = R  " then all spaces XX, Xe(o, oo), are isometric. 

When  X is a manifold of  constant  curvature K then XX has curvature Z-2K.  
When  X is compact  and has diameter  D then ZX has diameter  kD. 

Let  X be an n-dimensional manifold of dimension n and let x~X.  I f  l im k i =  oo 
i ---* 0o 

then the sequence (Xi, xi) , X~=ZiX  , x i = x ,  converges to R n. 

When X is a metric space such that  each z-ball, o <  ~<  i centered at xEX can 
be covered by p balls of  radius 5/2, where p is an arbi t rary but  fixed number ,  then there 

is a sequence X/~az such that  (kiX, x) converges to a proper space (Y,y) which can 
be regarded as a tangent  cone of  X at x. (The proof  follows from the compactness 

criterion of  w 6.) 
We are now concerned with the limits of kiN when X/-+o. The following examples 

serve only as illustrations and the proofs (quite simple) are left to the reader. 

When  X is compact  and k/-+o, then the sequence kiX converges to the one-point 

space. 
When  X is a complete manifold of  non-negative Ricci curvature then for some 

sequence k r + o  there is a limit (Y,y) of  (X~X, x), but  Y is not  always a manifold. 
Let  X be the free Abelian group of  rank two with two fixed generators. I f  we 

use in X the metric associated to the norm as in w 3 then the sequence (kiX, x), Xi-+o , 
converges to the plane R ~ with the following Minkowski metric 

dist((a, b), (a', b ' ) ) =  [ a - - a ' [  9 - l b - - b ' [ .  

Take a non-Abelian nilpotent simply connected Lie group X of  dimension 3 

(notice, that  there is only one such group) with a left invariant  R iemann ian  metric. 

When  k~--*o, then  the sequence (XiX, x) converges to a space (Y,y) which is homeo- 
morphic to X, but  the limit metric in Y is not Riemannian .  This metric can be 

described as follows. When  we divide the Lie group by its center (which is isomorphic 
to R) we get a R iemann ian  submersion X - + R  2 with one dimensional fibers. Take 
two points xl, x2eX and consider all smooth curves which are normal  to the fibers 

and which join x 1 with x,.  Define dist(xl, x~) as the lower bound  of the lengths of  these 
curves. This is exactly the limit metric in Y (which is homeomorphic  to X). Notice 
that  for each X>o the space XY is isometric to Y. Notice also that  the Hausdorf f  

dimension of  Y is 4 ra ther  than  3. (The definition of  the Hausdor f f  dimension can be 

found in Ch. V I I  of  [7].) 

Let  us return to our major topic. 
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M a i n  construction. - -  Let I" be a group of polynomial growth with a fixed system 
of generators and with the corresponding metric dist. Let { r i } , i = i  , 2 , . . .  be a 
sequence of/-regular  numbers such that  lim ri = oo (see the regularity lemma of w 3). 

i - + o o  

We denote by esI '  the identity element and we consider the sequence (Pi, e~), 
F i = r i - l F ,  e i=e.  It  follows from the definition of the regularity (see inequalities (a) 
and (b)) that  the family of r-balls in (Fi)i=l, 2 .... is uniformly compact  (each Pi is, 
obviously, a proper space) and, by the compactness criterion (see w 6), there is a conver- 
gent subsequence. To  avoid double indices we assume that  the sequence (Pl, e~) itself 
converges to a space (Y,y). 

Properties o f  the limit space Y 

(I) Y is a locally compact  space, because it is proper. 

(2) Y is connected and locally connected. Moreover each ball in Y is connected and 
even path-connected. 

Proof. - -  The connectivity property of I' (see w 3) implies that for any two 
points ~, [~I'~ there is a point 7~I'i such that 

I . 
dish(~, Y) __<~d~sh(~, 9) + r~ -1, 

I . 
disq(y, ~)<~dlsti(~, ~ )+r i  -a. 

It follows that for any two points y l , y 2 e Y  there is an xeY such that  

dist(yt ,  x) " I . = dist (x,y~) = ~dlst (y 1,y2) 

(" dist i"  denotes the metric in P~ and " d i s t "  is the limit metric in Y). This 
property not only implies the required connectivity of Y, but  also shows that any two 
points y l ,y~eY can be joined by a curve with the length equal to dist(yt,y~). 

(3) The  group L of all isometries of Y is transitive on Y. 

This follows from the corollary to the isometry lemma (w 6). 

(4) Y is finite dimensional. 

Proof. - -  The regularity condition (see inequality (a) in w 3) implies that  for j ~ i  

I 
each ball in F~ of r a d i u s -  can be covered by Ni balls of radius 2 - j + l  where N i =  2 j(d+l) 

2 

and d denotes the growth of I'. It follows that  for each j - = I ,  2, . . . ,  one can cover 

every ~-ball in Y by Ni balls of radius 2 - j+  1. This shows that  the Hausdorff  dimension 

of Y is at most d + i and hence (see chapter VI I  in [7]) Y is finite dimensional. 

68 



G R O U P S  OF P O L Y N O M I A L  G R O W T H  AND E X P A N D I N G  MAPS 6 9 

Main conclusion. - -  The group L of all isometrics of Y is a Lie group with finitely many 

components. 

Proof. - -  Use the theorem of Montgomery-Zippin (see w 5). 

8. P r o o f  o f  the n ~ i n  t h e o r e m  

Take an arbitrary group I" with a fixed finite system of generators and the asso- 
ciated metric. Define 

D(y, r ) =  sup dist(7~, ~) 

where yeP ,  re[o, oo) and ~ runs over the r-ball in P centered at the identity. 
Take now a subgroup r ' C  r generated by Y1, . . . ,  Yk and set (with an abuse of 

notations) 
D( r ' ,  r ) =  sup D(yj, r). 

l__<j~k 

I f  the function D(I",  r), re[o, oo), is bounded, then F' contains an Abelian subgroup 

( f i n i t e  index. 

Proof. - -  If  D(y, r) is bounded when r-+oo, then the conjugaey class {~-iy~}, 
~EF, of y is finite and the centralizer of y has finite index in F, q.e.d. 

Suppose that D(P' ,  r) is unbounded but  for a divergent sequence ri the 
ratio r~- lD(r  ', r~) converges to zero. 

Displacement lemma. - -  For each ~>o there is a sequence ~ ,  i = I ,  2, . . . ,  such that 

l im r i - l D ( ~ - l F ' ~ ,  r~) = ~, 
~--~ oo 

where D(~-xV'a,  r ) =  sup D(~-xyj~, r). 
l<j<k 

Proof. - -  The connectivity property of r (see w 3) implies that  for an arbitrary 
integer m one has 

D(P' ,  r +m)  <_D(P', r ) + 2 m .  

On the other hand it is clear that  for any aEI ~ and r > o  

D(~- IP '~ ,  r ) <  D(F' ,  r +  [[~][). 

So we have 

D(~-xP '~ ,  r ) < D ( F ' ,  r ) +  ~]l~]]. (*) 

Since D(F' ,  r) is unbounded  as a function of r, the function D( :c - l r '~ ,  r) is unbounded 
as a function of 0cEF, when r is kept fixed. 
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When r i is sufficiently large our assumption r i- lD(P ', r~)--+o implies that 

D(F' ,  r,) < , r , .  

On the other hand for some ~eF we have 

D ( ~ - l P ' ~ ,  r~)>~r~. 

Using (*) and the connectivity again we conclude that there is an ~.~eP such that 

[ D(~-W'cq,  r,)--,r,] < 2, 

q.e.d. 

Let I~i be as in the main construction (see w 7). The group I" acts isometrically 
on each F, and if yieI" satisfy r~- l l ]y i l l<C< 0% i = i ,  2 , . . . ,  then the corresponding 
isometries ,'~i: I'i--->I'i satisfy the condition of the isometry lemma (see w 6) and we 
can assume (using a subsequence when it is necessary) that these isometrics converge 
to an isometry I : Y ~ Y .  

Let F ' C F  be an arbitrary subgroup and y e r ' .  By taking yi----y we get an 
isometry g ~ t  v : Y--->Y and so we get a map P'--->L, where L is the isometry group 
of Y. (Because P' is countable we can assume that the convergence takes place for 
all y~I".) This map is, obviously, a homomorphism. (To be precise we must fix a 
definite convergence F~=~Y as in w 6 and only then our consideration becomes 
meaningful.) 

The kernel of this homomorphism Y---~gv consists of all y in P' such that 

lim ri-lD(y, r~) 4 o .  
i - - * -  oo 

This limit exists because we have the convergence of the isometrics -(~ =-(  : Pi-+Pi to t. 
We are ready to prove the main theorem. Take a subgroup F 'C F generated 

t ! t by y1, . . . ,  u . . . ,  Yk. According to the algebraic lemma (w 4) and the main conclusion 
of w 7 we must only find a subgroup A C P' of finite index in I" such that either A is 
commutative or A has as many homomorphisms into L as is required by the algebraic 
lemma. (See the corollary to the algebraic lemma.) If  the homomorphism "l.-~t v 
we constructed above has infinite image, the conditions of the algebraic lemma are 
satisfied and the proof is finished. 

Suppose that the kernel P " C  P' of the homomorphism Y~?v has finite index 
in F'. For the group I '"  we have 

lim r~-~(D(y, r i ) )=o ,  ye I ' " ,  
i---~ oo 

and we can shorten the notations by assuming P ' = P " .  
If  the function D(I" ,  r), re[o, oo), is bounded we have an Abelian AC P' and 

the proof is finished. Now we come to the last case. 
The function D(F' ,  r) is unbounded but 

lim ri- 1D(I '', r i )=o.  
i - - r  oo  
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Fix an r  and construct 0~i=~i(,)eF as in the displacement lemma. We 

obtain a new isometric action of P' on F~ as follows. First we send y to yi=0~[-~y0~ 
and then we act by Yi on F~ as usual by the left translation. For each gene- 

l t i t - - I  t rator "h, �9 �9 -, Y~, �9 --, Yk ~p the translations y j ~ = ~  y ~  : F i -+F i satisfy 

l im sup disti(Tji(ei) , ei) < ~, 
i--*- oo 

where disti denotes the distance in Fi, eieF~ denotes the reference point in Fi corres- 
ponding to eeP and j = i ,  . . . , k .  

The isometry lemma (w 6) allows us to assume that  for each j the sequence Yii, 
i - - ~ ,  converges to an isometry I j : Y ~ Y  and so we obtained a homomorphism 
A = A ( ~ )  : F ' - + L .  

Let us show that  when r  is small then the image of A(r is large. The  
properties of 0q=e~(-c) guarantee (see the displacement lemma) that  for some ~ ,  say 

t for Y1, one has 

l im r~-lD(0c~ tyi0 % r i )= ~. 
i - + o o  

But 
r / - l D ( ~ - l y ~ i ,  r ) =  sup dist~(yu(x), x), 

x 

where x runs over the unit  ball B,I(I ) C Pi. 

sup d i s t ( t l ( y ' ) , y '  ) = ~, 
y '  

w h e r e y '  runs over the ball Bv(I ) CY. 

So for the limit t 1=A(7~) we also have 

We apply now the localization l emma (w 5) and finish the proof  of the main 
theorem. 

Let 

For 
properties. 

Final remarks. - -  Let P be a finitely generated almost nilpotent group without 

torsion. By a result of  Auslander-Schenkman (see [I]) one can easily show that  P 
contains a nilpotent  subgroup A C P of  index q with loglog q <  2 a, where d =  growth(P) .  

This allows us to apply the main theorem to infinitely generated groups. 

I f  F has no torsion and each finitely generated subgroup P' C F has growth at most d, then P 

contains a nilpotent subgroup of firoite index. 

us now give a more effective version of the Main  Theorem.  

any positive integers d and k there exist positive integers R,  N and q with the following 

I r a  group P with a fixed system of generators satisfies the inequality ~ B ( r ) < k /  for 
r = i, 2, . . . ,  R,  then P contains a nilpotent subgroup F' of index at most q and whose degree 

of nilpotency is at most N. 

Proof. - -  We start with a definition. Let  A and  F i, i = I ,  2, . . . ,  be a system 

of groups endowed with a fixed system of  k generators. We say that  the sequence (pi) 

converges to A if  there is a sequence of  balls Bi=B(ri)  CA with ri-+m for i ~ o o ,  
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and a sequence of bijective maps f of each ball Bi onto the rcball in P~ centered at the 
identity such that f (~ l~- l )=f (S1)  (f(b2)) -1 for any two elements 3l, 8z in A satisfying 

[INI[I § [IN~II<r,. 
An arbitrary sequence of groups (Fi), each with k given generators, always has a 

convergent subsequence. I f  the limit group A has a nilpotent subgroup of  index < R 
and of degree of nilpotency < N ,  then such subgroups exist in the groups 1 "i for all 
sufficiently large i's. 

Now, if we suppose that our theorem is false, we get a sequence of groups FJ, 
j = ~ ,  . . . ,  such that the balls in each group F j satisfy the inequality B(r)<_kr a for 
r = I ,  . . . , j ,  but  none of the groups I'~ has a nilpotent subgroup of index < j  and 
of degree of nilpotency <3". Taking a convergent subsequence and passing to the 
limit we get a group A such that all balls in A satisfy B(r )<kt  a, r = I ,  2, . . . ,  and 
such that A contains no nilpotent subgroup of finite index. This contradicts the Main 
Theorem. 

Question. - -  What is the dependence of the numbers R, N and q on d and k ? In 
particular, does there exist an effective estimate of these numbers in ter ms of d and k ? 

A geometric application. - -  Let V = V "  be a complete Riemannian manifold such 
that the values of the Ricci tensor on all unit tangent vectors of V are bounded from below 
by - - ( n - - i ) K ,  K > o .  Let P be the group generated by some isometries Y1, . - - ,  Yk 
of V. Suppose 

In this case, the 

where B(r) denotes the r-ball in I' relative to the word metric associated to {Yi}- 
gives the following 

that for a point veV we have the following inequalities : 

dist(v, y ( v ) ) > r  for all v~r\e; 
dist(v, y~(v)) <Cr for C~I and i = I ,  . . . ,  k. 

geometric growth theorem of Milnor (see [8]) reduces to the inequality 

B(r) <4nC"r"  exp(2nCrr r = i, 2, . . . ,  

This 

Geometric theorem. - -  I f  ~ is suffciertly small compared to n, C and K, 
~<~x= ~(n, C, K ) > o ,  then the group P is almost nilpotent. 

that is 
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APPENDIX 

by JAcQvzs TITS 

This appendix to M. Gromov's paper " Groups of polynomial growth and expan- 
ding maps "--hereafter  referred to as [G]--arose from an attempt to understand 

J. Wolf's article [io] (1). Our main purpose is to provide a short and self-contained 

account of the results on nilpotent and solvable groups which are needed for the proof 
of Gromov's main theorem and its converse. In AI we show--in a slightly more general 

context-- that  a finitely generated nilpotent group has polynomial growth, and, as a 
by-product of the proof, we obtain a formula of H. Bass [Proc. Lond. Math.  Soc. (3), 

25 (I972), 6o3-614] giving the degree of that growth (proposition 2). In A2, we observe 
that one can, at little cost, make Gromov's proof of his main theorem independent of 
the special case of that theorem for solvable groups, thus providing a new proof fm that 

special case as well (the statement, part of the result of Milnor-Wolf, that the growth 
of a finitely generated solvable group is either polynomial or exponential, is not included). 

The present text is made up of excerpts of a conference at the Sdminaire Bourbaki 
(February I98i , exposd n ~ 572), slightly expanded and adapted. 

A x. G r o w t h  o f  f i l t e r e d  g r o u p s  

Let F be a nilpotent group and let (ri)iEs. be a system of subgroups such that 
F---- Pl, [P~, P~] C Pr and Pi ={ I } for almost all i. By an f-generating set of F (relative 

to the filtration (Fi)), we mean a subset E of P such that E i = E n P  i generates Pi for 

all i. Set E ~ = E - - E i +  1. We define the  f-length of a word in the elements of E w E  -1 

as the increasing sequence (nl, n2, . . . ) ,  where nl is the length (in the usual 
sense) of the contribution of E ' u E  "-a to the word. An element of P is said to be 

of  f-length<~(rl, r2, . . . ) ,  with r ieR+,  if it can be expressed as a word of f-length 

(nl, ne, . . . ) ,  with ni~ ri. Assuming E finite, we denote by rc(rl, r~, . . . )  the number 
of such elements. If ,c '  is the function defined in the same way as fc but starting from 
another finite f-generating set, there exist nonvanishing constants a, b~R+ such that 

,c(aq,  ar~, . . .  ) <~fc'(rl, r2, . . .  ) <~c(brl, br2, . . .  ) 

(I) Numbers between brackets refer to the bibliography of [G]. 
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for all sequences (ri). This legitimates the following definition: we say that the group F 

has polynomial f-growth of degree<~d if there is a constant ceR+ such that, for all rER+,  
one has 

fc(r,  r ~, r 3, . . .  ) < cr ~ + I .  

Proposition i. - -  I f  d i denotes the rank of the abelian group P~/P~+a, then the group P 
has polynomial f-growth of degree <~id~. 

We proceed by double induction: a descending induction on a = sup{il F - - F  i} 
and (given a) an ordinary induction on the minimum m of the cardinalities of all gene- 
rating sets of Pa/Fa+ 1. We choose the f-generating set E so that Card E'a=m , that 
JEw E -~, E w E  -1] C E, and that, if an element of E', has a nontrivial power inside Pa+~, 
then its power with the smallest strictly positive exponent having that property also 
belongs to E. Let us choose y e E '  a and denote by F' the subgroup of P generated by 
E',--{y}. We first prove the following assertion, by induction on q: 

(*) if w is a word of f-length (nl, n2, . . . )  in the elements of E w E  -1 and if 

(Yl,Y2, . . . ,Yp)  is the contribution of { y , y - 1 }  to w (thus, y i = y  o r y  -1 for 
all i, and p<<.n,), then, for o<~q<<.p, there is a word wq representing the same 
element of P as w, with the same contribution of {y,y-1},  starting by 

y l y ~ . . ,  yq, and whose f-length (n~, n ~ , . . . )  satisfies the relations 

' ( )ni_2~+ q . . .  n~ <~ n~ -t- qni- ~ + 2 

The assertion is obvious for q = o .  The induction hypothesis provides a word wq_~ 
starting with Yl �9 �9 �9 Yq-  ~ and of f-length (n~', n~', . . .  ) satisfying 

n i <~nid-(q--I)ni_a-4-(q21 ) " n i - - 2 a ~ - "  �9 �9 

Now move yq to the left by successive commutation. Its jumping over an element 
of E i introduces a new element belonging to Ei+ a (possibly the identity). Therefore, 

we eventually get a word Wq starting with Yl " ' "  Yq and of  f-length (n'l, n~, . . .  such 
t !  t t  that n~<<.n i +ni+, ,  hence (*). 

Assuming ,,,~<r' (forsome reR+) ,  making q=p<~r ~, majorizing ( ~ ) b y  q' (,<raJ) 

and denoting by e the smallest value ot i such that Pi ={  I }, we deduce from (*) that 

(**) every element g~r of f-length~<(r,r ", . . . )  can be written as g = S g ' ,  
where Is I ~< r" and g' is an element of F' of f-length ~< (er--[s 1, er ~ -  I s ], . . .  ). 

If  I ' /P '  is infinite, the induction hypothesis (on (a, m)) applied to F' implies the existence 
of a constant c '~R+ such that the number of possible choices for g' is majorized by 

6' r Z(iai)-a @ I .  
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Since there are less than 2r~-~-i admissible values for s, the proposition ensues. If  
F /F '  has order t <  0% we can rewrite g asy 'g ' t ,  where o~<sl<t , g ~ P '  and the f-length 
of  g~ is ~< (er, er 2, . . .  ). This time, the induction hypothesis enables us to majorize the 
number of possible elements g' by c'rXidi~-I (for a suitable c') and the proposition 
again follows, since s t takes only finitely many values. 

Lemma x. - -  Let I' be a finitely generated nilpotent group of  class e. Denote by Z the last 

nontrivial term of  its descending central series, by E a finite generating subset of I" and by z an 
element of  Z. Then, there exists a constant ceR+ such that, for  all heN, z ~ can be expressed 

as a word of  length c ~/n in the elements of E w  E-1.  

The proof will be by induction on e. It is clearly sufficient to consider the case 
where z is the commutator  Ix, y] of an element x of E and an element y of  the penulti- 
mate nontrivial term of the descending central series. Let heN, let nl be the smallest 
integer which is strictly larger than ~/n and let al, a2 be the integers defined by 

n -~ al n~- l q- aa, al < n 1 , az <~ n~ -1. 

The induction hypothesis applied to r / z  and y mod Z implies the existence of a 
constant c '~R+ (independent of n) and of two elementsyl  and Y2 of length <~c'nl, 

respectively congruent to y-1 and ya~ rood Z. Now, the assertion follows from the 

fact that the length of 

z" = [xal, y":-l]. [x,y"] = [x"~,yl]. [x, ya] 

is <~ 2ai + 4c'ni § 2. 

Proposition 2 (Bass-Wolf). - -  Let F be a finitely generated nilpotent group and let d~ be 
the rank of the i-th quotient I 'JI'i+ ~ of its descending central series (I'~). Set d =  Eidi. Choose 

arbitrarily a finite generating set E of I' and, for  reR+,  let c(r) represent the number of elements 
of  I" which can be expressed as a word of length <. r in the elements of E w E - i .  Then, there 

exist constants Q,c~eR+ such that 

ci ra<~ c(r)~ c~r a + I 

for  all r; in particular, I" has polynomial growth of degree d. 

The existence of c~ is an immediate consequence of proposition i applied to the 
descending central series. We prove the existence of c i by induction on the class e of F. 
Set d'----d--ed~. The induction hypothesis implies the existence of a constant c ~ R +  
such that, for r~R+,  there exists a subset of I' of cardinality >~c~r a' consisting of 

elements of length ~<2' pairwise non congruent mod 1"~. On the other hand, by 

lemma I, there exists c'l'~R + such that I'~ has more than c~'r "a" distinct elements of 

length ,< _r Hence the claim. 
2 
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(N.B. - -  The above proof  of the existence of  cl, including lemma i, essentially 
follows the line of the proof  given by J. Wolf [io], who also obtains an upper  bound 
for c(r), sufficient to establish the polynomial growth but  coarser than the upper  bound 
of proposition 2, which is due to H. Bass [loc. cit.]. Our  proof  of the existence of c,, 
obtained without prior knowledge of Bass' result, is different from his, at least formally: 
the introduction of the f-growth makes it less computat ional  and, as it seems, somewhat 
shorter.) 

A 2. A spec ia l  case  o f  the  t h e o r e m  o f  M i l n o r - W o l f  

In  Gromov's proof  of his main theorem, the only reference to the theorem of 
Milnor-Wolf (stated in the introduction of [G]) is at the end of [G], w 4 (proof of the 
" algebraic lemma "), and the reader will easily convince himself that  only the following 
very special case of the theorem is needed there (take for L the group A' of [G]): 

Lemma 2. - -  Let L be a group. Suppose that there exists a homomorphism ~ of  L onto Z 

whose kernel is finitely generated and almost nilpotent. Then L itself is almost nilpotent or its 
growth is exponential. 

The  following argument  is extracted from [IO] (where it is however somewhat 
hidden). We first prove: 

Lemma 3. - -  Let A be a free abelian group and let o~ : A -+  A be an automorphism. 

(i~ I f  ~ (extended to A |  is semi-simple and i f  all its eigenvalues have absolute value one, 

then o~ has finite order. 
(ii) I f  ~ has an eigenvalue of  absolute value >~, there exists X~A such that the elements 

~OX-~-Zl~X(X)-~-Z20~2(X)~--... (~i=O or I, and ----o for  almost all i) 

are pairwise distinct. 

(i) It  suffices to observe that  the orbits of {a~[z~Z} in A |  have compact  closures, 
from which follows that the orbits of that same group in A are finite. 
(ii) I f  ~: A--~C is a linear form such that ~o0~----p~, with [p[~>2, then the assertion 
is true for every keA such that ~(k)4:o; indeed, one has 

oo oo 

X =(  Z 
i = 0  ~ = 0  

co 

and, in view of the inequality satisfied by p, the numbers 2~ ,~pi are pairwise distinct. 

Proofoflemma 2. - -  Let z be an element of L such that ~(z)----I, and let L'~ be the 
greatest nilpotent normal  subgroup of L1; upon substituting L~ for L 1 and the group 
generated by L~ and z for L, we m a y - - a n d  shall--assume that LI is nilpotent. Let 
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(L/.)l~<i<~e be a central series of L 1 normalized by z, and let ai denote the automorphism 
of L~/L~+ 1 induced by int z. We suppose the series (Li) chosen in such a way that, 
whenever LJL/+I  is infinite, it is a free abelian group of which ~i is a semi-simple 
automorphism : any central series normalized by z clearly has a refinement satisfying 
that condition. If  all ei have finite order, there exists an integer s>~ I such that z ~ 
centralizes each quotient LdLi+l;  then, the group generated by L 1 and z ~ has finite 
index in L and is nilpotent, and the lemma is proved. Let us therefore assume that, 
for some j,  ~j has infinite order. By lemma 3 (i), there exists an integer t such that e~ 
has an eigenvalue of absolute value ~>2 and, by lemma 3 (ii), there exists xeL~ such 
that the elements 

X r 1 7 6  e ' .  . . .  (~i=O or I and = o  for almcst all i) 

are pairwise distinct. This implies that L has exponential growth, and the proof is 

complete. 

(Note the similarity of the last argument with the proof of lemma (b) of [G], w 4.) 
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