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F O L I A T E D  P L A T E A U  P R O B L E M ,  P A R T  I I :  

H A R M O N I C  M A P S  O F  F O L I A T I O N S  

M. GROMOV 

Our basic results concerning harmonic maps are parallel to those 
in Part  I [Gro11] about minimal subvarieties. First we produce 
compact harmonic foliations 7-( by solving in some cases the asymp- 
totic Dirichlet problem. Then we construct transversal measures 
by adopting the parabolic equation method of Eells and Samp- 
son. Finally we indicate some applications to the rigidity and the 
pinching problems. 

1. Recol lec t ions  on H a r m o n i c  M a p s  

Let V and X be smooth Riemamfian manifolds and f : V --~ X a smooth 

map. The differential Df  : Tv(V) ---* T~(X) ,  z = f (v ) ,  maps the unit ball 

in T, (V)  to an ellipsoid in T~(V) with semi axes 

~1 = ~1(7 ,v)  > ~ = ~ ( / , v )  > . . .  > ~ > 0 

for k = dim V. These can be identified with the eigenvalues of the operator 

(D'fOr)I~2: T . (V )  ---, T~(V) . 

the energy density e I is then defined by 

k 

2el(v) = E A2(f'v) d~f IIDIII2 ' 
i = l  

which we sometimes denote ]ldfll 2, and the energy E ( f )  is 

E ( f )  = f e l ( v ) d v .  
J v  
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1.A. Remarks: a) One could use another symmetric function in Ai instead 

of ~[: A~, and thus arrive at another kind of energy. For example the product  

YI Ai gives us the volume of f as the total energy (see 3.F2 (d) for extra 

remarks on this matter).  

b) The above (quadratic) energy can be (more naturally) defined using 

the geodesic foliation on the unit tangent bundle Y = UT(V), and the map 

: Y --* X obtained by composing f with the projection Y --+ V. First one 

defines the (1-dimensional) energy density of ~ along the leaves by 

e ~  ~-~ ~ " ~  

where ~ stands for the differentiations with respect to the natural param- 

eter t on the leaves. Then one integrates to 

= [ e~(y)dy E(~) 
JY 

and observes that  

E(:)  = C~E(f) 

for some universal (normalizing) constant CA > 0. Then one can define E( f )  
as C~IE(~) and observe that  this definition extends to certain singular 
spaces V which admit the geodesic foliations with transversal measures. 

A large class of interesting examples is provided by singular spaces with 

non-positive curvature (see [Gro3]). 

1.B. DEFINITION OF A f :  First we define the Laplace operator for smooth 

map f : R ~ -* R" by 

A f  _-- Trace Hess f . 

In other words A f  is the map R ~ -~ R n whose ith component  for i -- 1 , . . . ,  n 

equals the usual Laplacian of the i-th component  of f ,  

k 02 ZN , 
i = 1  

Next, if f maps V to X,  such that f (v)  = x, we use the geodesic coordinates 

in V and X around v and x respectively and then Af(v)  is defined as the 

above Euclidean Laplacian at v with respect to these coordinates. This 

is clearly independent  of the choice of the coordinates and defines at each 

point x = f (v)  e X a vector Af(v)  e Tx(X). Thus A f  is a vector field in 
X along f (Y ) ,  which is often called the tension (field) of f .  
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Remark: One can reduce this definition to the case k = 1 as in 1.A(a). 

Namely, one first passes to the geodesic foliation on UT(V)  and takes the 

Laplace operator  of f along the leaves (i.e. geodesics). Then one observes 

that  the original operator A f ( v )  equals the average of A~f(v)  over the 

geodesics 7 in V passing through v. 

1.B' .  L a p l a c e  o p e r a t o r  in loca l  c o o r d i n a t e s .  An important  feature 

of A is that  the principal term, which is the second order operator,  depends 

on v 6 V and f (v)  6 X but  not on the first derivatives of f at v. In other 

words 

~uiOu----~" + 6(f)  

where aij = aij(v, f(v)) are functions oll Y x X and where 6 is an operator 

of the first order. This proper ty  is sometimes called semilinearity of A. 

1.C. H a r m o n i c  m a p s .  A C2-map f : V --* X is called harmonic if 

A f  = 0. One knows (and the proof is s tandard) that  A f  = 0 is the Euler- 

Lagraage equation for the energy E ( f )  and so the harmonic maps are the 

stationary points of E( f ) .  

Here is another simple geometric characterization of harmonic maps: 

f is harmonic if and only if for every locally defined convex function p on 

X the composed function p o f is subharmonic on V. This is obvious with 

the use of the geodesic coordinates in X.  

I .D .  C o m p a c t n e s s  a n d  a p r i o r i  e s t i m a t e s .  The equation A f  = 0 is 

(obviously) elliptic and so the C ~- topologies are equivalent on the space of 

harmonic maps  for sufficiently large r. On the other hand the equation A f  

is invariant under scale and therefore harmonic maps satisfy the classical 

BLOCH PRINCIPLE. Suppose X is compact and every harmonic map 

R ~ ~ X for k = dim V is constant. Then the space of harmonic maps 

f : V --~ X is compact in C% topology for every r = 0, 1, 2 . . .  That is for 

each interior (i.e. not on the boundary) point v 6 V there exists a con- 

stant C = C(V, v , X ,  r), such that the r-th order differential (jet) of every 

harmonic map f : V ---* X satisfies 

Ilo (.v)ll <_ c .  (,) 
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Proof: We recall the following trivial and well known 

A-MAXIMUM LEMMA. Suppose that /or some 6 > 0 the dosed 6-ball 
B(v, 6) C V around v is complete (as a metric space). Then there ex- 
ists A > 1 depending only on 6, such that every positive locally bounded 
function h on V with h(v) > 1 admits a A-max/mum w E B(v,  6), that is a 
point w, where 

h(w) > max (h(v),A-Xh(w')) 

for an w' in the ~-b~U B(w,~)  C V for ~ = A- ' (h(w))  -~/2 

Proof of the Lemma: First t ry  Wo = v. If it is not  a A-maximum, there 

exists wl E S(wo,eo) for eo = A-l(h(wo)) -t/2 where h(wl) >_ Ah(wo). 
Then we try wl  and if it does not work we take w2 E B(wl ,  el) for el = 

A- lh(wl )  -1/2 where h(w2) >_ Ah(wl), and so on. If A is sufficiently large, 

namely, if 
co oo 

i = 0  i = 1  

then this process necessarily stops at some wi. Otherwise, we would get the 

limit point  woo = limw~ at which h were unbounded.  Q.E.D. 

Proof of the Bloch principle: Let 

II }( )11 '/~ h .~ (v )=  m ~  D v 
q----- 1,...,~' 

and assume (*) fails to be true for arbitrarily large C. Then  we have a 

sequence of harmonic maps  fi where hl~ --* oo and we take a A-maximum vi 
of hf~ for a sufficiently large A (depending on 6 = dist(v, OV)). Let Bi C V 

be the  ~i-ball around vi for r = A -1 (hf,(vi)) -~/2 and let us mult iply the 

metric of Bi (induced from V) by the constant  Ci = hf,(vi). The resulting 

PJem~nian m~i fo ld ,  called B~, is a ball of radius A-~h~f2(v,) which goes 
to infinity as i --~ cr Moreover B~ converges (in an obvious sense) to 

the Euclidean space R I* for k = dim V as i ~ oo. On the other hand  the 

norms I]D~fill are bounded by A ~ oll all B~ for the new (scaled) metric while 

h'h(Vi ) = 1. I t  follows by  the ellipticity of the equation A f  = 0, t ha t  if r 

is sufficiently large (r >_ 4 is good enough to use t he  general theory but ,  in 

fact, r _> 1 suffices by remark (c) below) that  the  sequence fi  : B~ - + X  
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Cr-subconverges to a harmonic map f : R k ~ X which is non-constant  

since the norm hf at  the origin of R k (which is the limit of the centers vi of 

B~) equals one. Q.E.D. 

Remarks: a) It is useful to think of the above argument  in terms of folia- 

tions. Namely, we have the foliation of harmonic maps cV ---* X ,  where cV 
stands for (V, cg), c E R+, and as c --~ oe we have limit leaves represented 

by harmonic maps R k ~ X.  Notice that  the space of the harmonic map 

R k ~ X is acted upon  by the group of similarities of R k and the above 

rescaling amounts  to applying this action. 

b) The map f : R n ~ X obtained with Bloch principle clearly has the 

"norm" hy(v) bounded on R n. Moreover, with an obvious adjustment  one 

may achieve such an f satisfying the following 

Brody  minimum proper ty  (compare [Bro]). The function hi(v ) achieves 

the maximal value at the origin 0 E R n. 

c) The semilinearity of A indicated in 1.B' implies that  C l -bound  on 

a harmonic map S yields the Cr-bounds.  In fact, the famous theorem of 

Schauder says that  the  HSlder bound C a, c~ > 0, suffices. It follows, that  

we may apply  the Bloch-Brody principle to the energy density e l  in place 

of h I and then  obtain a harmonic map f : R n -~ X with the maximal value 

of e I at 0 G R n. 

1.D1. B o c h n e r  f o r m u l a .  The basic Bochner-type formula for harmonic 

maps f due to Bells and Sampson (see [Ee-Sa]) shows that  if X has non- 
positive sectional curvature, then 

z es(v) > II Hesss(v)ll2 + (RiccivdS(v),df(,)) >_ O. (,) 

In particular if V = R n and e achieves the maximum at zero, then the 

harmonic map  f : R'* ~ X has Hessy = 0. It follows tha t  f decomposes 

into a linear project ion R n --* R m, m _< n, followed by an isometric total ly 

geodesic immersion R 'n --, X .  

1.D~. COROLLARY. Let X be a compact (with boundary) manifold with 

K ( X )  <_ O. Then the following three conditions are equivalent: 

1) Every harmonic map R n ---+ X is constant; 
2) There exists no double infinite geodesic R 1 ~ X; 
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3) For every Riemannian manifold V the space o f  harmonic m a p  V --~ X 

is C"-compact  for every r = 0, 1 , . . . .  

Remarks: a) One usually calls (1) the Liouville property, which is discussed 

in great  detail in [Hill. 

b) It is not  hard to extend 1.D[ to non-compact manifolds. For example 

if ( the interior of) X is locally homogeneous then it satisfies (1) and (3), for 

maps sending a given point v0 E v into a compact subset in X unless for 

every e > 0 and s > 0 there exists a curve L C X of length > e and curvature 

everywhere < e. (If we think of X as a leaf of a compact foliation, then 

this property  says tha t  there is no infinite geodesic in the leaves belonging 

to the  closure of X.) 

1.D2. The second fundamenta l  compactness theorem reads 

I f  X is compact wi th  K < 0 then the space o f  harmonic map f of  finite 

energy, 

E s < const < c r  

is C"-compact  for a J / r  = 0, 1, . . . .  

Proof: Start  with the case k = dim V = 2. Here the  energy is scale invariant 

and so by the Bloch principle the non-compactness of the space { f  [ A f  = 

0 , E ( f )  < const } yields the existence of a non-constant  harmonic map 

R 2 --~ X of finite energy in so far as X is compact  (with no restriction on 

the curvature).  Then the Bochner inequality (*) rules out  such a map for 

K(X)  o. 
Now, let us give a proof which uses (*) from the very  beginning and 

which applies to all k. We observe, that  if V is compact,  then Ricciv is 

bounded and so the function e = e I satisfies 

Ae - Ce > 0 (+) 

for some constant  C E R. Then  an elementary argument  shows that  at 

every interior point v E V, 

e(v) < c '  f v  e(v) = C'Ej (+*) 

for some constant  C' = C'(V, v, C). This implies the  required compactness 

result,  by Remark  (c) in I.D. 
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Remarks: a) The  above compactness  theorem is the special case of a similar 

result for the solution of the  heat flow equation due to Eells and  Sampson 

(see [Ee-Sa] and our w 

b) There  is another  proof  of the compactness theorem using the inte- 
grated Bochner  inequality. For example if V is compact  wi thout  boundary,  

t h e n b y  integrat ing ( . )  over V we get (compare 4.C~) 

f v  [[ Hess/(v)[[~ < - f w  (Riccidf(v),df(v))<_ CE(f), 

where - C  is the  lower bound  on Ricciv. Then  we observe tha t  II Hesss(v)ll 2 
is scale invariant for k = d im  V = 4 and then  Bloch's principle delivers the 

proof for k < 4. The  case n > 4 requires further differentiation of ( . )  and 

is slightly more complicated.  

1.E. M a x i m u m  pr inc ip le  and h a r m o n i c  r i g id i t y .  Take two maps 

f l ,  f2 : V ---* X and evaluated the (usual) Laplacian of the function 

dist (f l  (v), f2(v)) on V, where we ~ssume the distance function dist(xl ,  z2) 

to be smooth  on X x X. We denote by f : V ---* X • X the m a p  given by 

(f l ,  f2) and  let H u for y = (Xl, x2) be the Hessian of the  distance function 

p(y) = d i s t (x l ,x2)  on Y = X x X. Then  obviously 

A(p  o f )  = Trace g o D / +  (A f,  gradp)  (*) 

where H o D! denotes  the quadrat ic  form on T(V) which is the  pull-back 

of H on T(Y) under  the differential D / :  T(V) ~ T(Y). 

Example. If X has non-positive sectional curvature,  then the  distance 

function is convex on Y = X x X and so H > 0. Therefore 

A dist (fl(v),f2(v)) > 0 

for harmonic maps  f l  and f2. This immediate ly  implies the following clas- 
sical 

1.El. UNIQUENESS THEOREM. Let X be a complete manifold with 
K(X)  _< 0 and V a compact connected manifold with non-empty boundary. 

If two harmonic maps fl  and f2 on V into X are equal on OV and homotopic 
relative to OV, then f l  = f2. 
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Remarks: a) If OV = 0, then a trivial additional argument  shows that  f2 is 

a translate of f l .  Tha t  is the distance between the lifts of f l  and f2 to the 

universal covering )~ of X is constant,  say, 

d i s t ( ~ ( v ) , ~ ( v ) )  = c ,  

and the geodesic segments (of length c) joining j~ (v) and ~ ( v )  are mutual ly  

parallel for all v in the following sense: two geodesic segments V and V' in 

~" are called parallel if there exists an isometric totally geodesic immersion 

of a parallelogram r C R 2 into .~, such that  a pair of parallel sides goes to 

7 and 7'- 
b) If K ( X )  < 0 then the energy density e(f)  = e I is a convex func- 

tion(al) from the space of maps f : V ---* X to the space of functions on 

V. Namely, if f t  : V --~ X is a homotopy of maps where the path f , (v) ,  

for every fixed v and t variable, is a geodesic segment in V, such that  t 

equals a constant  (depending on v) multiple of the length parameter ,  then 

e(ft(v)) is a convex function in t for every v e Y. It follows that  the total 

energy E ( f )  = f v  e l  also is convex which leads to an alternative proof of 

the uniqueness theorem. 

1.E2. If V is a non-compact  manifold on which every bounded subhar- 

monic function is constant,  then the above discussion gives us the uniqueness 

(or ridigity) proper ty  for harmonic maps f l ,  f2 with dis t ( f l ,  f2) bounded. 

Moreover, one can often drop "no bounded subharmonic function" condi- 

tion by looking more closely at the term Trace H o D I in the above formula 

(*) for A dis t ( f l ,  f2). Here is a typical example of such rigidity for maps 

into complete simply connected manifolds X with K ( X )  < O. 

Let V be complete manifold whose Ricci curvature is bounded from 

below, Ricci V > - R  > -c~ ,  and let f = ( f l ,  fg.) : V --+ X • X be a pair of 

harmonic maps such that 

dist x(fl(v),] '2(v)) <_ const < o c .  

Then in the following two cases fl = f2. 

(i) X has strictly negative sectional curvature, K(X) ~_ -~ <~ 0 and the 
second largest eigenva/ue A2 of (D~DI) I/2 is strictly positive (i.e. > 
:> O) on V. 
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(ii) The Ricci curvature of X is strictly negative, Ricc iX < - ~  < 0 and 

the n-th smallest eigenvalue An of ( D*ID f )I/2 is strictly positive on V. 

(The condition An > 0 implies that  k = dim V > n = dim X and that  

f is a submersion.) 

Proof: Under the assumptions (i) and (ii) the Laplace of dis t ( f l ,  f2) is 

strictly positive on V. Namely 

A dist ( f l (v) ,  f2(v)) > c(v) > 0 

where c(v) depends only on dist ( f l (v) , f2(v))  and is positive for dist > 0. 

Then the result follows from the following maximum principle of Amori and 

Yau (see p. 478 in [Ee-ae2]). 

I f  a bounded positive function p on V with Ricci V > - R  > - c r  has 

Ap(v) > c(p(v)),  where c(p) > 0 for p > 0, then p = O. 

Proof: Since Ricci > - R  the Laplacian of the distance function v 

dist(v0, v) is uniformly bounded from above for each v0 E V and v run- 

ning over the unit  ball B(vo, 1) C V. That  is A dist(v0, v) < CR < oo. (The 

function d : v H dist(v0, v) may  be non-smooth. Then  one thinks of Ad 

as a distribution. Alternatively, one may replace the distance function by a 

smooth function which has A < C and which is arbitrarily C~ to the 

distance function.) 

Since V is complete and p is bounded, there exists, for every c > 0, a 

point v0 E V, such that  p(vo) > (1 - c)p(v) for all v E B(vo, 1). Then  the 

function 

q(v) = (v)(1 - 2c dist(v0, v)) 

has a max imum point vl inside B(v0, 1), where necessarily gradq = 0 and 

Aq < 0. Then  a straightforward computat ion gives us a bound on p(vl) 
which shows tha t  p(vl) ~ 0 for c ~ 0. It follows p = 0. 

Remark: If the condition RicciV > - R  is replaced by the bound 

Izc(v) I < c then the above result can be reduced to the ordinary max imum 

principle. Namely, if vl E V is a sequence of points such that  p(vi) --* supp, 
V 

then we take the balls Bi C Tv~(V) of the fixed small radius p > 0 (say 

p = C -1/2) and give each such ball the Riemannian metric induces by the 
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exponential  m a p  expv , : Bi --* V. The  bound  IKI _< C insures a sub- 

convergence of Bi to a Riemannian  ball Boo while the functions Pi = plBi 
subconverge to a function on Boo having the  m a x i m u m  at the  center of Boo. 

1.E~. Remarks on the harmonic rigidity: (a) It is not  hard  to formulate  

(and prove) a general proposi t ion interpolat ing between the  cases (i) and 

(ii). We leave this to the reader. 

(b) The  case (ii) of the theorem applies, for example,  to harmonic  maps 

f : X --* X with dist (x, g(x)) bounded.  This  shows tha t  every such f equals 

the ident i ty  m a p  in the case K ( X )  <_ 0 and 

- c o  < - R  _< Ricc iX _< - n  < 0 .  

(c) The  conclusion of the  theorem in cases (i) and (ii) remains t rue if 

the  boundedness  of the function p(v) = d i s tx  ( f l  (v), f2(v)) is replaced by 

the  asympto t ic  bounded  

lira sup p(v) / dist v(vo, v) = 0 . 
1/"-4 OO 

In fact, there  exists an r > 0 (depending on the  constants  involved) such 

tha t  the  bound  

l imsupp(v)/dist(vo,  v) _< s 

already implies tha t  f l  = f2. 

The  proof  is identical to tha t  of d is t ( f l ,  f2) bounded  and is left to the 

reader. 

2. A-convex i ty  and the  A s y m p t o t i c  Dirichlet  P r o b l e m  

Let us identify maps  V --- X with the corresponding sections of the trivial 

bundle  V x X --+ X.  Then  we apply to the sections all the  notions we used 

for functions,  such as the Laplace operator ,  harmonic i ty  etc. 

A subset  Y C V x X is cMled A-convez if for every compact  connected 

domain  U C V with  smooth  non-empty  bounda ry  and for every harmonic  

section f : U --* V x X the  inclusion f(OU) C Y implies f (U)  C Y.  
In wha t  follows we assume as earlier tha t  X is a complete  s imply con- 

nected  manifold wi th  K ( X )  <_ O. Then  we have the following (well known, 

I believe) 
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2.A.  E X I S T E N C E  T H E O R E M .  Let  Y C V • X be a A - c o n v e x  set  whose 

projection to V is proper. Then every continuous section Fo : V -* Y is 

homotopic to a harmonic section f : V - ,  Y .  

Proof: We shall use in our argument the solvability of the Dirichlet bound- 

ary value problem for harmonic maps f : U --* Y, where U is a com- 

pact Riemannian manifold with smooth boundary  and Y is complete with 

K ( Y )  <_ O. This is due to a .  Hamilton (see [Ham]). 

Let us prove Hamilton's theorem in our case where Y is simply con- 

nected. We have an easy a priori bound on all derivatives of f in terms 

of sup dist (yo, f (u ) )  for a fixed point Y0 e Y. This supremum (obviously) 
uEU 

is achieved on the boundary  OU of U and so our derivatives of f in U are 

controlled by f lOU. Moreover, the Bloch rescaling argument used in 1.D 

to prove the interior a priori estimates, applies near the boundary  OU and 

shows that  if a harmonic map f is smooth on OU then the derivatives of f 

admit our a priori bound on all of U unless there exists a harmonic map 

of the half space R ~- to Y which is constant on the boundary  R k-1 = 0R.~, + 

k = dim U. This provides in our case (Y is complete simply connected with 

I ( (Y )  < 0) a control of CA-norms of f on U in terms of those on OU. 

Then we can use the standard implicit function argument and prove 

that the set of those C ~ - s m o o t h  (boundary value) maps OU ~ Y for which 

the Dirichlet problem is solvable is open in the space of all C ~ - m a p s  OU 

Y. On the other hand, the a priori estimate shows this subset  is closed and 

thus the universal solvability of the Dirichlet problem follows for all smooth  

boundary data.  

Now, we exhaust  V by  compact  domains with smooth boundaries,  U1 C 

U2 C . . .  Ui C . . .  V (we may assume V contains no compact  component)  

and solve the Dirichlet problem for each Ui and fo IcgUi �9 (This f0 should be, 

strictly speaking, first smoothed on OUi.) Thus we get harmonic sections 

fi : Ui --* Y which subconverge to a harmonic section f : V --* Y as a 

properness of Y over V gives us the a priori estimate on the derivatives of 

fi. This map  f is homotopic to f0 since the A-convexity yields the ordinary 

convexity of the fibers of Y ~ V. Q.E.D. 

Remark: This existence theorem can be extended to the proper Riemannian 

A-convex submersions Y --* X,  with contractible fibers where the horizontal 
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distribution in Y (normal to the fibers) is integrable with isometric holon- 

omy and where the fibers have K _< 0. (Probably the integrability can be 

replaced by some curvature type inequality on the  horizontal distribution.) 

2 .B.  Let us apply the  above theorem to the following. 

Problem. Given a smooth map f0 : V --~ X. Does there exist a harmonic 

map  f : V --4 X which is in an appropriate sense asymptot ic  to f0? For 

example when can one find a harmonic f within bounded distance from f0, 

i.e. 

distx(f(v),fo(v)) < const < oc ? 

Our existence theorem reduces the problem to tha t  of existence of a 

A-convex neighbourhood Y of the graph Fro C V x X. The  simplest neigh- 

bourhood to consider is the fiberwise p-neighbourhood of r io  , say Y(fo, p) C 
V • X whose sections V --. Y correspond to maps V -~ X within distance 

p from f0. Now, the formula (*) in 1.E shows this Y(fo, P) is A_ convex for 

a sufficiently large p in the following two cases (compare 1.E2). 

(i) g ( x )  < - ~  < 0 and the second greatest eigenvalue A2 = A2(v) of 

(D*yoDlo) 112 is large enough compared to the tension field Afo(v). 
Namely 

___ 21t,Vo(v)l l ,  (+) 

for all V E V. (The constant 2 here and below is not  the best.) 

(ii) R icc iX < - ~  < 0 and the n-th eigenvalue An for n = dim X of 

(D~oDfo) 1/? is sufficiently large, 

_> 211A/o(v)ll (++) 

for all v E V. 

Notice, tha t  in bo th  cases we assume X is complete simply connected 

with K(X) < O. 

2.BI. COROLLARY. /n cases (i) and (ii) there exists a un/que harmonic map 
f within bounded distance from f0. (The uniqueness follows from 1.E2.) 
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Remark: Even if (+)  and (or) ( + + )  fail somewhere on V there may ex- 

ist a A-convex neighbourhood Y of Fro which does not have to be a p- 

neighbourhood for any p. Then again we can approximate f0 by a harmonic 

map f .  (In fact the existence of such an f with dist(f ,  f0) bounded is suffi- 

cient as well as necessary for the existence of Y.) For example let p = p(v) 

be a positive function on V and let us give a sufficient condition for the 

A-convexity of the p-neighbourhood 

Y(fo,p) = {(v,x) [ dist x(x, fo(V)) < p(v)} c V • X .  

Set 

p(v) = 2llAI0(v)ll  

where i = 2 for the case K ( X )  <_ - ~  and i = n for aicci (X)  < - ~ .  As we 

already know 

A dist (fo(v), f(v)) > p(v) 

whenever the distance between f0 and f is sufficiently large. This imphes 

the following 

2.B2. PROPOSITION. There exists a constant Po > O, such that the inequal- 
ities 

Ap(v) < p(v) 

p(v) > po 

imply the A-convexity of the p-convexity of the p-neighbourhood Y( fo ,  p). 

2.B~. COROLLARY. The existence of the positive bounded function p on V 

with Ap  < p implies the existence of a harmonic map f : V --* X within 

bounded distance from fo. 

2.B~'. E x a m p l e s .  (a) Suppose the funct ionp(v)  = ~-l/2A2(v)-2llAfo(V)[[ 

is positive outside a compact subset V0 C V. If there exists a bounded posi- 

tive function p on V, such tha t  Ap _< 0 and Ap < 0 on V0, then there exists 

a harmonic map f : V --~ X within bounded distance from f0. 

Notice that  the existence of the above p is a common mat ter .  For 

instance one can produce such functions p using bounded at infinity funda- 

mental solutions of the Laplace operator on V. 
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(b) If V is compact connected without boundary, then the integral 

inequality 

J v  -- - _> 0 

is sufficient for the existence of p. Thus the above inequality insures a 

controlled A-convex neighbourhood of f0 and by the Eells-Sampson theorem 

(see [Ee-Sa]) the existence of a unique harmonic map f homotopic to fo in 

this neighbourhood. 

2 .C.  Let us apply the above existence results to specific manifolds V and 

X. The first interesting case is where both V and X equal the hyperbolic 

plane H 2. We start with a bi-Lipschitz map f0 which means in this case 

( 1 + c )  -1 _<Ai _< 1 + 6  

for i = 1, 2 and some 6 _> 0. If 6 is sufficiently small one can slightly per turb 

f0 such that  the tension A f0 also becomes everywhere small. Then we 

conclude that  there exists a harmonic map f within bounded distance from 

fo. 
Notice that  f0 continuously extends to the ideal boundary OaoV = 

OooH z = S 1 but the resulting map 

Ooo V = S 1 ~ S 1"= OooX 

is not,  in general, smooth. As f has the same boundary values as f0 we 

obtain a class of harmonic maps f : H 2 -~ H 2 (these are, in fact, diffeo- 

morphisms) which extend to non-smooth maps of the boundary OooH 2 --* 

OooH 2. (We like non-smooth maps for the same reason as in [Groll], 

w 

2.C' .  Remarks: (a) It seems to be unknown if for every bi-Lipschitz map  

f0 : H 2 -'* H 2 there exists a harmonic map f with dis t ( f ,  f0) bounded. 

(b) The most interesting known harmonic maps H 2 --* H 2 are the lifts 

of those between compact surfaces, say $1 --+ $2, of constant curvature - 1 .  

If such a map  $1 --* $2 is an ismorphism on the  fundamental  groups, then 

the lifted nmp f : H 2 ---, H 2 continuously extends to OooH 2. In the general 

case the extension is a measurable (Fiirstenberg) map.  These harmonic 

maps f can be composed with the above f0 with small E and then the  
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composed maps fo o f (as well as f o f0) can be made harmonic as earlier 

by bounded perturbat ions.  Yet one has no clear idea which (measurable) 

maps OooH 2 ---+ Oo~H 2 appear  as the boundary  values of harmonic maps. 

(c) A variety of general existence results for harmonic maps between 

open manifolds is proven in a recent paper by  Li and Tam (see [L-T]). For 

example, they prove the following. 

2.C". T H E O R E M .  Let  ~p be a C l - smooth  map o[ the ideM boundary sphere 

S k-1 = OooH h to S ~-1 = OooH "~ such that  the differential D~ does not 

vanish (i.e. the first eigenvalue A1 of  D~D~ does not  vanish). Then there 

exists a harmonic map between the hyperbolic spaces, f : H A ~ H n, which 

equals ~ on OooH k. 

Proof: Write the hyperbolic space H A as the warped product  

H k = ( R  k - l x R ,  e t g o + d t  2 ) ,  

where go is the Euclidean metric in R k-1. Similarly, let H "  = [~n-1 x R 

and consider a map /z : H A --~ g ~ given by #(x , t )  = (A(x),t) where 

A : R k-1 ---+ R n-1 is a linear map. Then one sees easily that  the map # 

is harmonic if  and only i f  the Euclidean energy density of A equals that of 
the identity map R ~-1 --* R k- l ,  i.e. 

2 e ( A )  = T r a ~ e A * A  = k - 1 . 
d e f  

Then we fix points v0 E H k and x0 in H n and extend the map ~ to a 

radial map fo : H h ~ H n as follows. 

(i) every geodesic ray in H k issuing from v0 goes to the ray in H n starting 

from x0, such that the  resulting map OooH k ~ O ~ H  n equals ~. 

(ii) the map of every r ay  r E H k to H '~ is isometric outside a compact  

subinterval in r. 

(iii) Let (s ,d)  be the polar  coordinates of a point v E H A where s E S k-1 = 

OH k and d = dist(v, v0). Then the polar coordinates o f x  = fo(V) E H n 

are (~o(s),d') where d ' =  dist ( fo(v) ,xo)  satisfies the relation 

e x p ( d - d ' )  = v / 2 e ( p ( s ) ) / k  - i. 
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Clearly, the non-vanishing of D~(s) implies non-vanishing of the (spher- 

ical) energy density e(go(s)) which insures the existence of f0 satisfying 

(i)-(iii). It is equally clear that  f0 is unique in a neighbourhood of 

infinity in H A. 

Now let us look at f0 on the unit ball B(v ,  1) C H A for v --* oo. Then 

we easily see tha t  for every sequence vl E H ~ which converges to some 

point s E 0r162 k there exist isometrics Ii of B(vi ,  1) C H A to the fixed ball 

B(v0, 1) and some isometrics I~ of H n, such that  the maps 

f i  = Fi o fo o Ii : B(vo, 1) --* H ~ 

uniformly converge to a map iL which is in some warped (horospherical) 

coordinates on H A = R ~-1 x R takes the above form, # (x , t )  = (A(x),t) 

where the linear map A has 2e(A) = k - 1 (due to (iii)). Thus the limit 

map # is harmonic.  It easily follows that  there is a small per turbat ion f~ 

of f0 which is C2-smooth and satisfies IIAf~(v)ll --* 0 for v ---, cxD while the 

second eigenvalue A2 of ID*I~Df~ 11/2 is strictly positive on H A. Then by the 

discussion in 2.B there exists a harmonic map f : H A --* H n asymptotic  to 

f~ and hence to f0, i.e. 

dist ( f ( v ) , f o (v ) )  ~ 0 for v --* oo .  

Remarks: (a) Our proof is different from that  in [Li-Ta] where the authors 

use the heat flow and need ~ to be C2-smooth. 

(b) The above argument  can be extended to a class of non-smooth maps 

with "small non-smoothness" as in the case of the hyperbolic plane. 

(c) Some concrete examples of harmonic diffeomorphisms of H 2 are 

given in [Cho-Tr]. 

(d) It is easy to construct  a harmonic map f : H ? --* H 2 with a fold 

along a given geodesic g C H 2. In fact, there exists a unique harmonic map 

f : H 2 --* H 2, such tha t  

(1) f ( v )  = f ( r v )  for the reflection r of H 2 in g. 

(2) Every geodesic line normal to g goes into itself. 

(3) T h e  image f ( H  2) is contained in the "right" component  of the comple- 

ment  H 2 - g. (Notice that  the  image f ( H  2) C H 2 is bounded by f (g)  
which is a curve equidistant to g.) 
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Using this f as a model one can produce more general harmonic maps 

H 2 --* H 2 with finitely many  folds (of the local type s ~-* Is D on the bound- 

ary S 1 = OooH 2. 

Also notice that  similar symmetric harmonic maps f exist in higher 

dimensions, namely one can construct such a map f : H k --* H n for n < k 

which is constant  on each orbit of the isometry group of H k fixing a given 

(n - 1)-dimensional subspace H '*-1 C H k. 

2.D. If V and X are complete simply connected manifolds with variable 

negative curvature,  then it seems hard, in general, to decide which boundary 

maps OooV --~ OooX extend to harmonic map V --~ X.  In fact, the existence 

of a single proper harmonic map V ~ X is an open problem. 

This problem admits the positive solution for d i m V  -- d i m X  -- 2, as- 

suming the curvatures of V and X are strictly negative. Indeed, Riemann's 

mapping theorem insures a conformal homeomorphism V --~ X in this case 

which is known to be harmonic. 

Furthermore,  let V0 be a minimal surface in a higher dimensional man- 

ifold X with strictly negative curvature. Then the uniformizing conformal 

map H 2 --, V0 C X is harmonic. Thus one obtains harmonic embed- 

dings of H 2 into manifolds X with sufficiently pinched curvature (compare 

[Groll ,  1.5.E~']). Notice that  the embedding f one obtains this way is 

quasi-isometric as well as harmonic, 

C -1 _< dist ( f ( vl ), f ( v2 )) / dist ( vl, v2) _< C .  

(One does not  know if every X with pinched negative curvature,  - o o  < 

-~ '  <_ K ( X )  _< - ~  < 0, receives a quasi-isometric map f : H 2 --* X. A 

similar problem arises for quasi-isometric maps H k --* X "  for n >> k, but 

for k > 3 one rather  expects the negative answer.) 

More generally, let V and X have - 4  < K < -1 .  Then the ideal 

boundaries OooV and OooX have Cl-s t ructures  (see [Hi-Pu] and one may 

think that  the  asymptotic  Dirichlet problem is solvable for C L m a p s  qoi : 

OooV ~ cOecX with sufficiently non-degenerate differentials. In fact, one 

may look first for a "quasi-harmonic" map f0 : V --* X where A f0 is small 

at infinity and then per turb  it to a harmonic map as we did earlier. As in the 

constant curvature case the simplest quasi-harmonic candidate is a radial 
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map sending geodesic rays from a given point v0 E V to those in X issuing 

from x0 E X. Tha t  is, the map f0 we look for in the polar coordinates is 

f0( , = 

where s e OooV, d --- dist(v, v0) and el '= dist ( f o ( v ) , x o ) ,  and one may  hope 

tha t  f0 becomes quasi-harmonic at infinity with a judicious choice of the 

function d ' ( s ,d ) ,  at least in the case of - 1  - E < K < - 1  for small r > 0. 

2 .E.  Let us look more closely at what happens to symmetr ic  spaces V and 

X of rank one. As the first example we take the complex hyperbolic space 

H~: and recall tha t  the boundary  S n-1 = OooH~. has a natural  contact 

structure.  Namely, one may  think of S n-1 as the unit  sphere in C "~ for 

m = n / 2  (n = dim H E is necessarily even) and the s t ructure  is given by 

the (2m - 2)-dimensional sub-bundle h" = T M ~ T C T in the tangent  

bundle T - T ( S " -  1 ). 

Every contact  diffeomorphism ~ of S ~-1 can be radially (with respect 

to a fixed point v0 E HE) extended to a bi-Lipschitz map f0 : HE --* H~- 

which is asymptotical ly harmonic as in the case of H ~ = H~.  This yields 

a harmonic map f : H~: --* H E with a given Cl -smooth  contact  boundary  

map. Moreover, this construction applies to some non-smooth contact maps 

S n-1 --* S n-1. This is interesting as the cor-responding harmonic foliation 

7-/(see [Groll] ,  w and the beginning of w becomes quite large, but  every 

transversal measure on this 7~ is supported on the leaves corresponding to 

isometric maps H E ~ H~:, provided n _> 4 (see w 

The  above discussion immediately extends to the general rank one case 

and thus  we get a variety of harmonic quasi-isometric maps V --* X whose 

boundary  maps respect the relevant (generalized contact) s t ructure  at in- 

finity. Notice tha t  such a map exists between given V and X if and only 

if there exists an isometric totally geodesic embedding V -~ X.  These are 

H~ --* H~  for n > k, H~ --* H~: for n _> 2k, H~ --* H ~  for n > 4k (here Q 

is for quatornions),  H~ --, H ~  (where K is for Cayley numbers) ,  H~ --~ H E 

for n _> k, etc. 

There  are fur ther  examples of asymptotically harmonic  (and conse- 

quently of harmonic)  maps which converge at infinity to some standard 

harmonic  maps.  To see these we recall tha t  every rank one symmetr ic  
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space V can be represented (in the horospherical coordinates) as a general- 

ized warped product,  

v = ( N  • R ,  e,(g0) + dr=) ,  

where N is a nilpotent Lie group (e.g. N = R '~-1 for V = H n and N is the 

Heisenberg group for H~:), go is a left invariant metric on N and et : N --~ N 

is a one parameter  group of dilations. We write similarly X = N ~ x R and 

observe that  every non-trivial homomorphism of the groups, A : N --* N ~, 

gives rise to a harmonic map # :  V --* X of the form p(v , t )  = (e~oA(v),t) 
for some to (compare the proof of 2.C"). 

These p are our s tandard maps. The simplest among them are har- 

monic submersions -1 and -3 which are obtained by 
dividing H~: and H ~  by the center of the corresponding nilpotent group N.  

3. Lower B o u n d s  on  the Energy 

We return to the setting of [Groll ,  w where we have a foliated space A 

whose leaves of dimension k, denoted L or V, are endowed with Riemannian 

metrics. We Mso assume that  A carries a transversal measure and this is 

used to obtain the energy E(f )  of a map f : A --* X by integrating the 

energy density el(v) defined along the leaves. The question we want to 

address now is as follows. 

What is the lower bound, denoted E[f] of E( f ' )  among the maps f '  : 
A ~ X homotopic to a given map f? (Here and below [f] stands for the 

homotopy class of f . )  

3.A. It seems worth-while to generalize this question by considering more 

general energy functionals. Namely, our map is characterized at every point 

v E A by k eigenvalues A1 >_ A2 >_ . . .  >_ Ah >_ 0 of (D*fDI) 1/2 along 

the leaves of A. Then every (positive) symmetric  function in Ai gives us a 

function (density) say sf(v) on A and the corresponding "energy" S( f )  is 

the integral of s(v) over A. The two basic examples are 

(1) s ( A i ) =  ~ A~. Here s I = 2el  and S( f )  is twice the ordinary Dirichlet 
i----1 

energy E ( f ) .  
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n 

(2) s = YI )q. Then sf is the leafwise IJacobianl of f and S(f)  is the 
i = l  

"average volume" of the leaves mapped by f by X. We denote these by 

volf and VOL(f)  respectively (which slightly differs from our notations 
in [Groll,  w 

3 .A' .  The lower bound on VOL[f] has already been considered in [Groll, 

w in a slightly different setting and we shall see later on how the lower 
bound for VOL[f] is related to that  of E[f]. Also notice that the homotopi- 

cal and topological role of the functionals S(f) is reasonably well understood 
for foliations consisting of a single (compact or not) leaf (see [Gr-E1], [Groh] 

and references on p. 388 in [Ee-Le2]) but, in general, the problem seems 

more difficult. 

The typical example one may have in mind is that  of the geodesic 

foliation of the unit tangent bundle UT(W) = Grl W of the Riemannian 
manifold W. Here the leaves of the foliation correspond to (doubly infinite) 

geodesics in W. If one wants to have a similar higher dimensional example 

one may take W of constant negative curvature and then the Grassmann 

bundle Grk W is foliated into complete totally geodesic submanifolds of W 

as we have mentioned several times earlier. Here one wants to evaluate S[f] 
for maps Gra W --* X coming from maps W -~ X. 

3.B. If two symmetric functions s and s ~ in A1, . . . ,  Ak satisfy s _< s ~. Then 

the same inequality is valid for the corresponding energy functions, 

s (y )  < s ' ( f )  and s[y] <_ s'[f] . 

1 2 For example, if k = 2, then the energy E(f)  (corresponding to ~(A 1 + Ag)) 

is bounded from below by the volume (or, rather, area corresponding to 
~1, A2), 

E(f)  >_ VOL(I)  and E[:] > VOL[I] .  

3.B1. If A consists of a single compact leaf V and K(X) < 0, then similar 

inequalities hold true for all k if the map f in question is harmonic, 

E(f)  >_ C VOL ( f )  and E[f] >_ CVOL[f] , 

for some constant C depending only on V. In fact, the first inequality 

follows from the bound on el  by E(f) (see [Ee-Sa]). 
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Then the second inequality is immediate,  as Elf] - E(f) for harmonic 

maps f into manifolds with non-positive curvature. Furthermore,  since 

very continuous map V --* X is homotopic to a harmonic map we get the 

inequality E[f] >_ C VOL[f] (as well as E[f] > C(VS)S[f] for every S) for 

all continuous maps f : V --* X.  

3.B2. In order to extend the above discussion to general foliations A one 

needs a bound  of e by  E. Unfortunately the argument in 4.C4 only gives 

the following weaker result for the case of compact A or, more generally, 

in the case where all leaves V are complete (without boundary)  and have 

[I((V)I ~ const < oo and Inj a a d V  > e > 0. For every point v E Y C A, 

denote by  ~(v) the supremum of e(v) over the unit Pdemannian ball in V 

around v. Then we have the following average bound 

f A : / ( v )  CEIl] (+) < 

for C = C(A) and for all (leafwise, as usual) harmonic maps f : A --* X ,  

assuming K(X) < O. On the other hand the stronger bound e!  < CE[f] is 

not valid in the general foliation framework. The difficulty may be already 

seen if one looks at harmonic maps into S 1 of cyclic coverings Vi of a fixed 

surface of genus _> 2. One can easily arrange such fi  : Vi --* S l, such 

that sup ey~(v ) is not bounded by E(f~)/AreaVi. In fact one can always 
vEV~ 

make supe l l  >_ cons tAreaViE( f i ) .  Yet I do not see how to produce a 

geometrically significant example where E[f] is not controlled from below 

by Vol[f]. 

3 .C.  For a given A foliated into Riemannian leaves V, we take the leafwise 

unit tangent bundle A ~ = UT(A) foliated into the geodesics in V. The 

Liouville measures in all UT(V) add up with the transversal measure in 

A to a transversal measure for the (1-dimensional) foliation A p. Now with 

every map f : A --, X we have f~ : A' ~ X and 

E(f) = cnE(f') , n = dim V ,  

for a universal constant  cn > 0. In what follows, we renormalize the  Liouville 

measure in order to have cn = 1. Then, with this convention, we have 

E(f') = E(f) and, consequently 

E[:'] >_ E[:] . 
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3.C1. Remark: If the leaves V of A have constant negative curvature, 

we can use the foliation of k-dimensional totally geodesic submanifolds in 

V. This is also possible for foliations with locally symmetric leaves which 

contain sufficiently many totally geodesic submanifolds. In fact one may 

sometimes use non-geodesic submanifolds. Also, one may apply the dimen- 

sion reduction trick to bound the energy functionals S(f)  different from 

E(S). 

3.D.  We assume here that  A is a one-dimensional foliation and we try to 

evaluate E(f)  for f : A --* X in geometric terms. Namely, we take the 

universal covering X of X and look at the lifted map, say Y: A --* .~. For 

every point v E A, we take the 2R-segment of the leaf V 9 v centered at 

v, we lift this segment to ~t and send it by Y to )~. We observe that  the 

distance between the ends of this segment in X does not depend on the 

lift and we denote it by dist~(v + R, v - R). Then we define the average 

covering stretch of f by 

Str'-~f = �89 l imsup R -1 f dist ~(v + R, v - R ) .  
R---* oo JA 

(Compare [Cro-Fa], where a similar invariant is called "intersection"). It is 

obvious that  the stretch is bounded by S(f)  for s = IA1 I, i.e. for s t (v  ) = Ildfll 
for the leafwise differential of f ,  

Stref _< S(f)= IId/ll. (*) 

Therefore, if we normalize VolA = 1, we get the bound (compare [Cro- 

FaD 

Next we observe that  Stre is a homotopy invariant of f and therefore 

(**) 

> STr f. (+,) 

3.D1. E x a m p l e .  Suppose the map f is leafwise harmonic (i.e. geodesic 

with e!  = 1. If X has no conjugate points, (e.g. K(X)  < 0) then each 

segment f'(v - R, v + R) is distance minimizing in )~ and thus 

S t re f  = E(f)  . 
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3.1)2. Remark: If the transversal measure of the closed leaves in A equals 

zero, then one may expect the equality x / ~  = S-~ref. This is easy to show, 

for example, if X has no conjugate points. Another amusing case is where 

7rl(X) is finite and the equality just says that  E[f] = 0. Yet, I have not 

checked the general case. 

3.E. Let us apply the above to the geodesic foliation A' associated to a 

k-dimensional foliated A. Thus we define the stretch of a map f : A --. X 

by 

Stref  = Stref '  

and observe that  in the normalized case 

> STref (++) 

(compare [Cro-Fa]). 

In particular we have the following (foliated version of the) result of 

Croke and Fathi (see [Cro-Fa]). 

3.El. If  X has no conjugate points and f is a leafwise geodesic isometric 
immersion, then f is energy minimizing, 

E(f) = E[/]. 

Another useful bound on E[f] applies to those f whose lifts f :  A --* X 

are quasi-isometric on the leaves of V of A. In fact, we need only a one-sided 
hound 

Gist ~ (f(D'l), f(~2) > C dist V(~I, ~2) (*) 

for all leaves V of A and all pairs of points vl, V2 in V which are sufficiently 

far apart, say for dist(vi, ~2) > Ro for some fixed Ro. 

3.E2. I f  all leaves ~/ are simply connected manifolds without conjugate 
points, then 

>_ >_ c 

for the constant C of ( ,) .  
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3.F.  Let us indicate a more sophisticated example of the evaluation of 

the stretch. Namely, we take a compact manifold W of negative curvature 

and consider a continuous map f : W --, X. Then we have the following 

criterion for (non)-vanishing of St ref  which, by definition, equals the stretch 

of the corresponding map f of the geodesically foliated space UT(W) into 

X. 

3.F1. PROPOSITION. The stretch of f vanishes if and only if  the image o[ 
the fundamental group f.(Trl(W)) C r l (X)  is an amenable group. 

Idea of the proof: A general geodesic of W mapped to .~ looks very much 

the same as a path  of a random wall, with support in f.(Trl(W)) and the 

random walk version of our Proposition is a well known easy fact. 

3.F2. Remarks: (a) Let W have constant curvature - 1  and A = Grk W 

foliated into geodesic manifolds. Then the above Proposition yields the non- 

vanishing of the leafwise energy of the map f~ : A --* X corresponding to 

f .  Namely, E[f'] > 0 if f . ( r l ( W ) )  is non-amenable. (Of course, for k > 2, 

one may easily have E[f ']  > 0 while f.(rrl)  is amenable). 

(b) The  proposition remains valid for many manifolds W with non- 

strictly negative curvature, such for example, as locally symmetric spaces 

without fiat factors. 

(c) Another useful generalization of 3.F1 concerns sections of fiat bun- 

dles over W. These correspond to homomorphisms 7rl(W) --~ I soX,  where 

the image of 7rl(W) does not have to be discrete in the isometry group 

Iso X.  We leave it to the reader to work out the relevant definitions and 

proofs. 

(d) Finally, we indicate that  with every S(f )  associated to a given 

symmetric function s = s (A1, . . . ,  Ak) one can directly associate a kind of 

k-dimensional stretch without using the reduction of dimension. Namely for 

each v E A we take the k-ball B = By(R) in V 3 v around v and denote by 

a(v, R) the lower bound of the s-energies Qf the maps B --, X which equal f 

on the boundary OB and homotopic to f rood OB. Then the corresponding 

average stretch is 

S ( f )  = l imsup / Vol (Bv (R) ) - la (v ,R) .  
R---, co  J A  
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For example,  if n = 1 and s = IAll, then  this gives us our old Stre provided 

the compact  leaves have measure zero. In general, this not ion seems mean- 

ingful if the  balls B, (R)  have subexponential growth where one expects the 

equality S ( f )  = Sill ,  possibly under  some mild restrictions on A. 

3.13. V O L [ f ]  a n d  d e g r e e .  Recall tha t  every space A foliated into oriented 

k- dimensional  manifolds with a transversal  measure defines a ]oliated k- 

cycle in A whose homology class is denoted [A]E Hk(A; R). For example,  if 

A is a smooth  manifold,  t hen  for every closed k-form w on A representing a 

cohomology glass in H k ( h ) ,  the pairing ([w], [A]) is defined by integrat ing 

over A as follows. The  restriction of ~ to the (oriented!) leaves of A define 

a measure density along the  leaves. This  adds with the transversal  measure 

to a measure  on A which is then integrated over A. We use, as earlier the 

notat ion 

([w],[A]) = / A  w = 0J(A). 

3.G1. E x a m p l e s .  a) Let A = UT((W) be foliated into oriented geodesics 

in W. Then  the class [A] E HI(A;R)  vanishes for d i m W  > 2. In fact the 

involution i : A --* A which sends each tangent  vector T E UT(W)  = A 

to - %  obviously satisfies i.[A] = -[A]. On the other hand,  if d i m W  > 2, 

then, by a simple argument ,  i .  = Id on Hi(A).  Q.E.D. 

(b) Let W have constant  negative curvature and A = Grk W be the 

foliation into oriented k-dimensional totally geodesic submanifolds in W. If 

k is odd and d im W > k, t hen  again, the obvious (orientat ion reversion) 

involution on A is identi ty on Hk(A) and so [A] = 0. On the other  hand  if 

k is even, then  [A] r 0. In fact let e E Hk(A) denote  the  Euler class of the 

tangent bundle  of the  foliation. Then,  clearly, (e, [A]) equals the integral of 

the Euler-Gauss-Bonnet  form which is a non-zero constant  on A. 

(c) The  above non-vanishing of [A] is of ra ther  general nature:  if some 

k-dimensional characteristic form (for a given Riemannian metric or, more 

generally, for leafwise connection on A) does not vanish on A, then [A] r 0. 

In particular,  H/,(A; R) # 0. 

(c ~) Another  non-vanishing criterion can be obta ined with the index 

theorem for foliations of A. Connes: if almost all leaves V admit harmonic 

L2-forms of even dimension and no such forms of odd dimension, then 

[A] # 0. (This remains t rue if we pe rmute  odd ~ even.) Notice tha t  
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the existence (and non-existence) of a harmonic L2-form on V of a given 
dimension is a quasi-isometry invariant of V. 

(c") Let us apply the above to 2-dimensional foliations and conclude: 

If  almost all leaves V of A are hyperbolic (i.e. the universal covering V of 
a.e. leaf V is conformally equivalent to the disk) then [A] r 0. In particular, 

H2(A;R) # 0. 

Notice, that every foliation on a compact space without hyperbolic 
leaves always admits a transversal measure by Alphors lemma (see [G-L- 

P]). On the other hand, the known techniques of building foliations seem to 

(?) provide an abundance of those with (2-dimensional) hyperbolic leaves. 
(Notice that every surface V with non-Abelian free fundamental group is 

necessarily hyperbolic.) Yet, getting both, hyperbolicity of the leaves and 

a transversal measure looks infinitely harder. 

Test question. Let A be a foliation of a compact manifold into k-dimensional 

leaves with metrics of negative curvature and an ergodic transversal mea- 

sure. Does the fundamental group of A have exponential growth? 

3.G2. Using [h] e H~(A; R) one gives the following obvious criterion for 

non-vanishing of VOL[f] that  is the infimum of the (averaged k-dimensional) 

volumes of maps A --* X homotopic to a given f : A --* X. 

I f  f.[A] ~ 0 then VOL[f] r 0. 

If X is a connected oriented manifold of dimension k, then HA(X, R) = 

R and f.[A] E Hk(X,R) is characterized by a single real number, called 
deg f ,  and the above non-vanishing criterion can be (obviously) made more 

precise. Namely, 

VOL[f] > deg f (A) 

for all leafwise smooth continuous maps f : A ---} X.  

Slightly less obviously is the opposite inequality, 

I f  the (traversal) measure on A is ergodic, then 

VOL[f] _< deg y .  (v) 

In particular if deg f = 0 (e.g. [A] = O) then VOL[f] = O. 
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Proof: If VOL[f] > deg(f)  for some map f ,  then the leafwise Jacobian 
of f must  change sign on A. By the ergodicity, this change of sign must 

take place on almost every leaf V of A. Now, if a connected manifold V is 

mapped to X with a "fold" along which the Jaobian changes sign, one can 

deform such a map at the fold, such that  the mutually cancelling part of 

VOL(f) diminishes. This shows that  VOL(f)  > VOL[f] and a little extra 

effort yields a deformation of f which diminishes VOL(f)  by a given amount 

c < VOL(f)  - deg f .  We leave the details to the reader. 

Example. Let A be our geodesic foliation of Grk W for K(W) = -1 as 
earlier. I f k i s  odd a n d d i m W  _> k + l ,  then every map f : A- - .  X for 

d i m X  -- k, has VOL(f)  -- 0. (Yet we know that E[f] ~ 0 if f,(Trl(A)) 

is non-amenable.) On the other hand, if k is even, then VOL[f] may be 

positive. For example, if dim W = k + 1 is odd, one can always construct 

a m a p  f of A ---- GrkW (= UT(W)) to S k with d e g f  ~t 0. But i f X i s  

an aspherical manifold (e.. K(X)  _< 0) then one can easily show that  the 

f*-image of the fundamental cohomology class of X is invariant under the 

orientation change involution in Gr~ W. It follows that  deg f -- 0 and then 

VOL[f] also vanishes. 

3.H. Lower  b o u n d s  on  VOLt[ f ]  for t _< k. Let S --- VOLt correspond 

to the g-th elementary symmetric function, 

v o l t ( f )  = = . 

Call a map f : A --+ X (homotopically) e-essential if V O L d f  ] > 0, and 

g-non-essential otherwise. Then we say that  A is e-essential if the identity 

map A -~ A is such, where the homotopies in question are those preserving 
each leaf of V. 

Example. Let A consist of a single leaf V (compact or not) and f can 

be homotoped to the (t  - 1)-skeleton of some triangulation of X. Then, 

obviously, f is t-non-essential. 

Conversely, suppose f is e-non-essential. Then, if V and X are com- 

pact, the g-skeleton l/~ of every triangulation of V can be sent to the 

(e - 1)-skeleton of (some triangulation of) X by some homotopy of f (re- 

stricted to ~ ) ,  In fact, if V O L d f  ) = fv(voltf)(v)dv is small then also 

fv,(VOlt f)(v')dv' is small for an appropriate small perturbation V[ C V of 
Vie(see p. 388 in [Ee-Le] and references therein). 
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Finally, we notice that  all of V can be pushed to Vt with vole bounded. 

Thus the above contractibility of Vt to X~_I is sufficient as well as necessary 

to the g-non-essentiality of f .  

A simple corollary of this discussion is as follows. 

A compact simply connected manifold V is g-essential i f  and only if  
Ht(V; F) ~ 0/'or some coefticient field F. 

The situation is by far more interesting for non simply connected mani- 

folds. For instance if the universal covering V" of V contains an g-spread "(see 

[Gro11, w then V is g-essential. In fact the lift Vt of Vt to W cannot be 

moved to ~ - 1  by a bounded homotopy. It follows, for example that  every 

closed manifold V of non-positive curvature is g-essential for all g _< dim V, 

and that  every closed aspherical manifold of dimension k _> 2 is g-essential 

for g = 0, 1, 2, k - 2, k - 1, k. (Probably the latter is true for all g _< dim V.) 

3.H1. Now let A be a foliation with transversal measure # with finite total 

volume 
f 

VOL(A) = JA d# dv < OO 

and where the leaves V are complete. We want to bound from below 

VOLt[Id] that  is the infimum of VOLt f for maps f : A --~ A which can 

be joined with Id by a bounded leafwise homotopy. That  is a map 

F :  A x [0,1] -- ,A 

such that  for every leaf V of A, 

F ( V  • [0,1]) C V ,  

and the lea/wise distance between v and F(v, t) satisfies 

dist (v,F(v,t)) <_ C <  c~. 

First we observe that  for every bounded k-form f~ on the leaves the in- 

tegral f^  f*(f~) is invariant under the bounded homotopics (compare 4.El). 

It follows that  

Vol(h) g f  Volt Id = Volt[Id] 

for all (non-orientable as well as orientable) foliations. 
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Consequently, if the foliation is leafwise oriented and the oriented vol- 

ume form f~ decomposes into the product of bounded closed forms, 

f~l of degree kt and f12 of degree k2, then 

VOLk, [Id] _> el > 0 , 

and 

VOLk~ [Id] > e2 > 0 , 

where el and e2 depend (in an obvious way) on Vol(A) and the implied 

bounds on Ilalll and Ila, ll. 

3.H2. E x a m p l e .  If the leaves V are complete K~hler manifolds, then 

VOLl[Id] > 0 for all even ~ < k = dim V. 

3.H3. Another interesting case where one has the sharp bound on VOLt[Id] 

is that  where the leaves have constant negative (or zero) curvature, namely 

VOL,[Id] = VOL, Id 

for all e < k. 

In fact this reduced to the special case e = dim V by passing to the 

foliation of the e-dimensional totally geodesic submanifolds in the leaves. 

One also expects a (non-sharp) lower bound for variable non-positive 

curvature and for more general foliations with uniformly contractible leaves 

(compare [Gro6]). Here is a result in this direction. 

I f  the ~-th L2-Betti number of A does not vanish then VOLl[Id] > 0, 

provided the leaves V have bounded geometry, 

IK(V)I  <_ C <  , 

Inj Rad 1/_> ~ > 0 .  
(+) 
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Proof: The Betti number in question equals the trace of some integral op- 

erator on the space of g-forms ~o along the leaves, 

L2b t = .~ H(v,  v)d# dv 

such that for every f : A --* A homotopic to Id the composition of the above 
operator with w ~-* f*(w) has the same trace equal L2b t. On the other hand 

the trace of the composed operator is bounded by 

f lIH(v, v)ll VOLt(I) _< VOLt(v)sup v) ll.  
V 

The inequalities (+) imply that sup IIHII < oo and therefore, 

VOLt(f)  > L2bt/sup tIgll :> ~ > 0 . 

Example. Let k -- dim V = 4 and the curvatures of the leaves V are 

pinched between two negative constants, 

- c o  < - ~ 1  < K ( V )  < - ~ 2  < 0 .  

Then the Gauss-Bonnet integrand is positive and by the A. Connes index 

theorem the L2-Euler characteristic is also positive. Hence L2b t 7 s 0 and so 

VOL2[Id] > 0. 

Remarks: (a) We did not assume here Inj Rad V _> E > 0 as this condition 

can be achieved by passing to the universal covers of the leaves. 

(b) Probably, Volt[Id] > 0 whenever the e-dimensional Lp- cohomology 

does not vanish for some p E (1, ~ ) .  

3.H4. Now let us give two criteria for VOLt[f] > 0, where f is a map of 

A into a Riemannian manifold X. 

Criterion ~. Let us left f to the universal covering )~ of X and suppose 
the lifted map, called y, embeds the universal V of each leaf of A into )~, 

such that  the following strong quasi-isometry property is satisfied. For each 

embedded to )~ by f there exists a Lipschitz retraction ~ : )~ --. ~', such 

that the resulting map A --~ V is measurable and equivariant for the deck 

transformation group and such that the Lipschitz constant of ~ is bounded 

on V. We also assume that the maps Y : V ~ .Y are uniformly Lipschitz 

(e.g. [[df[[ is bounded on A) and then we observe the following inequality, 

VOLt[f] _> C VOLt Id 

where C > 0 depends on the Lipschitz constants of Yand  ~. 
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Proof: Every homotopy f ,  of f first lifts to a homotopy ~ : ~" --. )~ which 

is then re t racted back to V by ~. Thus we obtain a homotopy of Id : A --* A 

whose Volt-density is controlled by that  of ft. Q.E.D. 

Example. Let A be a foliation consisting of totally geodesic submanifolds 

V in X.  If X has K ( X )  >_ O, then the normal projections )~ ~ V have 

Lipschitz constants one and the tautological map f : A --* X has 

VOLt[f] > C VOLt I d ,  e = 1, 2, . . . .  

3.H~. C r i t e r i o n  2. Suppose the map f : A --~ X is non-homologous to 

zero in dimension e in the following senses. There exists a closed e-form wl 

on X and a leafwise closed contimlous m-forms f~2 on A for m + e = k = 

dimension of the leaves, such that  IIf*(wl) A f~211 > s > 0 on A. Then, 

clearly, VOLt[f]  > 0. 

Remark: In both cases 1 and 2 we tacitly assumed A is compact. In the 

general case one should impose a certain boundedness condition on the 

homotopies (and differential forms) involved in the discussion. 

4. E x i s t e n c e  T h e o r e m s  for  H a r m o n i c  M a p s  o f  Fo l i a t ions  

We start with giving a foliated interpretation of the results in w on the 

asymptotic Dirichlet problem. To make our point clear we consider the 

following very special situation. We start  with a complete manifold W of 

constant negative curvature and consider the foliation A = Gr~ W of the 

k-dimensional totally geodesic submanifolds in W. We denote by f0 the 

projection A --* W and observe that  f0 is harmonic on each leaf V of A. In 

fact, f0 is a geodesic isometric immersion on each leaf. 

Next, we consider a small C2-perturbation g of the  original metric go 

in W (of constant curvature),  where "small" refers to the  C2-norm of go - g  

measured with respect to go, i.e. the second jet J2(go - g) must  satisfy 

]]J (go - -< (,) 

everywhere on W. 
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STABILITY T H E O R E M .  There exists an Co > 0 depending only on dim W 

such that the above inequality (.) with ~ < Co implies for n >>_ 2 that 

there exists a unique continuous map f : A --~ W with the following two 

properties: 

(1) f is harmonic on each leaf V of  A with respect to the original metric go 

on Y o f  constant curvature (induced from (W, go)) and the new metric 

g o n W .  

(2) f is homotopic to fo. Moreover, there is a (bounded) homotopy h : 

A x [0, 1] --~ W between f and fo, where 

length W h(v x [0, 1]) _< 6 < oo 

for all v E A and some 6 > O. (Such a bound is, of  course, automatic i r a  is 

compact.) Furthermore,  6 --* 0 as ~ ~ 0. 

Proof: Pass to the universal covering Hm = W and use 2.B1. 

Remarks: (a) The above stabil i ty theorem, unlike the one for non-parameter- 

ized minimal varieties (see [Grol l ,  w fails to be true for n -- 1. 

(b) The transversal measure in A plays no role here. Yet it becomes 

crucial when we allow g to be far away from go. 

4 .A.  Now we turn  to a general foliated space with a transversal  measure 

v where the leaves (of dimension k, denoted V or L) carry complete Rie- 

mannian metrics. We recall the foliated gpace M = {(),, ~o)} for A E A 

and T : Lx --* X a C ~ - m a p  (see [Grol l ,  w and we are interested in 

transversal measures ju on AA where push-forward P.(t~) under the projec- 

tion p -- M --* A equal v. To make the picture clear let us fix once and for 

all a transversal section or slice, E C A of our foliation which meets  each 

leaf L over a non-empty discrete subset in L. Then the transversal  measure 

v is given by  an ordinary measure on E, also denoted by  v which is invari- 

ant under the (holonomy) pseudogroup of A. Similarly, every transversal 

measure/~ in .h4 is given by an actual measure, also called #, on the space 

of the maps  L~ --* X for all a E ~. Notice tha t  ~ is a slice of the foliated 

space Iv[ which goes onto ~ under the project ion p : .~A --~ X .  

Denote by  B(a,  R) C La the Riema~nia~ R-ball in La and then for 

every map f e ~ C .hd we denote by [[f[[c.[B(R) the C ' - n o r m  of f [ B ( a , R )  

for a = p( f ) ,  where the C~ of the norm is defined as the distance 
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from some fixed point  x0 E X and the C~-component for 1 < s < r is the 

usual norm of the s-th differential of f with respect to the  given Riemannian 

metrics in L~ and X.  

The following trivial lemma is our basic tool for constructing transversal 

measures in the subspace 7-/C f14 of harmonic maps L~ --* X.  

4.A1. COMPACTNESS LEMMA. Let the measure u be finite, i.e. I~(E) < oo 

and let #i, i E I ,  be a family of transversal measures on ./M with the following 

two properties: 

(1) P.(#i)  = v. 

(2) For arbitrary constants e > O, R >_ 0 and r = O, 1 , . . . ,  there exists a 

constant C > 0 such that  for each i E I the #i-measure of the subset 

~ c  C ~ of the maps f ,  such that 

Ilfllc lB(R ) > C,  

satisfies 

Then the family Pi is precompact in the weak topology, that is every se- 

quence of measures #i contains a subsequence which weakly converges to a 

transversal measure # on .M. 

Proof: We observe that  for every function C = C(R,  r) the space of C ~ 

maps f : L~ --~ X with 

]lfllc lB(R) < C(R,r) 

is compact in the C~176 in the space of maps. Thus  for every r there 

is a compact subset  ~(c)  C ~,  such that  

Then the lemma follows by the standard weak compactness of measures on 

a compact space. 
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4.A~. E x a m p l e .  Suppose X is compact and all measures tti are supported 

on the subspace ~ C dk4 of the harmonic maps f ,  such that  the total 

Dirichlet energy E with respect to/~i is bounded by a constant independent 

of i E I.  Then the assumptions of the lemma are satisfied, as it follows from 

1.D2. (The bound on e( f )  is especially clear with (+ , )  in 1.D2 and (+) in 

3.B2.) 

4 .B.  T h e  h e a t  e q u a t i o n .  

and reads 

This equation applies to maps f : A x R+ --+ X 

o y  
0--7 = a F  , ( , )  

where A is the leafwise Laplacian of maps into X. If X is a compact 

manifold of negative curvature and the leaves V of A are complete and have 

Ricciv _> - R  > - c~  

then the heat equation admits a solution f with a given initial map f0, i.e. 

flA x 0 = f o ,  

provided fo : A ---* X is Cl-smooth  along the leaves with the energy density 

bounded on A 

sup e(fo) < o0 . 
A 

This is an immediate corollary of Theorem 4.1 in [Li-Ta]. Furthermore, it is 

easy to see that  if the initial map f0 is continuous then f is also continuous. 

Remark: Compactness of X is not really necessary. Probably it is enough 

to have X complete and certainly the bound on the curvature of X and the 

first covariant derivatives i.e. 

and 

[K(X)I <_ const < 

IIVK(X)II < const < o o ,  

will do. 

Since K ( X )  < O, every solution f of (,) 

Bochner-type inequalities (see [Ee-Lel], p. 24]) 

0e 
0--t < Ae + Re 

satisfies the following two 

(+) 
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for the energy density e = e I and 

0f --- At ,  

for 

0/12 e= =llzX/ll2 

(++) 

4.B1. The inequality (++)  shows that if g(f0) is bounded by a constant 

C, then also g(f) < C for all t E (0, er 

To use (+) in a similar way one first observes that the function e' = 
(exp-2Rt)e  satisfies (++) ,  i.e. 

0 e  I 
< A e ' ,  ( + + + )  

Ot - 

as is immediate with (+). It follows that 

el(v,  t) < C exp2RT 

for all t E ( 0 , ~ ) .  Furthermore ( + + + )  shows that the function e(v,t)  is 

controlled by its average over the unit ball B = B(v, 1) in the leaf L~ C A. 
Namely for all t _> 1, 

e(v, t + 1) _< C(VolB) -1 ~ e(v, t)dv (,) 

where the constant C depends on k = dim V and R = - i n f  Ricci V. This 

follows from Theorem 1.1 in [Li-Ta]. Also notice that (*) yields, via the 

Schauder estimates for parabolic equations, the uniform C~176 

of the space of maps ft : A --* X,  for f t (v)  = f (v ,  t) for all t > 1, provided 

the right hand side integrals are uniformly bounded. More precisely, the 

norm of the r-th order differential of f along the leaves satisfies for all 
r = 1, 2 , . . .  

[[D~(v,t + 1)[[ <_ C,,,, /B  e(v, t)dv . (**) 
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4 .C .  D e c a y  o f  e n e r g y .  In order to use (*) and (**) we need a bound  on 

the total  energy E( f t )  for all t _> 0. To evaluate this we observe the following 

well known infinitesimal formula for lea/wise smooth maps f : A --~ X ,  

div(df  �9 A f)*  = IIAfll 2 + (dr, V A f )  

where (dr �9 A f)* is the vector field along the leaves in A which is dual to 

the 1-form defined by  T H (dr(T), A f )  x for all leaf-tangent vectors T. 

Here "duality" refers to the lea/wise metric in A while the covariant 

derivative and the scalar product  on the right hand side of the above formula 

are taken in X .  

Next we invoke the following obvious integration rule over a foliation 

A with a transversal measure v, such that  the total  volume of A for the 

measure dr, dv is finite, where dv denotes the lea/wise Riemannian volume 

element. 

4.C1. DIVERGENCE LEMMA. I/" a// /eaves of A are complete and VolA < 0% 

then every bounded leaf-tangent and leafwise Cl-smooth vector t~eld, 0 on 

A whose leafwise divergence div 0 is in L1 (A) satisfies 

fh d iv0  = 0 ,  (V) 

Proof: The field 0 integrates to a one-parameter transformation group of 

the finite measure space (A, # = dr, dr), such that  0Au = d iv0 .  Hence, 

4.C2. COROLLARY. Every leafwise Ca-solution f of  the heat equation A f = 

~ satis t ies  Ot 

dE!  = [ 
dt - JA II fll2 

provided Vol A < co and e! and A f are bounded on A.  
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Proof: First we observe the s tandard formula, 

d---t <dr. df) = 2 <dr. V ,d f )  = 2 df. V = 

= 2 <dr, V A f )  = 2 (d iv (d f .  A f)* --I lAfll  2) 

A s  

2 E ( f )  = ]A (dr, dr) 

the conclusion would follow if we had div(df .  A f)* in Lt(A).  

To handle the Lt-problem (i.e. the possible divergence of f^  [[ div [D we 

regularize the integral f div using cut-off functions as follows. For every 

leaf V of L we denote V(r e > 0 the subset in V where the norm of the 

third differential of f is _> e -1 and let p~(v), for v E V be defined by 

p~(v) = rain (1,dist(v, V ( e - t ) ) )  . 

This gives a function p, defined on all of A which is the union of its leaves V. 

Now we obviously have 

d E ( f )  - f IIAfll 2 = 

= lira f p ~  ( ~ f , ~ f >  - I[zxflt 2 ~ - . o j  ~, = 

for 0 1 . = ~ (dr. A f )  . Then we observe that  the divergence of the field p~c3 is 

in Lt(A) since 

II div(p~O)H <- II011 + ~-= .  

Therefore, 

for ~ = f (dp,,O) 
f p~ div 0 ~ 0 for e --* O. 

0 =  f (div(p.O))= f p, divO+ . 
--* 0 for e - ,  O. This implies the needed relation 

Q.E.D. 
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The  above cut-off a rgument  allows one to extend the 

fA div 0 = 0 , 

to the  (unbounded)  fields 0, such tha t  II011 and d i v 0  are in LI(A).  In fact, 
one does not  even need Vol(A) < c~ in this case. 

4 .C~.  D i g r e s s i o n :  B o c h n e r  i n t e g r a t e d .  Let us use the cut-off argu- 

men t  to in tegrate  the inequali ty 

II Hessf I12 < - (Ricei dr, dr) + Aef (,) 

(see 4.Dr and Remark  (b) in 4.D2). We mul t ip ly  bo th  sides of ( , )  by q = p2 

and integrate  over A with the notat ions f '  for dr, f "  for Hessf,  etc., 

f q(f,,)2 < R f(f,)2 + f div(qgradel)- f q'f'f", 

where 

R = - inf Ricci 
A 

(recall tha t  "Ricci" refers to the leaves of A), and 

Then  

ql=2ppl for P = P c .  

+ 2 ~ / / ( P ' f ' )  2 f q(f,,)2 < R f(f')2 f q(f,,)2. 

Finally, we assume tha t  the to ta l  energy E(f) is finite, 

E(Y) = f ef = f (f')2 < o~ , 

and conclude t ha t  

f i i(ness,)l l2 = f(f,,)2 <_ CE(f). (**) 
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4.C4. Now we return to the heat equation ~ = A f  where the initial map 

fo = f (v ,O)  : h --* X has eIo = IldfoH 2 and IIAf0][ bounded on A. Then 
ft  = f ( v ,  t) has the following four properties: 

(1) ef, remains bounded on A for every t >_ O, 

supef~ _< Ct 
A 

for some funct ion Ct > O. 
(2) IIAftll is bounded on h x [0, oo). 

decreasing in t. 

(3) The total energy 

Moreover, sup IlzXf, II is monotone 
A 

E(A) = f,~1, 
is monotone decreasing in t and converges to some limit, say 

E(oo)  = lira E ( f t )  . 
~ "--4 o o  

(4) The integral fA II~ftll 2 is monotone decreasing in t and converges to 

zero for t ~ cx~. 

Pro4:  (1) and (2) follow from 4.Bt and (3) and (4) follow from 4.C. 

Remark: The above argument is due to Eells and Sampson (see [Ee-Sa]), 

where it is used for compact manifolds V. 

4.C~. Let us additionally assume that the curvature of the leaves and 

their covariant derivatives are bounded on A and also the curvature tensor 

of X is bounded along with its all covariant derivatives. Then we have the 

following two extra properties of f t .  

(5) For every r >_ 1 the r-th covariant derivative V"  f t  is in L2, 

, I IV"f t l l  2 _< c,, < oo.  

(6) For every s > 0 the L2-norm of V ' A f t  decays for t ~ oe, 

~ IIV',, ',f, It = ~ o .  
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Proof: (5) follows from (3) and the  Schauder estimates for parabolic equa- 

tions (see 4.8),  and (6) is obtained by interpolation of (4) and (5) applied 

to r = s + 3 .  

4 .D.  E x i s t e n c e  o f  h a r m o n i c  m e a s u r e s .  Let A be a foliated space 

with a transversal measure v and a Riemannian metric along the leaves. 

We assume tha t  all leaves are complete with Ricci curvature bounded from 

below, 

Ricci _> - R  > - o o  . 

We also assume that  A admits a slice of finite measure (compare 4.A), and 

that  VolA < c~. We suppose, as earlier, tha t  the target  manifold X has 

non-positive curvature,  K ( X )  < O. Now, to simplify the mat ter ,  we insist 

that  X is compact either without boundary or with convex boundary.  

Finally, we consider a continuous leafwise smooth map f0 = A --+ X, 

such that  ey o and IIAf0][ are bounded on A, and let f~ denote the solution of 

the heat  equation. (The existence of ft  for all t > 0 is assured by 4.B). The 

map ft  : A ---, X,  for every fixed t > 0, tautologically defines a map of A to 

the space .s of smooth maps of the leaves of A to X (see [Grol l ,  w and 

we denote by #~ the push-forward of u under this map. This #t is a finite 

transversal measure on the (foliated) space M such tha t  the  projection of 

#~ to A (for the  obvious projection 1,4 --+ A) equals v. 

4.D1. T H E O R E M .  There exists a/~nite t~ measure # on the foil  

ated space 7-/C A4 o/" harmonic maps o f  leaves of A to X which is a weak 

limit of  the measures pt~ for some sequence ti --, 0 such that 

(a) The projection of  # to A equals t,. 

(b) Every energy functional S = fA s is lower semicontinuous /'or t --, cr 

where 

<_ , 
t l --.~ oO  

f 
S(#~) ~ f  S( f t )  = ] ^ s f ,  dudv 

and where S(#) is deigned in the same way as the integral of s over 7{ 

/or the measure  d# dv on ~ ,  where dv denote the leafwise Riemannian 

measure  of  the leaves ofT[ identified with the corresponding leaves in 

A under ~ .  
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(b') The Dirichlet energy E(#) = fT~ e d# dv satisfies 

E ( s )  < E ( f o )  . 

(c) If  for some cr > 1 the integral fA sT, remains bounded t'or t ~ cxD then 

S(S)= lira ( S ( f t ) =  fAs I ' )  

1 (c') For each/3 in the interval, ~ < /~ < 1, the total  energy of S for the 

density e~ = Ildfll equals the limit of those for St,, i.e. 

f n e # d s d v =  lim fAeZft, d v d v ' ` , _ _ . ~  

Proof: The weak precompactness of the measures St follows from the uni- 

form bound on the energy E ( f t )  (see (3) in 4.6'4) and the parabolic Schauder 

estimates (**) in 4.B. Then the existence of a weak sublimit S of St follows 

from 4.A1. Then  verifying (a)-(c') needs only recalling the definitions and 

topologies involved. 

4.1Y 1. Remark: It may, a priori, happen that the measure S insured by 

4.D has E(f)  = 0 and then S is supported on the constant maps (of leaves 

of A to X). This unpleasant possibility can be ruled out however if we have 

a lower bound on fA e~ for ce < 1 for the maps f homotopic to f0. For 

example, if f0 has Stref0 > 0 (see 3.E), then 

1 for all ce > ~ and so 

/ -  
lim inf / e a 

t - - .~  JA f' > 0 

/ e~ d s dv > 0 

for �89 _< a < 1 by (c') in 4.D. It follows that  there are non-constant harmonic 

maps in the support  of #. Yet, such a non-constant harmonic map may  be 

still rather boring if its image lies in a single goedesic 7 of X.  (Notice that  

every non-compact manifold V admits plenty of harmonic maps V ---* 7 = 
R.) 

Now we shall give a criterion which guarantees the presence of truly 

interesting harmonic maps in the support of #. 
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4.D~'. Let X have strictly negative curvature, K(X)  < O. 
ergy" density 

(see 3.H), satisties 

Then the "en- 

axeaf d~f vol2f = ~ AiAj 
i , j  

lira sup / (area A) 2 
t.-* c~ J A  

Consequently, (by (c) in 4.D) 

and 

< ~ .  

AREA(p) = VOL2(#)=  lim AREA(f, ,)  
def  t ,  --* 

VOL3(#) = lira VOL3(ft ,) .  
ti--cOQ 

Proof: We use here the general Bochner-type formula of Eells-Sampson for 

an arbitrary map f : V --* X.  That is 

II Hess~ II 2 -HAl l [  2 - Re f + n(axeaf) 2 < div 0 ,  (*) 

where 
- R  = inf Ricci(V) , 

= - sup K(X)  , 

and O is some vector field on V (whose components axe linear in f ' f "  that 

is an abbreviation for (df, DZf), compare 4.C~). 
We integrate ( ,)  over A and conclude 

_< (RE, + f II/"fll2)/,  �9 (**) 

This implies our assertion as f HA fill 2 remains bounded (in fact goes to 
zero) for t --, oo. 

4.D~". C O R O L L A R Y .  

AREA[fo] > 0 

then some map f in the support of the measure # in 4.D, has rank(f)  > 2. 

Similarly, if  
VOL3[fo] > 0 

then some f has rank(f)  _ 3. 

Recall that [f0] denotes the homotopy class of fo and VOL[fo] refers 
to the iafimum of the volumes of the maps in this class. 
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4.D2. G e n e r a l i z a t i o n s .  The assumptions used in 4.D1 are very re- 

strictive and can be significantly relaxed. For example, one may  admit 

non-compact complete manifolds X by  adding a certain stabili ty condition 

on f0 (compare [Corl], [Don]). Also one may  extend the theorem to maps 

of foliations to foliations with negative curved leaves and also one may go 

to sections of flat fibrations over A, as is needed for the super-rigidity appli- 

cations. Also one may relax the assumptions on f0 and strengthen the ties 

between f0 and the limit measure #. All that  we hope to discuss in another 

paper. 

Here, we only want to point out that  one can admit  non-strictly nega- 

tive curvature, i.e. K(X) < 0 (rather than I((X) < 0) if instead of area f 

one uses the K-area that  is 

K-  area/(v)--= sup I(R(DIT1,DIT2)DfT2,DIT1)11/2 

where (T1, T2) runs over all orthonormal pairs of vectors at v tangent to the 

leaf V C A through v and where R denotes the curvature tensor of X at 

f(v). 
This K-area  may easily be non-zero even if K(X) somewhere vanishes. 

Examples. (a) Let X = X0 x X1, where K(X1) ~ 0 and K(Xo) is strictly 
negative. Then the K-area  of every map f : A -~ X is bounded from below 

by C area f0 for the component  fo : A ~ X0 of f and some C > 0. 

(b) Let w be a closed 2-form on X which is dominated by  the curvature 

as follows 

iw(a,b)l ~_ I (R(a,b)a,b) ]1/2 

for all pairs of tangent vectors a and b in X.  Then if f*(w) is leafwise 

non-homologous to zero (see below) then K-AREA[f ]  > 0, where "non- 

homologous to zero" means there exists a leafwise closed form ~2 on A of 

degree k - 2 (k is the dimension of the leaves), such that  

~f *(~) A~2 r 0 ,  

(compare 3.H~). 
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4 .E .  Convergent heat flows and measurable homotopies.  We want 

to describe here a si tuation,  where the heat  flow ft  converges in measure to 

a lea/wise harmonic  m a p  f which is measurably homotopic (see below) to 

/0. 

4.E1. DEFINITION: A measurable homotopy  between f0 and fx is a mea- 

surable m a p  F : A x [0, 1] ~ X which is cont inuous on V • [0, 1] for almost 

all leaves V of A and such that  F(v,O) = fo(V) and  F(v,-1) = f l (v) .  

Example.  Suppose a m a p  f : A ~ X admits  a lift to some infinite Ga- 

lois coverings, say f" = ~. --* X ,  such t h a t  y is proper on each connected 

componen t  of the  lift of every leaf of A to A. 

If A is compact ,  t hen  f is not homotopic to a constant  map  A --~ X. 

To see why it is so, we assume for simplicity 's  sake tha t  almost  all leaves 

in A are s imply connected.  Let f (v , t )  be our homotopy  of f = f(v,O) to 

f (v ,  1) = x0 E X and denote by d(v) the distance between the ends of 

the lift to )~ of the pa th  between f(v) and  x0 in X.  This  is a measurable 

function on A which is proper  on almost every leaf. But  such a funct ion on 

a compac t  A may  only exist if a.e. leaf is compact .  Q.E.D. 

4 .El .  S I N G U L A R  U N I Q U E N E S S  T H E O R E M .  h e K ( X )  < 0 then every 

measurable homotopy class contains at most one harmonic map f : A ~ X 

with Ildfll in Lx(A), and such that r a n k f  >__ 2 on a.e. leaf. 

Proof: Let ft  be a homotopy  between harmonic  maps  fo and f l  and  let 

d'(v) be the dis tance between fo(v) and ~ ( v )  in X for the lift ft of f t  to the 

universal covering 7f of X .  If one of the maps ,  say f0 has rank~ fo > 2 and 

d(v) > 0, then  A~r(v) < 0 (see 1.E). Since f0 and f l  have the  differentials 

in LI(A) ,  the  same is t rue  for the  function d and so the cut-off a rgument  

applies to the  field 0 = grad d" and  shows tha t  div 0 = Ad" = 0 and  hence, 

d '=  O. Q.E.D. 

COROLLARY. h e Vol A < (x), then the uniqueness conclusion holds true for 

maps with anite tot~ energy E ( f )  (= f c s = �89 f Ildfll2). 
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4.E~. Now let A be a foliation as earlier and let us additionally assume 

that the transversal measure is ergodic. Let fo : A --4 X be a continuous 

map with E(fo) < c~ and Afo 'bounded on A. 

4.E~. E X I S T E N C E  T H E O R E M .  I l K ( X )  < - ~  < 0 and 

AREA[fo] > 0 ,  

then there exists a measurable leafwise harmonic map f : A ~ X which is 

measurably homotopic to fo and has E ( f )  = E[f0] < E(fo) and rank _> 2 

almost everywhere on A. 

Proof: Let f t  be the heat flow and observe that  the lower bound on the area 

and the ergodicity of A imply, by the argument  in 4.D~ ~, that  the  second 

greatest eigenvalue ~2 = A2(ft) of D* Dr, is a.e. away from zero for t -~ c~. f, 
That  is for arbi t rary Co > 0 and #o > 0 the measure of the set where A2 < r 

is at most #o for all t greater than to = t0(co, #0). 

Next we consider the distance function d'(v; t l ,  t2) in the universal cov- 

ering )~ of X between the lifts ~ of f t  for t = tl  and t = t2 _> tl and recall 

that (see w 

< cllz  f ,  l fl - , 

where 5 = 5(d'(v)) is a certain non-negative function of d" which is strictly 

positive for d > 0. Then 

which shows that  5 and d'converge in measure to zero as tl and t2 go to ~ ,  

and so ft converges in measure to the required map f .  Q.E.D. 

4.E~. Remarks: (a) If A is non-ergodic one needs AREA > 0 on each 

ergodic component  of A. 

(b) Instead of AREA one could equally use VOL3 or the functional 

f (area)  ~ for every c~ < 2. 

(c) if K is non-strictly negative, the  above argument  may  fail only if the 

field of the geodesic segments [~1 (v), ~ , (v ) ]  in J~ becomes asymptotically 

parallel. This leads to a generalization of the above theorem for maps to 

the spaces with K _< 0 which is important  for the (super)-rigidity results. 

This mat te r  will be discussed in full somewhere else and here we only give 

the following 
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Example.  Let X be the Cartesian product  of several manifolds of strictly 

negative curvature,  X = X1 x X2 x . . .  x Xj  and f0 : A --, X be a map 

whose project ion to each Xi, i = 1 , . . .  , j ,  has A R E A  > 0. Then our proof 

applies to these projections and shows the convergence of the  heat flow ft .  

5. Harmonic  Maps of  Flat Fol iat ions 

If all leaves V of A are Riemannian flat, then the harmonic measures p on 7/ 

over given transversal measure v in V are the same thing as the measures in 

the space of harmonic maps R k --* X which are invariant under the action 

of the parallel translations of R k. 

It is worth noticing that such measures are not  hard to come by, since 

the group I~ k is amenable and so every compact  Rk-invaxiant subset in the 

space of maps R ~ ~ X admits a finite invariant measure. 

5 .A .  If K ( X )  < O, then the Eells-Sampson argument  (see 4.C~) shows that 

every invariant measure # on 7-[ is extremely special, # is supported on the 

maps f : R k --~ X with Hessf = 0 a.e. with respect to # on 7"[. 

It follows that  every such map f is geodesic (or affine), tha t  is a compo- 

sition of a linear map R k --* R l with a total ly geodesic isometric immersion 
Rt --. X.  

5 .B .  The heat  flow f t  on A with fiat leaves has the energy densi ty e I 

bounded on A x [0, ~ )  (compare 4.B1). It follows, that  the limit measure # 

of 4.D1 has 

S(f) = lira S ( s  
t l .-*co 

for every energy functional S. 

In particular,  if VOLt[f0] > 0 then supp p contains a map  f of rank _> 

t. 

Another immediate  consequence of the  bound on ef is the  compactness 

of supp p. Namely, if X and A are compact then supp # is compact. 

5 .C .  E x a m p l e .  Let gl and g2 be two metrics of non-positive curvature 

on a compact  manifold X and let G1 and G2 be  the spaces of geodesic 

maps  of I~ t' into (X, gl)  and (X, g2) correspondingly. Then every invariant 

measure #1 in G1 can be  "homotoped" to a measure #2 which is harmonic 
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with respect to g2 and such a measure is supported in G2. Thus we obtain 

a (multi-valued) correspondence between the invariant measures in G1 and 

G2. 
If the above #1 is supported on the maps of rank -- k, then 

VOL[ttl ] = VOL(ttl) > 0 

for the metric gl. Then we have the similar inequality with respect to g2 

which implies 

VOL(#2) > 0 .  

Thus we recapture the following theorem of Anderson-Schroeder (see [And- 

sea]). 
If  (X, gl)  receives an isometric geodesic immersion of R k then so does 

6. M a p s  o f  K~ihler Fo l ia t ions  in to  Man i fo lds  X w i t h  K c ( X )  ~_ 0 

Let 

Q(aAb, c A d ) =  <R(a,b)d,c) 

be the quadratic form on A 2 T(X)  corresponding to the curvature tensor R 

of X. Then we extend Q by complex multilinearity to the complexification 

CT(X) and look at the Hermitian form Q(a A b, ~ A d) on A 2 CT(X).  We 

say that C-curvature Kc of X is negative (or non-positive) if 

< 0  

for all a A b e A 2 CT(X)  and strictly negative if 

Q(a A b,-~ A'b) < 0 

for all non-zero bivectors a A b. These conditions can be expressed in terms 

of four real vectors, if we write 

a = a + i a '  and b = j 3 + i j 3 ' ,  
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for a,  a ' ,  fl and fl' in T ( X )  and i = x/-L-T. Namely, 

a A b = o~ A l3 - O/ A l3' + i(c~' A l3 + a A l3') , 

-a A-5 = o~ A 3 - o /  A I~' + i ( o /  n /~ + o~ A 3 ' )  , 

and 

Q(aA b,~Ab) = Q(c~A,3-  or' A / ~ ' , a A , 3 -  a'  A/3') 

+O(ce' A ~ + ce A/3' + ce' A ,/3 --I- c~ A ,~') . 

It follows that if Q is negative definite on A2T for 4- dimensional subspace 

T C T(X) ,  then K c  < 0 and if Q is semi-negative on all A2T then K c  < 0. 

Now, Prop. 3.8 in [Bou-Ka] says that if a curvature tensor R on •4 has 

the sectional curvature 

K(a,b) = (R(a,b)b,a) /lla A bll ~ 

pinched between - 8  and - 6 8 ,  then Q is a negative semi-definite on R 4 and 

the strict pinching, 

_5 8 - 5 < K  < 2 

makes Q strictly negative. 

n = dim X.  

Thus ~-pinching makes K c ( X )  negative for all 

Moreover, according to a private communication by D. Toledo, the 

precise pinching condition, 

- 8  <_ K <_ -48  ~ K c  <_0 

has been just verified by L. Hernandes at the University of Chicago. It 

follows that if the sectional curvature of X is locally ~- pinched, i.e. 

-5 (x )  < K~(X)  <_ -45(x) 

for some function 6 : X --* R+, then K c ( X )  < O. 
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6.A. E x a m p l e s  o f  m a n i f o l d s  X w i t h  p i n c h e d  n e g a t i v e  c u r v a t u r e .  

Let X be a manifold with K ( X )  < 0, let 7 be a simple closed normally 

orientable geodesic in X and let X '  be obtained by the surgery of X x [0, 1] 

a l o n g T E X x 0 c X x [ 0 , 1 ] .  Tha t  is 

X ' =  ( X x [ O ,  1 ] ) U D  2 x D  k ,  

for k + 2 = d i m X  + 1, and where OD 2 =- 7 C X.  

6.A1. For every e' > 0, there exJsts numbers  e > 0, g > 0 and r > 0, such 
that under  the following three conditions (i)-(iii) the manifold X '  admits 
a metric g' for which the boundary OX' is convex and -1  <_ K ( X ' , g  ') < 

- 1  - d .  

(i) - 1  < I t ' ( X ) -  1 -  e', 

(ii) length 7 >- g, 

(iii) Inj Rad(X,  7) >- P ,  

where the injectivity radius is defined with the (normal) exponential map  

of the normal  bundle of V C X to X .  
The  proof  is achieved by a straightforward construct ion similar to those 

[Gro3] and [Gro7]. 

Notice tha t  the fundamenta l  group of X ~ is obtained from tha t  of X 

by adding the relation [7] = 1. One also can obtain a orbifold X '  with 

-1 < K(X ' )  - 1 - e' and  ~-~ = 7h/[7] p by performing the surgery over the 

p-th mult iple  of 7. 

6.A'~. Remarks: (a) If the holonomy around 7 is trivial (i.e. if d i m X  = 2) 

then one can replace (ii) and (iii) by the following weaker condit ion 

pL exp Ct R > C2 , 

L = length 7, R = I n j R a m ( X , 7 ) ,  and Ct and C2 are positive constant  

depending only on d im X.  

(b) The  above surgery construct ion can be performed over several 

geodesics in X simultaneously. Moreover, one can make  surgery over cer- 

tain total ly geodesic submanifolds of dimension > 1, but  this is slightly 
more delicate. 
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(c) There are also examples of closed manifolds with pinched curvature 

obtained by ramified coverings of constant curvature manifolds (see [GrTh]). 

(d) The condition K c  _< 0 is much more amenable to surgery than the 

pinching condition as we shall see in another paper. 

6.A2. Every symmetric space X with K ( X )  <_ 0 has K c ( X )  _< 0. 

This is explained in [Sam] and [Ca-To]. 

6.Aa.  Another  important  example of K c ( X )  _< 0 is provided by the 

Teichmfiller space X with the Weil-Peterson metric (see [Schu]). Notice 

that  this X is non-complete. Yet it is convex (see [Wol]) and so one has a 

fully fledged theory of harmonic maps to X.  (See [Jo-Va2]). 

6.B.  S i u - S a m p s o n  fo rm u la s .  Recall that  the complex Hessian of a real 

valued function f on an almost complex manifold (V, J) is defined by 

Hesse f = dJ 'df  , 

where J '  is the operator on the cotangent bundle of V corresponding to J 

on T(V)  (where the operator J with j2  = _ Id corresponds to the multi- 

plication by v / ~ ) .  

More generally, for a smooth map f : V --* X one defines 

Hesse f = d V j d f  , 

for the  antisymmetric (or exterior) part d v of the covariant derivative V in 

X. Notice that  d v Jdf  is an anti-symmetric 2-form on V with the values in 

T ( X ) .  Also notice that  Hesse f (v) ,  v e V, can be defined as dJdfe(v), where 

fe : Y ~ R ~ = T~(X),  x -- f (v) ,  is a composition o f f  with the inverse of the 

~ exponential inverse of the exponential map of (a neighbourhood of) X and 

d denotes the exterior differential on the Rn-valued forms (and functions) 

on Y .  

A map f is called pluriharmonic if Hessc f = 0. Notice that  this notion 

does not use any metric on V. 

Now, let (V, J)  be given a Hermitian metric which is the same thing as 

a Riemannian metric on T(V) invariant under J. Then one easily sees that  
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A map f is pluriharmonic if and only i f  the restriction of f on every 

holomorphic curve S C V is harmonic with respect to the metric on X 

induced from V. 

Recall that  a (real) surface S C (V, J)  is called a holomorphic curve if 

the tangent subbundle  T(S) C T(V) is J-invariant. 

Now, we assume V is Kiihler. Then for every point v E V and every 

tangent vector r E Tv there exists a holomorphic curve S = S(T) C V which 

passes through v tangent to 7- and which is geodesic at v, i.e. the relative 

curvature of S at v is zero. 

This proper ty  shows that  for every map f the Laplacian A f ( v )  equals 

the average of the Laplacian of f on S(7) over all unit vectors ~- E Tv. 

(Compare 1.B.) In particular every pluriharmonic map is harmonic. 

If direr  V = 2 then also the converse is true but  for dim V ~ 4 plurihar- 

monicity of a map is much stronger than harmonicity. In fact the relation 

Hesse f = 0 represents N partial differential equations for 

N = nk(k - 1) 
2 

where n = dim X and k = dimR V. Therefore, the system of these equations 

if overdetermined for k > 2 and we can easily show that for a generic metric 

in X every pluriharmonic map f : V ~ X has rank f _< 2 everywhere on V. 

Now we have the following basic infinitesimal inequality of Sampson 

[Sam] which is a modification of an earlier result by Siu [Siu]. 

6.B1. If  K e ( X )  (_ O, then every harmonic map f of a Kiihler manifold V 

into X satisfies 

[I Hesse fll ~ _< div 0 ,  

where 0 --- O/ is a certain vector field on V built out of first and second 

derivatives of f . More precisely, 0 is bilinear in df and D2 f (= Hess f ), 

0 = r D2f)  , 

where the coefficients of the form �9 depend only on the Kiihler metric in V. 
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6 . B [ .  It is sometimes useful to know the error term in (*). Here it is 

II Hesse fll 2 - d i v 0  _< Traced~:Qx , (**) 

where Q is the (curvature) form on A 2 C T ( X )  (see w and d~: denotes 

the  dual of the complexified differential (see below) of f .  Thus  d~:Q is a 

Hermit ian form on F~:T(V) and the trace is taken with respect to the K/s 

metric. 

An impor tant  consequence of (**) is 

If  Ke  < 0 and r a n k f  > 2, then the inequality (*) becomes strict, 

II Hesse f l l  2 < div 0 .  (+) 

Definition of de .  If d : C n --, R m is an R-linear map  then de  : C '~ --* 

C m = R "  | v/-ZTR "~ is the unique C-hnear map whose composit ion with 

the  projection Re : C m --* R r" equals d. Tha t  is 

de (x )  = d ( x ) -  r  , x e C ~ �9 

6 .C .  S u i - S a m p s o n  for  fo l i a t i ons .  Let A be foliated by complete K/ihler 

manifolds whose Ricci curvatures are bounded from below by some negative 

constant  > - c ~ .  We assume that  A is given some transversal  measure # 

and let f : A --~ X be a measurable map which is C3-smooth and harmonic 

on each leaf of A. 

T H E O R E M  . / f  K e X  _< 0 and the map f has finite total energy 

E( f )  d~f ~ ef d~f �89 ~ lldfl'2 < ~176 , 

(where the differential d is taken along the leaves and the integration is 

performed with d# dv for the leafwise Riemannian volume dr), then 
(1) The map f is pluriharmonic on almost all leaves, i.e. 

Hesse f = 0 . 

(2) The form Q on A z C T ( X )  is isotropic on the image of the complexified 
differential of f . That is every bivector a A b tangent to the image of  a 

leaf of  A satisfies 

Qx(dca A dcb , dea A deb) = 0 . 

In particular, i f  Ke  X < O, then r a n k f  <_ 2 almost everywhere on A. 
(3) div 0 = 0 almost everywhere on A. (This will not  be  used in future.) 
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Proof: Integrate (*), (**) and (+) over A using the cut-off function p2 as in 

4.C~. 
Let us combine the above with the existence theorem for harmonic 

measures (see 4.D) and obtain the following property of leafwise smooth 

(non-harmonic) maps f : A --* X. 

6.C1. COROLLARY. I f  X is compact with convex (e.g. empty) boundary 

and K c X  < O, then every f : A -* X has 

VOL3[f] = 0 .  (*) 

6.C~. Let us indicate a generalization of the integrated Siu-Sampson for- 

mula for maps f with small integrals f IlvfII 2 and f IIVAfll 2, where the 
basic example is the solution ft of the heat equation for large t. 

If  for some family of maps ft the L2-norms of the first and the second 
(covariant) derivatives remain bounded by a fixed constant while the L2- 

norms of A f t  and V A f t  decay for t --* oo, then 

fzx (ll Hesse All- Traced~Qx) --~ 0 

for t ---* oo. In particular, if K e ( X )  <_ e < O, then 

V o h f t ~ O  for t - - *oo .  

Proof: It is enough to observe that the Laplace operator enters div0 via 

some scalar product of the form (V f, V A f / .  (Compare [Sam].) 

6.C~2. Remarks: (a) The above applies to the heat flow ft if the curvatures 
and their covariant derivatives of X and of the leaves of A are bounded (see 

4.C~). Then every map f has 

Vol4[f] = O. (**) 

(b) The estimates used in the proof of (**) do not involve the dimension 

of X in any way. It follows, that (**) remains valid for maps into infinite 

dimensional Riemannian manifolds X. In fact a great deal of the harmonic 
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maps goes through with the infinite dimensional target space X if one allows 

oneself to use the following (ultra-) completeness property. Let K be a 

compact  metr ic  space and fi : K ~ X be a sequence of uniformly Lipschitz 

maps,  such that  the  distance functions di on K induced by fi from X 

converge to some function d on K (or rather on K x K) .  Then  K admits 

a d-isometric map f : K ~ X.  Moreover, this (ultra-) limit map should 

be functorial in the category of the compact metric spaces. For example if 

K ~ C K and we first take f~ for f~ = f [K  ~, then  there should exist f for fi 
such that  f [K'  = f ' .  

7. H y p e r b o l i c  p i n c h i n g  

For a Pdemannian manifold X with negative curvature we define the pinch- 

ing constant pi(X)  with the infimum of those a _> 1 for which 

< K(X) < (,) 

for some constant  ~ > 0. Then we define the local pinching constant pilo(X) 

which is the infimal a for which (.)  holds true with some function ~ on X. 

Next for a class A" of manifolds X we define pi(A') as in fp i (X)  over all 

X E A', and similarly we define pilo(k'). If X consists of all complete mani- 

folds diffeomorphic, homeomorphic,  homotopy equivalent or quasi-isometric 

(see [G-L-P], [Gro3]) to X,  then we use the notations Difpi(X),  Toppi(X),  

Hompi(X) ,  Qispi(X), etc. 

7 .A.  The simplest obstruction to the (local) pinching comes from the 

Gauss-Bonnet-Chern-We]l theorem. Namely, every Pontryagin number p 

of a closed locally a-pinched manifold is bounded by the Euler characteris- 

tic as follows 

Ip(x)l _< 

where C ( a )  -- Cp(a) is a continuous function in the interval [1, a n ) f o r  some 

a,,  > 0 (here n = d i m X ) ,  such that  C(1) = 0 and if n = 4, then an  = oc. 

COROLLARY. Let X be a compact locally symmetric space of rankR = 1 

which does not have constant negative curvature. If dim X is a multiple of 
4, then 

Toppilo X _> 1 + r 



Vol.1, 1991 F O L I A T E D  P L A T E A U  P R O B L E M ,  P A R T  U 3 0 7  

for some c > 0 depending on n = dim X. (One can replace Top by Horn if 

the comparison manifolds have the same dimension as X.) 

Remark: The above result has been known for several decades but the fol- 

lowing evaluation of E for dim X = 4 is relatively new (see [Vil].) 

I f  dim X = 4 then the above r equals 3. 

This result is sharp, as the relevant (locally symmetric) metric is 4- 

pinched to start with. 

Remark: The above result by Ville has settled for d i m X  = 4 the long 

standing pinching conjecture for locally symmetric spaces. 

Another solution of the (non-local) 4-pinching problem for all dimension 
has been recently announced by U. Hamenstgdt  (a private communication) 

but her proof (based upon the study of the geodesic flow) has not appeared 

yet. 

7.B. Another simple restriction on pinching comes from nilpotent sub- 

groups F in the fundamental  group ~r 1 (X). Namely, i f  ~rl contains such a P 

of nilpotency degree k, then 

pi X _> k 2 

provided the homological dimension of F satisfies 

dim F _> dim X - 2 , 

(compare [GroS] and [Kan]). 

Proof: Let F isometrically act on a complete simply connected a-pinched 

manifold Y. If F is nilpotent of degree _> 2 (i.e. non-Abelian) then F fixes a 

point P at the ideal boundary cqo~Y. That  is there exists a (horo)function h : 

Y --* R invariant under F, such that  h is a convex function with II grad hll = 1 

and the gradient lines of h are geodesic in Y asymptotic to p and h(y) --+ -cx~ 
for y --. p. 

Now, take some non-trivial element ~, E F and look at the displacement 

function d(y) = dist (q,(y),y) as y --. p along some geodesic ray ~ in Y. The 

lower bound on the curvature, say K ( x )  > - ~ ,  implies that  

log d(y) >_ nl /2h(y)  + const l 
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while the upper bound K(x) < - a n  makes 

log d(y) <_ (an)l/2h(y) + coast ~ . 

Therefore the displacement function d and dl of any two non-trivial elements 

in F satisfies for y --~ p 

Ilogdl < al/2(1 +r (*) 

where r --~ 0 for y --, p. 

Now let a non-trivial element 7 E F be a k-th order commutator ,  

= �9 

Then, by the Margulis lemma (see [G-L-P], [Bus-Ka]) the displacement d of 

7 is bounded by di of 7/ as follows 

k 

, ( * * )  

i = 1  

provided the rotational part of each 71 at y (i.e. the  holonomy around the 

geodesic loop in Y/F corresponding to 7i) has (at most) the  same order of 

magni tude as di. 
Now, if d i m F  = d i m X -  1, then the action of F is cocompact on 

each level h-l(t)  C Y of the function h. Since these levels have bounded 

curvatures the quotient manifolds h -1 ( t ) / I  ~ are compact almost flat for t --+ 

oe and the required bound on rot 7i is provided by the  estimates in [Gro9] 

and in [Bus-Ka], and  a similar argument  (compare 7.B ~ below takes care of 

dim F = dim Y - 2. 

Finally, we play (**) against ( , )  for di --~ 0 (and C in (*) bounded) 

and obtain the required inequality 

v/-~ > k . 

Example. Let X. be a complete non-compact  locally symmetr ic  manifold of 

finite volume. If rank  X = 1 and X does not  have constant  curvature,  then 

r l ( X )  contains a nilpotent  subgroup of degree 2 and  d i m F  = d i m X  - 1. 

Therefore, 

Toppi X -- 4 .  
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7.B I. L e t p - -  d i m X - d i m F - 1  and r be the rank of the orthogonal 

group O(p), tha t  is 

r -- ent(p/2) . 

Then we have the  following estimates for the pinching, of X ,  

p iX  > (k/(r  + 1)) 2 . 

Idea of the proof. The rotational effect of each V E F is essentially re- 

stricted to p directions in h -1 (t) C X "normal" to the orbits of F. It 

follows, there exists an integer N of order at most (d(v)) - ~--+-r such tha t  the 

rotational part  of 7 N is at  most (d(7)) ~-'~ �9 Since 
1 

d(v N) _< Nd(v)  _< (d(7)),--+-r , 

a commutator  of k such elements will be of order at most d~-~-r by the 

Margulis lemma, and the proof is concluded as earlier. 

Question. Can one improve the above estimate in order to make it non- 

vacuous for all p? (The above bound on pi X says nothing what-so-ever for 

r + l  > k.) 

Remark: Since all nilpotent groups F have k < d i m F -  1 the best pinching 

bound one can obtain with the above is 

pi X _> (dim X - 2) 2 . 

One knows however (see [GrTh]), that  for each n > 4 and every c~ _> 1 there 

exists a closed n-dimensional manifold X of negative curvature, such tha t  

Toppi X _> a . 

7.C. Q u a s i - i s o m e t r i c  p i n c h i n g .  A locally diffeomorphic map between 

Riemannian manifolds, say f : M --* N, is called a-pinched if the eigenval- 

ues )~1 _> )~2 _> . . .  s > 0 of D*ID ! for m = d i m M  = d i m N  satisfy with 

some constant C! E R 

log ~1 <_ (a  log ~m + CI) , 

Whenever Am > 1. 

7.Ca. LEMMA. Let Y be a complete simply connected a-pinched manifold 
of dimension m + 1. Then for every horosphere N C Y there exists a 

v~-pinched map f : S m-1 • R+ --* N ,  such that A,~(s, t) --* cx) for t E cx). 
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Proof: Let r C Y be a geodesic ray in the  horoball bounded by  N and let 

M be the boundary  of the  e- tube  around r for some r > 0, say for e -- 1. 

Then the map  f0 of M to N,  which sends each m E M to the intersec- 

tion of N with the  exterior normal ray to N,  is a-pinched by the standard 

comparison theorem. On the other hand M is bi-Lipschitz equivalent to 

S m-1 x R+ and the composit ion of f0 with this equivalence is our f .  

7.c~. 
K(Y ' )  < - ~  < O) manifold which is quasi-isometric to Y.  
ery horosphere N ~ C Y~ there exists a manifold N "  such that 

(i) dim N "  = dim N I = m 

(ii) N"  is quasi-isometric to N '  

(rio N"  has bounded geometry, that  is 

VARIATION. Let Y '  be another strictly negatively curved (i.e. 
Then /'or ev- 

< c < 

and 

Inj Rad  N "  > e > 0 . 

(iv) N "  receives a v/-~-pinched map f '  : S rn-1 x R+ --* N "  with A~M --* oo 

as in the lemma. 

Proof: Let N~ C Y correspond to N '  under  the quasi-isometry between Y 

and Y' .  Let N "  be the boundary  of the  r  of the convex 

hull H0 C Y of N~ for some r > 0, say for r = 1. Then N" lies in some 

6-neighbourhood of N~ (see [And3]) and it is quasi-isometric to N ' .  It is 

also clear that  the  normal projection form a ray r E H0 delivers a a-pinched 

map  M ---+ N "  and then our f : S M-1 x R+ -~ N"  comes along. Q.E.D. 

Remark: Notice that  the  map f we have obtained is proper. 

7.C~. COROLLARY. Every horosphere N'  contains arbitrarily large bounded 

domains ~,, such that 

Vol~ f~' > (Vol.~_l 0f~') 1+~ 

for every fixed /3 in the interval O <_ fl < (V/ '~(m- 1)) -1 

(+) 
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r n  r n - - 1  

Proof: Let J = ( 1-I )`i)112 and I = ( 1-I Ai) 1/2" Then the pinching condi- 
i=1 i=I 

tion log ),1 < ~ log ),,~ for ),i > 1 implies 

j _> Ol+~o 

for/30 = ( v ~ ( m -  1)) -1 
Now for fY '=  fY'(R) = f ( S  m-1 x [0, R]) C g "  we have 

Volta ~2" = dt Jds 

and / ,  

Volta-10f~" <_ C + ] I(s, R)ds 
J s  

for C = Voln_l f (S  "-1 x 0). It follows that for large R --+ 0% Vol, f~"(R) >_ 
c f :  (Vol ,_l  Of~(t))l+~~ for c > 0, which implies (+) for f~". This gives 
us what we want for N '  as it is quasi-isometric to N". 

7.Cz. Examples .  (Compare [Grol0], [Pan31) (1) Let Y' be the complex 
hyperbolic space of dimension n = m + 1. Then all large domains ~2' in 
the horospheres N '  C Y satisfy the following isoperimetric inequality (see 
[Panl], [Vat]) 

Volta f~' _< (Volm_l Of~') l + ~  

Therefore 

QispiY' _> ( ~ _ l ) z  = ( n  +---~1) 2 

(2) Let Y' be a quatorian hyperbolic space of dimension n = m + 1. 
Then the isoperimetric inequality for N '  reads 

This gives 

Volta f/' < (Volta-1 Of Y) 1+ rr* --1- 3 . 

Qispi Y' _> k, m - 1 ] 

(3) Let Y' be the hyperbolic Cayley plane of dimension 16. Then 

Volls f~' < (Voll4 0~"~1) 22/21 

and 

Qispi y i  > 9/4 . 
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Remark: There are further quasi-isometry pinching results in [Pan3] and 
[Pan4] but one does not know yet if Quispi = 4 in the above examples. 

7.D. Let X be as earlier a complete Riemannian manifold which may have 

a non-empty convex boundary. We assume K c ( X )  is strictly negative (e.g. 

X is locally (4 - e)-pinched for ~ > 0) and we want to derive from this con- 

dition some specific geometric and topological properties of X, expressed in 
terms of those of continuous maps of K~ihler manifolds and Ks foliations 

into X.  We start with the simplest case, that is of a compact connected 
K~hler manifold V without boundary and observe the following by now well 

known result essentially due to Sampson (see [Sam]). 

7.D1. THEOREM. Every continuous map f : V ---* X is non-g-essential for 
every ~ > 3. That is 

V O L t [ f ] = 0  for e > 3 .  (,) 

In particular, i f  X is compact then f is homotopic to a map sending V into 

the 2-skeleton of a given triangulations of X .  

Proof: Let f0 be a smooth map homotopic to f and f t  the heat flow starting 
from f0. Then e(ft) = Ildf, II 2 is bounded on V • [0, ~ )  and so one sees as 

in 4.D, that 

vol f,), (,+) 

for all~p _> 1, where vo13 denotes the elementary symmetric function of 

degree 3 in the eigenvalues of the operator (9*lDf)l/2. (The notation Df 

for the differential is supposed to bring along the idea of an operator, namely 

Dl (v  ) : Tv(V) --~ T~(X), while df is thought of as a 1-form on V with 

values in T(X).)  Obviously ( ,+ )  implies ( ,)  which, in turn, implies the 

2-contractibility of f for compact manifolds X. 

7.D2. Remarks: (a) Notice that the proof of (,) we have indicated equally 

applies to infinite dimensional manifolds X.  
(b) If X is compact, the above theorem becomes a pinching result: If 

X receives a non-2-contractible map from a compact K&hler manifold, then 

Toppiloc X _> 4 . 
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Moreover, X admits no metric 9 with K c ( X , 9 )  < O. 

(c) If X is compact  then f is homotopic  to a harmonic  map  h which is 

more special than  just 2-degenerate. Namely, there are two possibilities. 

(1) There  exists a compact  Riemann surface S, a holomorphic  map  

hi : V --~ S, and a harmonic  map  h2 : S --~ X such tha t  h = h2ohl. 

(2) The  m a p  h sends V to a single closed geodesic in X.  

The  propert ies  (1) and (2) easily follow from the plur iharmonici ty  of h 

as was pointed  out in [Ca-To] and [Jo-Ya]. 

7.D3. COROLLARY. ~ICHI(V; ~) --- 0, then every continuous map V --~ X is 

contractible (where X is compact with K c  X < 0). 

7.D4. The  above conclusion for compact  X remains valid in the  non- 

compact  case if the map  f is homotopic  to a harmonic  map  h. In fact, the 

Eells-Sarnpson theory insures such an h unless there exists a homotopy  ft  

of f = f0 for t E [0, c~) such that ,  
(a) the homotopy  map  V x [0, co) ~ X is proper,  

(b) the energy density e(f~) = ][dftl[ 2 is bounded  on v x [0, c~). 

Indeed the heat flow ft satisfies (b) and then  it subconverges to a 

harmonic map  unless the whole image f t (V)  goes to infinity in X for t --* ec, 

which is exactly what  (a) says. (The dichotomy between the  existence of h 

and (a) + (b) has been pointed out in [Cor] and [Don].) 

Notice tha t  the  condit ion (a) is purely topological (in fact, it depends  on 

the proper homotopy  type of X)  and it implies, for example tha t  f induces 

a trivial homomorph i sm on the cohomology with compact  support .  On the 

other hand  (b) is a geometric condit ion which depends  on the Lipschitz class 
of X.  

Notice, tha t  for every X with K ( X )  <_ 0 there exists a complete  metric 

of negative curvature on X • R, such tha t  every map  f of a compact  manifold 

V into X can be homotoped  with the conditions (a) and (b) satisfied. (In 

fact, one can achieve e(f t)  --* 0 for t --. co.) This  makes problematic  the  use 

of the harmonic  theory for get t ing dimension free local pinching est imates 

without addit ional  geometric assumptions  on X.  However, there are several 

pinching results under  some extra  conditions. Here are some of them.  

(A) X has bounded  geometry, i.e. 

(a) [I~'(X)[ < C < 
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and 
(b) Inj Rad  X > e > 0. 

In this case every map f is homotopic to a composed map h2 o hi, 

where h2 is either a holomorphic map of V onto a Riemann surface S or a 

map of V to the circle S = S 1, and where hi : S -~ X is a (non-harmonic, 

in general) smooth map. 

Idea of the proof: Take the heat  flow ft  for some sufficiently large t. Then 

an appropriate small per turbat ion of this ft decomposes as if it were already 

a harmonic map. 

Remark: It is not  hard to figure out what happens if we forget about Inj Rad 

and only retain the condition [K(X)[ < C. An especially easy case here is 

where K ( X )  < -~r < 0 and one immediately sees (compare [Don], [Cor]) 

that  either f is homotopic to a harmonic map and hence is decomposable as 

earlier or the image of the fundamental group of ~h(V) in ~h(X) contains 
a nilpotent subgroup of finite index. 

7.D4. PINCHING COROLLARY. I f  X receives a non-decomposable (e.g. non 
2-contractible) map from a compact Kiihler manifold, such that the image 
of the fundamental group contains no nilpotent subgroup of finite index, 
then the homotopy pinching constant of  X is at least 4, 

Hompi X > 4 . 

7.D~. E x a m p l e .  Let X be a compact manifold locally isometric to the 

complex hyperbolic space of dimension > 4. Then 

Hompi X = 4 (i) 

and 

Toppiloc X = 4 .  (ii) 

Remarks: (a) one can replace "Top" in (ii) by "Horn" if one restricts the 

comparison manifolds to those of the dimension n = dim X.  

(b) In most  of our discussions we could use non-compact complete 

K/ihler manifolds V of finite volume, provided such a V admits  a selfmap- 

ping ~ homotopic to the identity, having finite total  energy E ( ~ )  < ~ and 
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having compact  image ~(V) C V. (With such a ~ every continuous map 

f : V -o X is homotopic to another one with finite energy and then the heat 

flow applies.) For example, the above (i) and (ii) are valid for non-compact  

X of finite volume of dimension > 6, where the existence of the needed 

: X --* X is easy. 

7.D5. Let us t ry  to extend the results of the previous sections to maps of 

K/~hler foliations A into X.  The major technical problem here is a possible 

unboundedness of e(f t )  for t - ,  cr which prevents us from proving ( , + )  

of 7.D1 for all p. Yet we do have (see 6.C1, 6.C2) the decay of Vol3 and 

VoLt under the heat flow and so the non-essentiality relation VOLl[f]  = 0 

of 7.D1 remains valid for e = 3 and 4, where the case e = 3 needs an extra 

assumption of the compactness of X according to 6.C1. (Probably, this 

compactness is not hard to remove.) 

Now, in order to make a non-trivial conclusion, we need an example of 

a K/~hler foliation A and of an essential (for ~ = 3 or 4) map f : A --* X. 

Here is our basic 

Example. Let X be a compact locally symmetric space which is cov- 

ered either by the quatornian hyperbolic space of dimension > 8 or by the 

Cayley plane. Then the foliation Geo4 X of totally geodesic submanifolds 

contains a subfoliation A C Geo4 X of Kghlerian submanifolds isometric to 

the 4-dimensional complex hyperbolic space. This A carries (by an easy 

argument) a smooth transversal measure and it is 4-essential (see 3.G). 

Therefore the projection f : A --~ X is 4-essential (see 3.G, 3.H). 

PINCHING CONCLUSION. X admits no metric g with K c ( X , g )  < O. In 

particular 

Toppiloc X = 4 . 

Remark: This result is significantly weaker than that  for X covered by the 

complex hyperbolic space. One may expect an improvement coming from 

a better foliated harmonic theory or from Bochner-type formulas for non- 

K/ihlerian symmetr ic  spaces, like those recently discovered by K. Corlette 

Finally, we notice that  if our A = Geo4(X) contains a compact leaf, 

that is a compact  totally geodesic K/ihlerian submanifold Y in X,  then we 

may directly apply the harmonic theory to the map f l Y .  (The existence 
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of compact totally geodesic submanifolds of dimension > 2 is an extremely 

difficult problem for non-arithmetic spaces X.  On the other hand the har- 

monic theory offers a very promising approach to the arithmeticity of the 

quatorinian hyperbolic and Cayley spaces.) 

7.E. Rigidity for quatornian and Cayley spaces .  Let us improve 

the above results by allowing the non-strict inequality K c ( X )  < .0 but 

still insisting on K ( X )  _< - s  < 0. Then we consider a compact locally 

symmetric space Y, quatornian hyperbolic of dimension > 8 or Cayley- 

type, and let As C Geos Y denote the foliation of totally geodesic complex 

hyperbolic planes, and A4 C Geo4 Y the foliation of totally geodesic complex 

hyperbolic subspaces of real dimension 4. 

7.E1. THEOREM. Let  fo : Y --* X be a cont inuous map ,  such that  the 

corresponding map go: As ~ X is 2-essential (i.e. AREA[g0] > 0). Then f 

is homotopic to a geodesic map which is isometric up to a scalar multiple. 

Proof: Let g : As --* X be the leafwise harmonic map measurably homo- 

topic to go and let h : A4 --~ X be such a map obtained from h0 : A4 --~ X 

corresponding to f0 (see 4.E~). Then the map h is pluri-harmonic as 

Hesse h = 0 (see 6.C). 

Next we consider the 2-dimensional foliation A~ C Geo2 A~ of the com- 

plex geodesic in the leaves V C A4 which were called earlier complex hyper- 

bolic planes in Y D V. Since h is pluriharmonic, the corresponding map 

h' : A~ -~ X is harmonic. On the other hand, the composition h ~ of g 

with the natural  projection A~ --* As also is (obviously) harmonic. By the 

uniqueness theorem for harmonic maps these two maps, h ~ and h ~', coincide 

and therefore the maps g and h agree as follows. 

Let V 4 and V s be totally geodesic submanifolds in Y representing some 

leaves in A4 and A2 respectively, such that  V 4 D V s. Then the map g on 

V 2 equals h on V 2. Then by elementary (projective) geometry of Y, the 

maps g and h come from some measurable map f : Y --~ X, such that  the 

corresponding maps of As and A4 to X equal g and f correspondingly. 

Now, the map f is "pluriharmonic" in a very strong sense: the restric- 

t ion of f to each plane V2 C Y from A2 is harmonic. Then a trivial linear 

algebraic argument  shows that  f is geodesic and, consequently, isometric 

up to a scalar. Q.E.D. 
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RIGIDITY COROLLARY. Every metric g on Y with Kc(Y,g)  <<_ 0 and 

K(Y, g) < 0 is isometric up to a scaling factor to the original locally sym- 
metric metric. 

Proof: The only point which needs checking is the relation AREA[f]  > 0 

for the projection p : A2 ---+ Y, and this follows from the discussion in 3.G 

and 3.H. 

Remarks: (a) It is not hard to remove the assumption K(Y,g)  < O. 
(b) The above argument  easily extends to complete non-compact Y 

with finite volume with a use of a self-homotopy (equivalence) Y --, Y with 

compact image and finite energy. 

(c) The condition AREA > 0 does not seem very restrictive for the map 

Y --- X since (the fundamental  group of) Y has Kazhdan's  T- property. 

(d) Our rigidity argument  applies to those locally symmetr ic  spaces 

which contain sufficiently many  K~ihlerian subspaces. 

(e) For the Kiihlerian case N. Mok has developed a comprehensive 

(super)-rigidity theory only a part  of which is published in [Mok]. It seems 

that most (if not all) of his results extend to Ks foliations and then can 

be useful for non-Kiihlerian symmetric spaces. 

(f) Another  version of harmonic (super)-rigidity theory was recently 

suggested by K. Corlette as we have already mentioned. 

(g) Besides symmetric  spaces an important  example of a space with 

K c ( X )  < 0 is the Teichmfiller space (and hence the Riemann moduli space) 

with the Weil-Peterson metric (see [Schu]). 
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