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Annals of Mathematics, 111 (1980), 423-434 

The classification of simply connected 
manifolds of positive scalar curvature 

By MIKHAEL GROMOv and H. BLAINE LAWSON, JR. 

0. Introduction 

It is a well-known theorem of Lichnerowicz [7] that a compact spin 
manifold with non-vanishing A-genus cannot carry a riemannian metric of 
positive scalar curvature. This result was generalized by N. Hitchin [6] 
as follows. There is a ring homomorphism 

Of Q~pin KO,, (pt. ) 

defined by Milnor [9] which is surjective in each dimension and is the 
A-genus in dimensions 4k. Using the Atiyah-Singer Index Theorem in 
various forms, Hitchin showed that if X is a compact spin manifold with a 
metric of positive scalar curvature, then d(X) = 0. This shows, for example, 
that certain exotic spheres (those which do not bound spin manifolds) in 
dimensions 1 and 2 (mod 8), cannot carry metrics of positive scalar curva- 
ture. 

Similar non-existence theorems have recently been established for mani- 
folds with "large" fundamental groups ([3], [4], [11], [12]). 

In this paper we show that these negative results are nearly sharp. 
The basic result is the following. 

THEOREM A. Let X be a compact manifold which carries a riemannian 
metric of positive scalar curvature. Then any manifold which can be 
obtained from X by performing surgeries in codimension >3 also carries 
a metric with positive scalar curvature. 

In particular, if X, and X2 are compact n-manifolds, n > 3, with 
positive scalar curvature, then their connected sum also carries positive 
scalar curvature. The same is true of the "connected sum" along embedded 
spheres with trivial normal bundles in codimension >3. 

This theorem subsumes several results in Section 5 of our previous paper 
[3]. The simple constructions in [3] provide a useful illustration of the more 
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general arguments presented here. 
Theorem A has several interesting consequences. (Note: In the following, 

"csimply-connected" means ir0 and zr, are both zero.) 

THEOREM B. Any compact simply-connected spin manifold X of 
dimension >5 which is spin cobordant to a manifold of positive scalar 
curvature also carries positive scalar curvature. 

In particular we see that if X is spin cobordant to zero, then the con- 
clusion holds. For example, every such manifold of dimension 5, 6, or 7 
carries a metric of positive scalar curvature. 

As a consequence of Theorem B and the work in [2], we see that the 
simply-connected spin manifolds which carry positive scalar curvature are 
completely determined by their Stiefel-Whitney and KO characteristic 
numbers. More specifically, we let p c QSpin be the set of classes containing 
representatives with positive scalar curvature. Then P is an ideal in the 
ring QSpin and the homomorphism 

[I: QSpin QSPin/p 

is, in dimension >5, a complete set of invariants for the existence of 
metrics of positive scalar curvature on simply connected spin manifolds: 
We conjecture that QS2pin/P KO*(pt.) and that the homomorphism 1I is 
exactly the KO characteristic homomorphism d. 

If we tensor with the rational numbers, this conjecture is true. 

COROLLARY B. The homomorphism H ? Q is exactly the A-genus. In 
particular, let X be a compact simply-connected spin manifold of dimension 
>5 such that A(X) = 0. Then some multiple X# ... #X carries a metric 
of positive scalar curvature. 

Remark. The results above together with the work in [3], [4] indicate 
that a classification of general spin manifolds with positive scalar curvature 
can be expressed using cobordisms which preserve the fundamental group. 
A complete set of invariants should be found using the higher A-genus 
(analogous to the generalized Novikov higher signature). 

For manifolds which are not spin, we have the following result. 

THEOREM C. Let X be a compact simply connected manifold of dimen- 
sion n > 5, which is not spin. If X is oriented cobordant to a manifold 
which carries a metric of positive scalar curvature, then X also carries 
such a metric. 

COROLLARY C. Every compact simply-connected n-manifold, n> 5, 
which is not spin, carries a metric of positive scalar curvature. 
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It follows in particular that every simply-connected manifold of dimen- 
sion 5, 6 or 7 carries a metric of positive scalar curvature. 

We would like to thank R. Stong for valuable conversations concerning 
the generators of cobordism rings. 

We have learned since writing this paper that R. Schoen and S. T. Yau 
have also proved Theorem A above. Their techniques are based on proving 
the existence of certain singular solutions to a natural partial differential 
equation. 

1. Proof of Theorem A 

For clarity we begin with the case of connected sums. Suppose X has 
dimension n ? 3 and a metric with scalar curvature K > 0. Fix p e X and 
let D = {x e R": I Ix I I } be a small normal coordinate ball centered at p. 
We shall change the metric in D-{0}, while preserving positive scalar curva- 
ture, so that it agrees with the old one near aD and so that near 0 it is a 
riemannian product R x Sn-' where S-l is a euclidean sphere of some 
radius. This radius can be chosen arbitrarily, provided it is sufficiently 
small. It follows immediately that one can add 1-handles and take connected 
sums while preserving positive scalar curvature. 

Recall that the metric in the normal coordinates on D is obtained by 
considering D = {jxel + * + xnen e TX: HI Ix< ?i}, where e1, l , en is an 
orthonormal basis, and pulling back the metric of X via the exponential 
map. Let r(x) = I I x be the distance to the origin in D, and set Sn-'(p) = 

{x e D: r(x) = p}. 

LEMMA 1. The principal curvatures of the hypersurface S"-'(s) in D 
are each of the form - 1/e + 0(s) for s small. Furthermore, let g, be the 
induced metric on S-n1(s) and let go,, be the standard euclidean metric of 
curvature 1/!2. Then, as s --> 0, (1/&2)g, -? (llf)go,, = go,, in the C2 topology. 

Proof. The metric on D is of the form 

gij(X) = aii + O(hIxII2) 
= 3ij + E a, %xkxl + O(YIx1l3). 

The corresponding Christoffel symbols can be written: 

%Fj(x) O (X11h) = L1ijXl + O(11hx 2) 

Consider the curve Y(s) = (e cos(s/&), s sin (s/&), 0.., 0) on S-l(s). Then the 
covariant derivative of the velocity field along the curve has components 

(D da k d 27 + 
k dY daY 

k ds ds/ dS2 ? ij t ds ds 
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Hence, the second fundamental form of Sn-(e), applied to the vector 
(dy/ds)(O), is: 

K(d D )(0), ei)=_i + F)2(e, 0..., 

-- 1?+ 0(I). 

Note that II dlds 121 + 0(%2), and so the second fundamental form on the 
unit vector in the direction of (dy/ds)(O) is again of the form -1/e + 0(e). 
By an orthogonal change of the coordinates x, this computation is valid for 
any tangent direction on S-1(s). This proves the first part of the lemma. 

For the second part, we consider the map f,: S"-t(1) -* S"'(s) given by 
xU-sex. Then at a point x, where 11x112 1, we have 

If*gE(g,)x Eiigi j(,x)di dx j 

- i j (aij + ?2 E at 2 xkxl)dxi dxj + e3 (higher order terms) 

It follows that these metrics converge to the standard metric as claimed. 
This completes the proof. 

We now consider the riemannian product D x R with coordinates (x, t). 
We shall define a hypersurface Mc D x R by the relation 

M = {(x, t): (11xII, t) eG } 

where y is a curve in the (r, t)-plane as pictured below: 

_rW t 

The key point is that y begins along the positive r-axis and finishes as a 
straight line parallel to the t-axis. The metric induced on M from D x R 
extends the metric on D near its boundary and finishes with a product metric 
of the form S-h1(s) x R. If s is sufficiently small, then Lemma 1 shows that 
we can change the metric in this tubular piece to a metric of positive scalar 
curvature which is a riemannian product of the standard &-sphere with R 
for large time. This is accomplished by a metric of the form: 

Ei~jgfij(x t)dxidx3 + dt2 

where gij(x, t) is the induced metric on S-1(s) for early time and is the 
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euclidean metric for large time. 
The key difficulty is to choose y so that the metric induced on M has 

K > 0 at all points. To do this we begin with the following observation. 
Let I be a line (a geodesic ray) in D emanating from the origin. Then: 

(i) The surface I x R is totally geodesic in D x R. 
(ii) The normal to M along points of I x R lies in (i.e., is tangent to) 

I x R. 
It follows immediately that 1 _M mn (1 x R) is a principal curve on M, i.e., 
its tangent lines are principal directions for the second fundamental form 
of M in D x R. Furthermore, the associated principal curvature at a point 
corresponding to (r, t) e y is exactly the curvature k of y at that point. The 
remaining principal curvatures at such a point are of the form (- 1/r + 0(r )) x 
sin 8 where 8 is the angle between the normal to the hypersurface and the 
t-axis. 

We now fix a point q e y1 ci M corresponding to a point (r, t) e a. Let 
el, ** , en, be an orthonormal basis of Tq(M) such that e1 is the tangent vector 
to y1 and e2, ***, en, (which are tangent to the D-factor) are principal vectors 
for the second fundamental form of M. The Gauss curvature equation states 
that the sectional curvature Kij of M, corresponding to the plane ej A ej is 
given by 

Kj- Kij + XjXj 
where 1ffj is the sectional curvature of D x R and where x1, *, X are the 
principal curvatures corresponding to the directions e1, *l , en respectively. 
As we saw above, x1 = k, the curvature of y1 in I x R (which is isometric to 
c R2), and Xi - (-1/r + O(r)) sin a for ] - 2, * n. Since D x R has the 

product metric we see that: 

Klj =Kalar,j COS'O I9 

K3j =Kij for 2 i,jn, 

where KD is the sectional curvature of the metric on D. It then follows 
that the scalar curvature 

K = Ei;j 
of M at (x, t) is given by the formula 

(1) = KD - 2Ric"( s , sin' 

+ (n - 1) (n -2) 1 + ?(j) )sin2 8 

-(n - 1)( 1 + 0(r) )k sin a 
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where KD(x, t) = KD(x) is the scalar curvature of D at x and where RicD is 
the Ricci tensor of D at x. 

It is clear from formula (1) that there is a 00 > 0 such that the "bent 
line segment" with angle 00 pictured below gives an M with K > 0. 

r 

00 

3 t 

Let y0 denote the second straight line segment in this bent curve. Since 
k 0 0 on y0, we see from formula (1) that as r becomes small, the scalar 
curvature of M is of the form: 

K =(n - 1)(n - 2) + 0(1) 
r2 

We now choose r. > 0 small and consider the point (r., to) e yi. We now bend 
y0, beginning at this point, with a curvature function k(s) of the following 
form: 

k 

22r 

(Here the variable s denotes arc length along the curve.) It is clear from 
formula (1) that, since n > 3, the hypersurface will continue to have K > 0. 
(For this we need only assume that r -2> IIRD'. .) During this bending 
process, the curve will not cross the line r = r0/2 since the length of the 
"bend" is ro/2 and it begins at height ro. The total amount of bend is: 

AO- lcds 1, 
4 
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an amount independent of r0. Clearly, by a similar choice of the function k, 
we can produce any Ad, 0 < AO ? 1/4. 

Our curve now continues with a new straight line segment y, at an 
angle 01 = 00 + AO. By repeating the process six more times, we can achieve 
a total bend of w/2. This completes the proof of the case of connected sums 
and surgeries on 0-spheres. 

For the general case of surgeries on spheres of codimension >3, the 
argument is entirely similar. We shall present only an outline. 

Let SP c X be an embedded sphere with trivial normal bundle N of 
dimension q > 3. Let pt *. *p be global orthonormal sections of N and 
identify N4* SP x R" via the diffeomorphism given by py (y, Xi, * *, Xq) 

where py E xj (vj)y. Define r:SP x R" >R+ by r(y, x) = lxIi, and set 
SP x Dq(p) = {(y, x): r(x) ? p}. Choose f > 0 so that the exponential map 
exp: No-- X is an embedding on SP x Dq(r) c N. Lift the metric of X to 
SP x Dq(T) by the exponential map. Note that r is then the distance function 
to SP x {0} in SP x Dq(f), and curves of the form {y} x 1, where 1 is a ray in 
Dq(r) emanating from the origin, are geodesics in SP x Dq(r). 

We now consider hypersurfaces in the riemannian product (SP x Dq(r)) x 
R of the form 

M = (y, X, t): (r(x), t) e 7} 

where 7 is as before a curve in the (r, t)-plane. Arguments entirely analogous 
to those above show that 7 may be chosen passing from the r-axis to a line 
r = s > 0 so that the metric on the corresponding hypersurface has K > 0. 
The metric on the "tube" is a product of the metric induced on a(SP x Dq(s)) 
and R. (The key to the argument is the equation corresponding to (1) above. 
It states that the scalar curvature K on M can be written as 

(1') ICC = KSPxDq + 0j) sin'O 

+ (q - 1)(q - 2) sin28 

- (q - 1) sin a 
r 

By continuity one can make a small bend to angle 00> 0. Here 60 is sufficiently 
small that the terms KsPxDD + 0(1) sin2 00 are positive on SP x DI. The curve 
7 then continues as a straight line (k- 0) until the term (q - 1)(q - 2)sin2 0 /r2 
is strongly dominating. One can then bend 7 to a line parallel to the t-axis 
as before.) 

One now observes that the metric on a(SP x Dq(s)) = SP x Ss-'(s) can 
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be homotoped through metrics with r > 0 to the standard product SP(1) x 
Sq-'(s) of euclidean spheres. (See Lemma 2.) Performing this homotopy 
very slowly in time t gives a metric on SP x Sl-' x R, which is the metric 
constructed above for early time t and is the product of euclidean metrics 
for late time. (See Lemma 3.) The same construction allows us to readjust 
the radii of the euclidean spheres in SP x Sl-' x R while maintaining K > 0. 
The remainder of the proof is straightforward. 

LEMMA 2. Let ds' be the metric induced on a(SP x Dq(s)) = {r = s}. Then 
for all s > 0 sufficiently small, ds' can be homotoped through metrics of 
positive scalar curvature to the standard product metric on SP x Sl-'. 

Proof. As s -- 0, the metric induced on a(SP x Dq(s)) converges C2 to 
the metric induced on the s-sphere bundle of N from the natural metric on 
N defined using the normal connection. Hence for s sufficiently small, we 
may homotope ds' to this metric. (The condition K > 0 is open.) This metric 
is a riemannian submersion with totally geodesic fibres which carry the 
standard euclidean metric of curvature 1fs2. One may continue to shrink s. 
For s sufficiently small, one can deform this metric through riemannian 
submersions to one where the metric on SP is standard. (Here we keep the 
family of horizontal planes fixed.) This deformation will keep K > 0 as one 
can see easily from the formulas of O'Neill [10]. One now deforms the 
family of horizontal planes to the standard one. Again by O'Neill, this can 
be done keeping K > 0. 

LEMMA 3. Let ds', 0 _ t < 1, be a Coo family of metrics on a compact 
manifold X. If the scalar curvature of ds! is positive for all t, then there 
exists an a, > 0 such that for all a > a,, the metric 

ds2,a + dt2 

on X x [0, a] has positive scalar curvature. 

Proof. It is equivalent to show that there exists so > 0 such that for 
all 0 < s < s,, the metric 

dor2 = S2dS2 + dt2 

on X x [0, 1] has scalar curvature K, > 0. Consider local coordinates (x1, ***, xn) 
on X. Then ds' = E gij(x, t)dxidxj. For notational convenience we set 
t=x,+, and we write the metric da2 = vEijdxidxj. We also fix x = 
x-+) and assume that gij(x-) = 3ij. Now the riemannian covariant derivative 
on X x I for the metric du' is given by the Christoffel symbols 

1 3= (e)k { i, _ i (3) ~ ~~~2 dx1 axi ax, 
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Hence the second fundamental form of the hypersurface x"1 _- is given 
at x by 

bx =(Jre)n+l -1 a@^>6 
2 ax,,+, 

= 2 agij 
axn+1 

In particular, at x we have 

(3) | | I 2e 

Let K7j~ denote the sectional curvature of X x I in the (i, j)-direction at 5- 
with respect to the metric da2 , and let K, denote the scalar curvature of the 
(original) metric ds-t of the hypersurface at x. Then from the Gauss 
curvature equation and equation (3) above, we deduce that 

(4) In K E 1 } + OM 

It remains only to compute the curvatures K:6,,+l for i = 1, , n. They 
are given by the formulas Ki,,+l = 1-(1/2)R~,.+?,j,.+? where 

(5) n+ an 

t~ ~~~[p~'p+ _ ]p -n +1~ 

+ k [+l,ik -iirn+lk] 

(Here r means P.) Using (2) and the special form of -ye, we see easily that: 
rn+l 0 
rn+l -tnl = -6 a gi for i < n. 

2 ax'+?1 

Furthermore, at x one sees that the quadric term in (5) is of order fS2. It 

follows that K6,,+l = 0(1). Applying (4), we see that the scalar curvature 
of daE is 

K = -Kx + 0(1). 

This completes the proof. 

2. Proof of Theorem B 

Let W be a compact spin manifold with a W = X,- X where X1 is 
simply connected and XO carries positive scalar curvature. Assume that W 
is of dimension n + 1 ? 6. By Theorem A we may assume XO is simply 
connected. Hence, by surgery we may assume W is simply connected. It 
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follows that H2( W, X1) w2( WW Xl) = w2( W)/w2(X1). Now the elements of 
w2( W) can be represented by smoothly embedded 2-spheres, and the second 
Stiefel-Whitney class w2: H2( W) -2( W) -_ Z2 detects the non-triviality of 
the normal bundle of these representing spheres. Since w2 = 0, we can kill 
w2(W) by surgeries. It follows by the Universal Coefficient Theorem and 
duality (cf. 18, page 91]), that 

H.(W, X0) _ H.-1(W. X0) -torsion(H"_2(W, XO)) 0 

Hence, by the work of Smale 113], [8], X1 can be obtained from X0 by a 
sequence of surgeries in codimension >3. This completes the proof of 
Theorem B. 

Arguments for Corollary B are as follows. We recall that QS*p 0 Q 
Q0 ?) Q, and therefore it suffices to consider Pontrjagin numbers. In di- 
mension 4, there is only one such number, namely p1 =-24A. In dimension 
4k for k > 1, we consider the quaternionic projective spaces Pk(H). These 
manifolds are spin and carry metrics of positive sectional curvature. In 
particular, A(pk(H)) = 0. 

We now recall that a sequence of compact oriented manifolds {Mk}k=,l 
where dim (Mk) = 4k, is a basis for Q` ? Q if the characteristic number 
qk(Mk) ? 0 for all k. Here qk is defined by the multiplicative sequence 
corresponding to the formal power series f(z) = 1 + Zk. (See [5].) Now the 
total Pontrjagin class of Pk(H) is given by the formula 

p = (1 + (0)2k+2/(1 + 4(o) 

where so is a generator of H4(Pk(H); Z) -Z. It follows that 

qk = (1 ? wk)2k+2/(1 + (4w)k) 

= 1 + (2k + 2 - 4 k)(0k 

and therefore qk[Pk(H)] ? 0 for k > 1. Hence the sequence P2(C), P2(H), 
P4(H), P6(H), ... is a basis for Q` ? Q. It follows that {Pk(H)}k=2 generates 
the kernel of the A homomorphism. This completes the proof of Corollary B. 

3. Proof of Theorem C 

Let W be a compact oriented manifold with a W = X - X where X1 is 
simply connected and not spin and where XO carries a metric with positive 
scalar curvature. Assume that W has dimension n + 1 > 6. By Theorem A 
we may assume that X0 is simply connected. Hence, by surgery we may 
assume W is simply connected. It follows that H2( W, X1) -2( W)/wr2(X1). 
Since X1 is not spin, W cannot be spin. In fact the map w2: w2( W) -_ Z2 is 

non-zero when restricted to the image of 7r2(X1) in w2( W). Now by surgery 
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we may reduce w2( W) so that w2: w2( W) Z2 is an isomorphism. The 
resulting map 

w2(XJ) ->2(W) -Z2 

which is essentially w2(X1), will then be surjective, and we conclude that 
H2( W; Xl) = 0. The proof now proceeds as before to show that Xl can be 
obtained from X0 by surgeries in codimension >3. 

To prove Corollary C it suffices to show that there exists a set of 
generators for Qs1, each of which carries a metric of positive scalar curva- 
ture. The ring Q"0/Torsion is generated by complex projective spaces Ph(C) 
and Milnor manifolds. These latter are the hypersurfaces of degree (1, 1) 
in P-(C) x Pm(C). They are projective space bundles over a projective space, 
and one can directly construct metrics of positive scalar curvature on them. 
(In the metric inherited from Pz(C) x Pm(C), the fibres are totally geodesic 
and carry the standard symmetric space metric. Shrinking the metric 
uniformly in the fibres does the trick.) 

It remains only to deal with the torsion generators. There are two 
different constructions of generators, in [14] and [1], either of which will 
suffice for our purposes. We present the first. We begin with the Dold 
manifolds Ps,,, = Stm x Pm(C)/Z2 where Z2 acts by -1 on the left and conju- 
gation the right. This manifold carries a locally symmetric metric of positive 
sectional curvature. We then consider Dm,, = P,,,m x S'/Z2 where Z2 acts by 
reflection in one linear coordinate on the So factor of Pa,,,,m and by -1 on S1. 
This transformation is an isometry of the product metric on P,,,m x S1. 
Consider the obvious projection map Dmn -> S', and let V be a generic fibre 
of the composition 

D'Ml'. X X Dmknk SX ... X Si S 

where p denotes multiplication. Then V is a bundle over the torus Tkl. 

The induced metric on V is locally a riemannian product of Dold manifolds 
(i.e., positive curvature manifolds) and flat (k - 1)-space. This clearly has 
positive scalar curvature. 

The Dold manifolds, together with manifolds of type V above, generate 
the torsion of Qs (cf. Wall [14]). This completes the proof. 

STATE UNIVERSITY OF NEW YORK AT STONY BROOK 
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