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Introduction 

In Part I of this paper we develop a theory of harmonic mappings into non- 
positively curved metric spaces. The main application of the theory, which is presented 
in Part II, is to provide a new approach to the study of p-adic representations of 
lattices in noncompact semisimple Lie groups. The celebrated work of G. Margulis 
[Mar] establishes "superrigidity'" for lattices in groups of real rank at least two. The 
fact that superrigidity fails for lattices in the isometry groups of the real and complex 
hyperbolic spaces is known. In fact, Margulis deduced as a consequence of superrigidity 
the conclusion that lattices are necessarily arithmetic in groups of rank at least two. 
Arithmeticity of lattices was conjectured and proved in some cases by A. Selberg (see 
[Se] for discussion). Constructions of nonarithmetic lattices in the real hyperbolic case 
were given by Makarov [Mak], Vinberg [V], and Gromov-Piatetski-Shapiro [GPS]. 
For the complex hyperbolic case, nonarithmetic lattices have been constructed in low 
dimensions by G. D. Mostow [Mos] and Deligne-Mostow [DM]. In this paper we 
establish p-adic superrigidity and the consequent arithmeticity for lattices in the 
isometry groups of Quaternionic hyperbolic space and the Cayley plane (the groups 
Sp(n, 1), n~>2 and Fs176 Archimedian superrigidity for these cases has been esta- 
blished recently by K. Corlette [C] who used harmonic map theory together with a 
new Bochner formula and vanishing theorem to prove the result. We show here that 
representations of lattices in Sp (n, 1) and F 4 in almost simple p-adic algebraic groups 
have bounded image. This is accomplished by the construction of an equivariant 
harmonic map from the symmetric space into the Euclidean building of Bruhat- 
Tits [BT] associated to the p-adic group. We analyze the structure of such maps in 
detail, and show that their image is locally contained in an apartment at enough 
points so that differential geometric methods may be applied. In particular, we apply 
the Corlette vanishing theorem to show that the harmonic map is constant, and 
conclude that the representation has bounded image. 

We also prove that equivariant harmonic maps of finite energy from a K~ihler 
manifold into a class of Riemannian simplicial complexes (referred to as F-connected) 
are pluriharmonic. The class of F-connected complexes includes Euclidean buildings. 

* Research partially by NSF grant # DMS-03076. 
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This result generalizes work of Y. T. Siu [Siu] which implies the same result for maps 
to manifolds with nonpositive curvature operator. 

We now briefly outline the contents of this paper. We consider maps into locally 
finite Riemannian simplicial complexes, by which we mean simplicial complexes with 
a smooth Riemannian metric on each face. In the first four sections of this paper we 
develop methods for constructing Lipschitz maps of least energy in homotopy classes 
or with the map specified on the boundary provided the receiving space (complex) 
has non-positive curvature in a suitable sense. This generalizes the theorems of J. Eells 
and J. H. Sampson [ES] and R. Hamilton [Ham] who proved these results for maps 
to manifolds of nonpositive curvature. We also prove and use convexity properties 
of the energy functional along geodesic homotopies to prove uniqueness theorems 
generalizing those of P. Hartman [Har]. A key property of harmonic maps which we 
exploit to prove these results is a statement to the effect that harmonic maps can 
achieve their value at a point only to a bounded order, and near the point they can 
be approximated by homogeneous maps from the tangent space of the domain 
manifold to the tangent cone of the image complex at the image point. These 
homogeneous maps have degree at least one and, at most points, they must have 
degree equal to one. The homogeneous maps of degree one are compositions of an 
isometric totally geodesic embedding of a Euclidean space into the tangent complex 
with a linear map of Euclidean spaces. In particular, these maps identify flat totally 
geodesic submanifolds of the tangent complex. 

In section 5 we define an intrinsic notion of differentiability for harmonic maps 
based on how well approximated they are near a point by maps which are homoge- 
neous of degree one in an intrinsic sense. We then prove a result which enables us to 
establish differentiability of a map based on the differentiability of maps into a totally 
geodesic subcomplex which approximately contains the local image of the map. This 
result is the main technical tool of the paper as it can be used to show that the local 
image of a harmonic map under appropriate conditions is actually in a subcomplex 
whose geometry is simpler than that of the ambient complex. We then apply this 
result to assert differentiability of harmonic maps into one-dimensional complexes. 

In section 6 we define a class of complexes which we refer to as F-connected. A 
k-dimensional complex is called F-connected if each of its simplices is isometric to a 
linear image of the standard simplex and any two adjacent simplices are contained in 
a k-flat, by which we mean a totally geodesic subcomplex isometric to a region in R k. 
We then show that harmonic maps into F-connected complexes are differentiable, and 
we give a detailed discussion of the size of the set of nonsmooth points, by which we 
mean points for which the local image of the map is not contained in a k-flat. 

In section 7 we carry through the Bochner method (in particular the Corlette 
vanishing theorem) for maps into F-connected complexes. We establish pluri-harmonic 
properties for maps of K~ihler manifolds, and show that finite energy equivariant 
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maps are constant from the Quaternionic hyperbolic space or the Cayley plane. We 
also extend the existence theory to include the construction of finite energy equivariant 
maps into buildings associated to an almost simple p-adic algebraic group H. We 
show that either the harmonic map exists or the image of  the representation lies in a 
parabolic subgroup of H. In particular, if the image of the representation is Zariski 
dense in H, then the harmonic map exists. The hypothesis on the domain manifold is 
very general here. One requires only that it be complete. In section 8 we establish our 
p-adic superrigidity results and discuss the arithmeticity of lattices. 

Finally in section 9 we discuss the structure of harmonic maps of K/ihler manifolds 
into trees and buildings. We describe an extension of our work to maps in Z-trees 
and use it to show that the fundamental group of a K/ihler manifold cannot be an 
amalgamated free product unless the manifold admits a surjective holomorphic map 
to a Riemann surface. Applications of harmonic maps into trees similar to those done 
in section 9 were also obtained by C. Simpson [Sim]. 

A technical device which plays an important  role in determining the structure of 
harmonic maps into nonpositively curved complexes is the monotonicity in o of the 
ratio Ord(x, o, Q) defined in section 2. For harmonic functions on R" this is a 
classical fact which is the L 2 version of the Hadamard three spheres theorem. It 
says that the logarithm of the mean L 2 norm of a harmonic function on a sphere of 
radius r is a convex function of log r. We prove in section 2 a global geometric version 
of this result. Its proof  relies on the usual monotonicity formula for harmonic maps 
(which plays an important  role in the regularity theory of Schoen-Uhlenbeck [SU] for 
energy minimizing maps into manifolds) combined with the strong convexity of the 
distance function on a nonpositively curved complex. A ratio of this type has been 
used by a variety of authors on various elliptic PDE problems. A partial list includes 
Agmon [Ag], Almgren [A1], Garofolo-Lin [GL], Landis [Lal, La2], Lin [Lin], 
Miller [Mi]. The first author to realize the importance of this type of result for proving 
unique continuation properties of solutions of general classes of elliptic equations 
seems to have been S. Agmon [Ag] in 1965. (The earlier papers of Landis are also 
quite closely related.) The optimal unique continuation result was proved by this 
method only recently in [GL]. 

The work in this paper was initiated by a suggestion of the first author that it 
might be possible to develop a harmonic map theory into nonpositively curved metric 
spaces, and that, in interesting cases, the resulting maps might be regular enough so 
that the Bochner method could be applied. In particular, he had a conjecture on the 
singular structure of harmonic maps into trees. He also proposed a version of the 
heat equation method which might be used to produce such harmonic maps. The 
work in Part I of this paper comprises the second author's solution to this problem. 
The approach taken is a variational approach rather than a heat flow method. The 
conjectured behavior of harmonic maps to trees is shown to be substantially correct 
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(with a slightly worse blow-up of derivatives near singular points than conjectured). 
Note that the theory developed in this paper is largely independent of discrete group 
theory, and should be viewed as a part of the geometric calculus of variations. 

The authors are grateful to Kevin Corlette for pointing out several errors in the 
first version of  w 9 and to Ralf Spatzier for a useful conversation about buildings. 
The second author thanks Scot Adams and Alex Freire for several suggestions for 
improving the exposition. Many of  these have been incorporated in the final version 
of the paper. 

History, motivation and examples 

We develop in this paper a theory of harmonic maps into certain singular spaces 
with non-positive curvature. The simplest example of  such a space is the tripod 
(see Figure 1) that is the union of three copies of the segment [0, 1] identified at zero, 
such that the distance between every two points a and b lying in different copies of 
[0, 1] by definition equals a + b, 

V . 
FIG. I. 

Similarly, one may consider n-pods obtained by joining n intervals. Then we 
see further examples by looking at graphs (i.e. connected 1-dimensional simplicial 
complexes) which are endowed with metrics locally isometric to the above n-pods. 
Notice that the distance between every two points x and y equals the length of the 
shortest path in X between x and y that is an isometric embedding of the interval 
[0, 6 = Dist (x, y)] _~ R into X with 0 w-~ x and 8 ~-~ y. If the points x and y lie sufficiently 
close together, then the minimal path is unique. In fact, if X is a k-pod then this 
uniqueness holds for all pairs of points and this manifests the (not yet defined) non- 
positivity of curvature of X. 

The next important  example is provided by Bruhat-Tits euclidean buildings asso- 
ciated to reductive p-adic Lie groups. For us, a building is a simplicial complex X 
which is accompanied by a simplicial action of a (p-adic Lie) group G. One knows 
that such an X carries a G-invariant metric (with curvature ~< 0) such that 

(a) Every simplex in X is isometric to an affine simplex in some Euclidean space. 

(b) Every two points in X can be joined by a unique shortest path (geodesic) 
lying in the union of some top-dimensional simplices. 
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Moreover, the buildings have the following remarkable property: 

For every two points x and y in X there exists an isometric embedding o f  R a into 
X for k = d i m X ,  such that the image o f  this R k, called a k-fiat in X,  contains x and y. 
(See [BT] and [B] for  information on buildings.) 

One can easily grasp the geometry of 1-dimensional buildings as these are just 
regular trees i.e., simply connected 1-dimensional simplicial complexes where all edges 
have the same length and where all vertices have the same number of adjacent edges. 
The geometry of higher dimensional buildings is somewhat more elaborate but one 
gains some insight by looking at the Cartesian products of regular trees. (These 
products are not quite buildings in the above sense as they are built of cubes rather 
than simplices but they are buildings in the sense of [BT] - which allows polysimplicial 
complexes - ,  they do have non-positive curvature and all pairs of points are connected 
by k-flats.) 

We shall not discuss at this stage the general notion of  non-positive curvature, 
expressed by K (X)~< 0, for general metric spaces X, but rather indicate the following. 

Examples. - (1) If X is a smooth Riemannian manifold, then K(X)~<0 signifies 
that the sectional curvature of X is everywhere ~< 0. In particular, the symmetric spaces 

o f  non-compact type have K ~< 0. 
Recall that these symmetric spaces have the form X = G/H where G is a connected 

semisimple Lie group with finite center and without non-trivial compact factor groups 
and H is a maximal compact subgroup. Every such X admits a G-invariant Riemannian 
metric (since H is compact) and this metric has K ~< 0 by a theorem of E. Cartan. The 
basic example here is the space 

X = SL, (R)/SO (n) 

which may be thought  of as the space of positive definite quadratic forms on the 
n-dimensional linear space. 

Notice that the buildings discussed earlier are substitutes, for p-adic groups, of 
the symmetric spaces. In the p-adic case one has several maximal compact subgroups 
in G corresponding to different G-orbits on the set of vertices of the building. Also 
observe that the dimension of a building corresponds to the rank (rather than dimen- 
sion) of a symmetric space X. 

Recall that rank (X) is the dimension of a maximal .flat in X, i.e., a totally 
geodesic submanifold isometric to R k. For example, rank (SL, (R)/SO (n))= n - 1  and 
a maximal flat consists of the set of quadratic forms which are diagonal with respect 

to a fixed basis. 
(Super) rigidity. - Consider a symmetric space of non-compact type, called l~I, 

(it is secretly thought of as the universal covering of a compact manifold M) and let 
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F be a discrete faithful group of isometries acting on M (if F acts freely on 1VI then, 
in fact, 1VI is the universal covering of  M = I~,I/F). Then we take another space, say X, 
and let F act isometrically on X, where now the action need not be discrete or faithful. 
In the cases we are most concerned with, X is either a building or a symmetric space 
of  non-compact  type. In this case, X is topologically contractible and therefore there 
exists a continuous F-equivariant map u o : l~I ~ X which is unique up to F-equivariant 
homotopy.  (If the actions of  F on l~I and X are discrete and free then F-equivariant 
maps 1~I --. X correspond to continuous maps lVl/F --, X/F.) 

We call the above setup rigid if the map u o is F-equivariantly homotopic to a 
geodesic map u : l~I ~ X, which means that the graph F,  m ~ x X is a totally geodesic 

subspace of  the Cartesian product.  
The first instance of rigidity was discovered by Mostow in the case where 1VI 

and X are manifolds of  constant negative curvature of  equal dimension ~> 3 and where 
the action of  F is discrete and cocompact  on 1VI and on X. ("Co-compact"  signifies 
" the  quotient space is compact" . )  This was extended later by Mostow to other 
equidimensional symmetric spaces and then a similar result was proven by Prasad 
and Ragunathan for equidimensional buildings. Finally there came. 

Margulis' superrigidity theorem. - I f  M is an irreducible symmetric space o f  
rank ~>2 and the action o f F  has finite covolume (i.e., Vol 1VI/F<oo) then the above 
setup is rigid (i. e., u o is homotopic to a geodesic map whenever X is an arbitrary building 

or a symmetric space). 
The celebrated corollary of  this rigidity is Margulis's arithmeticity theorem for F 

which says that F is obtained from the lattice SL~ (Z) c SL N (R) by certain elementary 
algebraic manipulations. (These are: taking the intersection of  SL N (Z) with Lie 
subgroups in SL N (R), applying surjective homomorphisms between Lie groups with 
compact  kernels, replacing discrete groups by subgroups of  finite index or enlarging 
groups by finite index extensions.) 

Remarks. - (a) Margulis has also proved his theorem for certain reducible spaces 
(which are Cartesian metric products I~7I=IVI 1 x 1~I2) but we stick to the irreducible 
case for the purpose of the exposition. In this case every geodesic map u : 1VI ~ X is 
either constant or is an injective map onto a totally geodesic submanifold 1VI' c X. In 
fact, the map 1VI ~ 1V[' becomes an isometry if we change the metric in M by a 
multiplicative constant. Furthermore,  if X is a building, then u is necessarily a constant 
map which sends all of  1VI to a fixed point of  F acting on X. Thus the p-adic 
superrigidity amounts  to the existence of  a fixed point for every action of F on a 

building. 

(b) The superrigidity fails to be true for certain symmetric spaces 1VI of  rank one. 
Such examples are easy to construct for 1VI a real hyperbolic space and there are 
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(more complicated examples) for the complex hyperbolic space. What remains of rank 
one are the quaternionic hyperbolic spaces and the hyperbolic Cayley plane. These 
long have been suspected to be as rigid as rank >~2 spaces as Kostant has shown that 
they satisfy Kazhdan's T-property (see [HV]) and also a kind of metric rigidity proven 
by Pansu (see [GP]). Then, recently, the real superrigidity (i. e., for X a symmetric 
space) was proven by K. Corlette [C] using harmonic maps ff, l---, X and one of the 
goals of the present paper is to do the same in the p-adic case where X is a Bruhat- 
Tits building. 

(c) Margulis' approach, unlike those by Mostow and Corlette, does not directly 
involve symmetric spaces and geodesic maps but rather deals with Lie groups and 
continuous homomorphisms. Notice that a geodesic map between symmetric spaces 
immediately gives us a homomorphism between the relevant (isometry) groups as 
central symmetries of a geodesic subspace canonically extend to symmetries of the 
ambient space. But going from group homomorphisms to geodesic maps (which we 
do not need for this paper) requires a non-trivial Lie algebraic lemma by Mostow 
(see [GP]). 

Idea of harmonic maps. - The classical Dirichlet energy of a smooth function u, 

that is f llgradull2 or better, flldull2, can be defined for a smooth map between 

Riemannian manifolds, u" M -~ Y, by 

E (u) = fM e (u) dl.t 

where e (u) is the so called energy density of u whose value at m e M is given by 

1 e(u)(m) = Dm(u)[[ 2, 

where 

Dm (u) "T,. (M) ~ T. (m)(Y) 

is the differential of u whose norm is defined by [1D [1 = Trace D* D where D* denotes 
the adjoint operator. (If one uses orthonormal bases which diagonalize D the ][ D [[2 

dim M 

becomes ~ )~2 for the diagonal entries )~i.) 
i = 1  

One should slightly modify the domain of integration for F-equivariant maps 
u: l~I--, X by first observing that the density function e(u) is F-equivariant and so 



172 H A R M O N I C  MAPS INTO S I N G U L A R  SPACES 

descends to a function on M = 1VI/F, also denoted e (u). Then we set 

E e d . .  

A smooth map between Riemannian manifolds is harmonic if it satisfies the Euler- 
Lagrange equation for the energy functional. Thus every energy minimizing map 
M --. Y in a fixed homotopy  class (if such a map exists at all) is harmonic. The similar 
conclusion applies to F-equivariant map 1~1--. X minimizing the above equivariant 

energy. 
The theory of  harmonic maps into nonpositively curved manifolds starts with the 

following existence theorems proven by Eells and Sampson [ES] in 1964 which came 

before the first rigidity result by Mostow. 
I f  X is simply connected, K (X) ~< 0 and the actions o f  F on M and X are discrete 

and co-compact then there exists a smooth energy minimizing F-equivariant map 

u" M--*X. 
Moreover,  one knows in the above situation that every harmonic  map necessarily 

is energy minimizing, and such a map is unique up to a parallel translation in X. This 
means (apart f rom some irrelevant pathological examples) that there exists a 
F-invariant totally geodesic submanifold X ' c  X which isometrically splits as 
X ' = X  o x R' such that the image of  every F-equivariant harmonic map 1VI ~ X is 
contained in X' and any two such maps can be obtained one from another  by applying 
the (obvious) action of  R' on X'. (This uniqueness result is due to Har tman  [Har].) 

Notice that every geodesic map IVl ~ X is (obviously) harmonic and, moreover,  
energy minimizing (at least in the case where the total energy is finite). Furthermore,  
the above parallel translation moves geodesic maps again to geodesic maps and so 
the existence of a single geodesic F-invariant map lVl ~ X implies that every harmonic 
map is geodesic. This suggests the following approach to the (super) rigidity problem: 
First construct an energy minimizing F-equivariant map lVl---, X and then show that 
every harmonic map is geodesic. In fact, such a result appears in the original paper 
by Eells and Sampson, as they prove that every F-invariant harmonic map of IVl = R" 
into an arbitrary manifold X with K (X)~<0 is geodesic. Then they combine this with 
their existence theorem and come to the following conclusion. 

Let M and Y be closed (i. e. compact without boundaries) Riemannian manifolds 
where M is f iat  (i. e., K (M) = 0) and K (Y) ~< 0. Then every continuous map M ~ Y is 
homotopic to a geodesic map. In particular, i f  the fundamental group o f  Y contains a 
subgroup isomorphic to Z 2 then Y contains an immersed totally geodesic f lat  torus. 

The proof  of  the implication 

harmonic =~ geodesic 



M. GROMOV AND R. SCHOEN 173 

is similar to the following classical a rgument  showing that  every harmonic  function u 
on a closed manifold M is constant.  The basic formula here reads 

If  u is harmonic  
of  a vector field 

div (u grad u)=  II grad u II 2 + u Au. 
and Au=O, this formula  shows that  Itgradull  2 
and so integrates to zero 

equals the divergence 

M II grad u Ila = fM div (u grad u) = O. 

Thus grad u =  0 which means (as M is assumed connected)  u is constant.  
The p roof  of Eells and Sampson  uses a more  elaborate expression which involves 

the Hessian of  u (rather than the gradient) which measures the totality of  the second 
derivations of  u and which vanishes if and only if u is geodesic. Here is the Bochner 
formula of  Eells and Sampson:  

If  M is flat then every smooth  harmonic  map  u : M  ~ X satisfies at each point 
m e M ,  

II Hess (u)II 2 = Ae (u) + K* 

where e denotes the energy density (function) on M and K* is a certain (real valued) 
function on M obtained by pulling back the curvature tensor of Y to M by the 
differential of  u and then by taking an appropriate  trace of  the resulting tensor on M. 
The explicit formula  for K* is not  impor tan t  at the m o m e n t  but we need the following 
crucial property of  K*: 

if K (Y) ~<0 then also K* ~< 0 

(this is true for all Ca-maps u, not  only for harmonic  ones). Now, since A = div grad, 
the integral of  Ae over M vanishes and thus 

f][ Hess (u) [[ 2 = f K * ~ < 0  

which for K (Y)~< 0 implies that  

Hess (u) = 0 

as well as 

K * = 0 .  

The first relation, as we know, tells us that  u is a geodesic map and the second relation 
says (once the explicit formula  for K* is written down) that  the curvature (2-form) 
of  Y vanishes on the image of the differential of  u. (In this particular case the second 
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conclusion can be derived from the first one but for some Bochner-type situations 
one should keep track of both terms separately.) 

The idea of using harmonic maps for rigidity problems was widely discussed since 
the appearance of the first paper by Mostow. One also was encouraged by the local 
rigidity results established earlier by Calabi-Vesentini and A. Weil where the Bochner 
method had been successfully carried through in the infinitesimal (and hence linear) 
setting. However, it took more than 10 years before the first usable Bochner formula 
was found by Siu in 1978. Siu's formula applies to harmonic maps between Kiihler 
manifolds and shows, in the case where a certain curvature of the target space is 
nonpositive, that every harmonic map is either holomorphic or antiholomorphic. Siu's 
formula was modified by Sampson who considered harmonic maps u of a K/ihler 
manifold M into an arbitrary Riemannian manifold. Sampson expressed the complex 
Hessian H dJ du H 2 as a sum of a divergence term and a certain curvature expression 
(like the above K*) pulled back from the target manifold. Then, assuming his curvature 
is ~< 0, Sampson concludes the vanishing of the Hessian dJ du (here J stands for the 
complex structure operator in M and the two d's are appropriate differentials) which 
means (more or less by definition) that u is a pluriharmonic map, i.e., the restriction 
of u to every complex submanifold in M is harmonic. Furthermore, Sampson has 
shown that his curvature is ~<0 for symmetric spaces of non-compact type and thus 
proved the following p!uriharmonic (rather than geodesic) rigidity theorem. 

Every continuous map o f  a compact Kiihler manifold into a compact locally sym- 
metric space X with K (X)~< 0 (i.e. o f  non-compact type) is' homotopic to a pluriharmonic 
map. 

(This result together with the circle of surrounding ideas was explained by 
D. Toledo to the first author some time ago.) 

The simplest case where Sampson's theorem applies is that of the flat torus Y = T' 
where the Siu-Sampson formula reduces to the classical Hodge identity Au= 2 ~?* ~?u 
for some function u :M ~ C. (The corresponding pluriharmonicity theorem claiming 
that every continuous map M --, T" is homotopic to a pluriharmonic map can probably 
be dated back to Poincar6 or maybe to Riemann.) 

Maps to singular spaces. - Now we turn to the p-adic (super) rigidity problem 
where the receiving space X is a Bruhat-Tits building and we want to see what remains 
of the theory of harmonic maps when the target space is singular. First of all we 
should define a notion of the energy for maps into non-Riemannian metric spaces. 
This can be done in a variety of ways in a quite general situation. The most direct 
definition uses the squared ratio (stretch) between the distances in M and Y, i.e., 

S (m l, m 2 )  = Dist,~ (u (ml), u (mz))/Dist M (ml, m2) 

which makes sense (for ml #m2)  for maps between arbitrary metric spaces. Then one 
can integrate S over the ~-neighborhood of the diagonal in M x M, say N~ c M x M 
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(here one needs the Riemannian measure in M and one assumes dim M~> 1) and 
define the energy by 

( "  
E(u) = lim supg-dimM| S(ma, m z ) d m l d m 2 .  

~ - - * 0  ,,IN 

Notice that in the smooth case this agrees with the classical definition up to a 
normalizing constant. In fact, the above limit formula gives an intuitive explanation 
for the Dirichlet energy classically defined with infinitesimals. (One may slightly modify 
the above by using instead of  the Riemannian measure restricted to N~ another 
approximation to the 5-measure on the diagonal, for example the normalized heat 
kernel on M for time tending to zero.) 

Another  more practical (but indirect) definition for maps into buildings X (and 
similar spaces) can be made by locally isometrically embedding X into some R N thus 
reducing the definition to the classical case (see section 1). 

The simplest case to look at is where M = [ 0 ,  1] and where one can define the 
energy density of a map u at m by 

e (u) = 1 lim sup S (m', m") 
711' ---~m 

and then set 

E (u) = e (u) dm. 

This energy E (u) on maps u : [0, 1] --. X is well behaved under rather general assump- 
tions on X and E (u) assumes its minimum at the geodesic curves in X parametrized 
by a multiple of the length parameter.  (A geometric study of  these curves in the 
situation where the singularity comes from an obstacle inside a smooth manifold Y 

was conducted in [ABB].) 
Notice that one can recapture some properties of  the energy E (u) for dim M >~ 2 

from dim M = 1 by restricting u to the unit geodesic segments in M, taking the energy 
of  the restricted maps and then by integrating over the unit tangent bundle of  M. Yet 
one does not  expect a meaningful higher dimensional variational theory for E(u) 
unless the "curvature"  of  the receiving (singular!) space X is somehow bounded 
from above. The most convenient (for us) definition of  K(Y)~<0 (suggested by 

A. D. Alexandrov many years ago) can be best seen in the universal covering X of Y. 

Here is a list of  the properties of  X given in the order of  increasing strength which 
can be used as a definition for K (X)~< 0 (and thus for K (Y)~< 0, compare section 2.1). 
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1. Every two points in X can be joined by a unique distance minimizing geodesic 
segment. 

2. The distance function Dist (x z, x2) on X x X is convex on the cartesian products 
of  geodesic segments. 

3. The distance function on X is "more  convex" than the distance on X ' = R  2. 
Namely, if we take geodesic segments of the same length in X and X' which are both 
identified with [0, 6] c R (for 6 the distance between the ends), then the equalities 

Dist (x o, 0) = Dist (x o, 0) 
X' X 

Dist (xo, 8) = Dist (Xo, 8) 
X' X 

imply that 

Dist (Xo, t) ~> Dist (Xo, t) 
X' X 

for all t e [0, 8]. 
The convexity of  the distance implies that the energy E(u) is convex under 

geodesic deformations of  maps which implies Har tman 's  uniqueness theorem (see 
section 4). Furthermore,  the convexity of  the distance allows one to define a good 
notion (in fact several non-equivalent notions) of  the center of mass (see [K]) of a 
finite measure g on X. (The standard definition of center (12) refers to the point x o e X 

which minimizes tvDist2(x0,  x)d12 x. Another  possible definition uses the map 

c : X  x X---, X assigning to (x 1, x2) the center of  the geodesic segment between xl and 
x 2. This c pushes forward the measure g x g to a measure on X, say gl, and thus, by 
induction, one has 122 coming from 121 x 121, etc. Then one defines the center of  g as 
the (one point!) support of  the weak limit of  12i for i ~ o0.) This gives us a possibility 
to regularize a map u" l~I--, X using smoothing kernels K (m, m') on M as follows. 
Assign to each point m e M  the measure K m = K ( m ,  m')dm'  for the Riemannian 
measure din' on M, and define the regularization u of  a given map u by defining u 
(m) to be the center of  the u-push-forward of K m to X, m e M. This operation works 
particularly nicely if M is a compact  flat manifolds, say a flat torus T n, and K is of  
the form K (m, m ' ) =  L ( m - m ' ) .  In order words, the g in this case comes from some 
measure )~ (corresponding to L) on the torus acting on itself by parallel translation. 
In fact, given any family of selfmappings of  M (e.g., of  isometries or more general 

selfdiffeomorphisms) and a measure on this family, we obtain by composing with u a 

family of  maps M - Y, say u with a measure d'L. Now we can "average" this family 
over the parameter  space with the measure )~ by applying a center of  mass construction 

at each point m e M. 
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In the case where the measure )~ is supported on the isometries of  M, this 
smoothing decreases the energy density at each point of  M (for any conceivable 
definition of the energy) provided the chosen center of  mass operator is contracting 
in the appropriate sense. (Here it is appropriate to use the center of  mass defined 
above with the map c: X x X ~ X where the needed contraction property directly 
follows from the convexity of  the distance function on X x X.) It follows that every 
energy minimizing map u : M - ~  X is invariant under such regularization and conse- 
quently, in the case M = T" (and more generally, for M flat), the minimizing map is 
geodesic. Thus the "flat => geodesic" theorem of Eells-Sampson extends to maps into 

singular spaces. 

Recall that the basic existence theorem of  Eells and Sampson for harmonic maps 
is based on a certain construction of  a heat flow (in the space of  maps u ' M  ~ Y) 
which can be (at least formally) perforce used for singular spaces Y with K (Y)~< 0 
using the above smoothing operators. (The smoothing operators, the way we describe 
them, must be performed for the corresponding maps between the covering mani- 
folds 1VI ~ X = Y  on the global center of  mass defined in X but not Y. Yet this 
causes no problem as all relevant constructions are invariant under F c Isom. 
group (X).) Namely, for every t > 0  and i=  1,2 . . . .  , we consider the ordinary heat 
kernel K(m, m,  ~' t/i) on the covering 1VI on M (corresponding to the universal 
covering X of  Y) and apply the smoothing i times to a given map u ' M - - , X .  
(Here we speak the language of F-equivariant maps 1VI ~ X corresponding to maps 
M = 1VI/F --, Y = X/F). The limit (or sublimit, whichever existence one is able to prove) 
of  these iterated smoothings for i ---, oo defines the action of the heat flow on u at the 
time t. Since the (regularity) properties of  the Eells-Sampson heat flow are "uniformly 
good" for K (Y) ~< - ~ 2  for ~ - ,  oo one may expect that every map M --, Y can be 
homotoped to a (essentially unique) sufficiently regular (at least Lipschitz) energy 

minimizing map. Evidence in favor of  this conclusion is provided by those singular 
spaces with K~<0 which can be approximated by Riemannian manifolds with K~<0. 
For  example, take a unit geodesic triangle in the hyperbolic plane with curvature 
_ j  g2 and let ~ ~ oo. Then we obtain in the limit the tripod described at the 

beginning of  the introduction. In fact, an arbitrary finite graph Y admits a similar 

approximation. Namely, there exists a sequence of compact  manifolds Y~e with convex 
boundaries and with constant curvatures -oug2 for ~'~ ~ ~ ,  such that Y admits 
embeddings Y c Y g  for all ~ with the following properties: 

(i) each edge of Y isometrically goes to a geodesic segment of Y; 

(ii) sup D i s t ( y ' , Y ) ~ 0  for ~ - ~  oo; 
y '  ~ Y j g  

(iii) for each ~r there exists a homotopy  retraction Y ~  ~ Y (which is moreover  

Lipschitz and the implied Lipschitz constant is independent of ~ ) .  
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Now one can construct Lipschitz harmonic maps M e Y  by using (sub)limits of 
harmonic maps M --, Y~ for ~ ~ or, as the latter maps (in a fixed homotopy class) 
satisfy uniform Lipschitz bounds by the Eells-Sampson theorem. 

Another geometrically significant class of singular surfaces Y which admit a 
smooth approximation comes from ramified coverings of smooth manifolds Y0 with 
K ~< 0. If the ramification locus is totally geodesic (of codimension 2) in Yo, then the 
induced singular metric in Y has K ~< 0 and usually it can be approximated by smooth 
metrics with K ~ < - c  for e ~ 0. (In fact, the same is true for more complicated 
ramification loci such as unions of totally geodesic submanifolds with 90~ 
On the other hand, a smooth approximation of higher dimensional buildings appears 
more difficult though not inconceivable as certain buildings (and building-like spaces) 
do appear in the limits of (parts of) symmetric spaces (of rank /> 2). 

On Bochner formulas in singular spaces. - In order to derive an interesting 
geometric conclusion from the general theory of harmonic maps u" M ~ Y  (or 
l~I ~ X = ~() one needs a Bochner formula showing that a map u, a priori only harmo- 
nic, is, under favorable conditions on the curvature of Y, more special, e.g. geodesic 
or pluriharmonic. If Y is a piecewise Euclidean polyhedron (e.g. the universal covering 
X of Y is a Euclidean building) then one may think that the required curvature 
condition is somehow encoded in the local combinatorial structure of X. For example, 
one knows a combinatorial formulation for K(X)~<0 in terms of the numbers of 
different simplices adjacent to every face and similar but stronger conditions might be 
responsible for Siu-Sampson type curvatures and their generalization. A comprehensive 
understanding of  such conditions appears a rather difficult (and still unresolved) 
problem but the examples presented below indicate a way out of this difficulty for 
maps having certain regularity properties. 

Consider a map u of the plane R 2 n e a r  the origin to the unit tripod Y with the 
edges numbered 1, 2 and 3, see Figure 2. Here the sectors T, ~ and 3 represent the 

FIG. 2 

u-pull-backs of the corresponding edges of Y and the tripod Z in R 2 formed by the 
boundaries of these sectors equals the pullback of the central point in Y. At first sight 
the map u seems necessarily singular at Z as Z goes to the singular locus (the center) 
of Y. Yet if we look at the map u restricted to two out of three sectors, say on 1 + 2, 
we see that this (]" + 2)-sector is mapped into the union of the edges 1 and 2 of Y. 
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This union, f rom the intrinsic point of  view, has no singularity as it is just isometric 
to the real segment of  double length and so our map u to 1 + 2 (as well as to 1 + 3 
and 2 + 3) reduces to a real valued function. Thus the "true singularity" of u is 
concentrated at the origin of  R 2, where the three sectors meet. 

Now let us see what we need of  such a map u in order to prove some integral 
Bochner formula. We assume we do have some infinitesimal Bochner identity defined 
on M where the map u in question is smooth and the global identity is obtained by 
integrating this formula over M. A non-trivial effect is achieved by the presence of  
some divergence term in the identity which integrates to zero if M is a closed manifold 
and the vector field, call it 8, whose divergence we integrate is smooth. If Y has 

and 8 is not everywhere defined, then, in general, I, ,  div 8 need not be zero. singularity 

On the other hand if 8 decays near the singularity, then one may expect (and prove 
whenever the decay is sufficiently strong) that div 8 does integrate to zero. Here, let 
us recall that the field 8 in all relevant Bochner formulas appears as a bilinear 
expression in the first and the second derivatives of  u, something like Z 0 i u ~?kt U. (In 
the Eells-Sampson formula the divergence term is 

It ~ u II 2 = div grad • a iu a; u). 

If, for example, the map u in question has a singular set of  codimension two or more 
(as in the above picture of  maps from R 2 to Y), and if the first and the second 
derivatives are bounded,  then the divergence of  such 8 obviously integrates to zero as 
is seen by integrating 8 over the complement  of 8-neighborhoods of  the singular locus 

and then letting a --, 0. In fact what one needs for the vanishing l d i v  8 is the decay of 

~- 11] @ u ]] 1] 9 2 u ]] for 8 ~ 0. (In fact, if the codimension of  the singularity is two, one 

can relax the "bounded  derivatives 'condit ion to I I~u l111~2ul ]=0  (e -1) for the dis- 
tance e ---, 0 from the singularity of  u). 

Let us exhibit actual examples of  harmonic maps into our tripod Y. To do that 
we embed Y into a two-dimensional singular space, namely to the unit cone Y' over 
the circle of length 3 re, The natural (Z3-symmetric) embedding of Y to Y' is isometric 
and Y divides Y' into three sectors each isometric to the half-plane. The projections 
of  these half-planes to the boundary lines define a projection of  Y' to Y. Then we 
observe that Y' is conformally equivalent to the unit disk U 2 and we think of  Y' as 
D 2 with a singular Kfihler metric (with K ~< 0). It is easy to see that every holomorphic 
map of  an arbitrary K/ihler manifold M into Y' is harmonic (in fact pluriharmonic) 

and by composing with the projection Y' - ,  Y we obtain harmonic maps M ~ Y. The 

simplest of  these corresponds to the identity map of  M = D 2 (with the flat metric) to 
Y ' =  D 2 (with the singular metric). Notice that the derivative of such a map at zero 
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decays with the rate ~1/2 (If we use the circle of length k~ we have the derivative 

0 (d/2- 
The above considerations have led the first author to the following: 

Conjecture. - If Y is a building, every harmonic map to Y must have a singular 
set of codimension at least two and ]1 ~ u][ ]] 9 2 u]] should have a sufficient rate of 
decay in order to validate Bochner formulas. 

It is also natural to expect that harmonic maps into general spaces Y of nonposi- 
tive curvature exist and are Lipschitz. These conjectures were proved by the second 
author and the proof occupies sections 1-6 of the present paper. 

Before entering the analytic discussion of singular spaces on the technical level 
we add a few more motivating examples. 

First we observe that the harmonic maps into tripods (and graphs in general) 
coming from holomorphic maps do satisfy the above regularity properties. 
Furthermore by looking at the level curves of the simplest such map of the disk 9 2 
into the tripod Y we recognize (see Fig. 3) the familiar pattern associated to a quadratic 
differential on a Riemann surface. 

FIG. 3 

Then we show that every harmonic map u: D 2 ~  Y gives rise to a holomorphic 
quadratic differential on D z which is equal away from the singular locus of u to the 
complexification of the form dy 2 for the length parameter y on the nonsingular part 
of the tripod Y. This is done by approximating Y by (regular) spaces Y~ D Y of 
constant negative curvature - ~ ,  for ~ ~ oo, and then by approximating u by 
harmonic maps u ~ Y ~ .  Every such map gives rise to a holomorphic quadratic 
differential on D 2 coming from the (2, 0)-part of the pullback of the Riemannian 
metric of Y~ to D 2 and these differentials converge to the desired limit and are 

associated to the original harmonic map u: D2--+ Y. Thus we see that the harmonic 

maps of surfaces into graphs are non-singular apart from a discrete set (where the 
corresponding quadratic differential vanishes). Then one can express @u and ~2u  



M. GROMOV AND R. SCHOEN 181 

(outside the singularity) in terms of  the quadratic differential and check the regularity 
properties. 

If  dim M >~ 3 it seems more difficult to obtain local regularity results by the above 
approximation. Yet the global Bochner type theorems do follow this way. For  example, 

Every harmonic map o f  a compact Kiihler manifold into a graph is pluriharmonic. 

This immediately follows from the corresponding result by Jost-Yau and Carlson- 
Toledo for harmonic  maps into spaces with constant negative curvature. 

We conclude with an example of a map into a surface with K ~< 0 with an isolated 
singularity where the singular locus of  the map in the domain has codimension one. 
We take the unit cone over the circle S~ of  length l > 2  7t for Y and let M be the 
cylinder M = M  o x [ - 1 ,  1] for some closed manifold M o. We map the boundary 
•M = (M 0 x -1) t ._) (M 0 x 1) to the boundary  S 1= 0Y in such a way that the angular 
distance between the images of M 0 x - 1 and M 0 x 1 in S 1 is at least ~. For  example 

we may send M o x { - 1 }  to an arc of  length ~< l l _ r c  and then send M o x l  
2 

symmetrically to the opposite arc in the S 1. It is easy to see that the convex hull in Y 
of  two such arcs equals the union of  the cones over these arcs and so the harmonic 
map M ~ Y solving the Dirichlet problem will be contained in this union of  cones 
and thus have a singular hypersurface in M (separating M o x - 1 from M o x 1) sent 
into the common vertex of the cones, where the metric of Y is singular. See Figure 4. 

FIG. 4 

(Notice that the solvability and Lipschitz regularity of  the solutions of  the 
Dirichlet problem follows for this Y by an approximation of  the singular metric on Y 

by regular metrics with K ~< 0.) 

Additional remarks. - (a) The conjectured regularity property of  harmonic maps 
referring to Bochner formulas does not  provide such formulas but rather allows us 
to reduce those to the nonsingular locus of  the map. The relevant formula for our 
p-adic superrigidity is the one discovered by Corlette in the non-singular frame- 
work. (One could also use the Kodaira-Siu-Sampson formula applied to an auxiliary 

K/ihler foliation associated to the domain manifold. But the "foliated" approach 
becomes somewhat cumbersome, though quite interesting from a geometric viewpoint, 
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when the curvature of the receiving space is not  strictly negative. Yet there are certain 
cases where the global conclusion obtained by using foliations cannot be achieved 
with known Bochner formulas). Notice here that Corlette also arrived at the idea that 
the harmonic maps into buildings may provide the solution of the p-adic superrigidity 
problem. 

(b) Although there are some instance of harmonic maps into singular spaces 
which have been considered, the subject has not attracted a great deal of attention. 
(We should mention that Hodge theory and function theory on singular manifolds 
has been considered by a number of authors. A cohomology theory on Euclidean 
buildings was developed by H. Garland [G] to study p-adic group cohomology. The 
work of J. Cheeger has brought the subject of global analysis on singular spaces into 
prominence recently.) The uniform Lipschitz bound was exploited by the second 
author in the late seventies to construct Lipschitz harmonic maps into surfaces with 
cone metrics of nonpositive curvature. This work was refined and used to characterize 
the Teichmfiller map by M. L. Leite [L]. S. Alexander, I. D. Berg, and R. Bishop 
[ABB] have studied geodesics for obstacle problems from this point of view and 
Nikolaev [N] has constructed minimal surfaces in singular spaces with curvature 
bounded from above. The works of Almgren [A1] and Lin [Lin] both deal with 
harmonic maps into special singular spaces. The paper by Y. J. Chiang [Ch] discusses 
harmonic maps into V-manifolds. 

Part I: Harmonic maps into singular spaces 

In this first part of the paper we develop some basic existence, uniqueness, and 
regularity results for harmonic maps into a class of nonpositively curved singular 
spaces. 

1. Preliminary results 

Let X be a locally compact Riemannian simplicial complex. By this we mean a 
space which is the geometric realization of a locally finite simplicial complex such that 
each geometric simplex is endowed with a Riemannian metric which is the restriction 
to the standard simplex of a smooth Riemannian metric defined in a neighborhood 
of that simplex. Moreover, assume that the maximal dimension of a simplex in X is k. 
Assume finally that X is properly isometrically embedded in a Euclidean space R N in 
the sense that the induced Riemannian metric on each simplex coincides with the 
given metric. 

Let M be a smooth Riemannian manifold of dimension n and Riemannian 
metric g. For a bounded domain f ~ _  M with smooth boundary, define the space 
of H 1 maps from f~ to X by 
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H t ( f l ,  X ) = { u e H I ( ~ ,  RN): u ( x ) e X  a.e. xa f2}  

where H I (f~, R N) is the Hilbert space of  R N vector valued L 2 functions on f~ with 
first distr ibutional derivatives in L 2. The H I inner product  is given by 

In( ) (u,v)i= Z ou 6. ~, ~: i 8x  ~ 8x  ~ g ~  (x)  dgo, 

where we use u . v  to denote the Euclidean dot  p roduct  of  vectors in R r~. For  
u e H  I (~, X), we denote  the energy  of u by E(u), so that  

Etu)= f. Iv ul da, 

7l ~u ~u 
where I Vul 2= Z g'~ denotes the energy densi ty .  We now observe the 

~, ~ = i  ~ x  ~ 0 x  ~ 

following result which allows us to construct  energy minimizing maps in the space 
H 1 (f~, X) with arbitrarily specified boundary  data. Recall that  if u, v e H 1 (f~, RN), we 
say that  u = v  on ~?fl provided u - v e H ~ ( f ~ ,  R N) where He1 (f~, R N) is the H i - n o r m  
closure of  smooth  compact ly  suppor ted  RN-valued maps on ft. 

L e m m a  1. I. - L e t  q ~ H l ( f ~ ,  X). There  exis ts  uEHl( f~ ,  X) such that  u=q~ 

on ~s and  E (u) <<. E (v) f o r  all  v e H 1 (~), X) with v = q~ on ~ .  

Proof .  - Let { ul} be a minimizing sequence of  maps  in H 1 (~,X) with ui=q~ 
on c~f~. Since bounded  subsets of  H 1 (fL R N) are weakly compact ,  there is a subsequence 
again denoted {ui} which converges weakly to a map  u e H l ( f ~ R N ) .  Since X is a 
closed subset of  R N and a subsequence of  { u i } converges pointwise almost everywhere, 
it follows that  u e H ~ ( f L X ) .  Since the set { v e H l ( f ~ ,  RN): v=q~ on ~ }  is a closed 
affine subspace of  H 1 (fLRN), it is weakly closed. Thus  u=q~ on c~f~, and we have 
established L e m m a  1.1. 

We now discuss the distance function on X and give a t reatment  of  harmonic  
maps of  an interval into X. Assuming that  X is connected (which we do without  loss 
of  generality), we see that  any two points Po, P,  e X  can be joined by a path  
7:[0,  1] ~ X which is Lipschitz as a map  to R y. We can then define the Riemannian  
distance function d(Po, P1) by 

d(P0, P 1 ) = i n f {  L ( 7 ) : 7  a Lipschitz path  f rom Po to P1 }. 

It is immediate  that  d ( . , .  ) is a metric, and that  (X, at) is a complete metric space. We 
show that  the inf imum is attained, and describe the associated harmonic  map.  We 
consider paths 7:[0,  1] ~ X with 7 (0)= P0 and 7 (1)= P~. Fix such a pa th  q~, and let 7 
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be an energy minimizing path provided by Lemma 1.1. An easy application of  the 
fundamental  theorem of  calculus shows that 7 is H61der continuous with exponent 1/2. 
We let dT/dt denote the LZ-vector valued function on [0, 1] which is the distributional 
derivative of  7. We will show that I dT/dt[ is a constant a.e. on [0, 1]. To see this, let 
~(t) be a smooth real valued function with compact  support in (0, 1), and consider 
the path of maps 7s (t)-- 7 (t + s ~ (t)). By the minimizing property of 7 = 7o we have 
E (7)~< E (Ts) for all sufficiently small s, and hence the function s ~ E (7~) has a mini- 
m u m  at s = 0. We examine this function more carefully: 

fo dvs  dt=fo dTs 

where �9 = t + s ~ (t), s being a f ixed  small number.  Now 

dvs - ( 1  + s~" (tl) d7 
dt d~ 

by the chain rule, and hence 

l d 7 2  E(Vs)=fo (1 

Since the s dependence is explicitly exhibited here, we see that the function s ~-~ E (Ts) 
is a differentiable function of  s. Thus its derivative vanishes at s = 0, and we have 

fo t d7 2~ ' ( t )d t= 0 

for every smooth function ~ with compact  support in (0, 1). This implies that the L 1 
function I dT/dt 12 is equal to a constant almost everywhere on [0, 1]. Thus we have 
established the following result for energy minimizing maps of  an interval into X. This 
will be used later when we develop the theory for n ~> 2. 

Lemma 1.2. - A map 7 E H 1 ([0, 1], X) which minimizes energy among maps which 
coincide with 7 at t = O, 1 is Lipschitz and satisfies I dT/dt I = L (7) a.e. on [0, 1]. Moreover, 
7 is a length minimizing curve among all Lipschitz curves from 7 (0) to 7 (1) in X. 

We showed above that I dT/dtl =c a.e. for some constant c. Integrating we find 
c = L ( 7 ) .  To see that 7 is length minimizing, let 71 be any Lipschitz curve with 

71(0)=7(0) ,  71(1)=7(1) .  Assume that 71:[0, 1 ] ~ X  is parametrized so that 

I d71/dtl = L (71). We then have 

L2 (7) = E (7) ~< E (71) = L2 (71), 



M .  G R O M O V  A N D  R.  S C H O E N  185 

and hence L (7)~< L (~q). To see that any Lipschitz curve may  be parametrized propor-  
tionate to arc length, we can consider all H 1 ([0, 1], X) which have image in the closed 

set ~'1 ([0, 1]) and which agree with Y1 at t = 0, 1. We can then minimize energy in this 
class and repeat our previous argument to show that the minimizer is parametrized 
with constant  speed. 

Finally, we make some general remarks about  H ~ maps which will be needed in 
the next section. Let u e H 1 (~, RN), and let x o e ~ .  We will say that u is approximately 
differentiable at x o if there is a linear map l(x) of  the form l ( x ) = A ( x - x o ) + B  with 
A an N x n matrix and B e R N such that 

l i m { o - 2 - " f B  [u-l]2d~to+cy-" fB [ V u - V l [ 2 d B g } = O .  
o J, 0 ,~ (x0) o 

It is then a general result (see [Z, Theorem 3 .4 .2] )  about  H 1 maps that u is approxima- 
tely differentiable at almost every point  x 0 ~ Y~. Observe also that l (Xo)= u (Xo) for a.e. 
Xo, and hence for a.e. Xo, B ~ X  if u ~ H  1 (~ ,X) .  We will need the following result. 

Lemma 1.3. - Let  u c H  1 (~, X) be a map whose image lies in a compact subset 
o f  X,  and let x o ~ D be a point at which u is approximately differentiable with linear 
approximation l (x) = A (x - Xo) + B. I f  A # 0 and B ~ X,  then we have 

lim d 2 (u (x), B) dE o ] V u 12 dg 0 = 1. 
o ~ 0 B~ (x0) o (x0) 

Proof. - We first observe that there is no loss of  generality in assuming the 

metric g to be Euclidean near x 0 because we can introduce Riemannian normal 
coordinates centered at x o, and compare the integrals in the g metric with the corres- 
ponding Euclidean integrals in these coordinates. Note  that the balls centered at x o 
are identical in the two metrics, and it is immediate that each of  the two integrals 
appearing in the statement has ratio with the corresponding Euclidean integral which 
tends to 1. Thus it suffices to consider the Euclidean metric. 

By the triangle inequality we have 

iv 12  ) 
o (xo) ~ (xo) 

,~ (x0) 

where the second inequality holds because u is approximately differentiable at x. Since 

A # 0 ,  we see that [ [Vl[2dg is a nonzero constant times ~". Thus it follows that 
.)B (xo) 
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(1.1) lim IVl[2dl.t [Vul2dl.t=l. 
k 0 ~ (x0) a (xo) 

In order to complete the proof  we need to compose the distance function of X 
with the Euclidean distance for points near B. We claim that for any e>0 ,  there 
is r o >0  such that 

(1.2) I d(B' P) 1 ~<a 
I IB-PI 

for P # B ,  P e X  satisfying [B-P[~<r  o. This follows from the hypothesis that each 
simplex containing B is smoothly embedded in R N so that there is a curve from B 
to P which is arbitrarily close to a straight line when P is close to B. Moreover, since 
the image of u lies in a compact subset of X, the function d 2 (u (x), B) is bounded 
and hence 

f d 2 (u (x), B) dZ 
x : [ B - u ( x ) ] > r  0}c~0B o(x0) 

~<cVol{xE~Bo(xo) ' lu (x) -B[>~r  o }. 

For cr ~ r 0 we then have 

Vol{xe~B,,(Xo):lu(x)--Bl>~ro}<~Cro2 fe lu(x)-l(x)12dZ. 
B~ (xo) 

By the Sobolev trace inequality (see [Z]) we have 

f .o xolU(X)-t(x)l 2dz 

<<- c fB ~ [Vu-Vl[2dl't+c~-l fB 
(x0) o (xo) 

lu-ll2d . 

Thus it follows that 

(1.3) 

lim (Y- 1 -n fO lu-l[Zd :0 
o $ 0 Bcr (xo) 

lim or- 1 - .  f d 2 (u (x), B) dZ = 0. 
o ~ 0 ~{x~OB o ( x O ) : l u ( x ) - B [ / > r  O} 

From (1.2) we have (1-OIP-B I~<d(P,B)<~(1 + a ) I P - B I  for P e X  with I P - B  [~<r0, 
and therefore we will write 
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/ '  
(1.4) | d 2 (u, B) dE 

J~ x~c~Ba(xo) : [u(x)-B[~<r  O} 

P -BI dE 
x e 0Ba (xo) : I u (x ) -B  [~<ro } 

where ~ means that the ratio of  the quantities is arbitrarily close to one. We also 
have from the triangle inequality and (1.3) 

(fOB~(xo)]bl--B]2d~)l/2--(fOB~(xo) 

~O((~n+ l/2). 

[ / - B ] 2 d ~ )  1/2 

<" (fOB~ (.o) 

Since A r 0 we see that 

it follows that 

fo I l - B  [2dZ is a positive constant times cy "+ x, and hence 
Bet (x0) 

f0 lu-Bl dE f Iz-Bl dE' B~ (x0) ,d 0B o (x0) 

and each term is of  the order cy "+ 1. Combining (1.3) and (1.4) we see that 

fo d2 (u' B)dE~f lu-BlZdE' 
B~ (xo) d 0B~ (x0) 

and hence 

(1.5) fod2(u,B)dZ,~fo ] I - B I 2 d E .  
B~ (x0) B~ (x0) 

Direct calculation shows that for a linear function l(x)= A ( x - X o ) +  B we have for 
all cy>0 

[ /-ul2dE ~ IVll2d. 
B~ (x0) o (x0) 

=1.  

Thus combining this with (1.1) and (1.5) we have established the conclusion of  
Lemma 1.3. 
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2. Behavior of harmonic maps into nonpositively curved spaces 

We showed in section one that minimizing maps of an interval into X are 
Lipschitz. In order to obtain Lipschitz bounds on minimizing maps M ~ X for 
dim M ~> 2 (or even continuity of these maps), it is necessary to require that (X, d) 
have nonpositive curvature as a metric space. We now discuss this notion. First 
observe that if y, Xo, x l e R  ~, and x(s) is the unit speed geodesic from x o to x 1 
parametrized on [0,/], l=  Ix0 - xl I, then the function D O (s) = [x ( s ) - y  12 is a quadratic 
polynomial in s of the form D O (s)= s2+ as + b where the constants a, b are uniquely 
determined by the boundary conditions D O (0)= I xo - y 12, D o ( l)= Ixx - y 12. Indeed, 

 21x-v12 this is another way of saying that the function [ x - y  [2 satisfies " - 2  8ij. We 
0xi 0xj 

say that a simply connected space X has nonpositive curvature if for any three points 
Q, Po, P1 s x ,  the function D (s)= d2 (P (s), Q) satisfies D(s)<~Do(s ) where P(s), 
se[0 , / ] ,  l = d  (Po, P0 ,  is a minimizing unit speed geodesic from Po to P1 and Do(s ) 
is the unique solution of D 0' (s)= 2 on [0,/] with D o (0)= D (0), D o ( l)= D (l). Thus 
the condition states that points of the side of a geodesic triangle opposite to Q in the 
space X are at least as close to Q as they would be in a Euclidean triangle with the 
same side lengths. Note that the statement that the Lipschitz function D (s) lies below 
the monic quadratic polynomial with the same boundary data for every subinterval 
of [0,/] is equivalent to the distributional inequality D" (s)~> 2 on [0,/]. Precisely this 
means that for any nonnegative function ~(s) with compact support in (0, l) the 
following holds 

/o ;o D (s) 4" (s) ds >~ 2 ~ (s) ds. 

Thus X having nonpositive curvature is equivalent to the statement that the distance 
function is more convex than the Euclidean distance function. For a general space X 
we say that X has nonpositive curvature if its universal covering space has nonpositive 
curvature. 

The following properties can be derived from the definition of nonpositive curva- 
ture (see [B, VI.  3 B]). First, any two points in X can be joined by precisely one length 
minimizing path. Secondly, if Po, PI and Qo, Q1 are two pairs of points in x ,  and 
we parametrize the geodesic paths from Po to P1 and from Qo to Q1 by P(t), Q(t) 
for te[0, 1] where t is a constant speed parameter along each of the paths, then the 
function g (t)= d (P (t), Q (t)) is a convex function of t. Note that this second property 
implies that geodesics from a point spread more quickly than Euclidean geodesics 
since we may take Po = Qo and conclude that 
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d ( P  (t), Q ( t ) ) )  ~ ,d(P  (t'), Q (t')) 

for  0 ~< t'~< t~< 1. Finally,  we observe tha t  for  any  )~ e [0, 1] and  Q e X we can define a 

m a p  R~, o : X --. X by 

R~, Q (P) = P (Z), 

where  P(t) ,  t e [0 ,  1], denotes  the cons tan t  speed geodesic f rom Q to P paramet r ized  
on [0, 1]. By our  previous discussion we see that  R~, Q is a Lipschitz map;  in fact 

d(R~, Q (Po), R~, o (P1)) ~< )~ d(Po, P1), 

so the Lipschitz cons tan t  is at mos t  )~. Moreover ,  the family o f  maps  Rz. o, ~ e [0, 1], 
defines a de fo rma t ion  re t ract ion o f  X to the point  Q, so that  X is necessari ly 
contract ible.  

We now digress briefly to present  a technical  result which will be needed  to just ify 
a calculat ion below. First  suppose F : R " I - - - . R  m2 is a Lipschitz map,  for a point  
P c  R "1 and  a vector  V we define the direct ional  derivative D v F (P) by 

D v F (P) = lira F (P + h V) - F (P) 
h-*O h 

assuming the limit exists. 

L e m m a  2 .1 .  - Assume 7 : [a, b] --* R ml is absolutely continuous and F" R"I  ~ Rm2 
is Lipschitz.  Then F ~ is absolutely continuous and at any point  t o e (a ,b)  at which 

both 7 and F ~ 7 are differentiable it fo l lows that D r, (to) F exists at 3' (to) and 

o r - -  (F 3') (to) - Dr, .o) F (3' (to)). 

In particular this holds fo r  almost  all t o ~ [a, b]. 

P r o o f  - Tha t  F ~ is absolutely con t inuous  is clear. Since 3' is differentiable at 
t o we have 3' (to + h) = 3' (to) + 3" (to) h + o (h). Since fo  7 is differentiable at to we have 
the existence o f  the limit 

lim 
h--*0 h 

F(V(to+h))-F(3'(to)) 

Since F is Lipschitz, we have f rom above 

F (3' (t o + h)) = F (3' (to) + 3" (to) h + o (h)) = F (3' (to) + 3" (to) h) + o (h). 
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It follows that Dr, (*o)F (7 (to)) exists and is equal to (F o 7)' (to) as required. This proves 
Lemma 2.1. 

Coming back to our situation, let us assume that u e H 1 (fl, X) is energy minimizing 
and that its image lies in a compact  subset K of  X. Observe that the map 
R:[0,  1] x K-- .  R N is Lipschitz with respect to distance measured along X. On the 
other hand, on compact  subsets of  X we have d(P~, P2)~< c [ P ~ -  P2 I, so R is Lipschitz 
in the Euclidean sense. By Kirzbraun's theorem (see [F1, 2.10.43])  R may be extended 
as a Lipschitz map from all of  R N + I  into R N. We now consider the family of  maps 
u~ (x)=  R1-<  r o (u (x)) for x ~  where z/> 0 and ~ is a nonnegative smooth function 
with compact  support on ~. (We assume that "c is so small that 1 -  ~ (x)e  [0, 1] for 
all x e ~ . )  It is easy to see that u , ~ H  ~ (fl, X) since u~ is a composition of  a Lipschitz 
map with an H 1 map. We will justify the following equality of  distributional derivatives 

(2.1) c3u~ 04 ORx-~; o 
Oxi (x) = Do./oxi (x) R I  - < (~), 0 (u (x)) - ~ c~xi c~L " (u (x)) 

for i=  1 , . . . , n .  For  example we consider the case i=  1, and observe that (2.1) is a 
local result near a given x0 e fL  Consider a neighborhood of  x0 of  the form I~ x C 
where I i = ( x ~ - r , x ~ + r )  for some r > 0 ,  and (9 is a n  open subset of  
R " - 1 =  { (0, x 2 . . . . .  x") }. Denote by 2 the point of  (9 whose final ( n - 1 )  coordinates 
are those of  x. It then follows that for 5 ~ ~ almost every point 2 of  (9 the map from 
11 ~ X  given by t~--~u(t, 2) is in HI(I1,  X). For  such an 2, let 7 : I 1  ~ R  N+I be the 
map 

v (t) = (I - r ;  (t, u (t, 

It then follows that u~(t, 2 ) = R o 7 ( t ) .  Since an H 1 map of  an interval is equal a.e. to 
an absolutely continuous map, we may assume by redefining u on a set of  measure 
zero in 11 x 0 that the map 7 is absolutely continuous for almost every 2 e C .  We then 
apply Lemma 2.1 to conclude that for almost all t~ I  1 we have 

Our (t, 2) = D v, {,) R (7 (t)). 
0xl 

Now 

7, ( t ) = ( _ z  c~ (t ,2),  Ou - ~  2 ) ~ ,  
0x, . @ =  

at(t'ax, 

and hence (2.1) follows. 
Next we observe that the function P ~ d 2 (P, Q) is Lipschitz on X, and therefore 

its restriction to the compact  set K has a global Lipschitz extension to R N. Thus by 
Lemma 2.1 the chain rule calculation 
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0 - -  d 2 (u (x), Q) = D0,/0x, d 2 (u (x), Q) 
~xf 

is justified. We also have for a tangent vector V to X at P 

1D D v R~., Q (P). Rx, Q (P) = ~ v d2 (R~, Q (P), Q) 

provided the indicated diectional derivatives exist. (Both sides are equal to 
d((R~, Q (P), Q) D v R~, Q (P). 7' (Rx, Q (P)) where 7 is the unit speed geodesic from Q 
to P.) Thus we square (2.1) and use this result on the cross term to get 

I ~i(X) 2=[Dou/Ox(x) Rl_,r 2 

-- "c 0~ ~d 2 (R 1 _< (:o, Q (U (X)), Q) 

~?xi ~?xi 

axi/ & Q (u (x)) 

Using the contracting property of R~, Q we thus have 

E(u,)<<. f, (1 v u 12 dg 

- z f a  V 4- V d 2 (R 1 _,~ ~:,~, o (u (x)), Q) d~t + 0 (z2). 

Since u is minimizing we therefore have 

0~< - 2 ~  fn  4[ V u 12 dp + z  fn (At) d2 (u, (x), Q)dp +0  ('1~2). 

It follows that for every smooth nonnegative function ~ with compact support in f~ 

fn  [(a~) d 2 (u (x), Q) - 2 ~ IV u 12] d~t >~ 0. 

We restate this as a formal result. 

Proposition 2.2. - I f  u ~ H  1 (~, X) is energy minimizing and has image lying in a 
compact subset o f  X,  then the function d 2 (U (X), Q)for any Q ~ X satisfies the differential 
inequality Ad z (u (x), Q) - 21V u [ 2 >~ 0 in the weak sense. 
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As a first application of  this result, choose ~ (x) to approximate the characteristic 

function of  a small geodesic ball B,  (xo) centered at a point xo ~ f~. We then get for 
almost every cy 

(2.2) 2fB Ivu[2dg~f ~r(d2(u(x), Q))dZ. 

We now derive the usual monotonici ty  formula for harmonic maps which can be 
done for minima of our problem. Note  that the nonpositive curvature condition on X 
is not  needed in this derivation�9 Let ~ (x) be a smooth function with support  in a 

small neighborhood of  a point  x o e f~. For  [ x I small consider the diffeomorphism of f~ 
given in normal  coordinates by F~ (x )=  (1 + z~ (x))x in a neighborhood of  0 with F~ = id 
outside this neighborhood�9 Consider the maps u, = u o F t. These are clearly in H ~ (FL X), 
so the function x~--~E(u~) has a minimum at z = 0 .  To analyze this condition we 
perform a change of  variable as we did in the geodesic case in section 1. We assume 
that ~(x) has compact  support  in Bo(0) so that we may work in a single normal 
coordinate chart. We then set y = F, (x) and use the chain rule to compute  

[ V u~ [2 (x) = ~ g~J OYk OYt ( Ou O~y~ ) 
i,~,k~t OX ~ OX J Oyk 

The volume demen t  x /g  dx then becomes 

x/g dx : det ( ~xV ~ x/g dy. 
\ ~yq / 

Thus we may write the energy of  u~ in the form 

fB ]Vu~lZdg=fB ZaiJ(y, "c) Ou Ou dy, 
o co) u (o) ~Y~ c?Y j 

where a ~j (y, z) is a smooth function of  y and z. Thus it follows that z ~ E (u~) is a 
smooth function of  ~, and its derivatives may be computed by differentiation under 
the integral sign. In particular we have E' (0) = 0, and this gives us by direct calculation 

~o) i ~ xi 

+2 Z xJ 0. 0u 
i, i, k Ox i ~?x~ ~x k 

+ Remainder,  
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where the remainder term arises from the fact that the metric is not exactly Euclidean. 
The remainder term is given precisely by 

fB I -~  ~ (~gij X k Olg OU ~/g_]_]Vul2 ~/~  X i ~N~Idx.. 
o(o) a x  axJ  - -  k " (~X t 

Observe in particular that this term is bounded by a constant x 0 .2 EBo (0)(u). Taking 
to be an approximation to the characteristic function of the ball B o (0) we get 

(2.3) 0 = ( 2 -  n + 0 (0"2)) ~ IV b/[2 dB 
dB o(0) 

f~ f ~U 2 + 0 .  ]Vu12d ;-20- 
B o (0) 8B o(0) ~r 

We now introduce the notation E (o), 1 (0.) defined by 

E ( o ) =  fB IVul2d~t, I(0.)= f~ d2(u(x), Q)dZ (x). 
o (0) B o (0) 

Since we are working in normal coordinates observe that if f(x) is a nonnegative 
function we have 

0fdZ + (n - 1) 0. - 1 .]ofs. (o) f dZ 
(o) Or 

+0(0-) f e fd 'Z 
B o (0) 

We now compute logarithmic derivatives 

I' (0.)  _ n - 1 + (I (0.))  - 1 f 

I (0.) 0. JOBo 
(d 2 (u, Q)) dZ + 0 (0.). 

(0) Or 

(We should remark that I (0.) is an absolutely continuous function for 0- > 0.) From 
(2.3) we have 

E'(0.) _ n - 2  +2(E(0.))_1 f e c~u 2dZ+0(0.)" 
E (0.) 0- Bo (0) 8r 

Therefore 

I' (0-) E' (0.) - 1 + (E (o) I (0.))- ~ IE  (0.) f ~ ~ (d2  (u, Q)) dZ 
I (0.) E (0-) 0. B~ (0) 
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fo #u 2 j -2I(cy)  ~rr dZ +0(~)  
B~ 

which together with (2.2) implies the inequality 

(2.4) ~d_d l o g ( I ( c y )  "]~<2(E(cy)i(cy))_l[(f ~ d(u,Q)~rd(U,Q)dZ) 2 
acy \ cy E (~) J u, co) 

-(foB,~lo)d2(u,Q)d~) (fOBo(O) ~Ur 2d~) l  -F0(ff)" 

Since I~rrd(U, Q)~< 0~ , it follows by the Schwarz inequality that 

(2.5) d I ~E(~)  1 _ _  e q  ,,2 ~> 0 
dcy I (cy) 

for a constant c 1 depending on the metric g. Of course (2.5) holds only under the 
assumption that I ( ~ ) > 0  for cy>0. Notice however that from Proposition 2.2 it 
follows that the function d 2 (u (x), Q) is subharmonic, so that if I (~)=0  for some 
cy > 0, then the map u is equal almost everywhere to Q in a neighborhood of 0. 

For any x e f~, cy > 0, Q ~ X we define an order function Ord (x, ~, Q) by 

Ord (x, ~, Q) = e q .2 
~ Ivul2d  a (x) 

f0 a 2 (u (x), Q) d's (x) 
B~ (x) 

The reason for this notation is that for a harmonic function 

lim Ord (x, cy, u (x)) = Order (u - u (x)), 

that is, the order with which u attains its value u (x) at x. Alternatively, it is the degree 
of the dominant homogeneous harmonic polynomial which approximates u-u(x) 
near x. In particular, for harmonic functions (or harmonic maps into smooth manifolds 
of nonpositive curvature) this limit is a positive integer. 

Generally, if x e f~ and cy > 0, then the function 

Q w-~ fo d2 (u,Q) dZ 
B~ (x) 
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is a convex function on X with compact  sublevel sets, and hence has a unique minimum 
point Qx,,  e X. The function Q ~ Ord (x, cy, Q) thus has a unique maximum point at 
Qx, ~. We now define Ord (x) by 

Ord (x)= lim Ord (x, or, Qx, ~). 
o- ---~ 0 

This limit exists because the function cy ~ Ord (x, cy, Qx, ,) is monotone  increasing in cy. 
Moreover,  for a fixed cy > 0, the function x ~ Ord (x, or, Qx, ,) is a continuous function, 
and hence it follows that the function x ~ Ord (x) is upper semicontinuous since it is 
the decreasing limit of  a family of  continuous functions. We now prove the following 
result. 

Theorem 2 .3 .  - Suppose u e H 1 (fL X) is an energy minimizing map with image in 

a compact  subset o f  a nonpositively curved complex X.  Then u is (equal a.e. to) a locally 

Lipschitz  map. 

Proof.  - Since u e H 1 (f2, X), it is approximately differentiable in the sense of  
Lemma 1.3 at almost every point of  f~. Consider a point x o in the closure of  the set 
of  points at which u has nonzero approximate derivative. By Lemma 1.3, x o is a limit 
of  points xj  at which Ord (xj) ~> 1. Therefore by the upper semicontinuity of  the Ord ( . )  
function it follows that Ord(x0)>~ 1. Let a = O r d ( x 0 )  and fix CYo>0 so that 
B,o (x0)e ~.  Let ~1 e (0, %) ,  and note that the monotonici ty of  the ratio implies 

O f  B IVul2dI-t>/~e-ClC2 fo d2( u, Q1)dE  
(xo) Bo (x0) 

for all ct~ [%, Cyo) where QI = Qxo, ~1 Combining this with (2.2) yields 

e_Cx ,2 1 (cy) ~< ~ cy (d 2 (u (x), Q 0 )  dE (x) 
B~ (x0) 

1 
~< - (c~ I' (cy) - (n - 1) I (cy)) + 0 (cy 2) I (~). 

2 
This implies 

I'(cy) > n -  1 + 2 a  0 (cy), 

I (~) 

where ~ is any radius in [%, Go). Integrating from % to cy o and f i x ing  % we obtain 

; ~"- ~)I (~ 1) ~< c ~ ~ I (%). 
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Since the function d 2 (u(x), Q1) is a subharmonic function (Proposition 2.2)  on ~,  
the mean value inequality implies 

sup d 2 (u (x), Q1) ~< c o2 ~. 
x ~ Bcl/2 (x0) 

(Note that I (Oo) is bounded independent of  Q1 because u (~) _ K.) In particular, by 
the triangle inequality, 

d(u(x) ,  U(Xo))<,d(u(x),  Q1)+d(u(Xo) ,  Q1)~<2co]  

for x EBat/z (Xo). Thus if x EBoo/2 (Xo), we may choose cy I = 2  [X-Xo[ and conclude 
d(u (x), u (Xo)) ~< c I x -  x o [" for x ~ Boo/2 (Xo). Since ~ >/1 this certainly implies that for 

any x 0 at which the approximate derivative exists and is nonzero we have ~x~ ~< c, 

i=  1 . . . .  , n. It follows that u has bounded first derivatives locally in f~, and hence u 
is (equal a.e. to) a locally Lipschitz function. This completes the proof  of Theorem 2.3. 

Remark. - The previous result leaves open the possibility that u might be 
constant on an open subset of  ~.  We will show in the next section that this does not 
occur. Thus it will follow that Ord (x) is defined for all x ~ ~. 

We will need the following local estimate in order to apply compactness arguments 
to gain more detailed information about harmonic maps. 

Theorem 2.4. - Let u e H l ( B l ( 0 ) ,  X) be a least energy map (with image in a 
compact subset o f  X)  for  some metric g on B 1 (0)={ x~R": [x]~< 1 }. There is a constant 

c depending only on g (e.g. on the C 2 norm o f  the matrix valued functions (gij (x)), (gij (x)) 

such that 

sup IVul2 c  IVulZd~. 
B1/2(0) dB 1 (0) 

Proof. - By Theorem 2.3  the map u is locally Lipschitz. We need to estimate 
its Lipschitz constant. We first observe that we can replace X by a dilated complex 
g X where we assume by translation of coordinates in R N that u (0)= 0. The complex 
g X still has nonpositive curvature, and we may choose g so that the map pu  has 
energy equal to 1 on B 1 (0). Thus we may assume without loss of  generality that 

I vu[ d =l" 
1 (o) 

We also observe that it suffices to prove IV u 12 ( 0 ) ~  C where we may assume that x = 0 
is a point of  approximate differentiability of  u. This follows just by changing the 
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center of  balls. Now we may of course assume V u ( 0 ) 5 0 ,  and hence Ord (0)>/1. It 
follows that Ord (0, cy, Qo, ~) ~> 1 for cye (0, 1), and therefore 

fo d2(u' Qo,1/z)clZ~CfB IVulZdg~c 
B1/2 (0) 1/2 (0) 

for a constant c depending only on g. The fact that d 2 (u(x), Qo,1/2) is subharmonic 
then implies 

sup d E (u(x), Qo, 1/2)~<c 
x ~ B1/4 (0) 

for a new constant c. In particular it follows that the distance from Qo, ~, to 0 = u (0) 
is bounded for eye(0, 1/4). Taking Oo=1/4 we may then apply the argument  of  
Theorem 2.3  to show that for xeB1/8 (0) we have from above 

d:(u(x), O)~<c[x[ 2 sup f~ dZ(u, Qo,~)d'Z~<c[x] 2. 
~ (0, 1/4) B1/4 

This gives the desired conclusion and completes the proof  of Theorem 2.4. 

Remark. - For  harmonic maps into smooth manifolds of nonpositive curvature 
the conclusion of Theorem 2 .4  is a well known result of  Eells and Sampson [ES]. 
The usual p roof  of  this is based on the Bochner formula for the calculation of  A IV u 12. 
This proof  seems to rely heavily on the smoothness of X whereas the proof  we have 
given is a "lower order" proof  which works in a setting which allows X to be singular. 

3. Approximation by homogeneous maps 

To begin this section we consider the case when the image complex X is a 
geometric cone in RN; that is, if Q e X, )~ e R +, then L Q e X. Under  this assumption it 
is natural  to consider energy minimizing maps u: R " ~  X which are homogeneous of 
some degree 0~>~0. We make the standing assumption throughout  the remainder of  
this paper that X has nonpositive curvature. Thus we assume that u ()~ x ) =  L~u (x) for 
x eR", )~>0. F rom the results of  section two we know that the map u is locally 
Lipschitz on R" and hence if the map u is not  identically zero we must have 0t ~> 1. 

There is a special class of homogeneous maps which we call regular homogeneous 
maps. To describe these we consider an embedding J : R  m--,X which is isometric 
and totally geodesic. This means that d(J(x) ,  J ( y ) ) =  Ix-y[ and the image of a line 
under J is a geodesic in X. (Note that the set J (R m) need not be a plane in RN.) Now 
suppose v: R"- - ,R  m is a homogeneous harmonic map. This simply means that 

v (x)=  (v 1 (x) . . . . .  Vm (X)) where each v i is a homogeneous harmonic polynomial of  a 



198 H A R M O N I C  M A P S  I N T O  S I N G U L A R  S P A C E S  

given degree ~. If  the map u = J o v is homogeneous,  then we refer to such a map u as 

a regular homogeneous map. It is regular in the sense that it can be described in terms 
of  a smooth (in fact polynomial)  map. 

A priori it would seem that regular homogeneous maps would be quite rare. 

However,  the next result implies that they occur in abundance.  

Proposition 3.1. - A homogeneous minimizing map u : R" ~ X is regular i f  it is o f  

degree 1. 

Before we give the p roof  of  this result we need to introduce a new concept. We 

will say that a minimizing map u : B  1 (0)--+ X is intrinsically homogeneous if there is 

~> 1 such that for x ~ B 1 (0) we have d(u  (x), u (0)) = Ix 1~ d(u  (x/[ x [), u (0)), and for 
each xEOB 1 (0) the curve t~--~u(tx) is a geodesic in X. The following result gives us a 
simple criterion which guarantees that a map is intrinsically homogeneous.  

Lemma 3.2.  - I f  u: B 1 (0) --+ X & a minimizing map f rom the unit ball in R" with 

Euclidean metric such that for  each eye(0, 1) we have Ord(0,  cy, Qo, o ) = ~  for  some 

f i xed  ot >~ 1, then u is intrinsically homogeneous o f  degree ~. 

Proof  - Since the domain metric is Euclidean, inequality (2.4) holds without 
the 0 (cy) term. Next observe that since u is Lipschitz we have lim Qo, o = u (0) so that 

o ' ~ 0  
if we first fix cy 0 small we have for cy ~ [~ 1) 

Ord (0, o, Qo, oo) ~< Ord (0, o, Qo, o) 

by the maximizing property of  Q0, o. Since the right hand side is equal to ~, and the 
left hand side is equal to ~ for cy = cy o and is monotone  increasing, it follows that 

Ord(O, o, Q0,o0)=0~ for o ~ [ ~  0, 1). 

Letting cy o tend to zero we see that Ord(0,  cy, u ( 0 ) ) = ~  for all ~ ( 0 ,  1). We now 
apply (2.4)  with Q = u (0) so that the left hand side vanishes. We have 

(k,0 (; Bo,0 ' )2 
d(u, u(O)) r = d(u,  u(O)) 

B o (0) 
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It follows that (O/Or)d(u, u(0)) = [Ou/&c[ a.e., and that for c~e(0, 1), there is a constant 

h (cy) such that (O/Or) d(u, u (0)) = h (cy) d(u, u (0)). Integrating the first equality along 
the ray 7 : (cy, 1 ) ~  R" given by 7 ( r ) =  r~ for some ~ e 0B 1 (0), we find 

L (u (7)) = d(u (r u (0 ) ) -  d(u u (0)) d(u (r u 

In particular it follows that u(7) is a geodesic path in X. We now return to (2.2), 
and observe that since equality holds in (2.4), we must also have equality in (2.2). 
This then gives us 

B ~  (0) 

On the other hand we have E ( ~ ) =  0~cy-1I (0"), SO we conclude that h ( ~ ) =  ~o "-1. We 

may then integrate along a ray from x to x/[ x[ to obtain 

\ \ Ixl 

This completes the p roof  of  Lemma 3.2.  

Proof of  Proposition 3.1 .  - Suppose u : R " ~  X is homogeneous of  degree I. It 
follows immediately that Ord (0, cy, u (0)) is a constant independent of  cy, and in fact 
that this constant  is one. (To see this, observe that equality holds in (2.4) and (2.2) 
while (O/Or) d (u, u (0)) = r- 1 d(u, u (0)).) Since Qo, ~ approaches u (0) as ~ approaches 
0, we have, for cy >/cy0, 

1 ~< Ord (0, % ,  Qo, %) ~< Ord (0, ~, Qo, %). 

Letting % ~ 0 we then have Ord (0)= 1. The homogeneity of  u then implies that 

Ord (0, cy, Q0, ~) is a constant  independent of  cy, and hence this constant is identically 
one. Therefore we have Qo, ,  = u (0) for all cy. Because x ~ Ord (x) is uppersemiconti- 
nuous, at least one for all x, equal to one for x =  0, and homogeneous of  degree zero, 

we have Ord (x )=  1 for all x e R". On the other hand we have, for any k > 0, 

Ord (x, cy, u (x)) = Ord (k x, k cy, k u (x)), 

so we may take Z = cy-1 and conclude 

lim Ord (x, cy, u (x)) = 1. 
~ ---~ oo 

It now follows that for all x~  R" and all cy > 0 we have Ord (x, cy, u (x))= 1. F rom 

Lemma 3 .2  we conclude that u is intrinsically homogeneous of  degree one about  every 

point. It follows that the restriction of  u to any line parametrizes a geodesic in X with 
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constant speed. The fact that equality holds in (2.2) for Q = u ( x o )  on B~(xo) for 
arbitrary cy implies that for each x 0 the function d 2 (u, u (x0)) is a weak solution of  
A~ d 2 (u (x), u (Xo)) = 2 [ V u [z. Since for all x o ~ R" the function x ~ d 2 (u (x), u (Xo)) is 

homogeneous of  degree 2 about  x o, it follows that IV u]Z is homogeneous of  degree 
zero about  Xo for every Xo. Therefore I V u 12 is a constant,  say e 0. Thus it follows that 
x l---+d 2 ( u ( x ) ,  u(0)) has constant Laplacian and quadratic growth. This function is 
therefore a quadratic polynomial.  Since the function is everywhere positive and 
vanishes quadratically at x = 0 we must  have 

71 

d 2 (u (x), u (0)) = ~ gij xi xJ 
i , j = l  

for an n x n symmetric G = (gi). This matrix is positive semi-definite, and we can find an 

or thonormal  basis e 1 . . . .  , e, for R" such that tejGe~=)~i aij with )~>0.  By reordering 
e l , . . . ,  e,, we may assume that )~i>0 for i=  1 . . . .  , m and X~=0 for i = m +  1 , . . . ,  n. 
By change of  coordinates we assume that the x 1, . . . ,  x" are coordinates associated to 
the basis e~, . . . , e ,  so that 

m 

d 2 (u  (x) ,  u (0))  = (xi) 2. 
i = 1  

Let v : R" ~ R m be the linear map given by 

v (x  1 . . . . .  x") = (k l /2  x 2 . . . . .  kid 2 xm), 

and let J : R"  --+ X be given by 

j ( y l ,  . . . ,  y , , )  = u ( k ;  1/2 Y l ,  �9 � 9  XZ, 1/2 ) , , , ,  O, . . . ,  0 ) .  

We then have u = J o v, and 

m m 

d 2 (J (y), J (0)) = ~ )~i ()~i- 1/2 yi)2 = ~ (yi)2, 
i = 1  i = 1  

so that J is an isometric totally geodesic embedding. (Note that J is an embedding 
because J (x)= J (y) implies that the image of  the segment xv is a geodesic with the 
same initial and final point, thus x = y . )  This completes the p roof  of  Proposit ion 3.1.  

N o w  we return to the general situation of  a minimizing map u : ~ ~ X. Given a 
point x o e ~ ,  we will at tempt to approximate the map u near x 0 by a homogeneous 

map. We choose coordinates so that Xo=0 and U(Xo)=0. We next observe that 

Ord (0)= lim Ord (0, cy, u (0)). To see this, note that Ord (0)>~ lim Ord (0, cy, u (0)) by 
~ - - * 0  a - - + 0  
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the choice of  Qo,,.  On the other hand Qo,,  approaches u(0) as cy tends to zero, so 
given s > 0 and % > 0 we have for cy sufficiently small 

Ord (0, ~, Qo, ,) ~< Ord (0, cy o, Qo, ~) ~< Ord (0, ct o, u (0)) + s. 

Since % is arbitrary, it follows that Ord (0)~< lim Ord (0, cy, u (0)) as required. Now 
o'-*0 

let ~ = Ord (0) and fix a normal coordinate chart on B~o (0). For  )~, g >  0, define the 
map u~,, (x )=  g - l u  (X x). This is then a minimizing map from B~-~o  (0) with metric 
g~ (x) = g 0~ x) to the complex g -  1 X = { g -  ~ P : P e X }. Notice that the complex g -  ~ X 
again has non-positive curvature since distances are multiplied by a constant factor. 
We have, by a change of variable, 

(0) ;~ (0) 

" 

Bcr (0) B;~ (0) 

In particular, Ord"~, ~ (0, cy, 0 )=  Ord" (0, Zcy, 0) for any o e (0, Z-~ Cyo). For  any small 
)~>0, let g = ( ; O - " I 0 ~ ) )  ~/z, so that we then have 

f0 d 2 l x (uz, ,, 0) dZoz = 1. 
B I (o) 

Since Ord"~,~(0, 1, 0) tends to 0~=Ord"(0) as )~ ~ 0, we also have 

fB 2 
1 (0) 

for ?~ small. Thus u~, ~ has uniformly bounded energy and then by Theorem 2.4, has 
uniformly bounded Lipschitz constant on compact subsets of  B 1 (0). Thus for any 
sequence {Xi} tending to zero, the corresponding sequence of  maps {u i} has a 
uniformly convergent subsequence, again denoted { ui }, which has Lipschitz limit 
which we denote u.  : B 1 (0) ~ X o where X o denotes the tangent cone of  X at 0. The 
next result shows that u .  is a nonconstant  homogeneous minimizing map of  degree ~. 
We will refer to such a map u.  as a homogeneous approximating map for u at the 
point 0. 

Proposition 3.3. - The map u. is a nonconstant homogeneous minimizing map of 
degree o~. 
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Proof. - To show that u ,  is nonconstant,  we will show that I"~(~)>~o o'a for 
o~(0 ,  l) and constants go, ~,. We are using the obvious notation 

I"i (o) = fo d2~ 1 x (bli, O) d~o~ i. 
B,~ (0) 

Since u~ converges uniformly to u. ,  it follows that u.  is nonconstant.  To derive this 
lower bound, let 0 ~ (0, 1) and r o ~ (0, 1]. We then have, by an obvious estimate, 

r o 

I " ' ( ro ) - I ' i (O)=  i ~d I"(cY)dcY 
30 do 

~< 2 
JB~ o (0)- BO (0) 

4-c fB,o d.2~ - ~ (u~, O) d~9,. X 

(o) (o) 

Using the bound 2 ab ~ g a 2 4- ~3- 1 b 2, we then have 

I ui (ro) - I"  (0) ~< a E "i (ro) + c ~- 1 f0 0 I,i (O) do. 

Since Ord"~ (0, r o, 0) is bounded above, we may fix e and obtain 

;0 ~ I"~ (ro) - I'i (0) ~< I "i (r0) + c I"' (cy) do. 

This implies, since r o ~ (0, 1] is arbitrary, 

sup IUi( r )~<2I" i (0)+c(1-0)  sup I'i(r). 
r e ( 0 , 1 ]  r ~ ( 0 , 1 ]  

Therefore, we may fix 0 close enough to 1 so that c ( 1 - 0 ) =  1/2 and we then obtain 
IUi(l)~<4I'i(0). This gives a lower bound on IUi(0) since I"i(1)= 1 by choice of  Xi, ~ti- 
This already implies that u ,  is nonconstant.  The lower bound I"~(o)>~a 0 o ~1 for all 
o E (0, 1) follows by iterating the previous argument.  

In order to show that u,  is minimizing, we use the fact that there is a bi-Lipschitz 
�9 R N R N  

map, for any G0 > 0, Fi (laT* X) ~ Boo (0) ~ X0 5) Bo o (0) with F~ (0) = 0 and with 
Lipschitz constants of  both Fi and FT* approaching 1, and Fi converging to the 
identity as i-* ~ .  Let v be a minimizing map from Bo(0 ) into X 0 with u ,  =v  on 

~Bo(0 ) for some o~(0 ,  1). We must show that E ( u . ) ~ E ( v ) ,  so that u .  is also a 
minimizer�9 To see this, consider the map F i ~ o v : B o (0) ~ ~-  1 X. Let o 1 ~ (o, 1), and 

observe that for i sufficiently large we have d~Tlx(Ui(X),  F7 l~  smaller than 
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(~1--(Y for all xc0B, (0 ) .  We may then extend the map FF 1 o v to the annular region 
B,t ( 0 ) -  B, (0) so that it agrees with u i on the outer boundary.  We do this by choosing 
for each ~ e S  "-1, the constant speed geodesic 7~:[cy, % ] - - , g f ~ X  which satisfies 
7~ (cy) = F F 1 (v (cy~)) and ?,~ (%)  = u i (% ~). We then define vi: B,~ (0) --> gi- 1X by setting 
v i=F71ov  on B,(0), and vi(r~)=7~(r ) for re[cy, %]. The nonpositive curvature 
condition then implies that the Lipschitz constant of  v~ in B,, ( 0 ) - B , ( 0 )  is bounded 
by a constant depending only on the Lipschitz constants of  u~ and u,.  Since u~ is 
minimizing, we have for any a > 0 

E"' (Cyl) ~< E~i (or1) ~< E (v) + ~:, 

for i large. By lower semicontinuity of  the energy it then follows that E (u,) <~ E (v) on 
B~ (0) as required. This shows that u,  is minimizing. 

Finally we show that for each eye(0, 1) we have lim E"i(cr)=EU*(~). Since 
i --* c~3 

E(v)~<E(u,)  on Bo(0) in the previous argument,  we have for i large 
E"~ (~) ~< E u* (c~) + ~. This implies lim E"~ (or) ~< E"* (or) which, combined with lower semi- 

i ---~ oO 

continuity, establishes continuity of  the energy. In particular, since we have also shown 
that I"~ (or) has a lower bound for ~ e (0, 1), we can now conclude that 

lim Ord "i (0, or, 0) = lim Ord u* (0, or, 0). 
i ---~ oO i - + o O  

In particular it follows that OrdU*(0, cr, 0 ) = ~  for all eye(0, 1). Therefore 
u ,  : B x (0) ~ X o is intrinsically homogeneous of order oz. Since X 0 is a geometric cone 
in R N, the geodesics from 0 are simply Euclidean rays, and it follows that u,  is 
homogeneous of  order ~. This completes the proof  of Proposition 3.3. 

Recall that Lipschitz functions are differentiable almost everywhere. We now 
generalize the notion of  differentiability for minimizing maps into X to exploit the 
intrinsic geometry of X. We have seen that an intrinsically homogeneous map of 
degree 1 is essentially a linear map, so it is natural  to consider these as derivatives of  
maps to X. We make the following definition. 

Definition. - We say that u has an intrinsic derivative at a point x o e f l  if there is 
a minimizing map l: Oxo ~ X, (x0)(f~xo = tangent space) which is intrinsically homoge- 
neous of degree 1 such that 

lim ]V] -1 ]u (eXpx o (V)) - u (Xo) - I(V) I = 0. 
V - - , O  

V e ~ x o  

Note that if x 0 is the center of  a normal coordinate system x 1, . . . .  x", then this 
condition reads 
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lim Ix1-11 u(x)-u(O)-l(x)l=o. 
x - - + O  

It is clear tha t  i f  u has a derivative at x o, then u has an intrinsic derivative at x o, 

and  l = Uxo, the usual  l inear approx imat ion  to u. While the best one can hope for is 

tha t  u is differentiable at a lmost  every x ef~ (true since u is Lipschitz),  we will give 

general condi t ions  on X in later sections o f  this paper  which imply that  u has an 

intrinsic derivative at every point  x E ft. It  is immedia te  tha t  l is unique if it exists 

since two such maps  l, l I would  satisfy 

lim [x1-1 ] l ( x ) - I  l ( x )  I:o. 
x ~ O  

I f  we fix a point  ~ e S"-  l and let Yg (r) = l(r  ~) and '~1, { (r) = 11 (r ~), we then have 

lim r -  1 [Vl, ~ (r) - V~ (r)[ = 0, 
r ---~ 0 

which implies tha t  71, ~ coincides with 7~ (r) for r small, since these are cons tan t  speed 

geodesics. It follows that  l =  l I in a ne ighborhood  of  x = 0. 
Note  tha t  i f  ~ =  Ord (Xo) > 1, then u has an intrinsic derivative at x o because we 

saw in the p r o o f  of  Theorem 2 .3  tha t  for x near  x o we have d(u  (x), u (Xo)) ~< c ] x - x o ]~, 

which implies 

lim Ix-xol 'l,,o<)-u(.,<o)l=o, 
X --+ XO 

so tha t  U'xo = 0. I f  Ord (Xo)= 1, we are not  able to show tha t  u has an intrinsic derivative 

at x o (a l though this will be shown under  addi t ional  assumpt ions  on X in later sections). 
In order  to show this it would suffice to show tha t  there is a unique homogeneous  

approx imat ing  m a p  u ,  which would  then be a nonzero  cons tan t  times l. 

We close this section by establishing the result tha t  a minimizing m a p  which is 
cons tan t  on an  open set is identically constant .  This then implies that  Ord(x )  is 

defined for all x e f~ provided u : f~ ~ X is noncons tan t .  

Proposition 3 .4 .  - I f  ~ is connected, and u" ~ ~ X is a minimizing map which is 

constant on an open subset o f  f~, then u is identically constant in f~. 

Proof. - I f  u is no t  cons tan t  in ~1 but  is cons tan t  on  an open subset of  f l  we 

can find a ball B completely conta ined  in f l  such tha t  u is cons tan t  in the interior 

o f  B, but  for some b o u n d a r y  point  x oe~B,  u is not  cons tan t  in any ne ighborhood  

of  x o. Assuming  wi thout  loss o f  generali ty tha t  u-=0 inside B, we m a y  then find a 

homogeneous  approx imat ing  map  u ,  at x 0 which satisfies u , - 0  in a ha l f  space 

o f  R". In par t icular  by Propos i t ion  3.1 we know tha t  the degree e~= Ord(x0)  o f  u ,  
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is strictly greater than one. Since u ,  is not  constant,  we may find a ball B 1 in R" such 
that u , = 0  in B 1, and there is a point  x l e O B  1 with [ x l ] = l  such that u ,  is not 
constant  in a neighborhood of  Xl. As above we must have O r d ' * ( x 0 >  1, and so if 

1 1 be a homogeneous approximating map for u,  at x 1, we must have u,  we let u ,  
independent of  a direction in R". (If we take x 1 = (1, 0 . . . . .  0), then Oul,/Oxl = 0 a.e.). 

1 restricts to R "-x as a nonconstant  minimizing homogeneous map which Thus u,  
vanishes in a half space. Repeating this argument a finite number  of  times we produce 
a nonconstant  minimizing homogeneous map of R to X o which vanishes on a half 
line. This contradicts the fact from section 1 that energy minimizing maps of  R have 
constant speed parametrization. This contradiction then shows that u must have been 

constant  in f~. This completes the p roof  of  Proposit ion 3.4.  

4. Existence in a homotopy class and uniqueness 

In this section we make the transition from the local problem of minimizers from 
a domain with given boundary  data  to the more global problem of existence of  
minimizers in a homotopy  class. This can be done fairly directly with the help of  
convexity properties of  the energy functional along geodesic homotopies.  The approach 
we follow here was developed in [S]. In particular we will generalize the theorems of  
Eells-Sampson [ES] and P. Har tman  [Har]. A non-simply connected complex X will 
be said to have nonpositive curvature if its universal covering space X has nonpositive 
curvature in the sense we have discussed. Given two Lipschitz maps u 0, u l : M  ~ X 
which are homotopic,  we can construct a unique geodesic homotopy  u t : M  ~ X by 
replacing each parameter  curve of  any given homotopy  by the unique constant  speed 
geodesic with the same endpoints in the same homotopy  class. The convexity result 

which we need is the following. 

Proposition 4 .1 .  - Each map ut: M ~ N is locally Lipschitz,  and f o r  any compact  

domain f~ ~_ M the funct ion  t ~ E n (ut) is a continuous convex funct ion  which is a weak 

solution o f  the differential inequality 

dZ En (ut) 
~ 2 ~  ]Vd(uo, Ul)lZd~. 

dt 2 j f~ 

Proof.  - For  simplicity of  notat ion we assume that M is compact  with boundary  
and Y2 = M. First consider the one-dimensional case in which we have Lipschitz curves 

7o, 7 1 : ( - 6 ,  6 ) ~ X  and a geodesic homotopy  7t for 0~<t~< 1. Assume that s = 0  is a 
point at which both  7o, 71 are differentiable and 7~ is differentiable for almost every 

t~[0, 1]. We are going to do a calculation involving dTt/ds at s = 0  only, so we may 

replace 70, 71 by constant  speed geodesics with the same tangent vectors. Observe 
that at any t for which the original 7t is differentiable, the new curve is differentiable 
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and has the same derivative. Let l(s) be the length of  the curve t~'yt(s), and 
observe that l(s)=d(%(s), 5'a (s)) is a Lipschitz function of  s. Assume that s~--+l(s) is 
differentiable at s = 0, and reparametrize the homotopy  by setting ~ (s)= 7~/~ (~)(s) for 

E [0, l (s)]. Thus z ~ ~ (s) is now a unit speed geodesic. The fact that X has nonpositive 
curvature implies that for any h the function r ~-+ d e (~{~ (h), 7~ (0)) is convex. At any 
for which d/ds ~,~ (0) exists we have 

-- 2. 
lim h -  2 d 2 (~z (h), ~x (0)) = ~ (0) 
h~0  

Since this derivative exists at z = 0  and l(0), it follows that there is a sequence hi 
tending to zero such that the functions z F-+ h7 2 d 2 (~  (t0, ~, (0)) converge uniformly 
on [0, l (0)] to a convex function which agrees almost everywhere with the function 
"c~--~[ (dT/ds) (O) [2. In particular by redefining it on a set of  measure zero we may 
assume that this function is convex. Now by the chain rule we have 

m 

(0)--= -'Cl(O)-2d~f(O)~'Yz/l(O)(O)§ ~ d%~/l (0) (0). 

This may be rewritten in terms of  t: 

dyt  (o)= dY~ (O) + tl (O)- l dl~s ) ~t 

N o w  for any "I;1, "17 2 ~(0, /(0)) with 2;1 <z2 we have d(~,~l (s), ~[x 2 (S))='r2 2 --2; 1. Differen- 
tiating with respect to s we then conclude that 

z=.rl Z 

Therefore we have, for almost every t e [0, 1], 

~st (O)= V (t) + (a + tl (O)- l ~s(O)) ~t (O), 

for a constant  a where V (t).  (03,,/Ot) (0)= 0 for a.e. t. Since 
I v(t)12=l( Jds)(O)12+a2l(O) 2, it follows that Iv ( t ) [  2 is a convex function of  t. 

Therefore we have 

I d'~t(O) = 12 +(al(O)+ [ d/(0)~2 7 ,  =Iv(t) \ / 

and hence it follows that, in the weak sense, 
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~s_s(O) ) ~ > 2 (  d 2 ~s d(7o (s), 71 

Now to prove the result in higher dimensions, observe that the map (x, t ) ~  u t (x) 
is Lipschitz, and hence for almost every line parallel to the t-axis it is differentiable at 
almost every point of  the line. At such points of  differentiability the previous results 
tell us 

d 2 
~t~(lVu, 12)>21Vd(uo, u,)l 2 

in the weak sense. Thus if ~ (t) is a smooth nonnegative compactly supported function 
in (0, 1), we have, for almost every x E M, 

;o ;o llVutl=(x)U(t)dt>2 IVd(uo(X), ul(x))12r 

Integrating and interchanging the order of integration we have 

folE(ut)~"(t)dt~2(IMIVd(uo, bll)[2d~)f~(t) dt. 
This completes the proof  of  Proposition 4.1. 

We now derive two easy corollaries of  this result. The first tells us that in case 
u o = ut on a nontrivial boundary and Uo, u I are nearly minimizing, u o is close to u~. 

Corollary 4.2. - Suppose u o, u~ :f~--* X are Lipschitz maps which agree on 
Of~ (Of~ ~ (25) and are homotopic through maps which are f ixed on Of~. Let E o be given 
by 

E o = inf { E (v) : v : f~ 

--* X Lipschitz, homotopic to u o with f ixed boundary }. 

Suppose ~o>~0 such that E(uo), E (u0~<Eo+ao .  Then it follows that 

f n d  (Uo, c ~o Ul)  d~t ~< 

for a constant c depending only on fL 

Corollary 4.3.  - Suppose X is simply connected. There is a unique minimizing 
map u : f~ ~ X with given Lipschitz boundary data. 
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Proof o f  Corollary 4.2. - Connect  u o to ua with a geodesic homotopy  ut, and 
let E (t) = E (ut). Define ~ >~ 0 by 

Iv d(uo, uO? 

Proposition 4.1 then implies that the function E (t) lies below the appropriate quadratic 
polynomial with leading term ~ t 2. This implies 

E(t)<<, o~t( t -  1 ) + E ( 1 ) t + ( 1 - t ) E ( 0 ) .  

Since E(t)~>E o and E(0), E(1)~<Eo+e  o, it follows that for every t this quadratic 
polynomial has value between E 0 and E o + eo- Setting t = 1/2 we find 

Eo~< 1_o~+ 12E(1)+ I_E(0)~ < 1 - - - ~ + E o + ~ o  
4 2 4 

which implies ~ < 4 ~  o. Combining this with the Poincar6 inequality we then obtain 
the conclusion of  Corollary 4.2.  

Proof  o f  Corollary 4.3. - This is almost immediate modulo a minor technical 
detail; if u o, u 1 are both minimizing and equal to a given Lipschitz map q~ on c3f~, we 
know that u 0, ul are locally Lipschitz but not  necessarily Lipschitz up to the boundary.  
First observe that Proposition 4.1 works for such maps since its proof  involved 

local expression. Thus we have L ]Vd(uo, ul)12dta=0, and therefore integrating a 

d(uo, u l ) =  const. Since Uo = u~ on 0~ and d ( . , . )  is a Lipschitz function it follows that 
U o - u l ,  as required. This proves Corollary 4.3.  

We are now in a position to solve the homotopy  problem for harmonic maps 

into nonpositively curved complexes. 

Theorem 4.4. - Let M be a compact Riemannian manifold without boundary, and 
let X be a compact nonpositively curved complex. Let (p" M ~ X be a Lipschitz map. 
There exists a Lipschitz map u: M ~ X which is freely homotopic to q~ and which 

minimizes energy in the sense that 

E (u) = inf { E (v)" v" M ~ X, Lipschitz, v homotopic to q~ }. 

Moreover, on simply connected regions f~ c M, the lift o f  u to the universal cover 

minimizes in the sense o f  the previous sections. 

Proof. - Let {u i} be a sequence of Lipschitz maps homotopic to q~ with 

E (ui) ~ Eo, where E o is given by 
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E o = inf { E (v) : v Lipschitz, homotopic  to q) }. 

Assume that X is embedded in ~N, and choose a subsequence, again denoted { u~}, 
which converges weakly in H t (M, X) to an H 1 map u. We claim that u is (equal a.e. 
to) a Lipschitz map  homotopic  to q~. First let x o e M and consider a small ball B. We 

may lift the map u~ to the universal cover X. Denote  this lift by u~: B ~ i~. Let v i be a 
minimizing map from B ~ ~2 which is equal to u i on 0B. We then define a replaced 

map u i by 

ui (x) = { n (vi (x)) for x e B 

u~ for x e M - B .  

Since E (ui)~< E (ui), the sequence { ug } is again a minimizing sequence. In particular, 
given any a > 0, for i sufficiently large we have E o ~ E (ui) ~< E (ug) ~< E o + ~. Applying 
Corollary 4 . 2  in the region B we have 

fa d2 (Ui, di) dg <~ c ~. 

On the other hand by Theorem 2.4,  the sequence u~ is uniformly Lipschitz on 
compact  subsets interior to B. Thus a subsequence of  { ~ } converges uniformly in a 
neighborhood of  x 0 to a Lipschitz map u. Since ~ above was arbitrary we have u = u 
a.e., and hence u is a Lipschitz map. The sequence { t)'i } is then a minimizing sequence 
which converges uniformly near x 0 to u. If  we consider the geodesic homotopy  iz, t with 
iv o = q0, ~v 1 = ui, we see immediately that this homotopy  converges in a neighborhood of  

x o to a geodesic homotopy  vt with v o = % Vl = u. If  we consider an overlapping ball, 
since replaced maps are uniformly close on the intersection, the corresponding geodesic 
homotopies  agree. Therefore we have a global geodesic homotopy  from q) to u. The 
fact that the lift of  the restriction of  u to f~ for a simply connected region f ~ _  M 
minimizes is a consequence of  Corollary 4 .3  which shows that the minimizer must 

agree with the lift of  u. This completes the p roof  of  Theorem 4.4.  

5. Some smoothness results for harmonic maps 

For  the main applications of  this work it will be important  to show that harmonic 
maps are better than Lipschitz in certain cases. First note that if u:f~-- ,  X is mini- 

mizing, and for some x o e s u (x 0) is a regular point  o f  X, then the usual regularity 
theory for harmonic maps (see e.g. [S]) implies that u is C ~ in a neighborhood of  x 0. 

On the other hand, it happens in important  cases that even if u (x o) is a singular point 

of  X, the map u may be differentiable at x 0 in a strong sense. Of  course differentiability 
should mean that u is well approximated by a linear map near x o. We have seen 
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previously that for harmonic maps, a map which is homogeneous of  degree 1 is 
essentially linear. Thus it is natural  to use such maps to approximate a general 
harmonic map. In fact, homogeneous maps tend to exist only when the image complex 
is a cone, so we generalize the notion as follows. Let x ~ . . . . .  x" be a normal coordinate 

system centered at x o, and let r=lx I, ~= x/lx I denote polar coordinates in B~o (Xo). 
We will say that a Lipschitz map l: B~o (x0) ~ X is essentielly homogeneous of degree 1 
if there is a nonnegative function X : S"- ~ --, R and an assignment y~ to each ~ e S"- 1 
of  unit speed geodesic in X with y~ (0)= P (where P =  l(0)) such that l(r~)=y~ (X(~)r) 
for x = r ~ e B,o (Xo). In short, a map  is essentially homogeneous of  degree 1 if the 
restriction of  u to each ray is a constant  speed geodesic. Of  course maps of  this type 

exist in great abundance because they are determined by their restriction to 0Bro (Xo) 
and by the assignment of  the value at x 0. Thus given any Lipschitz map 
l: OB,o (Xo)~  X and any point P e X, there is a unique essentially homogeneous map 

of  degree 1 which agrees with l on c~B~o (Xo) and sends x o to P. 
For  a point  x o e ~  and a radius 0 > 0  such that B,(xo)  is compactly contained 

in ~ we consider the error with which u can be approximated by degree 1 essentially 
homogeneous maps. Let l: B, (Xo) ~ X be such a map, and consider the quantity 

d o (u , l )=  sup d (u (x), l (x)). 
x ~ B~ (x0) 

We then define R (Xo, cy) by 

R (Xo, cy) = infd ,  (u, l), 
l 

where the infimum is taken over all essentially homogeneous maps, I:Bo (Xo)~  X, of  
degree 1. Since the constant  map l (x) - u (Xo) is a competi tor  and the map u is Lipschitz 

we have R (x o, o)  ~< ccy. 

Definition. - A minimizing map u:f~ ~ X is intrinsically differentiable on a 
compact  subset K ~ f~ provided there exists r o, c > 0 and [3 e (0, 1] such that 

R(x ,  ~ ) ~ c c y l + ~ R ( x ,  r 0) 

for all x e K, o E (0, ro]. The constants c, [3, ro may depend only on K, ~,  X, and the 

total energy of  the map u. 

Definition. - A subset S _ X is essentially regular if for any minimizing map 
u : ~ ~ X with u (~) _ S, the restriction of  u to any compact  subset of  f~ is intrinsically 

differentiable. 
It is not difficult to see that a closed subset of  the regular set of  X is essentially 

regular; this will be explicitly discussed later in the section. More  generally, an 
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isometrically and totally geodesically embedded submanifold of  any dimension in X 
has essentially regular image. 

The main result of  this section will provide a criterion for a map to be intrinsically 
differentiable near a point. This criterion will say roughly that the map is well 
approximated by an essentially homogeneous map of  degree 1 whose image is "effecti- 
vely" contained in a totally geodesic subcomplex X o which is essentially regular. In 
order to define what it means for a map to be effectively contained in X o we need to 
introduce some terminology. Given a Lipschitz map l: ?B~0 (Xo)~ X together with 
points x ~ B e (Xo) and P e X, there is a unique essentially homogeneous map of  degree 1 

denoted I~, p from B,o (Xo) into X which satisfies lx, p (X)= P and lx, p= l on aB~o (Xo). 
(Note we are assuming that r o is small so that B~o (Xo) is convex.) 

Definition. - Let X o be a totally geodesic subcomplex of  X, and let 
l: B~o (Xo) ~ X be a map which is essentially homogeneous of degree 1. We say that l 
is effectively contained in X o near the point  x o if for any ~ > 0 there exists 8 > 0 such 
that for all x e ~ sufficiently near Xo and all P e X o sufficiently near Po = l (xo)  and all 

(~ ~ (0, to/2 ] we have 

Vol { y ~ B= (x) : BX, (Ix, p (y)) ~ X o } ~ ecy". 

We stress that B x ( . )  is used to denote the full ball in X, so that it follows that 
for any point y e B, (x) such that BX,, (l,,. p (y)) c_ Xo, a maximal simplex in X o which 
contains lx, p(y) is also maximal in X. Thus X o should be thought of  as a top- 
dimensional (typically of  dimension k = dim X) subcomplex of  X. We are now ready 
to prove the main result of  this section. 

Theorem 5 .1 .  - Le t  u : ~ ~ X be a minimizing map. Le t  x o ~ ~ and r o > 0 be such 

that Bro (Xo) is compactly contained in ~ .  Le t  X o ___ X be a totally geodesic subcomplex,  

and let l: Bro (Xo) + X o be an essentially homogeneous degree 1 map with Po = l (xo)  ~ Xo. 
Assume that a neighborhood o f  Po in Xo is essentially regular. There exists 5 o > 0  
depending only on l, ~ ,  X, Xo such that i f  l is effectively contained in Xo near x o and 

sup d ( u ( x ) ,  l(x))~<8o, 
x e Bro (xo) 

then u is intrinsically differentiable in a neighborhood o f  x o. In fact ,  there exists cy o > 0 

such that u (B,o (Xo)) _ Xo. 

P r o o f  - The idea of  the proof  is to compare u at small scales to a minimizing 

map having image in X o. To carry this out, we let H : X ~ X o denote the nearest point 
projection map. The map H is then a distance nonincreasing Lipschitz map. We need 

the following lemma. 
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Lemma 5.2.  - I f  v e i l  i (fL X), then v = H o v  is also in H 1 (~, X), and E (v) <~ E (v). 

Thus i f  9 : ~ - "  Xo is Lipschitz, then the minimizer u o into X which agrees with q~ on 
8~ has image in X o. 

We also need a second lemma. We postpone the proofs of  both of  these until we 

have completed the p roof  of  the theorem. 

Lemma 5.3.  - I f  ui, u z are minimizing maps .from a region f~i into X ,  then the 
function x F-+ d(u I (x), u (x)) is a Lipschitz weakly subharmonic function in ~1. 

Let xt be a point  sufficiently close to x o such that u (x 1) lies in X o and such that 
u (x~) is close enough to u (Xo) so that we may find for any ~ > 0 a number  5 > 0 such 

that 

Vol { xE B~ (xO : BX~ (l~ (x)) ~ X o } <act" 

for eye(0, ro/2] where we have denoted by l I the map lxl,,~xl). By translation of  
coordinates in R kl we may assume u (x t ) - -0 ,  and by multiplying the metric on f~ by a 
fixed constant  factor we may for convenience take r o = 2, and hence both u and l 1 are 

defined on B 1 (Xl). Also note that we have 

(5.1) sup d(u(x),  l 1(x))~<25 o 
x � 9  (Xl) 

provided x 1 is sufficiently close to x o. 
We choose a normal coordinate system x l , . . . ,  x" centered at x~, and for any 

map v : B  1 (x 1)--+ X and any ere(0, 1] we let % denote the dilated map given by 
"v (x) = ~ -  i v (cy x). Thus we have %" Bo- 1 (0) -+ cy- 1 X, and if v is minimizing, then ~v 

is minimizing as a map from (B,-1 (0), (y - lg(cyx) )  to or-1 X. Note  also that the 
metrics or-1 g(cyx) become Euclidean as ~ tends to zero, and hence are uniformly 

controlled (in any C k topology) on B1 (0) while the complex cr-~X has nonpositive 
curvature for each cr and converges to the tangent cone to X at 0 as ~s tends to zero. 

N o w  assume that for some eye(0, 1] there exists an essentially homogeneous 

degree 1 map l 2 : B 1 (0) --+ cr- 1 Xo such that D is defined by 

(5.2) sup d(~u (x), 12 (x)) = D, 
x �9 B 1 (0) 

and for s o m e  ~1 > 0  assume that 

(5.3) sup d(5~(x), ~l I (X))~<51. 
x e B  1 (0) 

We assume D, 61 are small positive numbers; in fact, for a given ei > 0  assume that 

51 is so small that 
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Vol { x 6 B, (0)" B~( 1 x ((~ll (X)) ~ (3-1 X o  } ~ E1 " 

In particular f rom (5.3) we have 

Vol { x ~ B  1 (0) : ct /(X) r O " - 1 X  0 } ~ E 1 .  

We may therefore choose a number  01 e [3/4, 1] such that  

Vol { xE~B01 ( 0 ) : " U ( X ) q ~ C Y - 1 X o  } ~<4E1 . 

Now let " H : c y - I X - - , c y - I X  o be the nearest point  projection map,  and let 
"q) = q-I o "u. We then have 

(5 .4 )  Vol  { x E 0 Box (0) : "q~ (x) # "  u (x) } ~< 4 ~l- 

Let v:B01(0)--*X o be the least energy map  with v=%0 on 0B01(0). Since a 
ne ighborhood of  Po in X o is essentially regular, it follows that  for any 0~(0,  1/4) 
there is a homogeneous  degree 1 map  [2 : B 0 ( 0 ) ~  ~ - i  X o such that  for some [36(0, 1) 

sup d(v(x), [2(x))<cOl+~Rv(O, 1/2). 
x ~ B 0 (0) 

By definition of  R v (0, 1/2) this implies 

(5.5) sup d(v(x), [2(x))<~cO 1+~ sup d(v(x), 12(X)). 
x~B 0(0) xeB1/2(0) 

We now show that  "u is very close to v. To see this we note that  (5.2) and (5.4) 
imply 

fe d("u, v ) d ~ < 4 8 1 D .  
BO1 (0) 

Since the function x ~ d("u (x), v (x)) is subharmonic  by Lemma  5.3,  we have 

sup d(<'u, v) <-% c ~1 D. 
B1/2 (0) 

Combining  this with (5 .5 )  then gives us 

sup d("u, [2)~cE1D+cO 1+~ sup d(v, 12) 
B 0 (0) B1/2 (0) 

~(C~.I-J-cOI+[~-]-Cgl 01 + [3) D. 

This clearly implies 

(5.6) sup d("u, 12) ~ (C~I + C 01 + [3) s u p  d("u, 12)" 
B 0 (0) B 1 (0) 
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On the other hand we have, from (5.2) and (5.3) and the triangle inequality, that 
for xe0B1 (0) 

d(V, (x), (x)) + 61. 

Since ~ 1 ( 0 ) =  ~ ( 0 ) =  0, we have  f r o m  (5.2) 

d("/1 (0), 12 (0)) ~< D. 

The fact that X has nonpositive curvature then implies that for any x e B  1 (0) we have 

d ( ~  ( x ) ,  l 2 ( x ) ) ~ D - ~ l x [  61 ,  

so that, in particular, 

sup d(~ /2) ~< D + 61 0. 
B o (0) 

Combining this again with (5.2), we finally have 

(5.7) sup d(~ ~ ~< 061 + 2 D. 
B 0 (0) 

We now apply the previous argument for varying choices of  o. First take cy = 1 

and l 2 = l 1. Set 1l = ['2 and rewrite (5.6) as 

(5.8) sup d(~ l / ) ~ ( C g l 0  l+c0t~) sup d(u, ll). 
B 1 (0) B 1 (0) 

On the other hand, (5.7) becomes 

(5.9) sup d(~ ~ <~ 61 + 2 0 1 
B 1 (0) 

sup d(u, /1). 
B 1 (0) 

Set 16 = 61 + 2 0-1 Do where we set D O = sup d(u, ll). Assuming we have defined 
B 1 (0) 

1 l, 2 1 , . . . ,  il, we set 

D i=  sup d(~ il). 
B 1 (0) 

Assume by induction that for integers up to i(i~> 1) z6 has been defined, and that we 

have the inequality 

(5.10) sup d(~ ~ <~ i6. 
B 1 (0) 
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N ow apply the previous argument  with cr = 0 i, l 2 ----i l. This can be done provided i8 is 
sufficiently small depending on el. Set i+1/=/2 and observe that  (5.6) then may be 
written 

(5.11) D i + l  ~ ( C E  1 0 - 1  + C 013) Di ,  

while ( 5 . 7 )  yields 

(5.12) sup d(~ 0 i+1 l l )~<iS+2 0 - 1 D  i. 
B 1 (0) 

Therefore we may  take i+ 1S to be 

(5.13) i + l S = i S 2 0  - 1 D  i. 

We now f ix  0 so small that  r  in (5.11), and we then fiX~x so small that  
ce  1 0 -1 = 1/4 in (5.11) so that  we obtain Di+ 1 ~< 1/2D i provided i8 is sufficiently small. 
Assuming 1 6 , . . . ,  kS are small enough we then obtain 

Dj~<2-JDo,  j =  1 , . . . , k +  1. 

Put t ing this into (5.13) then gives 

j+ 1S~jS--[-2 0 - 1  2-JDo,  j = 1, . . . , k +  I. 

In particular we have 

k 

k + l S ~ < x S + 2 0 - 1 D o  ~ 2 - J ~ < l S + 2 0 - 1 D o  . 
j = l  

Recalling the definit ion of  1 S w e  have k+IS~<SI + 4 0 - 1 D o ,  but  by (5.1) we have 
D o ~< 2 So, and hence finally 

k + I S ~ S 1 - ] -  8 0 - 1 S O  . 

Thus if 6o, S 1 a r e  sufficiently small we may  apply this argument  for any k, and 
conclude f rom (5.12) 

sup d(~ ~ ~< S + 8 0 -  1 SO 
B 1 (0) 

for all nonnegat ive integers i. Now if cy~ (0, 1], we choose the nonnegative integer i 
so that  cre (0 i+ 1, 0i], and we conclude 

(5.14) sup d(u, /1)~(0  -1 ~ 1 q - 8 0 - 2 S 0 )  O ". 
Br (Xl) 
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This then implies that most points in B, (Xl) are mapped by u into the interior of  X o. 
Note that Xl was an arbitrary point near Xo such that u ( x , ) c X o .  If for cy o>0,  
u(B~o (Xo))~ X o, then we can find a ball B _  b/-l(XNXo)(-'] B~o (Xo) such that at 
least one point x I in c~B maps to X o. By the choice of  x 1 we have, for every c h >0,  a 
substantial fraction (at least 1/2) of  B~(xx) mapped into the closure of  X - X  o. This 
contradiction shows that for some cr o > 0 we have u (B~o (Xo)) ___ X o, we have completed 
the proof  of Theorem 5.1. 

Proof of Lemma 5.2. - If  we have some vector V at a point P e X such that the 
directional derivative D v H exists, where FI is considered as a vector valued function, 
then we have [DvH[<~[V [ since H is distance decreasing. Therefore we may use 
Lemma 2.1 to argue that for almost every point x e f~ we have 

~H~ 0z, 
Oxj[<<'[&~cj ' 

j =  1, . . . , n .  

In particular we have E(I-Iov)~<E(v). The last statement of  Lemma 5.2  follows 
immediately. 

Proof of Lemma 5.3. - First observe that if C _ X is a closed convex set, then 
the function x~-+d(u(x),C) is weakly subharmonic This was shown in 
Proposition 2 .2  for the case that C is a point. (Note that IvulZ>_-IVd(u, P)L so 
Proposition 2 .2  implies Ad(u, P)~>0.) The general case is an easy modification of  
this, and we omit the proof. Consider now the function g : X  x X--+ N given by 

g(P1, Pz)=d(P~ ,  P2). We take the product  metric on X x X, and we claim that g is a 
multiple of  the distance function to the convex set C__c_ X x X  where 
C = {(P, P ) : P e X }  is the diagonal in X x  X. To see this we observe that C is the 
fixed point set of  the isometry F given by F (PI, P2)= (P2, P1); so that if (Q, Q) is 
any point of  C, then for any path 7 from (Q, Q) to (P~, P2) the path 7 U F (~,) suitably 
oriented is a path from (P1, P2) to (P2, P1). In particular we have 

L(y)~> ~d((P1, P2), (P2, P1)) = X/2d(Pl'2 P2), 

and this is achieved when Q is the midpoint  of  the geodesic from P1 to P2" Therefore 
we have shown 

g(P1, P2 )=x /2d ( (P~ ,  P2), C). 

It then follows that the function x~--+d(u~(x), U2(X)) is weakly subharmonic, as 

required. This completes the proof  of Lemma 5.3. 
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We now present two applications of  the previous theorem. We first show that a 
minimizing map is strongly differentiable in a neighborhood of a rank k (=  dim X) 
point provided a mild regularity condition is satisfied for X. First recall that if 
Ord (Xo)= 1 for some x o e ~,  then there exists a degree 1 homogeneous approximating 
map u," Dx o ~ Xu (xo)- This map, by Proposition 3.1, is a linear map to a flat totally 
geodesic subcomplex of X, (~o)" The rank of u,  is the dimension of this flat subspace. 
If  a neighborhood of  u (Xo) is isometric to a neighborhood of  the origin in the tangent 
cone X, (~o), we then have a flat totally geodesic subcomplex of  X containing the image 
of  u ,  locally. This happens for example if the simplices in X are standard Euclidean 
simplices. In general we say that u ,  is a good  homogeneous approximating map if 
there exists a smooth Riemannian metric go given in normal coordinates on the ball 
B,I(0) _~ Nk and an isometric totally geodesic embedding i: B,~(0)---,X with 
i (0) = u (Xo) such that the image i (B,1 (0)) is contained in a totally geodesic subcomplex 
X o whose tangent cone at u (x o) is the image of  u,.  We now state a theorem. 

Theorem 5 .4 .  - I f  u : ~ ~ X is a minimiz ing map,  and x o ~ f2 is a p o & t  at which u 

has a good homogeneous  approximat ing  map  o f  rank  k = dim X, then u is intr&sically 

dif ferentiable in a neighborhood o f  x o. In fac t ,  the map  u in a ball B,o (Xo).for some 

cy o > 0 is given by u = i o v where v : B~0 (x  o) ~ B1 (0) ~ ~k is harmonic with respect to 

the metr ic  go described above. 

Proof.  - Recall that u , = i o o l o  where io:~k--* Xu(xo ) is an isometric totally 
geodesic embedding of  the Euclidean space ~k, and l o : flxo -~ ~k is a linear map of  
rank k. On a small ball B~l(Xo) we define / :B~l (Xo)-~X by l = i o l o  where 
B~(Xo) _~ D is identified with the ball of  radius o I centered at 0 in Dxo via the 
exponential map. The map l is then essentially homogeneous of degree 1. We claim 
that l is effectively contained in X o. To see this, let X 1 be the subcomplex of  X o 
consisting of those simplices which are faces of  a simplex of  X which is ,lot in X o. 
Since no k-simplex can lie in X1, it follows that X 1 is a subcomplex of codimension 
at least one in Xo. Thus l -  1 (X0  is a subset of  B~I (Xo) consisting of  a finite number  
of compact  smooth submanifolds with piecewise smooth boundary,  each having codi- 
mension at least one. (Note that n~>k.) It is then immediate that 1 is effectively 

contained in X o. 
We next observe that a smooth manifold is essentially regular. For  suppose we 

have a harmonic  map v:B~o (Xo)~ N k with bounded energy. We may then assume 
that the image lies in a normal coordinate ball with coordinates u ~ . . . . .  u k centered 
at U(Xo). We also assume that x l , . . . , x  n are normal coordinates centered at x o. By 
Taylor 's theorem we have v (x) = l ( x )  + Q (x), where Co, given by 

Co =- s u p  [xl-21Q(x)l, 
B~o(O) 
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is bounded in terms of  the second derivatives of  v. Since the second derivatives of  a 
harmonic map are bounded in terms of  the energy (and the manifolds), we have 

sup Iv-l[<....Co(y20-o z sup Iv-l[<~Cl ~2 sup [v- l l ,  
B~ (0) B60(O) B~0(0) 

with cl depending only on the energy of  u, the manifolds, and c~ 0. Since we have 
chosen normal coordinates in both  domain and range, t is essentially homogeneous of  

degree 1, so we have 

R(xo,  0-)~<c~ 0 -2 sup Iv-l] .  
Bcso(0) 

N o w  if l 1 "Boo (x0) --+ N is any essentially homogeneous map of  degree 1 with image 

near the image of  v, then we have for cy 1 < ~o 

sup d(l, ll)<~c0-? 1 sup d(l, ll), 
B~o(O) B~I(O) 

because both l, l I are essentially homogeneous of  degree 1 and our metrics are nearly 

Euclidean. N o w  we have 

sup d(l, l l)~ sup d(v, ll)+ sup d(v, l) 
B~I(0) Bc~0(0) B61(0) 

~< sup d(v, ll)+ccy 2 sup d(v, l). 
B~0(O) B(~o(O) 

Therefore we have 

sup d(v, I)~ sup d(v, ll)+ sup d(l, ll) 
B~0(0) B~0(0) B~o(O) 

~<(1 + c 0 - i * )  sup d(v, /1)+CO'1 sup d(v, 1). 
Boo(O) B~o(O) 

Now,  taking cy 1 so that c0-1 = 1/2, we have 

sup d(v, l)<~c sup d(v, 11). 
B~o(O) Boo(O) 

Since l 1 was an arbitrary essentially homogeneous degree 1 approximation to v, we 

have finally shown 

R (Xo, 0-) ~< ccy 2 R (x 0, cy 0) 

as required. 
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Since u ,  is a homogeneous approximating map for u at Xo, for any given 6 o (take 
the 6 o determined in Theorem 5.1),  there exists a small radius 9o > 0 such that 

sup [ g o ' U ( p o X ) - U , (  x)[<~6o. 
x e B  1 (0) 

This implies 

sup d(u  (x), [(x))  <~ 6 o 
x �9 BO0 (0) 

where l = i  o (go lo). By Theorem 5.1 we now conclude that u is intrinsically differen- 
tiable near x o, and the image of  a small ball B,, o (Xo) under u lies in X o. This completes 

the p roof  of  Theorem 5.4.  
The final result of  this section will deal with the case dim X = 1. We now state it. 

Theorem 5 .5 .  - I f  dim X = 1, then X is essentially regular. Moreover,  i f  u : f~ ~ X 

is a minimizing map, there exists a constant ~> 0 depending only on n such that fo r  all 

x o ~ ~ we have Ord (Xo) = 1 or Ord (Xo) >~ 1 + ~. 

Proof. - Since dim X = 1, any point  x 0 s f~ where Ord (Xo) = 1 has a neighborhood 
in which u is intrinsically differentiable (in fact, defined by a smooth harmonic function 
to a geodesic of  X). In particular we note that the set of  points x where Ord (x) = 1 is 

an open subset, denoted fl , ,  of  f~. 
In this case one can see explicitly that if Ord (Xo)> 1. then Ord (xo)~> 1 + ~. To 

see this, first observe that if u (xo) is not  a vertex of  X, then Ord (xo) >~ 2 since u is a 
smooth map near x o. Let ~t = O r d  (xo), and assume that u (x o) is a vertex of  X with at 
least three edges emanating from Po = u (Xo) (there cannot  be one edge by the maximum 
principle, and if there are only two, then Ord (Xo) >/2 as above). Consider any homoge- 
neous approximating map u , :  N"--, Xpo. If  we choose an edge e emanating from Po 
and introduce an arc length parameter  s along e which is zero at Po, then on the 
open region Oe = { x e ~": u,  (x) e e -  { Po }} the function h e = s (u, (x)) is a harmonic 
function. Of  course O e is the cone over a domain D e ___ S " - ' ,  and he is homogeneous 
of  degree a in Oe- It follows that the restriction of  h e to D e is a first Dirichlet 
eigenfunction of  the domain De, and in particular we have )~ (D e) = ~ (~ + n - 2). Since 
D e is non-empty for at least three distinct edges (otherwise Ord(xo)>~2 as above), 
there is an edge e for which D e is nonempty  and Vol(De)~< 1/3 Vol(S"-1).  Standard 
results about  eigenvalues then imply that there exists a number  6 , > 0  such that 

)~1 (De)~>n-1  + 6,. It then follows that ~ >  1 + ~ for a fixed constant ~ depending only 

on n. 
To show that X is essentially regular, we must show that for any minimizing map 

u : f~ -* X and any compact  subset K _~ ~,  there exists ro, c, [3 such that 
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R(x  o, c~)~<c~l+~R(xo, ro) 

for all x 0 e K .  Let r 0 be such that Bro(Xo) is compactly contained in ~.  It dear ly  
suffices to show that there exists 0e(0 ,  1) such that for all eye(0, %] and all x o E K  
we have 

(0cy)- 1 R (x 0, 0or) ~< (1/2) or- 1 R (Xo, or). 

This can be proved by contradiction. If this were not true there would be for any 
0 e (0, 1) sequences { xi }, { cy, } both of  which converge to limits x c  K, S e [0, r o] such 
that 

( 0 % ) -  1 R (xi, 0oi) > (1/2) o f  i R (xi, %). 

We then rescale the maps in the usual way by setting u~ equal to 

b/i (Y)  = ~.l/- 1 ~/i (O'i X)  

for x e B  1 (0) so that sup d(u  1 (x), ui(O))= 1. We then have 
B 1 (0) 

0 -  * R", (0, 0) > ( t /2)  R", (0, 1). 

We may assume by taking a subsequence that { u i } converges uniformly to a mini- 
mizing map u: B 1 (0)--+ X where the target complex is either a dilation of  X or the 
tangent cone Xp, where P = lim ui (xi). Now Ord~-(0) = 1 or Ordr >~ 1 + ~, and in the 
first case Theorem 5.1 implies that for i sufficiently large the map u i is regular in a 
fixed neighborhood of 0. This contradicts the previous inequality if 0 is small enough. 
In case O r d r  1 +~, then we know from the proof  of Theorem 2.3 that we 
have 

sup d (u, u (0)) ~< ccy ~ sup d (u, u (0)). 
B o (0) B 1 (0) 

This implies, by ah easy argument,  that for 0 small depending on c we have 

0 - 1 R';(0, 0) ~< 1/4 R~(0, 1), 

a contradiction. This completes the proof  of Theorem 5.5. 

6. Special structure of harmonic maps into building-like complexes 

In this section we consider complexes X which satisfy a very special hypothesis 
which we describe shortly. In a certain sense these are higher dimensional generaliza- 
tions of trees. For  us the important  property which a tree has is that two adjacent 
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edges lie in a geodesic (the union of  the two closed edges). We assume that the 
simplices of  X are Euclidean simplices; that is, images under a linear t ransformation 
of the standard Euclidean simplex. We make the following definition. 

Definition. - We say that a nonpositively curved complex X k is F-connected if 
any two adjacent simplices are contained in a totally geodesic subcomplex X o which 
is isometric to a subset of  the Euclidean space Rk. 

The most important  F-connected complexes are the locally finite Euclidean 
buildings of Bruhat and Tits (see [BT]). We first want to show that F-connected 
complexes are essentially regular, thus generalizing Theorem 5.5. We first need two 
elementary lemmas. 

L e m m a  6 .1 .  - I f  X1,  X 2 are essentially regular complexes, then so is X 1 x X2" 

Proof. - This follows from the fact that a map u = (Ul, U2)" ~'~--~ X 1 X X2 has 
energy E ( u ) = E ( u O + E ( u 2 ) .  Thus u is minimizing if and only if both tq, u2 are 
minimizing. Thus ul, u 2 are intrinsically differentiable on any compact  subset of  ~,  
and hence so is u. This proves Lemma 6.1. 

The next result enables us to find essentially regular totally geodesic subcomplexes 
which contain any given flat effectively. Since we are interested only in local construc- 
tions near a point Po~X,  and since a neighborhood of  Po in X is isometric to a 
neighborhood of  the origin in the tangent cone Xpo, we may replace X by its tangent 
cone XP0. The fact that X is F-connected then implies that any two simplices (actually 
simplicial cones) in Xa0 are contained in a totally geodesic subcomplex isometric to 
the Euclidean space ~k. Let J ' ~ " ~  Xpo be an isometric totally geodesic embedding 
for some m with 1 ~< m ~< k. We may assume that J (0)= 0. If  we choose a point x ~ 0, 
x~  ~"  such that neither x nor - x  lie in the J -1  ( (m-1) -ske le ton  of  Xao ), then any 
k-dimensional flat F which contains both x and - x  must contain the full image 
J (~"). This is because J -  ~ (F) contains cones over a neighborhood of both x and - x, 
and therefore contains the convex hull of  these cones which is ~". It may happen 
that J (~")  is contained in several distinct k-dimensional flats. We need the following 
result. 

L e m m a  6 .2 .  - Le t  X o be the union o f  all k-dimensional  j la t s  in Xpo which contain 

J(R").  The subcomplex  X o is totally geodesic and is isometric to R " x  X ] - "  where X 1 

is an F-connected complex o f  dimension k - m. I f  L : R" ~ R "  is a linear map o f  rank m, 

then l: R " ~  XPo, given by l = J  ~ L, is effectively contained in X o. 

P r o o f  - Let F 1 , . . . , F  r denote the k-dimensional flats in XPo which contain 
J (R"). Let I/: R* ~ Xp0, i=  1 , . . . ,  r, denote isometric embeddings to the F i normalized 
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so that I i (0)= 0 and I i (R" )=  J (R"), where we denote by R" __c_ R k the plane spanned 
by the first m standard basis vectors; i.e. 

Rm= { (.~, 0 ) ' x = ( x '  . . . .  ,xm), xJ6R f o r j  = 1 , . . . , m } .  

Similarly we denote by R k-m ~_ R k the orthogonal complement 

R k-m= {(0, .~ ) : .~=(Xm+' , . . . ,xk) ,  x J E R  f o r j = m +  1 . . . .  ,k}.  

We may further normalize our isometrics so that I1, . . . ,  I, and J are identical on R m 
since this can be achieved by right composition of  each I i with an orthogonal 
t ransformation of  R m. Each map I i induces on R g a cell decomposition by simplicial 
cones. We may describe X 0 as the disjoint union of  r copies of R g where ceils Xi, ]~j 
in the i-th, j - th decompositions are identified if I i (Xi) = Ij (E j). By taking the intersection 
of  cells with R", R k -"  each cell decomposition of  R g induces a cell decomposition of 
both R m, R g-m by simplicial cones. Since all of  the embeddings agree on R m, the cell 
decompositions of  R" all coincide, so we may speak of the induced cell decomposition 
of R". 

Now suppose we have two points (x, x--), (y_ y--) in R k such that I i (.}-, x ) =  I t (y, y). 
Since the point (x, 0)~ R" is the nearest point of  R" to (x, x), and (y, 0) is nearest 
in R" to (y, y) and the maps Ii, Ij coincide on R", we must have x =y .  It also follows 
that the image of  the closed convex hulls of  R" U { (-}-, ~{) } and R m k3 { (y, ~) } under I i 
and I t respectively must  coincide in X. In particular we have I i (0, .~)= Ij (0, y). We 
form a complex X 1 of dimension k -  m by taking the disjoint union of the r copies of  
R k - m  with their induced cell decompositions and identifying points in the i-th and 
j- th copy if their respective images under I~ and I t coincide. The previous argument 

k - m then shows that X o is isometric to R " •  X 1 . 
We now show that any two cells in X o are contained in some F t. This implies 

that X o is totally geodesic since the geodesic connecting two points P1, P2 ~ Xo lies in 
any Fj which contains P1 and P2, and hence lies in X o. It also obviously implies that 
X 1 is F-connected. Suppose we have a pair of  cells in X o which we may assume to be 
k-dimensional without loss of generality. We may think of  these cells as Z~, E~ in two 
of  the cell decompositions of R k given by I~, Ij respectively. Fix a nonzero point 
(-~-o, 0 ) ~ R "  such that both (x o, 0) and ( - x  o,0 ) are interior to m-cells in the cell 
decomposition of  R m. Let C~, C t be the closed convex hulls of  R" U Ei, R" k) gj  respec- 
tively. Choose points yi, yj in the interior of  C i, C t respectively such that both Yi 
and yj are interior to k-cells E ~ 1 i, Ej respectively. Assume also that Yi is close to (-{:o, 0) 
and y~ is close to ( - x  o, 0). It follows that the m-cell of  R" containing (Xo, 0) is a face 
of Z 1 1 i, and the m-cell containing ( - x  o, 0) is a face of Z t . Let F be a k-dimensional 
flat totally geodesic subcomplex of  X which contains Ii(Z~) and I~(Zx). Since F 
contains neighborhoods of  a pair of  antipodal points of  J (R m) it follows that F 

contains J (R"), and hence F - F ~ o  for some i o with 1 ~< i o ~<r. From the choices we 
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have made, F~o must contain some interior point of  both I~(Z~) and Is(Es. ), and 
therefore F~o contains both cells. This proves the desired statement. 

Finally, suppose l =  J o L : R" ~ XPo where L : R" ~ R m is linear of  rank m. We 
want to show that l is effectively contained in X o. To see this, let X 2 be the subcomplex 
of  R"  (with the above cell decomposit ion) consisting of  those cells of  R m whose image 
under J is contained in the closure of  some cell of  X which is not in X o. As in the 
p roof  of  Theorem 5.4,  if we can show that X 2 has codimension at least one in X o 
then the result follows. Let E be any m-cell of  R",  and let Z 1 be a cell of  X which is 

not in X o such that J ( Z ) _  Z 1. Without  loss of  generality we may assume E~ is k- 
dimensional. Take an interior point (Xo, 0 )e  Z such that (-,~-o, 0) is interior to some 
cell 's of  R". Let Z 2 be a cell of  X which contains J (]~) in its closure. Then any k-flat 

of  Xp o which contains both E~ and Z2 automatically contains all of  J(Rm). This 
contradicts the fact that Z~ is not in X o. We have completed the proof  of  Lemma 6.2.  

Observe that if Poe  X, then a neighborhood of  Po is isometric to a neighborhood 
of  the origin in the tangent cone XPo. In fact, if we define St (Po) to be the union of  

all simplices which contain Po in their closure, then St(Po) is a totally geodesic 
subcomplex of  X which is canonically isometric to a neighborhood of  the origin in 

Xpo. Note  that if Po is a vertex, then St (Po) is the star of  Po. Thus if X o is a totally 
geodesic subcomplex of  Xpo, then we get a totally geodesic subcomplex, which we will 
also refer to as X o, of  St(Po) which is isometric to a neighborhood of  0 in X 0. 
We now prove an important  result concerning minimizing maps into F-connected 
complexes. 

Theorem 6.3.  - Let  X be an F-connected complex. The following three properties 

hold." 

(i) For any positive integer n and any compact subset K o of  X, there exists ~> 0 

depending only on K o and n such that, .for any minimizing map u : ~ " - ~  X with 

u (~)) ___ K o, we have, for  all x o ~ ~,  either Ord (Xo) = 1 or Ord (Xo) ~> 1 + s. 

(ii) Let u : ~ - ~ X  be a minimizing map, and let X o ~  with Ord(xo) = 1. There 

exists a totally geodesic subcomplex X o o f  X ,  ~xo) which is isometric to R " •  X] " .for 

some integer m with 1 <~ m <~ min { n, k I and some F-connected complex X 1 o f  dimension 

k -  m such that u(B~o(Xo))_~Xo for  some CYo>0. Moreover if  we write 

u = (ul, u2) : B, o (x) ~ R m • X 1, then u I is a harmonic map o f  rank m at each point o f  

B,o (Xo) and Ord"2 (Xo) > 1. 

(iii) The complex X is essentially regular. 

Proof  - To prove (i) we first observe that the tangent cone to X at a point P is 

the cone over the link of  the open simplex which contains P. Therefore, there are 
only a finite number  of  cones which appear as tangent cones for points P in a compact  

subset K o of  X. Thus to prove (i) we may restrict attention to a single cone XPo for 
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some fixed P o s K o .  Suppose we have a sequence of  homogeneous harmonic maps 
Cui}, u~'R"--.Xpo such that u~ is homogeneous of  degree ~i with ~ i > l  and 
lim cz~ = 1. We may normalize ui so that 

i - - + ~  

sup ]u i ( x ) ] = l .  
x ~ B  1 (0) 

With this normalization a subsequence of  {ui} again denoted {u i} converges to a 
map u: R" --. XPo which is homogeneous of  degree 1. Thus by Proposit ion 3.1 there 
exists an integer m with 1 ~< m ~< min { n, k } such that u = J o L where L" R" ~ R"  is a 

linear map of  rank in and J : R "  ~ Xp0 is an isometric embedding. By Lemma 6 .2  the 
map u is effectively contained in a totally geodesic subcomplex X o of  Xpo which is 
isometric to R"  x X 1. By Theorem 5.1 we have the image of  u i contained in X o for i 
sufficiently large. It then follows that the projection of  u i to R"  is a harmonic map 
which is close to a linear map of  rank m. Therefore ui must be linear (since it is 
homogeneous harmonic of  degree less than two), and we have a contradiction. This 
establishes property (i). 

Property (ii) is an easy consequence of  Lemma 6 .2  and Theorem 5.1. To establish 
(iii) we work by induction on k. For  k =  1 the result was established in Theorem 5.5. 
Assume that k~>2, and that all F-connected complexes of  dimension less than k are 
essentially regular. We first prove the weaker result that for any x o e FL there exists 

r o > 0 such that for c~ ~ (0, r0] 

R(xo,  cr)~<c~l+~R(xo,  ro) 

for constants C, r o, [3 depending on the point x o, the energy of  u, and the spaces 
f2, X. If  we can prove this, then the same compactness argument used in Theorem 5 .5  

will imply that u is intrinsically differentiable on any compact  subset of  ~2. There 
are two cases to consider. First suppose O r d ( x o ) > l ;  then from (i) we know that 
Ord (Xo) ~> 1 + ~. This implies, by the p roof  of  Theorem 2.3,  that 

sup d(u(x), tt(Xo))<~e~ 1+'~ sup d(u(x), U(Xo) ) 
x ~ B~ (xo) x ~ Bro (xo) 

for some constant  c and r o > 0. This easily implies the desired decay on R (x o, cy). The 
other case we must consider is the case Ord (x o)= 1. In this case the result follows 
immediately from (ii), Lemma 6.1,  and the inductive assumption. This completes the 

p roof  of  Theorem 6.3.  

It will be important  for our application to do smooth differential geometric 

calculations for our harmonic maps. To make sense of  this we need to refine the 

notion of  intrinsic differentiability. This we now do. 
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Definition. - A point x o e f~ is a regular point of u if there exists cy o > 0 and a 

k-flat F __g_ X, ~:~o~ such that u (B,o (xo)) c_ F. 

We see in particular that the map u is actually a real analytic map to the Euclidean 
space R k in a neighborhood of  a regular point. We then let ~ ( u )  denote the open 
subset of  f~ consisting of all regular points of  u, and we let Oo (u) denote the singular 
set, 50 (u)= f l -  ~, (u). We now prove the following result, 

Theorem 6.4. - Let u be a minimizing map f rom ~ to an F-connected 
complex X. The Hausdorf f  dimension o f  5 e (u) is at most n - 2 .  For any compact sub- 
domain ~ o f ~  there is a sequence o f  Lipschitz functions {q,i} with q,i==-O in a 
neighborhood o f  5 p ~ ~1, 0 <~ qti <<- 1, and ~i (x) --+ 1 for  all x ~ f~l - ~ such that 

lim f n l V V u l  J V ~ , ] d g = 0 .  
i --+ oo 

Proof  - We first observe that the singular set 5 P may be written as a union 
5 e = 5eo O .  �9 �9 t._) 5Pko where k o = min { n, k -  1 } and 5Pj consists of  those singular 
points having rank j, where 
Theorem 6.3 if Ord (Xo) = 1, 
rank of  u at x o is the rank 

the rank of a point x o is the number m appearing in 
and the rank is zero if Ord (Xo)> 1. In other words, the 
of  the linear approximation to u near x o (which exists 

by Theorem 6.3). We will show first that dim 5 f o ~ n - 2 ,  and the result for 5 ~ 
will follow from an easy inductive argument  based on Theorem 6.3. Let 
5>0 (u) = { x o E f~" Ord (Xo) > 1 }, so that 5g o (u) ~ 5>0 (u). We deal with the larger 
set 5>o. The proof  for 5>o is an application of the basic argument of H. Federer [F2]. 
For  any subset E _ f~ and any real number  s e [0, n] define an outer Hausdorf f  measure 

~ ,  ~(.) by 

~ s  (E) = inf { ~ r~. all coverings { B,i (xi) }~= of E by open balls} 1 
i = 1  

The value of J~s (E) is not important,  and bears little resemblance to the s-dimensional 
measure of a set; however, it is clear that the Hausdorf f  dimension of  a set E is given 

by 

dim E = inf { s: ~ s  (E) = 0 }. 

We note the following result. 

Lemma 6.5.  - I f  { ui } is" a sequence o f  minimizing maps into a compact subset 
o f  X f rom B1 (0) c_ R" equipped with metrics ig converging in the C z norm to a limit g, 
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then a subsequence o f  { u i } converges uniformly on compact  subsets o f  B x (0) to a 
minimizing map u : (B 1 (0), g) ~ X, and we have 

3~s (~o  (U) O Br (0))/> lim ff~ (5~o (u~) O B, (0)) 
i --+ oo 

f o r  all r e  (0, 1). In particular,  dim(5~o (u))>~ lim dim ( ~ o  (ui)). 
i ~  oo 

Proof.  - Since ~ o ( U ) N  B~(0) is compact  we may  consider finite coverings, 
N 

So (u) N B, (0) c_ U B,~ (x j). For  any ~ > 0 we have 
j = l  

~ 0  (Ul) ('~ Be (0)  ~ { X e 8 1  ( 0 )  : Dist (x, 5~ o (u) U) B ,  ( 0 ) )  < e } 

for i sufficiently large. This follows immediately f rom the fact that  if 
x i e fie o (ui) O Br (0), and x i ~ x, then 

u i ~ u lim Ord (xi)-.~ Ord (x) 
i ~ a o  

and hence by par t  (i) of Theorem 6.3 ,  x e  5~o(U) ~ B r ( 0 ) .  The conclusion of  
Lemma  6 .5  now follows. 

We now show that  d im 5~o (u) ~< n - 2. Suppose s e [0, n] with Jf~ (~o  (u)) > 0. Then 
by [F1, 2 .10 .19]  we may find a point  Xoe~) such that  

lim r Yf~ (5~o (u) ~ B~ (Xo)) >~ 2-~. 
o ~ 0  

Let u , : R " ~ X , ~ x o )  be a homogeneous  approximat ing map  for u at x o. Let 
0~=Ord"(xo), so that  u ,  is homogeneous  of  degree ~, and since x o e S  o (u) we have 

~> 1 + ~ by Theorem 6.3.  We may apply Lemma  6 .5  to suitable rescalings { ui } of u 
near x o, recalling that  maps  to a ne ighborhood  of u (Xo) may  be thought  of  as maps  
to the f i x e d  space X,  (~o), to conclude that  ~ (5~ o ( u , ) ) >  0. Since 5~ o (u,) is a cone 
(u,  is homogeneous) ,  it follows that  there is a point  x 1 e S"- t ~ 5~o (u,) such that  

lim ~-~ ~ (57 o (u,) t'-') B, (Xl)) ~> 2 -~. 
t~ ---~ 0 

Let ~/1 be a homogeneous  approximat ing map  for u ,  at x x. Note  that  
Ord "1 (xl)~> 1 + ~, and hence Ord"l ( t x l ) ) 1  +~ for t E [0, 1]. Therefore the derivative 

of  ul is zero along the ray t ~ t x l ,  and hence u l ( x 0 - - 0 e X , ( ~ o  r Therefore u 1 is a 
homogeneous  map  to the same cone X, Ixo)' The homogenei ty  of  u ,  together with the 
fact that  OrdU* (x 1) > 1 translates to the s tatement  that  the map  u~ is independent  of  a 
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direction. If  we choose coordinates in which x I = (0 . . . .  ,0, 1), then we have ~?ul/~?x"= O. 
Therefore the restriction of  u~, denoted u~, to the R "-1 spanned by the first ( n - 1 )  
standard basis vectors is a homogeneous map of  degree ~ > 1 + ~. We then have 

~ o  (u0  = 6% (Ul) x R, 

and thus Jutes-1 (5~o (ul)) > 0. If  s >  n -  2, we may repeat this argument inductively and 

produce finally an ~ > 0  and a minimizing m a p  v'RZ---,,Xu(xo homogeneous 
of  degree ~ > 1 + ~  such that ~s - ( " -2 ) (5~o(V))>0 .  In particular, there is a point of  

5~ o (v) different from the origin. If  we repeat the argument again we construct a 
geodesic. By the 1-dimensional analysis of  Section 1 we know that for a geodesic we 
have Ord (Xo)= 1 for all x o. This contradiction shows that s ~< n -  2 for any s ~ [0, n] 
with ~fs ( ~ o  (u)) > 0. Therefore dim 5~o (u) ~< n - 2 as required. 

We now show by induction on k = d i m  X that we have dim 5 P (/ /)~<n-2.  For  
k = 1 we have 5 ~ = Yo,  and we have established this case. Assume that k ~> 2, and that 
for F-connected complexes X of  dimension less than k we know that the singular sets 

of  minimizing maps of  any n-manifold into ~2 have dimension at most n - 2 .  Let Xo 
be any point of  5~,, - 5Po for a minimizing map u" f~ ~ X k. We then have Ord (Xo) = 1, 
and by Theorem 6 .3  there is a neighborhood B~o (x o) for some cr o > 0 such that the 
map u maps B,o (Xo) into a totally geodesic subcomplex Xo of  X having the form 

R"  x X 1. Thus we have u = (u 1, l/2) where u I �9 B,, o (Xo) ~ R m, U 2 " B,o (Xo) ~ X 1 are both 
minimizing. The set 5P, , (u)O B, o (Xo) is then the same as the set 5P o (u2)O B, o (Xo) 
since u~ has rank m at every point  of  B,o (Xo). By the inductive hypothesis we then 
have dim (Se,, (u) O B, o (Xo)) ~< n - 2. This shows that for each m, dim 5e,, ~< n - 2 and 
therefore dim 5 P ~< n - 2  as required. 

To prove the final statement of  Theorem 6.4,  that is, to construct the functions 
~i, let e > 0  and d > n - 2 .  Let ~"~2 be a fixed compact  subdomain off~  with f ~  f~2, 
and choose a finite covering { B r ~ ( X j ) ' j = l , . . . , l }  of  the compact  set 5 e o ~ f i l  

satisfying ~ rj-,~e.d< Assume also that B 4rj (xj) ~ ~2 as will be true if ~ is small enough. 
j = l  

Let q~j be a Lipschitz function which is zero in B~j(xj) and identically one on 

f~-B2~2(xj)  such that ]Vq~jl~<2rf ~. We assume also that x 2 e ~ o O ~  1. Let q~ be 
defined by 

q>:min  {q~j" j :  1 , . . . , l }  

and observe that q~ vanishes in a neighborhood 
l 

- U B2 ,j(xj). Now let 40 = q~2 and observe 
j = l  

of  ~ o ~ 1  and q~ - I  on 
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(6.1) IVVul [g •o ld l a=2  q) lVVul {V~pld. 
Q)} = l B2 rj{Xj) 

"<2(f 5 = 1B2rj(Xj) I v v u l 2 1 v u I - I ( p 2 d ~ t )  5=lB2rj(Xj , 
".~ 1/2 

by the Schwarz inequality. On the other hand, an elementary result for harmonic 
maps (see [ES]) implies that on the regular set we have 

(6.2) 
2 

For  j =  1 , . . . ,  l let 9j be a Lipschitz function which is identically one o n  B 2 rj (Xj) and 

identically zero on f~ - B 3 rj (x j) with I V 9r [ ~< 2 r f  ~. Define P by 

9 = m a x { p j :  j =  1, . . . , l }  

and observe that 9 -= l on 

have 

l l 
(..) B 2 rj(Xj) while 9 = 0  outside L) B3rj(xfl. We therefore 

j = l  j = l  

(6.3) fu [VVul21Vul-'q~2d"~f [ VV u [2 IV u [-~ q~a 02 dla" 
~=1 B2rj(Xl) d~ 

We now state the following result whose proof  we give later. 

Lemma 6.6.  - The conclusion o f  Theorem 6 .4  implies that inequality (6.2) holds 
distributionally on all o f  ~.  

Now we make the assumption either that k =  1, or that Theorem 6 .4  holds for 
maps into F-connected complexes of  dimension less than k. In the first case we have 
~ o  = 5P, so (6.2) holds away from ~o- In the second case, for any point x o ~ ~ -  5%, 
the map is given locally as u = (Ul, u2) where u I is a map to a Euclidean space and u 2 
is a map to a lower dimensional F-connected complex. Since we have 

I V u l 2 = i V U l  [2-~-IVu2l  2, l V V u l 2 = i V V / ~ l i 2 ~ - i g V u 2 [ 2  

by our inductive assumption and Lemma 6.6  we have inequality (6.2) distributionally 
on f*-SPo . A result of  [SY] implies that on the regular set we have 
(1 - ~,) I VV u [2 ~>[V[V u [[2 for some ~, > 0 depending only on n. Therefore we have the 

distributional inequality 

alvul> .lVvulelvui-'-civu[ 
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on f2 -50  o .  Using p2 {p2 as a test function we find 

gn fa[VV u[2 lV u[-l p2 ~2 cll, t <~ - 2 fn pq~ ( V IV u l, V (pqo)) dt.t 

This immediately implies 

f IVVu[2lVul-Xp2,#2dp 

Combining this with (6. l) 

f lvv. 

229 

+ c  I~ ] V u [ P2 q~2 d, .  

( ,  
~cJa[Vu[(q~2[Vp[2+p2[Vq~[2+02q)2)dg .  

and (6.3) we have 

I V*o I d . ~  c ~ I v u r (,p= I v 012 + o~ I v ~, I ~ + f)2 (p2) rill 
an 

Using the definition of q0 and P we have the result 

l 
If [VVHI [ V * o [ d " ~ c  2 F;2IB [gu[d . .  

j = 1 3 rj (x j )  

On the other hand since xj e 5#o we have Ord (x)  ~> 1 + e, and therefore by Theorem 2 .4  

sup IVul<~cr3. 
B2 rj (x  j) 

Thus we have 

n 2+~< 8 Ivv . I  IV.old.-<, '  E rj 
j=l 

provided d<n-2+~ and ~ is small. This gives the result for k = 1 since 5 P = 50o in 

this case. For  k >  1, we cover the compact set Brj(x)  ~ ~1 with balls 

{ Brp 0 9  P = 1 , . . . ,  q } 

such that in each ball Brp(yv) the map can be written u = ( u l ,  /J2) as in part (ii) of 
Theorem 6.3.  By the inductive assumption there is a function t)p vanishing in a 
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neighborhood of 5P O Brp (yfl and identically one outside a slightly larger 
neighborhood with 

f IVVu] IV*vld~tK~a2 -v. 

We finally set ~ - -min  { t~o, ~ 1 , - . . ,  ~q } and conclude 

;o  iofo [VVu I IV*ldl-t~< IVVu[ IVqtv[dbt~<2a. 

This completes the proof of Theorem 6.4 except for the proof of Lemma 6.6 which 
we now give. 

Proof of Lemma 6.6. - Let P be any nonnegative function with compact support 
in ~. Suppose ~1 is a domain in ~ with compact closure which contains the support 
of 9. Let {e,} be a sequence tending to zero and let {~i} be the corresponding 
sequence of functions coming from Theorem 6.4. We then have 

-1- V'V u'2' V (q"P) ) fnlVV u'2q"Pd -c f.[V 

since #i P has support in ~/(u). This implies 

-12 fn( V'V u12, V p ) *~d~t>~ fn Ivvul2*'Pd -~ I v u 12" P d" 

- supofn lVuln  IVVu] ]V•,ld,. 

Since IV u I is bounded on compact subsets of ~ we conclude that the third term on 
the right tends to zero. The dominated convergence theorem then allows us to let 
i ~ ~ to conclude 

- l fn(V]Vu]2' V p )dP>>" fnlVV u12 pdp-c f ]Vu]2 

as required. This completes the proof of Lemma 6.6. 
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Part II : 
Applications to discrete groups 

In this second part  of the paper  we prove some rigidity theorems for discrete 
groups with the help of the theory developed in Part  I. In particular, we prove our 
p-adic superrigidity results, and discuss fundamenta l  groups of K/ihler manifolds.  

7. Equivariant harmonic maps to buildings and the Bochner method 

We begin this section by extending the h o m o t o p y  existence result of Section 4 to 
a more  general setting for certain image complexes X. Suppose X is the Euclidean 
building associated to an almost  simple p-adic algebraic group H (see [BT] for the 
construct ion of X). It will be impor tan t  to know (see [B]) that  X has a compactif icat ion 
X = X  L)~X such that  any h e H acts cont inuously on X (of course h is an isometry 
of  X). Moreover ,  if { P, } is a sequence f rom X with lira P ,=  P* e 0X, and if { Qz } is 
another  sequence f rom X with d(Pi, Qi)~<C independent  o f / ,  then it follows that  
lim Qi =P* .  Finally, the isotropy subgroup of  H fixing a point  P * e 0 X  is a proper  
algebraic subgroup while the isotropy group of an interior point  is a bounded  sub- 
group. For  a complete  Riemannian  manifold M, let 1VI denote  the universal covering 
manifold,  and suppose we have a h o m o m o r p h i s m  9 : F  ~ H, where F = I I  1 (M). A 
Lipschitz map  v:lVI ~ X is equivariant  if v ~ = 9  (7)o v for all 7 ~ F. Note  that  the 
function IVy 12 is F invariant on 19I and hence is well-defined on M = 1VI/F. Thus  we 
may say that  E (v) = total energy of  v on M is well-defined even though v is not  defined 
on M. We now prove the following existence result. 

Theorem 7 .1 .  - Suppose 9 (F) is Zar isk i  dense in H and suppose there exists a 

Lipschitz  equivariant map v" M ~ X with f ini te  energy. Then there is a Lipschitz  equiva- 

riant map u o f  least energy and the restriction o f  u to a small ball about any point  is 

m m l m l z m g .  

Proof.  - Let E o denote the in f imum of the energy taken over all Lipschitz 
equivariant maps.  Let { z,i } be a sequence of  Lipschitz equivariant maps with E (vi) 
tending to E o. Let B be a ball in 1VI such that  y ( B ) O  B = ~  for all 7 ~ F .  We may  
then construct  a new minimizing sequence ~ by setting 

vi on hT, l -  /y 7 (B) 

p(y) ouioy-1 on y(B) f o r a n y y e F  

where u i is a minimizing map  in B which agrees with v i on •B. We have E (vi)~< E (vi) 
and ~ is equivariant,  so {v-i} is again a minimizing sequence. On a compact  subset 
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of  B, the sequence { ~}  is uniformly Lipschitz by Theorem 2.4. It follows that a 
subsequence of  { v i } converges uniformly on compact  subsets of  B to a map into X 
which either maps into X or maps to a single point P* e~?X. We use the Zariski 
density of  9 (F) to exclude the second possibility as follows. Let y e F, and let x o E 1VI 
be the center of  the chosen ball B. Let C be any smooth embedded curve from x o to 
y x 0. An elementary argument using Fubini's theorem shows that C may be chosen 
so that the energy of  the restriction of  each map ui to C is uniformly bounded. 
Therelbre the length of  the curve u~(C) is uniformly bounded, and in particular 
f d(u i(xO), p (y) (u i(xO))) } is bounded. Therefore lira 9 (Y) (ui(Xo))= P*, and hence 
P (7)(P*)= P* for every 7 e F. This shows that p (F) is contained in a proper algebraic 
subgroup of  H contradicting the Zariski dense hypothesis. 

Therefore we may assume that { v-] } converges uniformly on compact  subsets 
of  B. F rom Corollary 4 .2  we have 

for any compact  subset K of  I~7,I. Since {v~} converges uniformly on compact  subsets 
of  B, the function d(~ ,  v) is uniformly bounded there. It then follows from Poincar6- 
type inequalities that 

fK d2 (vi, v)dg~<c 

for any compact  K c 19I. In particular, the sequence r t converges weakly in -- "(ci) 

H ~ (K, X) for any compact  subset K to a map u E H  1 (K,X).  By the same argument 
as that given in Theorem 4 .4  we conclude that u is a Lipschitz equivariant map of  
smallest energy. The local minimizing property of  u follows. This completes the proof  

of  Theorem 7.1. 
We now show that the Bochner method can be applied for harmonic maps into 

F-connected complexes where by harmonic we mean locally minimizing; i. e. minimizing 
on a neighborhood of  any point. Since Euclidean buildings are F-connected this will 
lead to strong conclusions concerning p-adic representations. We suppose u is an 
equivariant harmonic map from 19I to X where X is an F-connected complex. We 
assume u is equivariant with respect to a homomorphism 9 : H1 (M) ~ Isom (X) from 
F = H~ (M) into the isometry group of  the complex X. For  example, if u is the lift of  
the solution of  Theorem 4 .4  of  the homotopy  problem, then u is equivariant with 

respect to the homomorphism g~, induced on fundamental  groups of  the quotients. 
Generally equivariant maps need not be lifts from quotients, so this gives a means of  

studying more complicated representations. 
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If  we take a regular point  x o e lVl, then the image under  u of a ball B,o (xo) is 
contained in at least one k-flat. Choose  such a flat F, and let u * T F  denote the 
pullback of the tangent  bundle of  F under  u. Let V denote the pulled back connection,  
and let d v denote the corresponding exterior derivative operator  on p-forms with 
values in u* TF. Let 6v denote its formal adjoint. The differential du of u then defines 
a 1-form with values in u*TF ,  and the harmonic  map  equat ion may be written 
6 v du = 0. We now prove the following extension of  the Corlette vanishing theorem [C]. 

Theorem 7.2.  - Let  w be a parallel p-form on ~r and assume that u is a finite 
energy equivariant harmonic map into an F-connected complex X. hi a neighborhood o f  

any regular point o f  u the jorm w A du satisfies ~v (w A du) =- O. 

Proof. - Consider  any regular point  XoeI~'l, and any k-flat F containing 
B~o (xo) for some cy o > 0. The calculation of [C] then implies dv 6v (w A du)=-0 near 
x o. The sets N (u) and 5~ (u) are invariant under  F, and we define ~ o  = ~ (u)/F and 
5~o=5P(u)/F.  We then have f rom Theorem 6 .4  that  d im SPo t<n-2 ,  and for any 
compact  subdomain  f~l in M, there is a sequence of  nonnegative Lipschitz functions 
{*i  } which vanish in a ne ighborhood  of  N o V) ~ 1  and tend to 1 on M -  (50o ( " / ~ ) ,  
such that  

lim fM[VVu[ [ V * , [ d g = 0 .  
i --* oo 

To see this we simply observe that  we can prove Theorem 6 .4  on the quotient  by 
exactly the same argument.  Now let p be a nonnegative Lipschitz function which is 
identically one on BR (Xo) -- M and identically zero outside B 21~ (xo) with I V p I <~ 2 R -  1. 
Let * be a nonnegat ive Lipschitz function vanishing in a ne ighborhood  of  
~ o ~ B 2 R ( X o ) .  We then apply Stokes' Theorem on M using the identity 
0 = , 9 2 (  w a du, d v ~v (w A du) ) .  Thus we obtain 

M * o  2 II (w A d.)II 2 d.  

= -k [ ( ,  ( d ( , p  2) A * (W A du), 6 v (w A du) ) dg. 
.JM 

This implies 

fM*o 2 II 5v (w A du)II 2 d .  

( , 0 l v 0 1 + l v , 1 0 z ) l g u l  Ilav(w A du)tld,. 
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Using the inequality 2 ab ~< ~ a 2 4- g-  1 b 2 we then have 

f ' l ' 9  ~ II ( "  ~ du)[[2dLa 8v 

-<cfM,l, lvol21Vul2d.+cfMo21V,l,I Ivul IvV. ld .  

where w e  have used [I av (w ,. du)II-< c I VV u I" Therefore we have 

fB *llG(w Adu)[12d~t<~cR-2E(u)+cfMPilv~llVul[VVuldla. 
R (x0) 

We choose R so large that the first term is less than ~/2, and then we have, since u is 

Lipschitz on B 2 R, 

fB llSv(W A du)ll2d.<<.a/2+c(R)fMIVql 11VVuld . .  
R (xo) 

We then choose q, so that the second term is less than a/2 and we find that for large R 

f. ,llSv(w A du)ll 2 dLa~a. 
R (xo) 

It follows that 8v(W/x du) -O on ~ ( u )  as required. This completes the proof  of  
Theorem 7.2. 

We now derive two useful consequences of  this result. First we consider the case 
in which M is a K~ihler manifold and w is the KS, hler two-form. We first make a 

definition. 

Definition. - A harmonic map into an F-connected complex is pluriharmonic 
provided it is pluriharmonic in the usual sense, 88u = 0, on the regular set. 

Theorem 7.3. - A .finite energy equivariant harmonic map from a Kiihler manifold 
into an F-connected complex is pluriharmonic. 

Proof. - By the previous result we have 6v (w/x du)= 0. If we choose Euclidean 
coordinates (u 1 . . . .  , u k) in a flat F which locally contains the image of  u, then as 
in [C] this condition implies that the Hessian of  each function u j(z) for j =  1 , . . . , k  

is a symmetric matrix lying in the Lie algebra of  the symplectic group. This implies 
that the trace of the restriction of  this matrix to any complex line is zero, and hence 
each u j is a pluriharmonic function. 
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Theorem 7.4.  - A finite energy equivariant harmonic map f rom Quaternionic 

hyperbolic space or the Cayley plane into an F-connected complex is constant. 

Proof. - By Corlette's result [C] the condition 6v (w/x  du)= 0 where w is either 
the Quaternionic K/ihler 4-form or the Cayley 8-form implies that the Hessian of  u 
vanishes at each regular point. This implies that the forms du j j =  1 , . . . ,  k are parallel 
1-forms, and hence if they are nonzero we get a local isometric splitting of  the domain 
as the product  of  R with a lower dimensional manifold. Since such a splitting does 
not  exist for the Quaternionic hyperbolic space or the Cayley plane we conclude that 
V u-= 0, and hence u is a constant  map. This proves Theorem 7.4.  

8. p-adic superrigidity for lattices in Sp (n, 1) and F 4 

Let 19I be the Quaternionic hyperbolic space (resp. the Cayley plane), so that the 

group Sp(n, l) (resp. F4) acts on 1r by isometries. We denote the relevant group by 
G. A lattice F in G is a discrete subgroup with finite volume quotient. Let o : F  ~ H 
be a representation of  F in an almost simple p-adic algebraic group. Thus H acts by 
isometries on the associated Euclidean building X. By replacing F with a finite index 
subgroup we may assume F is a neat lattice (see [GR]), and we then have: 

Lemma 8.1.  - There exists a finite energy Lipschitz equivariant map. 

Proof. - Let M = l~I/F so that M is a finite volume rank 1 locally symmetric 
space. On each cusp l(/I of  M there exists a proper function r : 1VI ~ R + such that r is 
smooth with [Vr I -  1, and r has compact  level sets. The metric g on 1VI may then 
be written dr  2 -~- rg where 'g is a metric on Z o = r -  1 (0). If  we normalize the curvature 
of  g to be between - 1 and - 1/4, then we have the inequalities on ~ for a constant 

c > 0  

(8.1) c l e - 2 r ( ~ 1 7 6  

Consider first the compact  manifold M o with boundary  gotten by removing each of  
the finite number  of  cusps from M. Then 19I o is a F-invariant subregion of  1r and 
we can choose a Lipschitz equivariant map v from 19I 0 to X. To extend v to all of  19I, 
we extend v to the cusps as a function independent of  r. This produces a Lipschitz 
equivariant map, and we show that it has finite energy. The function IVvl 2 

is F-invariant and thus descends to M. F rom (8.1) we see that on r - l ( a )  we 
have IV v 12 ~ c e  2 a while the volume of  r -  1 ( a )  is bounded above by a constant times 
e - ( ( n - i ) / 2 )  a. Since n = d i m  M~>8 in the cases we are considering we have 
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OO. 

This completes the p roof  of  Lemma 8.1.  

We are now in a position to prove the following main theorem. 

Theorem 8 .2 .  - I f  9 (F) is Zar isk i  dense in H, then 9 (F) is contained in a bounded 

subgroup o f  H. 

P r o o f  - By Lemma 8.1 there is a finite energy equivariant map from 1VI to X. 
By Theorem 7.1 there exists a least energy minimizing map u" M ~ X .  By 

Theorem 7 .4  the map u is constant, say u (1VI)= { P0 }- It follows that 9 (F) _~ HPo, the 
stabilizer of  the point Po~X.  This is a bounded subgroup (see [B]), so we have 
completed the p roof  of  Theorem 8.2.  

As a corollary we obtain the following result. 

Theorem 8 .3  (p-adic superrigidity). - Le t  F be as above and 9 be a p-adic 

representation o f  F i.e., a homomorphism 9" F ~ GLN Qp f o r  some N = 1,2 . . . .  , and a 

prime p. Then the image p (F) is precompact  in GL N Qp. 

Proof. - It suffices to prove that the image of  a subgroup of  finite index of  F is 
precompact,  hence we may assume as above that F is neat. Let H denote the Zariski 
closure of  P (F). If  H is almost simple, then the claim follows from 8.2. Furthermore,  
if H is semi-simple the conclusion is obtained by applying 8 .2  to the simple factors 

of  H. Finally, in the general case, let R denote the radical of  H and H o be the semi- 
simple factor-group, H o = H/R.  The factor representation 9o : F ~ H o has a precompact  
image 9o ( F ) c  H o as follows from the above discussion and let R o c H denote the 
pull-back of  the closure K o c H o of  9o (F) under the projection H ~ H o. Notice that 
R 0 is a locally compact  group containing a solvable normal subgroup, namely R c R o, 
and the quotient group K o is compact.  Thus R is an amenable group and so p : F ~ R o 
has bounded image because F satisfies Kazhdan 's  property T. 

Remarks .  - (a) Our super-rigidity complements the Archimedian super-rigidio, 

theorem of  Corlette: 

Every representation 9 : F ~ G L  N R has either precompact  image or it extends to a 

continuous representation o f  the ambient  Lie group (which contains F as a lattice). 

(b) One could prove 8 .3  directly without  an appeal to the (elementary) structure 

theory of  algebraic groups. First, using the T-property,  one observes that p(F)  is 

contained in SL N Qp and then there is an action of  F on the building X attached to 

SL N. Then one applies our minimization process to the corresponding map X ~ M 
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m 

and if the minimizing sequence v i :X-- ,  M tends to infinity one brings it back using 
some isometries ai of  Mi, thus achieving a uniform convergence of  ~ o v-] on compact  
subsets in X. In fact, by our Bochner-Corlette formula, the limit of  these maps is 
constant. Then one notices that applying ~z amounts  to conjugating 9 by ~ and the 
above constancy of  the limit map says that the representations ~ 9~ 71 converge to a 
representation with a bounded image. Hence 9 itself has a bounded image as easily 
follows from the T-property of  F. 

N o w  we are in a position to conclude the following. 

Theorem 8 .4  (Arithmeticity). - A lattice F in G = Sp (n, 1), n>~2 (i.e., the isometry 

group the quaternionic hyperbolic space) or n the isometrv group G o f  the Cavley plane 

is arithmetic. 
In fact, Margulis has reduced the arithmeticity to the archimedian plus p-adic 

super-rigidity. (This reduction is clearly explained in Chapter  6 of  [Zim].) 

9. Pluriharmonic maps into trees and buildings 

Let M be a K/ihler manifold and u a harmonic map of  M into a locally 
F-connected space X. We know that in certain cases (e.g., if M is a closed manifold) 

u is pluriharmonic (see section 7) and now we want to understand the local and global 
geometry of  these pluriharmonic maps. Our main application of  such maps, proven 
later on in this section (in the case where X is a tree), is the following 

Theorem 9.1.  - Let  M be a compact Kiihler manifold without boundary and suppose 

the fundamental  group F = I I x ( M )  admits an amalgamated product decomposition 

I~ = F1 ~r F2, where the index o f  A in F 1 is at least 2 and the index o f  A in F 2 is at 
least 3. Then M admits a surjective holomorphic map onto a Riemann surJace. 

Let us look at a map u of  M into a tree X at a regular point x o ~ M, such that 
(by the definition of  regularity) the u-image of  a small ball B~o (Xo) c M is contained 
in a geodesic (flat) F c X. Locally this F is isometric to R and so u near x o amounts  
to a real function u:B~o (Xo)~  R = F = X. Notice that this F = R carries no natural 
orientation and so the differential du is only defined up to + sign. On the other hand, 
if u is pluriharmonic, then the complexified differential, say d c u, is holomorphic, if we 
choose the sign. Therefore, the square (dc u) 2 is a holomorphic quadratic differential 
(of rank one) defined on the set of  regular points of  u. Now,  since u is Lipschitz, the 
differential du is bounded,  and since the singular set has codimension /> 2 in M, the 
differential (dc lt) 2 extends to a holomorphic quadratic differential on all of  M. Since 

this differential has rank ~< 1, there is a ramified double covering of  M, say M ~ ~ M 
(where M~ may be singular), such that (d c u) z lifts to a holomorphic 1-form, denoted 
d~ u on M ~. This form is closed and locally the differential of  a holomorphic function 
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on M~,  say u~ : M~ ~ C. The levels of  this function can be defined as maximal 
complex submanifolds (having complex codimension one in M) contained in the levels 
u -  1 (y) ~ M, y e X, of  u lifted to M ~ (these have real coodimension one). The (Galois) 
involution on M~ switches the sign of  d~ u and, hence, locally of  u~. It follows that 
the local partition into connected components  of  the levels of  (u~) 2 descends back to 
M and by the (local version of) Stein factorization theorem the map u decomposes in 
a small neighborhood ~ of  each (possibly singular) point of  M into a composit ion of  
a holomorphic function f~ ~ D c C followed by a harmonic map u o : D ~ X where D 
denotes the unit disk in C. Therefore, the singular locus of  u appears as a holomorphic 
pull-back of  that for the harmonic map uo:D---, X and the quadratic differential 
(D c u) 2 comes from (dc Uo) z on D. Since the singular locus of  u o is contained in the 

(discrete) set of  zeros of  (d cu0) z, it is discrete and hence, the singularity of  u is a 
complex analytic subvariety in M locally given by a single function M ~ D whose 
level lifted to M~ are connected components  of  levels of  u~. 

Summing up, we arrive at the following 

Corollary 9.2.  - Let  u: M ~ X be a non-constant pluriharmonic map o f  a connected 

complex analytic maniJold into a tree. The set ~ ~ M o f  singular points o f  u is a complex 
analytic subvariety in M whose components have codimension 1 in M. Furthermore, the 

lift o f  Z to M ~ equals the union o f  some leaves o f  the (holomorphic) foliation defined 
by the (closed holomorphic) 1-form (d~ u) 2 on M ~. 

Remark. - The pull-back u-  1 (v) ~ M of a vertex v ~ X is not, in general, a real 
analytic subset in M. For  example, the standard harmonic map of  the disk into the 
tripod (see w 0) has the pull-back u -  1 (v) homeomorphic  to the tripod. This cannot be 
real analytic as it has an odd number  (3 in this case) of  branches. Yet this level is 

subanalytic. Moreover,  all levels of  an arbitrary pluriharmonic map u lifted to M~ 
are real analytic subsets in M ~ as follows from 9.2.  Every such subset at a singular 

point of  u is necessarily reducible and the complement  has more than two connected 
components  sent by u to different branches of  the tree. 

N o w  we look at a slightly more general situation where we have a F-equivariant 
pluriharmonic map u of  a connected K~ihler manifold 1VI into a tree X. Here we 
assume that the group F is infinite and acts discretely, cocompactly,  and isometrically 
on 1~,I, and that the action of  F on the tree is also isometric for the given (piecewise 
linear) metric on the tree X. 

We want to show that u decomposes into a holomorphic F-equivariant map of  
19[ to a Riemann surface D with a discrete holomorphic action of  F (typically, D is 

the unit disk in C) followed by a F-equivariant harmonic map D ~ X. We divide our 

analysis of  u into two cases depending on whether the map u is everywhere regular or 

has a non-empty singular set. 
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Decomposition Lemma in the singular case. - I f  the singular locus Z ~ ~I of  u 

is non-empty then the map u decomposes into a proper holomorphic F-equivariant map 

IVl ~ D followed by a F-equivariant harmonic map D ~ X. 

Proof  - Let us look at the holomorphic foliation defined by the form (dc u) 2. 
The singular locus ~ of u is a union of leaves and, obviously, "~ c lVl is F-closed i.e., 
the image of ,~ in M--= 1VI/F is a closed subset. If  follows that if ~, is non-empty then 
all leaves of our foliation are F-closed (see explanations below) and so our foliation 
descends to a partition of  M=IVI/F into compact  analytic subsets. We apply to 
this partition the Stein factorization theorem (see [Ste]) and thus obtain the desired 
factorization 1VI --, D. 

First explanation. - Let l~ be a holomorphic (and hence closed) 1-form on a 
compact  K/ihler manifold M ~. Then there exists a complex torus N of  real dimension k 
in the interval 2~<k~<ranH 1 (M~), such that l~ can be induced from some holomor- 
phic 1-form l on N by a holomorphic map ~ : M ~ ~ N and where each leaf L ~ N of 
the foliation defined by l satisfies the following 

Minimality condition. - The leaf L contains no complex subtorus of positive dimension. 

To construct N one starts with the Albanese variety N o of M~ with the form l o 
corresponding to l~ and then factorizes N o by the maximal complex subtori in the 
leaves of  the corresponding foliation of No. 

Notice that the minimality condition implies that no leaf L c N contains a 
complex compact  submanifold of  positive dimension. (Indeed, each L is of  the form 
C k- 1 5o for some non-cocompact  lattice 5o ~ C k- 1. We turn L into an Abelian analytic 
Lie group by taking some point in L for the origin and observe that the additive span 
of  a compact  complex submanifold in L is a complex torus). It follows that if the 
pull-back ~-1 (L) contains a compact  component  then ~ (M ~) O L is zero-dimensional 
and therefore the image a (M~) ~ N is 1-dimensional. 

The above provides an explanation needed for the global factorization theorem 
in the case where the action of  F on l~I is free: Here one takes the ramified double 
covering of I~I/F for M ~ and observes that the lift of  Z/F ~ IVl/F to M consists of  a 
union of  finitely many compact components  of the pull-back of  some leaves L c N. 

In the general case, where F is non-free (but yet discrete), one notes that all steps 

of the above argument  apply in the presence of fixed points if we work F-equivariantly 
on 1~1 rather than on the quotient space I~I/F. 

A judicious reader might have noticed that the above explanation, which relies 
on the theory of  Albanese varieties, needs special care in the case where M ~ is 
singular. Instead of  resolving this singularity we suggest below an elementary (albeit 
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less elegant) argument  where the singularity of M -  does not enter the discussion at 
all. 

Second explanation. - L e t  L (m), m ~ M denote the leaf of  our foliation (defined 
by -t-dCu) passing through m, and denote lVI*c l~I the union of  the leaves ~(rn) 
whose projections L (r~) to M = 1VI/F are compact.  First we observe that the subset 
1(,I* c 1VI is closed in the following sense. 

I f  m(t)elVl,  te[0,  1], is a continuous path o f  points, such that m(t)el~l* for t > 0 ,  
then also ~n (0) E ~vl *. 

It is easy to see (e.g. by looking at the function v below) that the homology 
class of L(rn(t))  stays bounded for te]0,  1]. Therefore the K/ihlerian volume of 
L (r~ (t)) ~ M = 1VI/F, being a homological invariant, is bounded for t > 0 and so the 
limit leaf L (m (0)) is compact. (Notice that Vol. L (in (0)) = Vol L (in (t)) for small t > 0 
unless L (rn (0)) is multiply covered by nearby leaves in M = 1VI/F.) 

Secondly, we show that the subset ~r ~ M is open. 

Proof. - For  each leaf L c IVI there obviously exists a function ~7 on a small 
neighbourhood A = A (L) c 1VI of  L, such that 

(i) (dr) 2= v(du)2; this is equivalent to d x / ~ =  + dCu and this makes the foliation 

into the connected components  of the levels of  v equal to that defined by + dCu on 

(ii) v l L = 0 .  

Now, let the projection L ~ M of  L be compact.  Then v descends to a function v 
on some neighbourhood A c M of  L, such that the pullback of  v to lVl equals v on 
some neighbourhood of  [, (where both functions are defined). Since L c M is compact,  
the leaves L (m), which equal the connected components  of levels of  v, stay close to L 
for m close to L (i. e. L (m) Hausdorf f  converge to L for m ~ L, compare the proof  
of 9 .3  below). Therefore, these L (m) are compact (as they do not reach the boundary 
of  A) and they receive the leaves [, (m) from 1VI for rn close to [,. This yields the 

openess of  if4*. 
Finally we notice that every leaf contained in the singular locus E c l(,I has 

compact  projection as '7;/F is compact  and so our 1VI* is non-empty. Thus 1VI* = M, 

since M is connected. 

Remark. - The above argument  applies whenever the zero set of  d e u contains a 
leaf L. Notice that the inclusion L ~ Zero (dc u) is equivalent to local disconnectedness 
of the levels of  the above function x/v near each point r~ e L. 

Nonsingular ease. - If u:lVI ~ X is a nonsingular pluriharmonic map then the 
complexified differential dCu is defined everywhere on IVl up to + sign. It follows dCu 
becomes a honest holomorphic 1-form )~ on a (non-ramified) double cover of  IVl which 
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is invariant under a discrete group consisting of  lifts of  the transformations from F 
to this cover. To minimize notat ion we assume below that this double cover splits, 
and thus we have a F-invariant holomorphic form )~ on 1VI itself, such that the map 
u : 19I --, X is constant  on the leaves of  the foliations defined by )~ on 1VI. Furthermore,  
by passing to some Abelian covering of  1VI we can make )~ exact as well as equivariant 
under a certain discrete cocompact  group acting on this covering. Thus we may assume 

is exact to begin with. In this case the leaves, which are the connected components  
of  the level sets of  the holomorphic function z on 19I with dz = ;~, are closed analytic 
subvarieties in 19I. Moreover,  we claim that the space of  these leaves is Hausdor f f  
(this is explained below) and therefore the Stein factorization theorem applies. Thus 
we arrive at the following 

Factorization in the nonsingular case. - Suppose u is non-singular and l~I is' simply 

connected (This takes care o f  the intermediate coverings). Then u decomposes into a 
holomorphic map M ~ D fol lowed by a harmonic map D ~ X,  where these maps are 

equivariant with respect to F or a subgroup F' o f  index two in F (taking care of  the 
+ sign o f  d c u). 

Here, as earlier, D comes equipped with a holomorphic action of  F (or F') but  
we do not claim at this stage that the action of  F (or F') on D is discrete. In general 
it need not be discrete as the map 1~I --, D may be non-proper.  

On the Hausdorf f  property o f  holomorphic foliations. - Let M and N be complex 
manifolds, z : M  ~ N a holomorphic map and let N be the space of  the leaves that 
are the connected components  of  the fibers z ~ (11) c M, n e N .  The topology of  N is 
defined in the usual way: a subset in N is open if the union of  the corresponding 
leaves is an open subset in M. 

There is a simple criterion for NI to be Hausdor f f  where z is a general (not 
necessarily holomorphic) smooth map. Namely, N is Hausdor f f  if z is a submersion 
(i. e. rank z = dim N) which is, moreover,  infinitesimally enlarging with respect to some 
Riemannian metric gN on N and some complete metric gM on M, where "infinitesimally 
enlarging" means that the pullback of  the form gN to the subbundle in T (M) normal 

to the kernel of  dz dominates gN, i.e. z* (gN) I Ker• dz >~ gM I Ker• dz (compare [Gro]). 
This applies in particular to the case where z is a submersion and the pull-back form 
z* (gN) on M is invariant under some proper cocompact  group F acting on M. 

Now,  we return to the holomorphic map z : M ~ N, dim c N = 1, and assume that 

there exists a Riemannian metric gN on N, such that the pull-back z* (gN) is invariant 
under some proper cocompact  group action on M. (Notice that this condition is 

satisfied in the case of  interest where we have an exact F-invariant 1-form on M.) 
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Lemma 9.3. - The space N is Hausdorff and hence admits a unique complex 

structure such that z decomposes into a composition of  two holomorphic maps 

z : M --, 1KI-~ N 

Proof  - Since z is holomorphic and dim N = 1, the leaf L (m) passing through 
m EM continuously depends on m with respect to the Hausdor f f  distance between 
compact  subsets in the leaves. (Such local continuity is automatic for usual foliations, 

where the leaves are non-singular, while the foliation into the connected components  
of  the levels of  the map R 2-* R, (x, y)~-~xy, indicates what might go wrong in the 
presence of  a singularity). N o w  we chose a metric on M invariant under our group 
which preserves z* (gN), and observe (looking at z* (gN) and/or  using Stein factorisation 
on compact  subsets in M) that the above continuity on compact  subsets is uniform 
for such subsets. Thus the correspondence mv-+ L (m) is continuous for the Hausdor f f  

metric on the set of  leaves, and then the lemma easily follows. 

On the discreteness o f  the action o f  F on D. - We return to the factorization in 
the non-singular case, 

u:lgl ~ D ~ X ,  

and give a criterion for the implied action of  F (or F') on D to be discrete. 

Lemma 9.4.  - The action o f F  on D is discrete unless it factors through a virtually 
solvable group (i.e. the implied homomorphism F ~ Aut  D has a virtually solvable image). 

Proof. - We may assume here that D is the unit disk and the image r" of  F in 
Aut  D = P S L 2  (R) is Zariski dense (otherwise it would be virtually solvable). Then 
either r" is discrete in Aut D or it is topologically dense. In the latter case the 

commuta tor  subgroup [F, F] is also dense in Aut D and then every exact F-invariant 
holomorphic form on D must be zero. But the form )~ we started with obviously 

descends to D and thus the dense case is excluded. 

Remarks. - (a) Let us indicate an alternative approach similar to that in [Sim]. 
First we notice that if the map N --, N has a ramification point, then by our "singular 
argument" IVI admits a proper F-equivariant map to a Riemann surface (with no use 

of  Lemma 9.3).  Then if no ramification point is present, our argument similar to that 
proving Lemma 9.3,  shows that the map N-- .  N is (non-ramified) and so for N = C 

we have N = C as well. 

(b) Our original treatment of  the "non-singular" case contained an error pointed 

out to us by K. Corlette. 
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(c) K. Corlette and C. Simpson suggested another approach to the factorization 
of the map u: 1VI ~ X following the earlier work by Simpson (see [Sire]). 

H a r m o n i c  m a p s  into Z - t r e e s .  - We want to generalize the above discussion to 
the case where X is a Z-tree, i.e., where X may have infinitely many branches at the 
vertices. This is needed for the amalgamated product  property stated at the beginning 
of  section 9. First we notice that every singular point of  u has a finite multiplicity, 
controlled by the total energy and so every harmonic map locally factors through a 
map into a finite tree X' followed by an isometric embedding X'--+ X. Hence u is 
pluriharmonic (even for R-trees) and so the above holomorphic discussion remains 
valid. What  is left to do is to extend the existence theorem to the case where X is no t  

locally compact.  We shall state and prove the relevant property where X is a generalized 
tree i.e., Z-tree or an R-tree. Here one can not ensure the existence of a F-equivariant 
harmonic map 1VI ~ X in a given homotopy  class but one can obtain a harmonic map 
if one m o d i f i e s  the receiving space X by going to an appropriate limit. Namely, let 
u~:ff, I ~ X be a minimizing sequence. (In fact, we could allow maps with var iab le  

target X~ but this is not  needed right now.) All these maps may be assumed uniformly 
Lipschitz and of  uniform multiplicity. Thus they factor on compact subsets in 1VI 
through maps lVl ~ X~--* X where X~ are finite trees. Then we pass to the Hausdorf f  
(sub)-limit of  the spaces Xi as 1~I is being exhausted by compact  subsets and i--, oo 
and obtain the desired harmonic map u : 1~I ---, X~. 

Warn ing .  - The trees X i can be thought of  as subsets of  X but the limit Xoo is 
not  a part  of  X. For  example, one may imagine Xi equal to a countable joint of  the 
segments I i= [0, 1] at zero where Xi=I~. The sequence I~ c X diverges inside X but 
(identically) converges in the abstract sense to the unit interval. 

A more invariant way to look at X~ is by concentrating on the function d~ on 
1VI x 1VI induced by u~ from the distance function on X. All properties of  the maps u~ 
relevant for us can be expressed in terms of d i without ever referring to X and instead 
of the limit space X~ one can deal with a (sub)-limit do~ of  d~. This works perfectly 
well whenever the maps u~ are uniformly Lipschitz. Such an approach is especially 
attractive if X is an infinite dimensional symmetric space, e.g., the Hilbert space on 
the infinite-dimensional hyperbolic space, where one has a simple criterion for the 
existence of  an isometric embedding of a given metric space (1VI, d) into X. 

Let us apply the above considerations to the amalgamated product problem. If 
the fundamental  group F = II 1 (M) decomposes as F = F1 *~ F 2 w e  have a F-equivariant 
map of  19I to some tree X with a F-action where the degrees of  the vertices are 
given by i n d ( A ~ F i ) ,  i = 1 , 2  (see  Serre [Ser]). Our assumption i n d ( A c F 1 ) ~ > 2  

and ind (A c F2)~>3 ensures that our F is not virtually solvable and neither is the 
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corresponding group F c A u t D .  Hence, we obtain a (non-constant!) F-equivariant 
map l~l ---, Xoo which factors through a Riemann surface. 

Let us briefly explain, without griving proofs, how the above results generalize 
to pluriharmonic maps u :M--*  X where X is a k-dimensional Euclidean building. 
Every such u gives rise to a holomorphic foliation on M, whose leaves are maximal 
connected complex submanifolds in the pull-backs of  the points, u -  1 (x) c M, x e X. 
As earlier, these leaves may have singularities and the complex codimension of a 
generic leaf equals the real rank of  u at a general regular point in M. 

Next we invoke the (finite) Weyl group W associated with the building and we 
claim there exists a ramified Galois covering 1VI --. M with Galois group W, such that 
the lift of  our foliation to M equals the zero set of  a finite system of holomorphic 
1-forms on lVl. 

Then, for F-equivariant maps one attempts to show that the leaves project onto 
compact submanifolds in M/F.  For  example, this can be proven if dim c M >~ k + 1 and 
M/F  is compact.  

Finally, we notice that there are many instances of  non-trivial p-adic representa- 
tions of  fundamental  groups of  algebraic manifolds M. These appear via the p-adic 
uniformization theory for arithmetic varieties M of the form 

M = U ( k ) ~ U  (k, 1)/F, 

as was pointed out to us by D. Kazhdan.  We plan to study the pluriharmonic maps 
which appear here in another  paper. 
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