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1 Introduction

Molecular biology and genomics promise to deliver a full set of structures

needed to describe biological systems on the cellular level. Biomolecular tech-

niques provide detailed (sometimes quantitative) information on the molec-

ular functioning of the cell and allow systematic intervention into the cell

functions. The scienti�c paradigm is shifting from \understanding the bio-

logical structure" to \tracking macromolecules", \manipulating and control-

ling the living cell", \creating arti�cial biomolecular structures", \modeling

fragments of cell dynamics" and \identifying signatures of such fragments".

Mathematically speaking, the molecular biology encompasses the high di-

mensional set of parameters which projects to the lower dimensional space

of the classical phenomenological biology. The behavior of the system within

this low dimensional space rarely admits a self-contained quantitative de-

scription but on the molecular level such a description is feasible and entails

great predictive power. The high dimensional space has a distinctive formal

structure(s) which can be described, to some extent, in general terms with-

out touching upon �ner points. This makes the schema of molecular biology

accessible to mathematicians.

In this article we shall try to transmit our enthusiasm for nano-level

1

cell

biology and biomolecular techniques to the mathematical audience. Despite

1

10

�

A = 1nm = 10

�3

�m = 10

�9

m is a convenient scale in molecular biology, since most

biomolecules are about 1-10 nanometers in diameter.
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our limited (to say the least) knowledge of the cell we try to condense the

picture into de�nite statements, not being afraid of saying something wrong

or outrageous. We hope the reader will �nd this exposition su�ciently en-

tertaining and provocative.
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sure of following his research along the years. Bud Mishra taught us the
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biological problems. Sergei Mirkin projected to us the conceptual beauty of

designing subtle experiments and encouraged us to think about molecular

biology from a mathematical angle. Alexander Gorban demonstrated to us

possibilities and limitations of mathematical and computational modeling of

biophysical systems. We want to thank the speakers of our seminar for the
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thanks go to Fran�cois K�ep�es who spent hours generously sharing with us his

vaste knowledge of molecular biology and his ideas on structural organisation
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the manuscript, and Christophe Soul�e helped us to clarify several points.

2 Crick's dogma

The ancestral memory and the program running the cell are encoded in DNA,

a long chain of 4 small molecules. In a living cell, some segments of DNA

are copied or, as molecular biologists say, transcribed, by means of proteins

into shorter chains of similar molecules. These chains, called mRNA's, are

further translated to polypeptide chains (proteins) made of 20 amino-acids

(another class of basic small molecules). In the course of translation (or soon

thereafter) proteins fold into compact three dimensional conformations, and

mutually interacting, make up the architecture (mainly by self-assembly) and

the dynamics (e.g. catalytic activity) of the cell. The production of mRNA

and proteins is accompanied by a continuous process of degradation, which is

less understood (especially for proteins) than the synthesis. This schematic

picture, properly annotated to be truly correct, will be further refered to as

Crick's dogma.
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3 Static and dynamic structures

The dynamics of the cell is a continuous 
ow of small molecules channeled by

the interaction with macromolecules: DNA, RNA and proteins. The behavior

of small molecules obeys the statistical rules of chemical kinetics, where, in

particular, the rate of reaction is proportional to some powers (usually small

integers) of concentrations

2

of the reactants. Sizeable amounts of macro-

molecules might be described in a similar way. At the mesoscale however,

macromolecules and macromolecular complexes appear as individuals

3

, tiny

mechanical contraptions, handling and sheparding small molecules: enzymes

controlling metabolic pathways and being themselves switched on and o� by

small molecules, RNA polymerase synthesizing RNA out of nucleotides using

DNA as a template, ribosomes synthesizing proteins from amino-acids with

the help of tRNA, proteasomes selectively degrading proteins, etc. Some

components of these machines can be used outside the cell for directing spe-

ci�c mesochemical processes (i.e. chemistry on the mesoscale such as PCR

and protein engineering) and the main challenge is to create new mesochem-

ical devices, comparable in structural complexity and speci�city to those

used by the cell. The design and function of some mesochemical machines

are presented later in the paper.

DNA. This is a long (sometimes very long!) word in the four letters A; T; C

and G. These letters name the four nucleotides constituting DNA. The

molecule of each nucleotide is built out of the sugar-phosphate group and

the base attached to it. The sugar-phosphate group is the same for all four

nucleotides, while the speci�city is due to di�erences between the bases: A

(Adenine), T (Thymine), C (Cytosine) and G (Guanine). (See Figs. 1 and

4.)

The sugar-phosphate group is naturally polarized. Each nucleotide can be

covalently bound to another one with a phosphate group bridging between

2

If the channeling and the compartmentalization e�ects induced by macromolecules

reach the nanoscale, then the averaging implicit in the notion of \concentration" and

\ideal kinetics" becomes questionable. Also, some small molecules, important for cell

regulation, appear in low numbers (e.g. 10) in small prokaryotic cells and statistics should

be applied more carefully. In the presence of enzymes, the polylinearity of kinetics may

break down, as it happens in metabolic pathways.

3

The individuality of a large molecule emerges in the statistical ensemble of atoms

constituting this molecule.
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Figure 1: The four nucleotides (on the top) and a polynucleotide chain (on the

bottom). The (sequence of) arrows and circles represent the sugar-phosphate

backbone, while the palettes correspond to bases. The small white circle

represents the phosphate group which disactivates (by loosing part of it)

in the course of polymerization, and then it is depicted with a small black

circle. If we break a DNA sequence into individual nucleotides, these will be

disactivated and will be unable to make a chain again without an import of

energy.

C

T
G

A

Figure 2: Hydrogen bonds between nucleotides (dotted arrows). Observe

that nucleotides are antiparallel under the hydrogen bonding and that the AT

interaction is weaker than the CG interaction as produced by two hydrogen

bonds in AT and three bonds in CG. Each dotted arrow indicates a bond

issuing from an hydrogen atom of the base, as seen in Fig. 4.
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Figure 3: A chemical representation of the Watson-Crick complementary

bases.
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Figure 4: A chemical representation of a double stranded DNA. The two

sugar-phosphate backbones are bridged by coupled base pairs.
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two consecutive sugars, and this bond agrees with the polarization, as it

is schematically shown in Fig. 1, with a more realistic picture displayed in

Fig. 4. This process can be repeated almost inde�nitely and produces long

chains of nucleotides called polynucleotides or single stranded DNA. Short

polynucleotides composed of . 100 nucleotides are called oligonucleotides.

They can be nowadays synthesized chemically according to a given speci�-

cation of letters.

Crick-Watson complementarity. The functioning of DNA, and thus all

life on earth, depends on the particular a�nity between the bases A to T ,

and C to G, which comes from another kind of chemical bonding between

nucleotides called hydrogen bonds, which are about 10 times weaker than the

covalent bonding described above. See table in Fig. 6.

If we throw into a solution many copies of the nucleotides A; T; C and G,

then soon they will predominantly appear in complementary pairs AT and

CG.

4

See Fig. 2. (The covalent sugar-phosphate bonds between nucleotides

do not form spontaneously.) Furthermore, suppose that we have a solution

of various polynucleotides in a tube. Whenever two inverse complementary

subwords appear in two (possibly the same, but not adjacent in the chain)

polynucleotides, these eventually come close together and attach to each other

along these subwords

5

. (See Fig. 7.) The longer these words, the stronger

this attachment will be.

As molecules are in thermal motion, the binding along complementary

words, called hybridization, appears and disappears. There is a continuous

competition between hybridization of di�erent complementary subwords in

the polynucleotides and there is no satisfactory quantitative theory predicting

the statistical distribution of hybridization. However, in accordance with

one's intuition, the presence of pairs of long complementary subwords makes

4

In a pot, every base can pair with every other base, including itself; G and C will

preferentially pair together, and there are suggestions that A and T also will. The A-T

pairing however may not be Watson-Crick, as there are three other types of A-T pairs,

reverse Watson-Crick, and two other (Hoogsteen) mutually reversed pairings, which in the

absence of a backbone seem to be equally likely. There are more than 30 possible hydrogen

bound pairs between bases and also several base triplets. The latter occur in nature, but

in RNA (some tRNA) rather than in DNA.

5

The speci�city of AT and GC binding is by far more pronounced in polynucleotides

than for monomers. This is due, to a large extent, to the size matching: A and G are

roughly twice as large than T and C, so that the pairs AT and CG �t nicely into the DNA

double helix.
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hydrogen atom 1.008Da

carbon C

12

=

def

12Da

nitrogen, oxygen atoms 14Da,16Da

sulfur, phosphorus atoms 32.06Da,30.97Da

covalent bonds (distances between nuclei) 0.75-2.3

�

A

hydrogen bonds 1-2

�

A

van der Waals radius 2-3

�

A

water molecule 3-4

�

A 18Da

sugars, amino-acids, nucleotides 0:5-1nm 150-500Da

globular proteins 2-10nm 5 � 10

3

-5 � 10

5

Da

ribosomes 25-30nm 2.5-4.5MDa

viruses 26-60nm 3-50MDa

bacteria 0:5-5�m 5 � 10

3

-5 � 10

6

MDa

mitochondria 2�m 10

5

-10

6

MDa

cell nucleus 3-10�m 10

6

-5 � 10

7

MDa

animal cells 10-30�m 5 � 10

7

-5 � 10

9

MDa

plant cells 10-100�m 5 � 10

7

-10

11

MDa

DNA in a human cell 2m 5 � 10

6

MDa

DNA in a human body 10

14

m 200-400g

Figure 5: Table of linear scales and masses. All the numbers in the table

are approximate values. Da stands for 1 dalton � 1:66054� 10

�24

g = 1=N

A

,

where N

A

is the Avogadro number 6:0221367� 10

23

. The weights of atoms

are averaged over the distribution of the isotopes in the biosphere. The size

of an atom or of a molecule refers to the radius of the chemical force it exerts

in a particular class of chemical interactions (covalent, ionic, van der Waals,

etc.). Thus, the sizes of atoms can be regarded as distances between nuclei

of covalently bound atoms; these range between 0.75-2.3

�

A for atoms present

in the cell as ions or in molecules. Masses of macromolecules, ribosomes and

viruses refer to the \dry weight", i.e. without water, while larger unities are

weighted with water, which makes � 70% of the whole weight. DNA make

about 1% of the total weight in bacteria and about 0.25% in mammalian

cells.
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average kinetic energy of thermal motion per

molecule at room temperature (25

�

C � 293

�

K)

0.9

energy of a hydrogen bond 1-5

approximate energy of covalent phosphate bond

between nucleotides

50

approximate energy of C = C bond 200

Figure 6: Energy table. The common chemical unit of energy is kcal=mol,

where 1mol is the amount of substance containing N

A

= 6:0221367 � 10

23

molecules. For example, one mole of water makes about 18g, since the

molecule H

2

O weights � 18Da. Remind that 1kcal = 4; 184J , where 1 joule

(J) equals the kinetic energy of linear motion of 1kg of matter with the speed

of 1m=sec. The average thermal energy of linear motion of molecules at the

temperature T measured in Kelvins (K) (T

Kelvin

� T

Celsius

+ 273), equals

3

2

kT joules, where k = 1:380658 � 10

�23

JK

�1

is the Boltzmann constant.

At the room temperature T = 298K, the thermal energy is

3

2

kTN

A

=4; 184

makes 0:8882855 � 0:9kcal=mol as indicated in the table. The other ener-

gies in the table are also expressed in kcal=mol. The velocity V of a particle

of mass m kilograms with the kinetic energy T kelvins, is V =

q

3kT

m

. For

example, the water molecule � 18Da � 3 � 10

�26

kg, has (quadratic) average

speed V = 640m=sec at room temperature.
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Figure 7: Hybridization of two strands of DNA (on the left) and a self-

hybridization (on the right).
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Species Haploid genome

size

Haploid chromo-

some number

E. coli (bacteria) 4,640kb 1 (circular)

S. cerevisae (yeast) 12,050kb 16

D. discoideum (slime mold) 70Mb 7

C. elegans (worm) 100Mb 11/12

A. thaliana (weed) 130Mb 5

D. melanogaster (fruit 
y) 170Mb 4

Gallus domesticus (chicken) 1200Mb 39

M. musculus (mouse) 3Gb 20

X. laevis (toad) 3Gb 18

H. sapiens (human) 3Gb 23

Zea mays (maize) 5Gb 10

Allium cepa (onion) 15Gb 8

Figure 8: The length of the genome in di�erent species. The symbol kb

denotes one thousand base pairs, Mb stands for 1000kb and Gb denotes

1000Mb. The length of the genome only roughly corresponds to the \com-

plexity of the organism". The organization of the genome into chromosomes

does not re
ect the length of the genome.

the corresponding nucleotides stick along these subwords and stay together

for a long time, at least at the room temperature. As temperature reaches

roughly 100

�

C, the denaturation (i.e. the breaking of the hydrogen bonds

between the complementary nucleotides) becomes prevalent.

Association as well as dissociation of neighboring hydrogen bonds be-

tween complementary words are a positively correlated process leading to

a \zipping" e�ect: hybridization starts at the ends of two complementary

words and then persists at a high speed, or conversely, disengagement of two

words unzips from an end on. The (high dimensional) landscape of the en-

ergy describing this interaction appears as a multiscale network of rivulets

merging into the river corresponding to the zipping/unzipping mechanism.

The genetic information in a cell is encoded in a double stranded DNA,

consisting of two complementary strands of equal length held together (quite
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strongly) by the hydrogen bonds. Thus, the unit of information is a pair

of complementary nucleotides, commonly abbreviated to bp for base pairs.

Fig. 8 gives approximate numbers of bps for genomes of various species.

In eukaryotic (i.e. \higher", from yeast on) organisms

6

the genome is

organized into several units, called chromosomes, which are connected com-

ponents or separate words of DNA, ranging in number from a few up to

several dozens. (See Fig. 8.) In bacteria there is typically a unique circular

DNA. Besides, there is extra genomic information contained in rather short

circular DNA present in both eukaryotic cells (in organelles) and in bacteria

(as plasmids).

A DNA word within a chromosome is intricately folded and spatially

(biologists say \topologically") organized in a highly structured way, so that

a 4cm DNA for example �ts into a chromosome body � 3 � 10�m long

and � 1�m thick. In bacteria, the circular DNA is also compacti�ed (by

supercoiling) but in a much simpler way than for eukaryotes.

The redundancy of having two strands instead of one, pays o� in a variety

of ways:

replication: the replication mechanism using double stranded DNA

invented by nature seems to represent the simplest possible logical so-

lution to the von Neumann problem of self-replicating automata, beat-

ing von Neumann implementations by several orders of magnitude in

simplicity and mathematical elegance. (Expressing the idea of self-

replication in general mathematical terms remains an open problem.

The existing models are essentially limited to the Ulam-von Neumann

framework of cellular automata.)

repair: doubling of information allows the cell to employ various error

correction mechanisms to ensure the �delity of replication.

stability: double stranded DNA is by far mechanically stronger and

chemically more resistant than the single stranded DNA.

Why four letters (A; T; C and G) rather than two? One can think of a

single stranded DNA as a word in the free group F

2

generated by A;G with

6

Eukaryotic cells are about 10 times larger than prokaryotic (i.e. bacterial) ones, and

they have a �ne internal structure: a nucleus which contains DNA, a skeleton, semi-

independent membrane-bounded entities called organelles, etc.
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T = A

�1

and C = G

�1

, where hybridization corresponds to cancellation

between reciprocal words. Four letters help to avoid excessive cancellation

(manifested by undesirable hybridization): two letters would make an abelian

(in�nite cyclic) group.

Partial hybridization has more bio-chemical signi�cance for RNA than for

DNA, as the latter appears in two strands \cancelling" each other and not

leading directly to sophisticated geometric patterns. The arrangement of the

ribosomal RNA (and, to a lesser extent, of transfer RNA) is reminiscent in

shape of the van Kampen diagrams familiar to combinatorial group theorists.

See Figs. 11 and 10. (One wonders whether the distribution of RNA/DNA

words in the abelianized group F

2

=[F

2

; F

2

] = Z

2

or in the higher nilpotent

quotients of the free group bear any biological signi�cance.)

RNA. Chemically, RNA is a twin sister of single stranded DNA: it has a

slightly di�erent sugar-phosphate backbone and a small modi�cation of the

four bases. It keeps the same A;C;G bases while T (Thymine) is replaced

by its chemical relative U (Uracil).

Unlike DNA, RNA appears in cells in millions disconnected segments

100-1,000,000 nucleotides long. RNA's are classi�ed according to the func-

tion that they perform in the cell. Messenger RNA's, in short mRNA, serve

as go-betweens DNA and proteins. Transfer RNA, or tRNA, and ribosomal

RNA, or rRNA, are incorporated into the machinery implementing the infor-

mation carried by mRNA into synthesis of proteins. mRNA's are 100-10,000

nucleotides long, tRNA's are about 100 and rRNA are 2,000-5,000. Some of

these RNA's are produced from short lived intermediates, called pre-RNA's,

which can be up to 10

6

nucleotides long. In a rapidly growing mammalian

cell, the 80% of the total RNA is rRNA, the 15% is tRNA, while mRNA

make a small portion of the total RNA.

Why RNA at all? Could one design a cell where all functions of RNA

are performed by segments of single stranded DNA? The prevalent point of

view suggests that RNA appeared at the early stages of life with DNA and

proteins coming much later. This is witnessed by the presence of RNA in

several ancient machineries, including ribosomes and spliceosomes

7

. It was

7

See Section 3 for the de�nition of ribosome. Spliceosomes are ribonucleoprotein com-

plexes roughly the size of ribosomes. They assist transformation of pre-mRNA to mRNA

in eukariotes.
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discovered relatively recently that certain conformations of RNA (i.e. spe-

ci�c three dimensional shapes it takes under the in
uence of weak interactions

between its subsegments) display (auto-)catalytic properties similar to those

of certain enzymes (proteins), which can conceivably assist the replication

process. Thus RNA may appear in two distinct roles: a keeper of informa-

tion and a worker executing this information for the purpose of replication.

Structurally, information is organized in a straightforward way as a string

of letters coding nucleotides, while the catalytic activity depends on a three

dimensional arrangement of the polynucleotide chain.

How does the linear chain of nucleotides acquire a speci�c three dimen-

sional shape? Its behavior in solution follows paths that can be rather faith-

fully described by a system of stochastic di�erential equations where the un-

derlying potential U incorporates the interaction between various molecules

constituting the chain and those in the solution, and where the major con-

tribution to U comes from the hydrogen bonds responsible for the comple-

mentarity. A computationally feasible solution to the system runs into a

multitude of serious problems (similar, but possibly less severe, than those

for protein folding) where the major di�culty is the exponential multitude

of the local minima of U . Some of these can be accounted for by the combi-

natorial patterns of matching between complementary words. This matching

determines what is called, the secondary structure of RNA, and there are

heuristic algorithms for its determination. Deriving the �nal three dimen-

sional shape from the secondary structure remains an unsolved (to some

extent mathematical) problem.

Transcription is a transformation of speci�c segments of DNA into single

strands of RNA. There are certain proteins, called transcription factors, that

choose particular segments of DNA, which then serve as templates for the

production of the complementary segments of RNA. The synthesis is per-

formed with the help of another protein, the RNA polymerase (which binds

to one of the strands of the double stranded DNA), with an average rate of

60 nucleotides per second in E. coli. (This number may be di�erent for other

organisms.)

The resulting RNAs are further modi�ed (cleaved and /or spliced) with

the help of various enzymes. For example, in eukaryotic cells, pre-mRNA is

spliced by cutting away several (possibly large) subsegments (introns) and

by sewing (ligating) together the remaining segments (exons).

12



The splicing process is not unique (even the division into introns and

exons is not canonical) but depends on a particular biochemical (physiologi-

cal) state of the cell. Also, in viruses and prokaryotes, one segment of DNA

may be transcribed into to several disjoint segments of RNA. The \edited"

RNA is called messenger RNA, or mRNA. The length of mRNA produced

in a single cell may vary from few hundreds to 10,000 (and sometimes more)

nucleotides.

Pre-mRNA folds in the course of transcription and this folding plays a

role in the editing of pre-mRNA to mRNA. The co-transcriptional folding

follows a di�erent path from that of free molecules in solution, due to the

constraints imposed by the transcription process. Roughly speaking, instead

of a single system we have a sequence of \correlated" systems of di�erential

equations time-indexed by the number of nucleotides transcribed at a given

moment, and depending on the composition of the synthesized segment. The

solution of these equations must be time-correlated with the time-indexing

of these equations.

De�nition of a gene. Originally a gene was understood as an abstract

unit of heredity but there is no consensus nowadays on which structure or

biological function corresponds to such a unit on a molecular level.

As mathematicians we are less sensitive to the distinction between (spa-

tial) \structures" and \functions", as the latter appears as structures seen in

the space-time. With this in mind, we de�ne

8

a gene as a segment of DNA

together with a transformation to a segment(s) of mRNA (or other functional

RNAs such as tRNA, or rRNA). This de�nition is supposed to capture two

phenomena: alternative splicing in eukaryotic cells, where the same segment

of DNA may lead to the production of di�erent mRNA depending on a par-

ticular global state of the cell or on what happening in the vicinity of the

transcription site; overlapping genes, where di�erent segments of RNA are

produced from overlapping segments of DNA, as it happens in viruses and

prokaryotes.

The �rst level of the structure of the genome consists of the sequences

8

In biology, a de�nition is supposed to isolate a pronounced phenomenon but not

necessarily capture it completely. For instance, one cannot give a de�nition of a gene being

both concise and exhaustive. Besides, the mathematical standpoint suggests a de�nition

of an object along with the full category of related objects (and morphisms). Here the

relevant category can be made of genetic networks, so that a de�nition of gene would

include the regulation of the expression of the gene.
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Species Genome size % coding DNA

E. coli (bacterium) 4,640kb 100

S. cerevisae (yeast) 12,050kb 70

C. elegans (worm) 100Mb 25

D. melanogaster (fruit 
y) 170Mb 33

H. sapiens (human) 3Gb 15

Protopterus (lung�sh) 140Gb 0.7

A. thaliana (plant) 130Mb 31

Fritillaria (plant) 130Gb 0.02

Figure 9: The length of the genome in di�erent species compared with its

coding part, where the latter is a very rough and disputed estimate for large

genomes.

of letters A; T; C;G with distinguished segments supporting genes. Parts of

these are transcribed to mRNA (with the introns spliced away) and other

parts, called regulatory region(s), are responsible on when and how the tran-

scription takes place. (A regulatory region may be separated from the tran-

scribed part by a long stretch of DNA possibly containing other regulatory

and transcribed segments. Sometimes such a region is respectfully called

regulatory gene.)

The intergenic space constitutes the bulk of DNA in most eukaryotes and

it is unrespectfully referred to as junk DNA; a similar disrespect is extended

to introns. See Fig. 9.

The sequences of letters constituting di�erent parts of DNA, both in

genes and in junk DNA, can be thought of as random sequences of intricately

correlated letters

9

. These correlations within the transcribed regions re
ect

the structure and function of proteins eventually produced frommRNA, while

the intergenic space is organized under the in
uence of several competing

factors: melting and bending properties of the DNA helix, genetic parasites

such as self-splicing introns, neutral mutations, etc. where the full list of

9

The level of correlations in the prokariotic DNA is comparable to that in the text of

the \Hamlet". Eukaryotic DNA has a large component of uncorrelated white noise due to

neutral mutations in the non-coding regions.
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factors is unknown.

The spatial organization of DNA in chromosomes is essential for repli-

cation and transcription. For example, two segments which are far in the

sequence but close in space (because of the folding) may be targeted by the

same transcription factor.

Proteins. Proteins are polymers made of 20 basic amino-acids joined by

peptide bonds. The length of natural proteins varies from a few dozens to

several thousands amino-acids with a typical value of 200-300 amino-acids.

An amino-acid is a compound consisting of two parts: a constant part formed

by an amino group, a carboxyl group and a hydrogen atom (ACH), and a

variable part, called side chain, which comes (in the existing organisms) in

20 
avors. Thus, a linear protein is a word in 20 letters represented by 20

amino-acids, where consecutive amino-acids are joined by peptide bonds at

their ACH groups.

There is a formal similarity between polynucleotides and amino-acids.

Both are heteropolymers, i.e. assemblages of several kinds of standard molecules,

called monomers, having a connected chemically homogeneous (topologically

linear) backbone, with chemically di�erent short branches attached to each

monomer of the backbone.

Di�erent side chains have speci�c mutual interactions via weak bonds

10

,

which force a linear protein to fold in solution (under suitable temperature

and acidity) into a particular geometric shape(s). There is a whole �eld

dedicated to how and why proteins fold, with about 10,000 instances where

the three-dimensional conformation (folding) is known (by a variety of bio-

physical, bio-chemical and bio-informatical techniques). Yet, there is no clear

conceptual picture on the nature, unicity and origin of the folding.

Roughly, as for RNA, the folding of a polypeptide chain comes as a so-

lution of a system of stochastic di�erential equations where the �nal spatial

conformation of the protein represents the minimum of the (free) energy

of the molecule, incorporating weak bonding, bending and torsion energies,

10

The essential weak bonds in folded proteins are hydrogen bonds, ionic bonds, van

der Waals interactions and hydrophobic bonds. The latter is not a separate binding force

but rather a result of the energy involved in the inserting of certain molecules into water.

Weak bonds are sometimes reinforced by covalent S-S bonds between neighboring cysteine

residues in a folded polypeptide chain. Cysteine (one of the two amino-acids containing

sulphur) ensures the stability of snake poisons for example.
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etc. A direct solution of this problem is computationally unfeasible and, in

practice, one resorts to comparing a given protein to a similar one(s) where

the structure is already known by using pattern matching/perturbation tech-

niques. The true problem however, is not so much �nding the conformation

but identifying the active sites, that are speci�c locations on the external

part of the three-dimensional conformation. An active site has a particular

geometry and energy pro�le responsible for the enzymatic/binding activities

of the protein, and involves one or several short peptide subchains of the

protein. Most often, active sites are crevices of the protein accessible from

the outside.

The \inverse folding problem", that is �nding a word written in the 20

letters alphabet where the spatial conformation of the corresponding protein

displays a site with a required property, lies at the core of the protein design,

e.g. in pharmacology.

Proteins, carrying out the \program encoded by the genes"

11

, run around

the cell (or cell's compartments) and interact with other molecules: these

can be other proteins and peptides (i.e. leftovers of partial degradation of

proteins), (poly)nucleotides, lipids, polysaccharides and about 800 various

kinds of small molecules. A large group of proteins called enzymes accelerate

a variety of chemical reactions, other proteins make cell's architecture such

as membranes and cytoskeleton, a third group regulates gene transcription,

a fourth group transports molecules across the cell, yet another group is

responsible for extracellular communication, etc.

Translation from mRNA to proteins. The formal aspect of the translation

is quite easy: each amino-acid is coded by a triplet of bps called codon.

As there are 64 such triplets, non surprisingly some amino-acids are coded

by di�erent codons. The translation begins with the recognition of a start

codon, usually AUG, which determines the reading frame, i.e. a division of

the mRNA chain modulo 3, and continues until a stop codon is found, which

is usually either UGA, UAA, or UAG.

The codon{amino-acid correspondence is identical for most known or-

ganisms in agreement with the hypothesis that life on earth descends from

11

This politically loaded widespread metaphor has the same kind of purposes and limi-

tations as \the �ttest survives" and ranks below \one gene �! one mRNA �! one protein

�! one function".

16



20

P19

17

16

15

14
4

13
12

11
7

10
9

8

6

5

5'
3

2

21

19

P18 P21-1

P21-3

P21-2

28
31

32 30 33 34

35

29

27

26

1 23 24
25

36

37

38

40

3'

39

10 nucleotides

Figure 10: Folding (secondary structure) of ribosomal RNA.

a single macromolecular complex

12

. (Exceptions: many mitochondria and

some protozoans di�er in a few codons from the rest of organisms on earth.

This is apparently due to the later evolutionary development.)

The actual translation from mRNA to proteins is a highly sophisticated

mesochemical process (which can be reproduced in vitro albeit by far less

e�ciently than in the living cells). This is performed by two groups of macro-

molecular complexes, ribosomes and transfer RNA.

Ribosomes are roughly spherical, protein-synthesizing machines. They

are huge by molecular standards, up to 30nm in diameter and about 3-10

times heavier than an average mRNA. They are composed of several di�erent

12

A molecule is a collection of atoms joined together by strong inter-atomic forces. A

molecular complex is a conglomeration of several molecules kept together by weak (e.g.

hydrogen bond) forces. With some stretch of imagination, a cell can be regarded as such a

complex. Molecular complexes are regarded as dynamic rather than static entities, where

the dynamics of the cell is structurally di�erent from that of purely chemical complexes.
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The shaded letter I, for Inocine, in the anticodon, is a G lacking an

aminogroup (i.e. NH

2

�C� is replaced by H�C�). This facilitates the

non standard pairings C-I and A-I, and allows the cell to use fewer tRNA's

than there are codons. DNA of all organisms contain 61 codons; bacteria

have 30-40 tRNA's, and animal mitochondria manage with 22. On the other

hand, animals and plants have 50-100.
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ribosomal RNA molecules (rRNA) making about 2/3 of their weight, and of

more than 50 proteins. Fig. 10 represents an example of rRNA.

A transfer RNA (for short tRNA) is � 80 nucleotides long and folds

in a particular way in obedience to the Crick-Watson complementarity

13

.

It displays an anti-codon at a speci�c site somewhere in the middle of the

strand and has an amino-acid attached to it (see Fig. 11). This complex is

called aminoacyl-tRNA. The anti-codon is the triplet complementary to the

one which encodes the amino-acid attached to this tRNA. The linkage be-

tween tRNAs and the corresponding amino-acids is performed by enzymes,

called aaRS. There are exactly 20 of these (of size ranging from 500 to several

thousands amino-acid residues) corresponding to the 20 amino-acids. Each

aaRS brings together the tRNA and the amino-acid coded by the tRNA. The

recognition of the appropriate tRNA by an aaRS depends on particular mo-

tives in the tRNA sequence, with a signi�cant role played by the anti-codon.

The pairing tRNA/amino-acid is the �rst major step of translation. The

second step is the synthesis of the protein: very roughly, tRNAs get attached

to an mRNA, the anticodon to the corresponding codon, thus aligning the

amino-acids attached to these tRNAs. The latter are sewed together to a

protein by a ribosome, at an average rate of 40 amino-acids per second for

E. coli (and di�ers from organism to organism).

Metabolic pathways and genetic networks. A cell is a chemical machine

in constant interaction with the environment. It takes from the outside

nutrients

14

and oxygen (unless it is anaerobic) which are transformed into

energy

15

that fuels the cellular machinery: transcription, translation and

13

The spatial (tertiary) conformation of tRNA, and RNA in general, depends on more

factors than sheer complementarity.

14

The major source of energy for plant cells is not external chemicals but rather quanta

of visible light which are transformed to chemical energy via photosynthesis. The sites

of photosynthesis in plant cells and green algae are chloroplasts. These are independent

entities, organelles, up to 10�m long and typically 0.5{2�m thick. In many respects, they

are similar to mitochondria in animal cells. They both contain their own DNA and the

proteins encoded by these are synthesized within their organelles. However most of the

proteins in each organelles are encoded in nuclear DNA.

15

Most of this energy is carried by small molecules, called ATP, consisting of adenine

(the base A) joined with ribose (the sugar making the backbone of RNA), together with

three phosphate groups. When ATP hydrolizes (i.e. reacts with water), it releases energy

of � 12kcal=mol in the chemical environment of the cell. The hydrolises of ATP has a

non-negligible activation energy and does not occur spontaneously without the presence

19



Figure 12: Schema of a small fragment of the metabolic pathway. (The

direction of the reactions is not indicated.)
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replication.

The processing of chemicals is organized intometabolic pathways. Schemat-

ically one might think of a directed graph M where the edges are marked

by various chemical compounds, usually small molecules, and where vertices

represent chemical transformations. (For an example, see Fig. 12) The di-

rection of the 
ow in the graph indicates the predominant direction of the

reactions re
ecting the decrease of the free energy. Left to themselves, the

chemicals in a cell would react extremely slowly. The rate of reaction are

many fold times enhanced by high local concentrations within the walls of

the cell architecture, and by catalytic e�ects of relevant enzymes present at

the sites of the reactions

16

.

Metabolic pathways are regulated by changing enzyme activity via posi-

tive and negative feedback loops. This allows the cell to sustain homeostasis,

that is the (almost) constant level of the �nal product in the variable en-

vironment. In many situations, the �rst enzyme of a chain of reactions is

inhibited by a negative feedback e�ect of the �nal product of the pathway.

The inhibition is achieved by the binding of the �nal product to the enzyme,

where the binding process is not ruled by ideal kinetics, but depends on

the particular combinatorial arrangement of enzymes into complexes. This

produces a highly non-linear dependence of binding on concentration with a

pronounced threshold e�ect where a small excess of the �nal product may

lead to an almost complete inhibition of the enzymatic activity of the protein.

(This is called collective allosteric transition of proteins.)

of a catalyser. Enzymes serve as such catalyzers: they employ the energy of ATP to drive

uphill reactions which need an import of free energy.

16

The number of small molecules involved is quite large, their di�usion in cytoplasm is

as fast as in water (� 0:1sec to go across a cell of 10�m), and their chemistry is governed,

up to some extent, by the polylinear rules of the ideal kinetics: at a given temperature the

percentage of chemicals being transformed to the �nal product is proportional to (certain

powers of) their concentration; enzymes cannot change the direction of a chemical reaction

but only the speed at which the process approaches equilibrium, i.e. the state where the

rate of direct and inverse reactions mutually cancel each other. Besides, enzymes can

promote energetically unfavorable reactions, for instance making a covalent bond between

X and Y , by bringing ATP's (or other molecules carrying free energy like GTP) to the

site of the reaction and by coupling the energy released by the ATP hydrolysis to the

reaction between X and Y . Without an enzyme, such a process would be highly unlikely

as it needs a meeting of three molecules X , Y and ATP, properly positioned with respect

to each other.
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The metabolic self-regulation process has a fast response time and is

easily reversible. More radical regulation consists in changing the rate of

production and degradation of enzymes, which is achieved by suppressing

and/or activating the transcription of relevant genes. In fact, there is a

second network, the gene regulatory network, responsible for this process,

which is achieved with regulatory proteins binding to the regulatory regions

of the relevant genes.

Roughly, a genetic network is a directed graph G whose nodes represent

the genes. An arrow issued from a vertex is marked by the protein

17

coded

by this gene, while incoming arrows tell us that the transcription of the

gene is in
uenced by the protein. The current studies exhibit subgraphs

of this graph with outcoming degree up to 100 and incoming degree up to

15. The most common motive in the network of E. coli is a simple negative

feedback loop

18

, by which a gene sustains a constant level of activity. More

complicated patterns are being found as well.

A large amount of outcoming arrows is labelled by enzymes and ends up

in the nodes of the graph of metabolic pathways. Some other arrows corre-

spond to functional proteins involved into structure, transport, bio-chemical

signalling, etc.

There is an extra combinatorial structure to the graphM[G expressing

the e�ects of small molecules on enzymes and regulatory proteins. The �rst

example of the latter was discovered by Jacob and Monod in 1961, who

found out that if the nutrient glucose is replaced by a somewhat less tasty

lactose, the bacteria E. coli starts producing more enzymes needed for the

assimilation of lactose (there are three of these enzymes). Normally these

enzymes are produced by genes which are suppressed by a certain regulatory

protein. The presence of signi�cant amount of lactose in the cell disactivates

this protein, and the lactose digesting enzymes are produced.

One can think of this auxiliary structure as a family of subgraphs in

G parametrized by various bio-chemical and physical conditions of the cell,

e.g. concentration of particular small molecules, temperature, acidity, etc.

Each point in the parameter space distinguishes a relatively small subgraph

indicating the part of the network active under a given condition.

17

Our de�nition of a gene speci�es an mRNA and thus the corresponding protein.

18

Such a motive may turn out to be common for fast growing bacteria, but this is not

the case for the fast growing eukaryote yeast, for instance.
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The major mechanism of regulation consists in binding of proteins to

regulatory regions which enhances or inhibits the transcription. We think

of the binding as a (stochastic) mechanical process rather than a chemical

one as it involves few molecules at a time. Yet, it is governed up to some

extent by the rules of chemical kinetics and accidentally by inter-molecular

quantum mechanical events

19

.

The rough idea for an experimental identi�cation of an edge in G marked

by a protein P and pointing to a regulatory region R goes as follows: one

replaces the coding part of the gene downstream of R (by means of recombi-

nant techniques described later) with the code for a 
uorescent protein with

a short half life. When the gene producing P is activated, then the 
uores-

cence seen in the cell indicates the e�ect of P on G. Thus, one can detect

enhancer and suppressor edges as well as oriented paths of such edges.

In principle, using microarrays (discussed later), one can detect some

subgraph in G as well as evaluate the di�erences between such subgraphs

sometimes without knowing each of them.

Post-transcriptional genetic regulation. The actual gene expression, that is

the rate of production of proteins, is not only controlled in the course of tran-

scription but also by the structure of RNA, by its location in the organism,

and a variety of other mechanisms regulating translation. For example, a

particular folding of RNA may slow down the translation process, the chem-

ical environment may in
uence the rate of degradation of RNA, the usage

of speci�c codons may e�ect the rate of translation by ribosomes. Apart

from RNA, a cell may damp gene expression by degrading newly synthesized

proteins.

Replication. The central event in replication is the production of two dou-

ble stranded daughters DNA from a mother double stranded DNA: the two

strands of the mother DNA separates and each of them serves as a template

for a complementary strand, thus each daughter inherits one strand from the

mother, with the other one being newly synthesized. The initial separation

of the mother strands in a bacterium such as E. coli takes place with en-

zymatic help at a speci�c initiation site. The synthesis of the new strands

19

A biologically relevant quantum event is the mismatching of complementary pairs

leading to errors in replication. Also, some models of solvents (e.g. water peppered with

small molecules and ions), relevant for binding of macromolecules, are based on semi-

empirical quantum mechanical rules.
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proceeds in two opposite directions starting from the initiation site, where

the moving corners of the resulting growing \bubble" (made by the sepa-

rated strands) are called replication forks. The synthesis of the new DNA

should go along with the polarization of the template strands: only one of

the strands of the mother DNA agrees with the direction of the movement

of the fork, and templating the other strand is by necessity a discontinuous

process which is divided into the synthesis of relatively short segments in

the direction opposite to the movement of the fork. Systematic jumps of the

double length of the segments allow the process to proceed in the direction

of the fork movement.

The essential role in this process (we omit �ne print) is played by DNA

polymerase III, an enzyme built out of 10 subunits with a total mass >

600kDa. DNA polymerase III proceeds with a rate of synthesis of � 1000

nucleotides (� 300nm) per second in bacteria, and the full replication pro-

cess, performed by two polymerase simultaneously (moving in opposite direc-

tions), takes about half an hour in E. coli with a circular DNA of 4; 640kb.

The unlinking of the two daughter strands (associated to the two strands

of the mother that are linked in space by the helical winding of DNA) is

achieved with topoisomerase enzymes.

The synthesis of new DNA in human cells proceeds at � 100 bases per

second per fork. The full process takes about 8 hours with the number of

forks estimated between 1,000 and 100,000, where not all forks are active si-

multaneously during the replication period. The newly born daughters move

to opposite locations in the cell, the cell material is redistributed accordingly

and the membrane undergoes topological modi�cations eventually leading to

the division of the cell.

There are other replication-like processes modifying DNA besides dou-

bling along with the cell division. For example, some segments may inter-

change their location within DNA, a (sel�sh) segment may generate several of

its own copies within the same DNA, viruses may transport a segment from

an organism to another, bacteria may exchange fragments of their DNA using

plasmid vectors.

Macromolecular ensembles. Macromolecules in cells and sometimes in vitro

are able to aggregate by self-assembly or by protein aided assembly into intri-

cate geometric and rather rigid structures. Some are suspended in the cyto-

plasm such as ribosomes, chaperones and proteasomes. The latter are protein
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complexes of � 2MDa serving in eukaryotic cells for selective degradation of

proteins. Chaperones are protein complexes (� 500kDa) aiding protein fold-

ing by disrupting undesirable bonding between di�erent polypeptide chains

as well as between segments of the same chain.

The major global structures in cells are internal and external membranes,

which are made of lipids, polysaccharides and proteins. They control the

biochemical activity of the cell, sometimes actively participating in it, and

also serve to separate di�erent compartments of the cell. Also, they provide

a support for several kinds of molecular motors such as H

+

driven \turbines"

used in the production of ATP's and those serving for rotating the 
agellae

in some bacteria. Non-membrane based rotatory motors are apparently em-

ployed by some viruses (e.g. Bacteriophage �29) for packaging their DNA

into a precursor capsid.

Taxonomic structures. The subject matter of taxonomy is constructing var-

ious metrics on the spaces of genotypes, species or other biological and bio-

chemical entities (such as proteins and RNAs). There are two di�erent,

mathematically dual, approaches introducing a metric in the (moduli) space

of structured objects. The �rst is the evolutionary (cladistic) approach, where

the (phyletic) metric is de�ned by the length of the shortest path of elemen-

tary modi�cations of the object, similarly to the construction of intrinsic

metrics by Gauss-Riemann-Kobayashi. Limiting such a metric to the space

of actually existing biological entities often exhibits a pronounced tree-like

behavior

20

. This is due to the huge size of the space of possible structures,

e.g. of bp sequences of length 10

9

, where the branches of the evolution process

are very unlikely to come together and form cycles

21

. The second (phenetic)

metric is the phenomenological one, similar in spirit to the Caratheodory

metric on complex spaces. Here, we pick up some distinguished physiological

parameters, e.g. size, style of breathing and nutrition, reproduction patterns,

etc., and thus map our space into the space of parameters, where we choose

some simple metric and induce it back to our original space. The dream

of biologists is to independently construct these two metrics such that they

would become equal on the space of the existing organisms.

20

Every graph appears as a quotient of a tree, and the tree-likeness refers to the relative

number of cycles created in the course of factorization.

21

Yet, the tree structure is disrupted by the horizontal transfer of genes.
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4 Scales and parameters

One wishes to describe a cell by �rst identifying and enumerating essential

structures such as DNA, RNA, proteins, cytoskeleton, mitochondria, etc.,

presented in the previous section, and then specify parameters characteristic

for a given cell or a particular state of a cell. When we speak about parame-

ters, we think about points in a rather simple space. Typical parameters are

real numbers taken from a given interval on the line. If we speak of two real

parameters, we want them to be essentially independent and not subject to

a complicated relation. Thus, we admit as a space of parameters a disc or a

square in the plane but not a speci�c Cantor set like the Sierpinski gasket.

However, if there is an evidence that the values of observable parameters are

restricted to such an intricate set, then this set must be promoted from a

parameter set to a new structure.

The number of relevant (types of) distinct structures in the molecular bi-

ology is rather limited, something of the order of 10

2

�10

3

, but the dimension

of the parameter space may be very large.

For instance, genomes in a �rst approximation are words in 4 letters: the

structure is simple and transparent, the space of parameters for this structure

is the space of 4 letter sequences of a certain length. The simplicity of the

structure is due to the fact that we assumed that the individual parameters,

valued at A;C; T;G, may take arbitrary independent values in all positions.

The price we have to pay is the determination of all these letters for each

individual DNA, with no help of additional structure limiting possible values

of the parameters.

In the case of humans, the word has � 3 � 10

9

letters: even reading

ten letters per second (via chemical analysis) would take about 100 years.

So biochemists learned to read real fast to (almost) determine the human

genome in a mere decade!

There exists an extra structure in the space of (human) genomes: one

chooses a prototypical sequence, a distinguished point in the space, such that

any other sequence di�ers from it at relatively few essential

22

places. These

variations between humans, probably constitute � 10

4

� 10

5

variable letters.

Thus the genome of an individual human, modulo the \universal genome" is

22

Here \essential" refers to the biological functioning of the organism. On the other

hand criminologists distinguish di�erent human genomes by variations of nucleotides in

non-essential parts.
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essentially a random sequence of about �fty thousand uncorrelated letters.

Besides the above coding parameters, there is a variety of physical and

chemical parameters characteristic for a functioning cell: size and mass of

geometrically de�ned structures, characteristic time and energy of localized

interactions, as well as temperature, concentrations of small molecules and

ions, especially acidities (pH level), rates of reactions, etc.

The ranges of these parameters specify di�erent structures of the cell, and

the speci�c orders of magnitudes of the parameters apparently play a crucial

role in the life of the cell. For example, there are three ranges of energy in

the cell: thermal, weak (e.g. hydrogen bonding) and covalent, roughly of

the order 0.6, 1{5 and 10{100 kcal/mol respectively. See Fig 13, Fig. 14 and

27



Hinge motion

in proteins

Unwinding of

DNA helix

Enzyme-catalyzed

reaction

Generation of

a bacterium

Synthesis of

a protein

10−9


(ns)
10−6


(µs)
10−3


(ms)
1 103

Figure 15: Time of processes (in seconds).

Fig. 15.

If we turn to more sophisticated patterns such as seen in genetic networks,

the distinction between structures and parameters becomes less clear. The

parameters specifying abstract networks are values 0,1 assigned to pairs of

genes depending on whether they directly interact or not. However, this is

not very useful as it leads to a huge parameter space of order 2

10

9

. The ba-

sic problem is to isolate a structurally simple, admitting a reasonably short

syntactic description, subset in the space of graphs (represented by 0{1 matri-

ces) giving a su�ciently �ne approximation to a realistic genetic network or a

class of such networks. In reality, the structure of the network is augmented

by additional combinatorial, numerical and functional ingredients: the space

of parameters is enlarged, yet it helps to identify particular subclasses of

networks actually present in cells. On the combinatorial side, we have a

boolean structure indicating the enhancing/suppressing e�ect of a gene (or

several genes) on another gene(s). This suggests clustering genes according

to their role in regulation (e.g. position in the network, causality, general

functions, co-regulation, etc.). Also, an individual network is immersed into

a family of networks parametrized by the evolution tree. Browsing through

the tree allows one (by working hard!) to identify persistent patterns corre-

sponding to common functionality of networks across species. Furthermore,

the feasible dynamics of the gene regulation (robustness, polylinearity of ki-

netics, etc.) imposes constraints on the network which may o�set the extra

complexity introduced by dynamic parameters.

The distinction between structures and parameters in biology is blurred

compared to what happens in the physical sciences. A speci�c set of pa-
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rameters on one \level of organization" may appear as a governing law at

the \higher level". (An example in this spirit, is the emergence of symmetry

in the growth of 
owers according to Paul Green.) A possible mathematical

formalization of that may appeal to dynamics associated to fractal potentials

with su�ciently separated scales.

5 Design and control of macromolecules in

vitro

23

The bacterium E. coli, of volume � 1�m

3

, is �lled in by cytoplasm, a crowd

of molecules in thermal motion. There are about 300,000 (non ribosomal)

proteins of � 10�m in diameter, 20,000 ribosomes

24

(25% of the cytoplasmic

volume), 300,000 tRNA, a couple of thousands mRNA molecules, 50,000,000

small organic molecules including amino-acids, nucleotides, sugars, ATPs,

etc. and various ions. The 70% of the volume is taken by 2 � 10

10

water

molecules. (Eukaryotic cells, about 1,000 times bigger in volume, are �lled in

by a cytoplasm of similar composition, and they are architecturally organized

by several relatively rigid structures: nucleus, cytoskeletons, Golgi apparatus,

endoplasmic reticulum, vacuole, other organelles, etc.)

In the previous section we gave a rough sketch of what macromolecules do

in the liquid crowd inside a cell, and now we turn to possibilities of what can

be done biochemically in the test tube, or as biologists say, in vitro. Speci�-

cally, we want to explain the basic ideas behind bio-chemical manipulations

which allow one to transform information encoded in polynucleotides into

\visible" chemical and physical phenomena.

Imagine the (bio-chemically improbable) situation where we want to dis-

tinguish between two species of one-stranded polynucleotides. Both of them

have the same number of bases, say one hundred, and they are represented in

solution in two di�erent tubes. Each tube contains a large (� 10

18

) number

of copies of the same molecule, and we want to decide which tube contains

which sequence. The macroscopic properties of the two solutions are essen-

tially indistinguishable since overall chemical and physical properties of two

23

We limit ourselves to polynucleotides and do not touch upon proteins.

24

The average gaps between ribosomes are � their own size, and the gaps between

(globular) proteins are � twice their size. Proteins constantly hit each other (and run into

ribosomes) with small molecules snicking in the gaps between them.
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1.

2.

Figure 16: A nicked double stranded DNA (top), and the result of the action

of ligase (bottom).

polynucleotides of equal length are very close to each other (at least if the se-

quences are not too special). However, if we recall the Crick-Watson duality,

we come up with the following obvious solution: prepare a third tube with

the double amount of polynucleotide molecules complementary to those in

the �rst one, and pour half of its content in the �rst tube and half into the

second. The complementary polynucleotides in the �rst tube will hybridize

forming double stranded molecules, while in the second tube they will re-

main single stranded. Since the physical properties of the molecules in the

two tubes became sharply distinct, this can easily be seen in the behavior of

a variety of macroscopic parameters of the two solutions: viscosity, optical

properties, speci�c heat capacity, resistance to degradation by single-strand

speci�c nucleases, etc.

To go further, besides the Crick-Watson complementarity controlling the

hydrogen bonds, we need to break and create covalent bonds. In the cell,

this is done by a variety of enzymes. Some of them are \universal" and do

not discriminate between speci�c bases, and some others are site speci�c, i.e.

their action takes place where a particular short subword is present. Here

are a few examples:

Ligase: given a double stranded DNA with a \missing" covalent bond in

one of the strand, this enzyme \constructs" the bond. Besides nicks, it also

repairs double stranded breaks, albeit less e�ciently. See Fig. 16.

DNA polymerase: Consider a one-stranded DNA together with a short com-
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1. ATCCGTAAGTGGAACCTGATCGTACGTGGAACACACATG

TAGGCAT

ATCCGTAAGTGGAACCTGATCGTACGTGGAACACACATG

TAGGCAT

2.

N.

A
C

ATCCGTAAGTGGAACCTGATCGTACGTGGAACACACATG

TAGGCATT C
A

TCACCTTGGACTAGCATGCACCTTGTGTGTAC

Figure 17: DNA Polymerase.

Figure 18: On the left, the action of topoisomerase II and on the right, the

action of recombinase. The double arrow indicates that the operations are

reversible.

CTTAA

G

G
2.

CTTAAG

GAATTC

  AATTC

sticky ends

1.

cleavage

Figure 19: A double stranded DNA before and after the cleavage by EcoRI.
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plementary word, called a primer, coupled to the \left" end of the DNA

(for properly understood left/right on oriented DNA). Suppose that there

is a supply of free nucleotides in the solution. Then, the DNA polymerase

constructs the full complementary chain as illustrated in Fig. 17.

Topoisomerase II: when two segments of double stranded DNA come close

together, the topoisomerase cuts the covalent bonds in one of the segments

and then join them again on the other side of the second segment as shown

in Fig. 18.

Recombinase: see Fig. 18.

Restriction enzyme EcoRI: it recognizes a double stranded DNA at the spe-

ci�c site GAATTC and cuts it as indicated in Fig. 19. Such a cleavage leaves

free two short complementary single stranded segments, called sticky ends.

Several cleaved DNA's can recombine by cross hybridization of the sticky

ends. This step, followed by ligation, produces new DNA's.

DNAse I: it cuts double stranded DNA at sites speci�ed by a certain class

of subwords. The words of this class are characterized by physical properties

of the corresponding stretches of DNA, especially by their 
exibility. A

precise determination of this class remains unknown, largely because of the

complexity of the involved bio-mechanical problem.

The above enzymes can be used in vitro and allow the following manip-

ulation with DNA strands.

Synthesis of polynucleotides. In order to chemically realize a given se-

quence, say TGCAATTCG, we start with T attached to a solid support by

one of its ends and add a modi�ed G to the solution so that G can covalently

bind to the free end of T, but no G can bind to G. After TG is formed, the

unattached G's are washed out from the solution, the \blunt" end of G is

converted to its active form, modi�ed C's are added to the solution, and so

on. In order to have a large area of the solid support, one uses as a support

microscopic beads suspended in the solution, or a microporous glass, with

pores � 1�m and area 10

18

nm

2

per 1cm

3

of volume, allowing in practice up

to 10

19

growing molecules on the surface.

One can build up oligonucleotides of 100-200 nucleotides in length. At

every stage of the process, some oligo might not acquire the added base and

the synthesis protocol includes a step, called capping, in which unreacted
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ATTCGC

CGTTAATAAGCG

GCAATT

ATTCGC CGTTAA

CGTTAATAAGCG

ATTCGC GCAATT

ATTCGC

CGTTAA
2.

primers

1.

Figure 20: A double stranded DNA and the oligos corresponding to the be-

ginning ends of its complementary strands. After the strands are separated,

the oligos hybridize to the ends.

growing ends are \chemically disactivated" to prevent further growth. This

prevents the appearance of long erroneous oligos (except for errors occurring

at the end of the synthesis) and makes puri�cation easier. Yet, the sequential

accumulation of errors makes a reliable synthesis of longer oligos impossible

by this process.

Polymerase Chain Reaction (PCR). This is in the league with the inven-

tion of the wheel and the nuclear chain reaction.

Given several molecules of a double stranded DNA in a tube, one can

amplify their number exponentially in time along the following lines. Add

to the tube N (of order 10

19

) copies of two di�erent single stranded oligonu-

cleotides of the length about 10 bases, identical to the starting words of the

two strands of DNA. Also add a generous amount of nucleotides and DNA

polymerase. If we raise the temperature to � 100

�

C, the DNA denaturates,

i.e. its strands fall apart. When we su�ciently lower the temperature, our oli-

gos will hybridize to the corresponding complementary ends of DNA strands

and will play the role of primers (this process will be in thermodynamical

competition with the hybridization of the two strands among themselves,

but since we have an excess of oligos, most DNA strands will hybridyze with
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primers). (See Fig. 20) Then the DNA polymerase synthesizes a comple-

mentary strand to each of our original strands and thus the total number of

strands doubles. This works reliably even after many iterations for relatively

short DNA's, several hundreds bps long, and there are various modi�cations

of this method allowing reliable ampli�cations of DNA up to 30,000 bps long.

The amount of DNA obtained is limited by the number of primers (and of

free nucleotides, of course).

The presence of other DNA's, di�erent from the ones beginning with a

given word, represented by the oligos does not essentially a�ect the method:

only the relevant DNAs will be ampli�ed. This allows in particular to tell if

a single molecule of a particular DNA is present in the tube among zillions

of other DNAs. This is a useful test in biology as well as in criminology.

Sequencing. We start with a sample of one-stranded DNA (which can

be ampli�ed as needed using PCR) where we assume for simplicity of the

exposition that this DNA is coupled with a primer at the beginning end. We

add DNA polymerase, an excess of bases A; T; C;G into the tube and a small

amount of A

0

, that is a chemically modi�ed A with the following property:

if A

0

terminates a polynucleotide chain, then no new base can be attached to

A

0

and the synthesis stops at A

0

. After polymerization, we obtain a variety of

one-stranded DNA segments, complementary to initial subwords of the orig-

inal DNA strands, where each segment terminates at A

0

. We separate the

new strands from the old ones by raising the temperature and determine the

spectrum of their masses or lengths by some physical/chemical method. For

example, we can ionize our molecules (with reasonably controlled charges)

and accelerate them in vacuum by an electric �eld, and follow their trajecto-

ries in a magnetic �eld. These are distributed according to mass and we can

determine the masses of our segments with high precision. Alternatively, we

can make the molecules going through a gel where their speed is inversely

proportional to their length, and thus determine the length spectrum also

with high precision. In either case, we determine the length of the segments

terminating with A

0

which correspond to the positions of T 's in the original

DNA strand. This procedure applies to the remaining letters T; C;G and

provides the position of all four bases in DNA.

Molecular beacons. Suppose we have a solution of various one stranded

DNA (more realistically, RNA) in a tube and we want to decide whether a

particular short word, say of 15 nucleotides, appears as a subword in some
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of them. One prepares a large amount of oligo of 25 bases which contains in

the middle a complementary 15 letters word pinched between two mutually

reverse complementary segments, each of 5 letters long. At room tempera-

ture, such molecules make hairpins with circular loops of 15 bases long and

double stranded stems of 5 base pairs. (Compare to the picture in the right

hand side of Fig. 7). If we add this oligo to the solution, each loop which

�nds the complementary word will hybridize with it, forming a rather rigid

double stranded DNA. As a result, every such loop straightens up and the

two ends of the oligo separate.

The separation of the ends is detected by chemically attaching a 
uo-

rophore to one end of the oligo and a quencher to the other end. When

exposed to ultraviolet light, the 
uorophore emits visible light unless it is

close to the quencher which absorbs this light (and turns it into heat). Thus

luminescence appears if the subword is present in DNA and some of the loops

are open.

The oligo with the 
uorophore and quencher attached to its ends serves

as a molecular beacon signalling the presence of our word. This device is

used, in particular, as a diagnostic tool for the detection of mutations in

DNA (RNA).

Microarrays. These serve to determine the level of expression of N (possi-

bly all) genes in a given cell culture or tissue by measuring the concentration

of the corresponding mRNAs. Here is the idea. Take an array of N small

tubes and put into the i-th tube a solution of molecular beacons comple-

mentary to a segment in the i-th mRNA. Add to each tube the solution of

mRNA extracted from cells. Then, the intensity of light in the i-th tube

will be (roughly, but not quite) proportional to the concentration of the i-th

mRNA in the solution. In practice, one does not use molecular beacons (yet)

but rather attaches 
uorophore to the mRNA extracted from the culture,

and measures 
uorescence resulting from hybridization by di�erent means

(without the use of quenchers). To increase reliability and compensate for

errors (partly arising from the drive for micro-miniaturization), one often

compares expressions from two di�erent cultures, marked by di�erent 
uo-

rophores and mixed together. This mixture is added in each small tube and

the color of the 
uorescence witnesses the ratio of the expression.

For basic research, the main purpose of microarrays is to reconstruct the

gene networks in a cell, but this goal faces many unsolved problems. The
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present microarrays are not su�ciently reliable, due to a variety of uncon-

trolled errors: self-hybridization of RNA a�ecting the hybridization with

the probe, dependence of hybridization on the 
uorescence dye, di�culty in

synchronizing cell cycles and/or making time dependent measurements (the

latter problem does not exist for molecular beacons), presence of dust parti-

cles and/or spontaneous 
uorescence, etc. The major problem is that, due to

post-transcriptional regulation, the production of a particular protein is not

proportional to that of the corresponding mRNA and thus mRNA microar-

rays should be eventually complemented by protein-chips, where a protein

is detected by binding to its antibodies, i.e. a speci�cally designed protein

to which a given protein binds. Even granted that all these technical prob-

lems are resolved, the full combinatorial problem of reconstructing the gene

network from the averaged (!) expression levels, under variable conditions,

remains wide open

25

.

Recombinant techniques. One can use the bacterial replication machinery

for cloning long strands of DNA, which allows a higher �delity than PCR.

This machinery can be also used for generating and selecting sequences cod-

ing for proteins with desired enzymatic and/or binding properties, e.g. anti-

bodies for speci�c pathogens.

Given a segment of double stranded DNA, up to several tens of thousands

base pairs long, it can be inserted into the genome of a (bacterial) cell by

a variety of recombinant techniques, also called genetic engineering. This is

done with either plasmids

26

or viruses

27

used as vectors carrying the desired

DNA segment into the cells. The vector DNA is cleaved with a restriction

enzyme and ligated to the DNA segment. (The latter is prepared with com-

25

These di�culties do not play a signi�cant role in certain practical applications of

microarrays such as fast genotyping, where direct measurement might be su�cient, and

in some diagnostic procedures, where a rough gene clustering su�ces.

26

Plasmids are circular double stranded DNA molecules disjoint from the chromosomal

DNA in cells, and vary from a few thousands to more than 100 thousands bps in length.

They use the translation machinery of the (host) cell and replicate along with the cell

division. They occur naturally in bacteria and yeast, for example.

27

A virus particle, called a virion, is a self-assembling macromolecular complex con-

stituted of one or several polynucleotide molecules covered by a protein coat. Viruses

penetrate into prokaryotic or eukaryotic cells, throw away their coats and use the cell

machinery to replicate and to produce viral proteins (the number of proteins encoded in a

virus ranges from as few as 4 up to roughly 200). Some viruses live in the cytoplasm and

some incorporate their DNA into the chromosomal DNA of the host.
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plementary sticky ends which allow the hybridization of the segment to the

vector and the following ligation.) Then, the resulting recombinant vector is

inserted into the cell. This is done either with the help of a chemical making

the membrane permeable to plasmids, or by shooting particles coated with

plasmids into the cell culture. A viral vector penetrates into the cells by itself

using its coating proteins.

A common technique for selecting the cells which did receive recombinant

vectors, consists in inserting an auxiliary gene into plasmids, where the gene

makes the receiving bacterium resistant to a particular antibiotic. When the

treated cells are raised up on a nutrient containing the antibiotic, only the

transformed cells will survive. In protein engineering, one \marks" trans-

formed viruses by inserting the code of a speci�c protein next to the gene

of a coating protein. In the course of translation, the new protein will fuse

with the coating protein and will be displayed on the coat of the virus. Then

one prepares a \complementary" protein with a special a�nity to the fused

protein and attaches it to a solid support. When the support is brought to

contact with the viral culture, the marked viruses bind by a�nity and are

extracted from the solution.

Apologies. The above description of biochemical techniques as well as our

overview of the cell functions should not leave an expression of being anything

close to exhaustive or in the front-line of research. There is a body of classi-

cal techniques such as NMR, x-ray cristallography, relaxation spectrography,

emission spectroscopy, and various microscopy techniques: electron, cryo-

electron, scanning transmission electron, scanning tunneling, atomic force,

etc. We did not touch upon proteomics, microscopy for subcellular localiza-

tion of 
uorescent markers, design for unicellular studies, single molecules

experiments, and many many other directions.

6 Formalizable structures

One seeks for a coherent

28

network of models, i.e. consistent mathematical

theories, re
ecting the behavior of macromolecules and of ensembles of those

in vivo and in vitro.

28

The inter-connections between theories do not have to be fully formalized. Sometimes,

one does not even expect that they are formalizable at all, as for the \quantum  !

classical" correspondence, for instance.
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Examples of models in physics are classical thermodynamics, equilibrium

statistical mechanics, the spectral theory of Schr�odinger equations, etc. Here

one is often keen at deducing simple macroscopic (e.g. thermodynamical)

laws from given local microscopic interactions. In contrast, a biologist seeks

for an explanation of the complexity of the observables of macromolecular

systems in terms of simple local laws. Besides, he tries to isolate regular

macroscopic and mesoscopic patterns in the behavior of macromolecular and,

in particular, biological systems in order to predict and design experiments.

Let us start with a list of patterns which invite a mathematical framework:

Repeativeness and partial symmetry of stochastic motives. The very exis-

tence of biology (and any rational science in general) depends on the system-

atic repetition of patterns, motifs and structures, which allows compression

of the observed information. Given a large collection of biological macro-

molecules, macromolecular complexes, cells, organisms etc., one can divide

them into relatively few groups with great similarities between members of

the same groups. In fact, this phenomenon starts from biochemistry, where

the number of small molecules in a cell by far exceeds the number of dif-

ferent species of molecules (i.e. amino-acids, nucleotides, sugars, etc.), and

where large molecules (i.e. polynucleotides, proteins and polysaccharides)

display similar repetitiveness of basic motives. Besides, even literally dif-

ferent bio-molecular aggregates, e.g. cells, share many common features in

their design and functionality. This suggests that the same low variability of

combinatorial and dynamical patterns will emerge in other structures, e.g.

gene networks, once these are revealed.

The symmetry in biology is of a di�erent nature than that in physics,

where one sees statistically completely homogeneous media such as gases and

liquids as well as truly homogeneous symmetric structures in crystals. In bi-

ology, stochastic patterns, e.g. organisms of a given species, appear faithful

to �ne details by far more often than one might naively expect on the basis of

physics and probability theory. Yet, this phenomenon should be eventually

explained in terms of locality and stochasticity. More speci�cally, why acci-

dental low free energy metastable states harbor stochastic symmetry? How

the major biological sources of symmetry, which are templating, replication,

and universality of production, can be derived from general energy/entropy

considerations?

Channeled relaxation. In many situations a macromolecular system min-
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imizes a complicated function of its parameters in an amazingly short time:

RNA and proteins fold in several minutes

29

, macromolecular complexes self-

assemble in cells, and sometimes in vitro, almost as fast, covalent bonds are

destroyed and created in a fraction of a second in the presence of enzymes,

the reproductive e�ciency of bacteria has grown from 0 to 2 divisions per

hour in mere two billion years! Eventually one wants to understand this phe-

nomenon as a feature of the function being minimized, or rather of families

of functions.

Complementarity and self-assembly. Both transcription and DNA repli-

cation are based on templating by the Crick-Watson complementarity. Also,

binding of proteins (e.g. between a protein and its antibody) can be seen as

a complementarity pairing between macromolecules.

Mathematically speaking, there are (partial) involutive symmetries in the

macromolecular world, which bring to one's mind re
ection groups. For ex-

ample, the coats of viruses with icosahedral symmetry, self-assemble this way,

out of several identical protein molecules

30

. Less symmetrically, ribosomes

self-assemble, even in vitro, if the RNAs and proteins constituting them are

present in the solution.

It happens sometimes, e.g. for viruses, that the process of self-assembly

goes in stages, where the initial assembled structures serve as a sca�olding

for the following one and then disappear from the �nal result.

A simple model for self-assembly is provided by a collection of convex

29

This should be confronted with the rate of individual molecular events: the hinge

motion of proteins happens on the scale of nanoseconds while molecular vibrations are

thousands, sometimes millions, time faster. However, these speeds cannot signi�cantly

shorten the rate of folding of long polypeptides since the number of possible con�gurations

grows exponentially with the length: to explore 2

N

con�gurations of chains of length N

with a rate of 10

15

moves per sec, one needs 2

N�50

seconds. On the other hand, the

number of deep and wide local minima may grow signi�cantly slower than 2

N

, thus allowing

fast folding by the gradient directed random walk. An argument due to Eigen (private

communication) and Kau�man suggests that adding new dimensions to the con�guration

space, predominantly turns local minima (of the energy function) to saddle points and

thus a random function in many variables may have fewer \dangerous" local minima than

a na��ve counting suggests. A comprehensive mathematical development of this idea is still

missing.

30

Chirality of biomolecules does not allow (orientation reversing) re
ections, but rotation

groups do appear as symmetries of crystallized proteins and of coats of some viruses, for

example.
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(
exible) polyhedra in the space, with prescribed a�nity between some of

their faces. Thrown into solution, these polyhedra may (or may not) assemble

into larger structures similar to covering of orbihedra.

Compartmentalisation. A cell, especially a eukaryotic one, is far from be-

ing chemically homogeneous. It is divided into semi-connected compartments

and it is �lled with �laments channelling and enhancing the biochemistry of

the cell. Both the walls of the compartments and the �lament channels can

be static, kept together by chemical bonds, or virtual, supported by the dy-

namics of the cell. Compartmentalisation inhibits the global relaxation of the

system but enhances partial relaxations within the compartments. The cell

itself is de�ned as a compartment formed by a semi-permeable membrane,

decoupling the dynamics within and without the cell.

One wishes to see this picture in a high dimensional (time-)space as a

kind of mediating topology depending on auxiliary parameters such as the

permeability of a given substrate through the membrane.

Homeostasis and replicative stability. Homeostasis, a chemio-dynamical

stability of a cell in the variable environment, is disrupted by replication.

The cell is brought out of a stable regime, dynamically speaking an attrac-

tor, but the stability is regained in a di�erent framework: the dynamical

features of the system reappear in the multiplicity of nearly identical cells

represented by the cartesian product of many copies of the attractor, and

ensure preservation of information by perpetuation. In fact, homeostasis of

an individual cell cannot be stable for a long time

31

as it would be destroyed

by random 
uctuations within and without the cell. There is no adequate

mathematical formalism to express the intuitively clear idea of replicative

stability of dynamical systems. (A possible model might use dynamical time

of variable fractal dimension depending on the number of bacteria in the

population, expressing the idea of weak correlations between time-clocks of

di�erent bacteria.) It is unclear if the appearance of many copies of similar

individuals is unavoidable or just a transitory feature of life. The question

is whether there exists, mathematically speaking, a stable highly organized

system with no high repetition of structural components, similar in spirit to

Oceanus sapientissimus of Stanislav Lem.

31

In a protected environment, a cell, such as a neuron in the human brain, may live for

a 100 years.
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Information and ampli�cation. Among other biochemical parameters of

the cell, the information encoded in DNA is distinguished by the following

features:

- it is time conserved

32

. More precisely, it changes with much slower rate

than other parameters;

- unlike most quantities conserved by physical systems (e.g. energy, momen-

tum, etc.), the \information observable" ranges in a very large space: the

space of 4 letters sequences of signi�cant length;

- small perturbations of information unpredictably amplify. The dynamics of

the cell maps small \information sets" onto much larger spaces of biochemical

and morphological parameters. Besides expanding the size, this map may

dramatically increase the structural complexity of the information set.

What is a proper mathematical description(s) of the paradigm \geno-

type determines phenotype"? Would every consistent mathematical model

require a notion of \inheritable initial condition" corresponding to what bi-

ologists call \epigenotype"? Can the above properties be turned into precise

de�nitions? If there is a rigorous model, are the three properties mutually

independent in it? Is the presence of information/memory unavoidable in

any life-like dynamics?

Universality of production: translation and replication. The two basic

cell machineries, DNA replication and synthesis of proteins, are reminiscent

of the universal Turing machine. DNA replication works on any given piece

of DNA (viruses know it only too well). The same almost applies to tran-

scription and translation: DNA is roughly divided in two parts. One encodes

house-keeping genes coding for proteins supporting the basic machinery, e.g.

ribosomal proteins. This house-keeping DNA cannot be arbitrarily modi-

�ed without badly disrupting the cell functions. On the contrary, one can

change the remaining part of DNA by inserting and deleting DNA fragments,

thus making the cell to synthesize any given protein (unless it happens to be

poisonous to the cell).

Can this universality and interchangeability be expressed in general math-

ematical terms, e.g. in the language of dynamical systems as a pseudo-group

(or something like a category) of partial symmetries?

32

An essential property of information which is commonly emphasized, is its syntac-

tic invariance, that is the relative independence of the speci�c physical carrier. Such a

property can be hardly formalized in a dynamical framework.
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Separation of energy scales. The functioning of the cell can be thought

of as a continuous 
ow and redistribution of energy which comes in three es-

sentially di�erent forms: thermal energy, (weak) binding energy, and covalent

energy.

The thermal energy is a random �eld in space, where (not very) large


uctuations are comparable to the binding energy but much weaker than the

potential barriers encompassing the covalent energy. If not for the mediating

e�ects of binding energies, there would be no signi�cant thermal dissipation

of the covalent energy (at the room temperature) on the time-scale of the cell

cycle

33

. The system would behave as if it were at equilibrium. A familiar

example is a water solution of H

2

O

2

which is rather stable at the room

temperature and away from light; enzymes from saliva act as catalysers and

make H

2

O

2

to decay with a release of free oxygen visible in the bubbles if

one spits into the solution.

For us, the covalent energy is a scalar distribution of labelled points in

space, where the geometric polarization of the bonds is ignored and where

each label corresponds to a species of small molecules. The label should

specify the covalent energy of a molecule as well as the activation energy,

that is the height of the potential wall preventing the release of the stored

energy

34

. The relevant information is encoded in density functions of labeled

points in the 3-space.

The binding energy applies to interaction between macromolecules and

other large and small molecules. (The weak interactions between small

molecules are ignored here, or delegated to the thermal energy.) Unlike the

thermal and the scalar covalent energy, the binding energy is polarized and

depends on the mutual position of the interacting molecules.

The system governed only by thermal and binding energies (without gain

or loss of covalent energy) would relax to the thermal (quasi-)equilibrium

relatively fast compared to the cell cycle

35

. Deadly on the scale of the cell, the

\rigor mortis" following relaxation, is incorporated into the local dynamics

for assembling skeletal structures with speci�c geometries depending on the

33

Some covalent bonds can be spontaneously broken by hydrolysis with a release of

thermal energy, but we do not consider this at the moment.

34

This is an oversimpli�cation: some covalent energy can be stored in macromolecules.

Besides, it may \reside" in pairs of molecules as in the gaseous mixture of H

2

and O

2

for

example.

35

Death by starvation and asphyxiation maybe postponed by sporulation.
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polarization of binding energies.

The structure produced by the binding energy channels the distribution of

the covalent energy and facilitates its exchange (metabolic pathways) and re-

lease. The released covalent energy is harnessed to build up macromolecules.

Some part of the covalent energy is redistributed among (macro)molecules,

some is converted to the binding energies of the macromolecules, and the rest

dissipates to heat. The changes in binding energies bring in dynamics to the

geometric structures created by them.

It seems that no organized structure can exist in the presence of only

two levels of energy. The sizes of the gaps seem also important: it is hard

to imagine self-organizing structures employing nuclear energies

36

instead of

covalent ones, but there is no mathematical model where this would become

a theorem.

Speci�city of scales and numbers. To demonstrate the importance of spe-

ci�c relative values of numerical parameters in the functioning cell (numbers

of particles, their size, mass, energies and interaction/relaxation time scales)

we shall draw a conclusion from the following simple observation: there are

as many microns (a bacterium size) in a centimeter (a small tube size), as

angstroms (an atom size) in a micron.

\Theorem": Consider a random pond of water of 1000m

3

containing the

chemical compounds needed for life and an excess of free energy. Then, with

probability P � 1� 10

�10

2

, it contains life in unicellular form.

The proof depends on a \lemma" and an extra assumption.

\Lemma": There exists a bacterium B � 1�m

3

in volume where the prob-

ability of replication within a unit time interval �

t

is 10 times greater than

the probability of death within �

t

.

To rigorously prove the lemma one needs a formal description of a bac-

36

The sources of nuclear energy, external to biological systems, such as the sun and the

inside of the earth, are crucial for sustaining life. These would be deadly in the pure form

of high energy photons and they become acceptable only after intermediate transformation

to the thermal energy corresponding to green light photons and below. The problem is

whether the nuclear energy can be structurally incorporated into a life-like system where a

high level of energy is tempered by sparse spatial distribution but without transformation

to lower level thermal energy. The obvious intuitive answer is negative and it would be

nice to have a general mathematical theorem con�rming the intuition.
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terium B, e.g. E. coli. We do know that E. coli exists

37

and the biologists

are currently preoccupied with furnishing such a description.

\Simplifying assumption": When a bacterium divides, its daughters are

separated in the pond and do not interact with each other except for sharing

common nutrients. In particular, one bacterium cannot kill another one,

even allowing mutation and evolution.

This assumption does not correspond to the evolution of unicellular or-

ganisms on earth: one of the multicellular descendents of the primordial cell

is nearly able to wipe out the bacterial population inhabiting the 10

18

m

3

\pond" of the biosphere.

\Proof": Since 1�m

3

contains � 10

12

atoms (and small molecules such

as H

2

O, CO

2

, N

2

and with luck NH

3

), the probability of a spontaneous

assembly of B out of atoms, within �

t

, e.g. one hour, is & 10

�12�10

12

, since

each atom out of 10

12

can occupy 10

12

positions in space. On the other

hand, the pond can be happily occupied by 10

16

bacteria B, where each

1�m

3

bacterium is allowed 10

5

�m

3

living space.

Since 1=2 � 1=10, once B appears, its descendents populate the pond

with probability P � 1=2. Also, the probability of death of the full popula-

tion of bacteria in the pond is � 10

�10

16

. Hence, P

life

=P

death

� 1=2 � 10

10

16

�

10

�12�10

12

. Q.E.D.

Remarks. If we scale the size of organisms linearly by k, the required

living space grows as k

2

. For example, to make the above work for a 1cm

size organism, one would need a volume of � 10

20

km

3

which by far exceeds

the volume of earth.

The above \theorem" does not say that life appears from non-life with

high probability in a short stretch of time but rather that the average number

of \alive states" (i.e. states where the system contains a living cell) in the

con�guration space exceeds that of the \dead states". The paradox appears

37

E. coli bacteria have volume 0:6 � 3�m

3

and they are not able to sustain their ex-

istence without the support of photosynthesizing bacteria. The latter, the present day

cyanobacteria, are rather large, � 100�m

3

. On the other hand, there are other bacteria,

called mycoplasma, that can be as small as 0:02�m

3

. But these usually live parasitic exis-

tence in association with animal and plant cells. Cells of the size of mycoplasma and with

metabolic abilities of cyanobacteria are ideal for our lemma. Such cells are believed to be

among the �rst inhabitants on earth.

44



only if one misuses the ergodic theorem and interprets the time average as

something observed in realistic time intervals. In our example, huge time

intervals where the system has no life will interchange with even larger inter-

vals with life. The boundary of a long interval is negligibly small compared

to the length of the interval, making the transition probability very low.

But since the action takes place in a high dimensional con�guration space,

the boundaries of relevant regions (i.e. regions of alive states) become much

larger relatively to the volume of these regions (isoperimetric concentration

phenomenon). Intuitively, the large dimension allows many scenarios for non-

life/life transition. See the end of Section 7 for a mathematical discussion.

The probability of a con�guration of atoms depends on the energy via

the Gibbs factor. This has no signi�cant e�ect on our computation but the

presence of potential barriers (activation energies) aggravates the transition

problem from \dead" to \alive" states.

The probability of an \alive" con�guration is by far greater than 10

�N

for

N = 10

13

, since there is more than one \alive" con�guration: the potential

number of possible self-replicating con�gurations is something like 10

��N

,

where � is a small, but not negligibly small, positive number. This � roughly

represents the percentage of rearrangements of atoms keeping an \alive"

system alive: out of N atoms, � �N of them can be independently modi�ed.

The number � can be interpreted as a relative dimension of \life" and

its realistic evaluation would be quite interesting. The idea of dimension

can be seen in a M �M regular square array of points in the plane, where

M = 10

1

2

N

. Subsets containing 10

��N

points for � =

1

2

corresponds to lines

in the square and have relative dimension

1

2

.

Self-replication can be thought of as a �xed point of a certain transforma-

tion (dynamical system) modelling replication. A certain set of replicative

systems make an attraction basin to the set of (stably) self-replicative sys-

tems, and the relative measure of this basin maybe reasonably large to allow

a time realistic scenario for transition from non-life to self-replicating life.

Replication may represent, for example, a division of a membrane-bounded

entity (e.g. a micelle or a liposome) into daughters far from being identical

to the mother and to each other, and in the course of sequential divisions,

they structurally converge to self-replicating organisms.

All ten features mutually intertwine and our ... of them will not be linear.
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7 Models and problems

Populations of strands and hybridization diagrams.

An AG-strand, or just a strand, is a directed �nite linear graph with

letters A;A

�1

; G;G

�1

labelling each edge. This is either an oriented segment

or a cycle (a topological circle) with letters written on it. In other words, it

is either a path or a cycle in the �gure

0

1

0

representing the free group on

two generators.

A population of strands is a measure on the set of strands. Warning:

as we want to model populations of strands in realistic solutions in tubes,

where the measure weight attached to a strand equals the number of the

copies of the strand in the solution, one must take into account the fact that

the number of strands in a population (10

20

� 10

30

) is large compared to

the number of all possible short strands (30� 40 letters long) but abysmally

small compared to the number of strands of length more than 100 letters. A

better model for a population of long strands is a random measure on the

space of strands.

A hybridization diagram D is a graph D together with a combinatorial

map of a disjoint union of strands onto it, denoted h :

F

i2I

S

i

! D,

where the S

i

are strands indexed by I, and where the following conditions

are satis�ed: vertices go to vertices and edges onto edges, thus every strand

S

i

is realized by a path or by a cycle in D. Each edge in D has as a pullback

either a single edge or two edges with opposite orientation and reciprocal

labels. The latter is called double stranded edge and the former, is called

single stranded.

38

Two edges in D are strand connected if they both descend from the same

strand S

i

by the map h. A hybridization diagram is connected if every edge

can be reached from another one by a chain of mutually strand connected

segments. (See Fig. 26.) Thus, every diagram divides into connected compo-

nents which can be a priori smaller than the topological components of D.

We speci�cally assume that the underlying topology of D actually de�nes

the same components as the strand connectedness.

Hybridization (involution). Two edges in the union

F

i2I

S

i

are hybridized

if they have equal images under h in D. Hybridized edges come in reciprocal

38

We do not distinguish D and D insofar as it does not lead to confusion.
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Figure 21: Surfaces associated to a strand (left) and to a circular strand

(right).

Figure 22: Two examples of hybridization surfaces.
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pairs with a natural involution

~

h on the union S

hy

�

F

i2I

S

i

of those pairs.

The graph D can be described in these terms as the quotient of

F

i2I

S

i

by

the involution

~

h.

Hybridization surfaces. Given a strand S, we consider the surface C

S

,

that is de�ned as S � [0; 1] for circular strands, and for linear strands as

S � [0; 1] with the two edges corresponding to the end points of S shrunk to

single points. (See Fig. 21.)

The hybridization surface C

D

associated to the diagram D = (D; h :

F

i2I

S

i

! D), for S

i

= S

i

� 1, is de�ned by attaching the disjoint union

of the surfaces C

S

i

to D via the map h. This is indeed a topological sur-

face containing D and naturally retracting to it. The boundary of C

D

is

subdivided in two parts: one corresponds to the non-hybridized part of the

strands S

i

's, and the second part, i.e.

F

i2I

S

i

� 0, decomposes into segments

with disjoint interiors corresponding to the S

i

� 0. (See Fig. 22.) The la-

belling map

F

i2I

S

i

!

0

1

0

naturally extends to a continuous map C

D

!

0

1

0

. Conversely, a hybridization diagram can be de�ned as a surface with

a distinguished oriented part of the boundary and a labelling map of this

surface to

0

1

0

.

The population of diagrams is a measure on the set of connected hy-

bridization diagrams. It represents the numbers of species (i.e. isomorphism

classes) of macromolecular hybridization aggregates in a solution. Here, even

more than for strand populations, one must be careful with the stochastic

interpretation of this measure. A true stochastic object is a random popu-

lation of diagrams, where the weights assigned to the diagrams are not real

numbers but positive random variables, or better, it is a probability measure

on the space of populations of diagrams.

Dynamics of hybridization. Dynamics of hybridization refers to a random

walk in the space of diagrams, re
ecting what happens to an ensemble of

strands in a solution. At every step of the walk, a diagram transforms to

another diagram with a certain probability weight assigned to the step, where

each transformation is a hybridization or a dissociation of an edge. A full

description of such a walk should take into account the interaction energy

between di�erent letters, corresponding to actual energies of hydrogen bonds,

the bending energy, etc.

The stationary states of the corresponding Markov chains can be mod-

eled by a Gibbs measure (de�ned later in the section), with proper entropic
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Figure 23: Circular hybridization of two non-circular strands containing non-

trivial symmetry in their words.

weights assigned to these states. The �rst question (corresponding to the

zero-energy) is �nding the minimum energy diagrams. Let us simplify fur-

ther, ignore the bending energy and prescribe the (local) energy at every edge

as follows: every non-hybridized edge has energy zero; to every hybridized

AA

�1

pair is assigned a certain negative energy e(A), and to every hybridized

GG

�1

pair is assigned a negative energy e(G). Besides, one can partly take

into account the bending by assigning certain positive energies to the vertices

of the graph. For example, if the hybridization map folds (i.e. it is not locally

one-to-one) over some vertex in D, then one assigns in�nite positive energy

to this vertex to exclude such a folding.

The total combinatorial energy of the diagram is the sum of energies of

all edges and vertices. In some cases, the minimum energy diagram can be

easily found. Here are some examples.

Complementary strands. If S and S

�1

are complementary strands, then

obviously the minimum of the energy is achieved by the linear or the circular

diagram hybridizing S with S

�1

. This minimal energy diagram is unique if

we agree to assign (arbitrarily small) positive energies to the vertices, except

for circular strands where the corresponding word has a non-trivial cyclic

symmetry, and where the number of non-isomorphic diagrams equals the

order of the (cyclic) symmetry group of our word with the two ends identi�ed.

(See Fig. 23.)

Triple junctions. Consider three su�ciently long random words X; Y; Z,

and take the three strands XY , Y

�1

Z and Z

�1

X

�1

. The minimal energy

diagram is unique and it is depicted in Fig. 24.

These two examples indicate how the presence of symmetry and of ran-
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-1

-1

-1

X

X

Y Y

Z

Z

Figure 24: Minimal energy hybridization of the three words XY , Z

�1

X

�1

and Y

�1

Z.

domness may e�ect the hybridization behavior of polynucleotides. A gen-

eral question is the characterization of those ensembles of strands where the

minimum energy diagram(s) can be explicitly described. Another question

concerns the hybridization of diagrams D

i

where the Crick-Watson pairing

applies to the remaining single stranded edges of the diagrams. In other

words, we consider the space D(fD

i

g) of the diagrams which can be ob-

tained by the hybridization of the D

i

's. This space naturally embeds into

the space D(fS

i;j

g), where S

i;j

are the strands making D

i

. In this nota-

tion, the problem consists in minimizing the free energy on the subspace

D(fD

i

g) � D(fS

i;j

g); thus, the minimal energy of the diagram hybridization

is typically greater than that for the strands making the diagrams. Examples

of speci�ed multi-stage hybridization systematically appear in the chemistry

of self-assembling DNA nano-devices and DNA computational schemes.

The moduli space of diagrams. Given a collection S = fS

i

g of strands,

we de�ne the moduli space D = D(S) as a directed graph whose vertices

are diagrams D made of S

i

's and whose edges D

1

! D

2

correspond to

hybridization: the diagram D

2

is obtained from D

1

by gluing together a

pair of free edges. The moduli space D has a distinguished source vertex

corresponding to the non-hybridized strands, and many sinks corresponding

to fully hybridized strands.

The graph D(S) is almost (modulo possible automorphisms of S) en-
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tirely determined by the four numbers N

A

; N

A

�1

; N

G

; N

G

�1

of the occur-

rences of the four labels in S, since the Crick-Watson pairing is irrespectful

of the topology of S and of the position of the labels. As a mere graph,

D(S) = D(N

A

; N

A

�1

; N

G

; N

G

�1

) looks rather transparent but it comes along

with additional (not so transparent) structures. In fact, D serves as the base

space of a \�bration" f :

~

D ! D where the �ber f

�1

(D) 2

~

D is just the

graph D underlying D, and where the f

�1

pullback of each arrow D

1

! D

2

is the cylinder of the corresponding hybridization map between the graphs.

Observe that the surface C associated to a diagram D (or rather the ac-

tual cylinder of the hybridization map) embeds into

~

D as a pullback of an

upstream path from D 2 D to the source vertex. In particular, the pull-

backs of di�erent upstream paths from D to the source vertex are mutually

homeomorphic.

The �bration

~

D ! D linearizes to the (huge) commutative diagram of the

homomorphisms of the homology groups H

1

(D = f

�1

(D)), where D 2 D,

with the obvious arrows corresponding to the edges D

1

! D

2

. Moreover,

each group H

1

(D) comes along with the bilinear pairing (intersection of 1-

cycles in the surfaces) in the surface C

D

� D. The dimensions of these

groups as well as the (co-)ranks of the arrows and pairings are integer value

functions on the space D shaping its combinatorial personality.

Warning: if the collection S has a non-trivial symmetry (for example it

contains two strands of equal length with identical labels, or it contains a

circular strand where the labels have a non-trivial period, see Fig. 23) and

this symmetry persists under hybridization, one should distinguish between

a \diagram" and an \isomorphism class of diagrams". In terms of D, dia-

grams with symmetries represent singular points where one should specify

the corresponding orbispace structure.

Global symmetries do not appear in biologically realistic situations but

partial symmetries do appear. In order to incorporate these in the categorical

formalism, we need a notion of a subdiagram and this can be achieved with

the universal moduli space of diagrams, D

�

= D

�

(

0

1

0

) = D

�

(fA;Gg), which

represents diagrams D(S) with variable sets S of strands, and injections

D

1

(S

1

) 9 9 KD

2

(S

2

) induced by embeddings S

1

,! S

2

.

Which way to go? Here (and this will be happening over and over again),

one faces a dilemma. One can pursue the intrinsic logic of the mathematical

construct and follow several mathematical avenues suggested by the space
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D: one may investigate its relation(s) to the moduli spaces of Riemann sur-

faces, one can make a small category out of it and study the topology of

its classifying space, one can \complete" D by allowing diagrams on in�nite

strands, one may generalize the notion of diagram by replacing the �gure

0

1

0

by a more general (Riemaniann) space (e.g. of negative curvature) or

by a suitable homomorphism of the fundamental group of the diagram into

another group, etc. Alternatively, one may concentrate on those aspects of

hybridization encoded in D, which appear more natural from a bio-chemical

standpoint, by trying to �nd biologically signi�cant patterns in D, by devel-

oping computational means to analyze the structure of individual diagrams

as well as by introducing new structures on D's and D suggested by bio-

physical considerations. The latter leads to new mathematical structures

and creates further forks along the road.

Temperature, entropy and Gibbs measures. We have already assigned en-

ergy to each vertex D 2 D, and now we discuss how to assign a probability

(entropy) weight to a diagram D. This comes more or less naturally if we

\decorate" each D with the space realization of D, that is an embedding

� : D ! R

3

. Such a (D;�) is called a euclidean diagram. For our pur-

poses, we consider only piecewise linear maps � sending edges of D to unit

euclidean segments. The \euclidian decoration" of the moduli space D has

three essential ingredients:

topology: the map � maybe \knotted", namely there are many isotopy classes

of embeddings D ! R

3

and this can be recorded by augmenting the combi-

natorial structure of D.

energy: the combinatorial energy de�ned earlier can be made more precise

by taking into account the actual data on the intermolecular interactions

including a realistic bending energy as well as the hard-core repelling poten-

tial

39

that would automatically force � to be an embedding. Observe that

the bending energy is local on D, while the hard-core potential is local on

D �D rather than on D, which makes its analysis notoriously complicated

(as it re
ects the excluded volume or self-avoiding property of �).

entropy: this refers to the total measure of the space E = E(D) of euclidean

diagrams (D;�) as a function of D. The space E naturally embeds into

R

3N

, where N is the number of edges plus the number of vertices of D.

39

For two points x; y with d(x; y) � �, the \hard-core energy" equals, by de�nition, +1.
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This space E is invariant under the isometry group of R

3N

, which makes it

in�nite and so its measure should be normalized in a suitable way. If we

deal with self-hybridization diagrams (obtained by hybridization of a single

strand) we can pass to the factor E=R

3

. But if disconnectedness of strands

and/or diagrams matters, then one should limit the range of � to a bounded

domain (corresponding to the tube where the solution of DNA is contained).

The next problem is that E � R

3N

is a (semi-algebraic) subvariety of positive

codimension and one should take special care on how to de�ne the measure

on such a subset. One can use the natural induced piecewise Riemaniann

measure but it is customary to use the ambient Euclidean measure weighted

with the Gibbs factor coming from the energy. In any case, this measure

is very di�cult to evaluate and one resorts to some approximation to this

measure expressed entirely in terms of the combinatorics of D.

Given an energy function U : D(S) ! R and measure weights �(D) 2

R

+

, where D 2 D = D(S), one is concerned with the pushforward � = U

�

(�)

of the measure � under U . The measure � on R is customary represented

via its Laplace transform G(�), that is the integral of the function e

��U

over

R 3 U with respect to �. This equals the canonical sum

G(�) =

X

D2D

e

��U(D)

�(D)

where each term �

G

(D) = e

��D

�(D) = e

�U=T

�(D) is called the canonical

measure and where T = 1=� is interpreted as the inverse absolute tempera-

ture of the ensemble S of strands in the tube. The canonical sum carries the

same information as the speci�c heat capacity of the ensemble of our strands

in solution, which is an experimentally measurable quantity de�ned as the

T -derivative of

P

d2D

U(D)�

G

(D). Clearly this derivative equals (T

2

G

0

(T ))

0

.

This canonical sum, or rather its simpli�ed versions, were extensively

studied for S consisting of pairs of complementary strands. In particular, by

looking at an Ising type approximation to G, one can make rather realistic

predictions of the melting behavior of DNA strands such as the zipping e�ect.

Also, by looking at G restricted to various segments of DNA one �nds an

amazing matching with biologically signi�cant patterns such as introns and

exons in genes, as well as coding regions for functional domains in proteins.

Another biologically signi�cant case, concerns folding of individual strands

S of RNA, where \folding" refers to the measure/energy distribution on the
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diagramsD(S). One is interested by how much this distribution for S's found

in cells di�ers from that for random S's.

The road to equilibrium. The Gibbs measure does not tell one how the

actual hybridization process develops but only describes the �nal equilibrium

stage of hybridization. Unlike the statistical ensembles usually studied in

physics, the relaxation time (i.e. the time needed to reach equilibrium) in

biology is relatively long, and the road to equilibrium maybe very bumpy.

The non-equilibrium dynamics of ensembles of DNA's can be modeled as a

random walk on D, by assigning suitable transition probabilities to the edges

between D's in D. The assignment p

12

to the edge D

1

! D

2

depends on the

di�erence between the Gibbs energies of D

1

and D

2

, and re
ects to a large

extent the combinatorics of the folding (of the map D

1

! D

2

represented by

the edge), while p

21

(which is not supposed to be 0 but usually smaller than

p

12

) re
ects the combinatorics of the unfolding.

The major issue is the evaluation of the rate of di�usion of such a walk,

or/and of the �rst eigenvalue of the corresponding di�usion operator. To

get the 
avor, we localize to the set of diagrams D

L

� D = D(S), where

the total number of double stranded edges equals L. Consider the graph

with vertices D 2 D

L

, where the (non-oriented) edges between D

1

; D

2

2 D

L

correspond to the diagrams of oriented edges in D of the form D

1

 D

0

!

D

2

, where D

0

2 D

L�1

. It seems not hard to evaluate the �rst eigenvalue of

this graph in terms of S and L, where the total length of the strands in S

and L go to 1. For example, if S consists of a single strand S of length 2L

and N

A

= N

A

�1

= L then D

L

can be identi�ed with the Cayley graph of

the permutation group Sym

L

generated by transpositions. Actually, Sym

L

simply and transitively acts on the set of surfaces C

D

, where D 2 D

L

, and

appears as a discrete approximation to the Riemann moduli space of surfaces

of variable genera. (This example does not incorporate the energy assignment

depending on the labelling and cannot tell us much about the random walk

we are truly interested in.)

Cleavage, ligation and emergence of stochastic symmetry. Let us bring

more chemistry into D

�

by introducing extra edges corresponding to creation

and cleavage of covalent bonds between strands. We write D

1

) D

2

if D

2

is

obtained from D

1

by ligating two ends of two (distinct or identical) strands

in D

1

. Accordingly, D

1

( D

2

signi�es breaking a strand at a single location.

We assign a weight to each arrow encoding the probability of the chemical
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Figure 25: Two strands hybridize with a third one and ligation takes place.

event represented by this arrow. To be realistic, we prescribe a relatively high

probability to ligation between two strands hybridized to a complementary

strand and having adjacent ends, as in Fig. 16. On the other hand, the

probability of ligation of non-adjacent ends is exceedingly low. Somewhat

unrealistically, we allow newly broken bonds to ligate again later on. (This

presupposes an in
ux of free energy activating the corresponding nucleotides.

Compare Fig. 1.)

We are interested in (random) populations of strands in a tube, where

the temperature oscillates between \high", where the strands are completely

separated, and \low", where strands conglomerate into diagrams. In the

latter case, strands with adjacent ends ligate with relatively high probability.

Cleavage happens at all temperatures but with smaller probability.

Question. Consider a random population of strands of various length,

i.e. that is a measure on the sequence space. How does this measure evolve

in time in the setting described above? Will strands with relatively high

repetition of patterns emerge?

Toy DNA symmetrization. To simplify, we work with the two letters A;G
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and replace the Crick-Watson complementarity with the pairing AA and GG;

we emphasize ligation of two segments S

1

; S

2

which are fully hybridized to a

third one S

3

such that their ends meet. We think about the subsegment S

0

3

of S

3

which is hybridized to S

1

; S

2

as a \ligation site" for S

1

; S

2

. See Fig. 25.

A population where subsegments of strands appear with high multiplic-

ity have an advantage as, after cleavage, they have high chance to �nd hy-

bridization sites. From this angle, the most advantageous (stable) popu-

lation consists of pure A and pure G strands with a small percentage of

interbreeds, since spontaneous A-G ligation appears with probability which

is much smaller than spontaneous cleavage, while the A-A and G-G ligations

are competitive with cleavage due to the presence of many pure breed ligation

sites.

Amazingly, being random is sometimes advantageous for reconstruction

of cleaved strands, due to the high degree of speci�cation: take a long strand

S and a strand S

0

0

which is twin to a subsegment S

0

of S. In the random

case, the binding energy between S

0

0

and S

0

is roughly twice as great as the

energies of other possible bindings of S

0

0

to S, since the number of matches of

letters for random pairs of sequences is roughly equal to the number of mis-

matches. But for pure breed strands, the binding energy is constant for full

hybridization and, in general, proportional to the length of the hybridization

overlap. The same consideration applies to the hybridization of two pieces

of a cleaved strand on available ligation sites. Since the energy enters the

canonical sum under the exponent of the Gibbs-Boltzmann factor, it can

beat entropy and, depending on parameters (as temperature, energy, con-

centration, etc.), the population may evolve towards strands with repeated

random motives. One wonders if the tandem repetitions in genomes can be

explained by mechanisms of this nature.

What else is there? Mismatches of hybridization make some potential

hybridization sites unavailable. In particular self-hybridization of strands

(which is predominant at low concentrations) might \tie up" the ends of the

strands.

Since the sequence space, where the evolution of strands takes place, is

huge compared to the number of strands in the solution, one never arrives at

the true equilibrium state in real time. This means that the (limit) equilib-

rium distribution does not re
ect the structure of an actual population at a

given moment of time. Instead of staying at equilibrium, one should rather

think of a relatively small cloud of strands (quasi-species in terms of Manfred
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Eigen) wondering in the immense vastness of the full sequence space.

One may try to bring the above model closer to \real life" by taking com-

plementarity and double strands seriously and by introducing other covalent

modi�cations of diagrams, such as recombination for instance. Besides, one

can prefer a large pool of random short activated nucleotides, rather than

allowing spontaneous reactivation of cleaved strands.

Actual polynucleotides in solution make a complicated ternary structure

not easily predictable by the self-hybridization pattern. Some of them dis-

play pronounced enzymatic properties, e.g. enhancing cleavage and/or lig-

ation at speci�c sites of other strands. A possible way to incorporate this

phenomenon into the language of diagrams is, following Kau�man, to regard

the enzymatic activity as a random function on D

�

. Granted such a function,

it will signi�cantly in
uence the evolution process favoring segments which,

after folding, promote ligation of self-like, and cleavage of competitors. For

example, pure breeds may be at a disadvantage similarly to pure strategies in

game theory. It would be interesting to realize this idea in a speci�c model.

Controlled paths in D

�

. There are several experimental techniques to

manipulate, control and analyze DNA in solution. These can be described

as operations on the space P of populations of diagrams, that are measures

on D

�

. Whenever we need random populations, we shall refer to the space

R. The operations are:

macroscopic compartmentalisation: instead of using one tube, one might have

solutions of DNA in n tubes, for relatively small n. This means that we deal

with n-dimensional vectors P = (p

1

; : : : ; p

n

) 2 P of diagram (in particular,

strand) populations, where each p

i

is a (random) measure on D

�

.

mixing solutions: the redistribution of the content of each of the n tubes in a

given proportion intom tubes, amounts to a speci�ed stochastic n�m matrix

de�ning a linear map P

n

! P

m

. If the non-zero weights assigned by p

i

to

each diagram are su�ciently large (i.e. each diagram appears in su�ciently

many copies in solution), this formalism faithfully represents what happens in

the lab. But if some diagram appears in a small quantity, the number of them

going to a new tube, after mixing can be understood only probabilistically.

For example, if we have only one strand of a given species in a tube, we cannot

a priori tell in which of the tubes it goes after the mixing process. However,

a single molecule matters and can be detected a posteriori, for instance, with
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hybridization

Figure 26: Designed assembly of DNA strands. The bold traits (on the left)

correspond to the subwords designed to hybridize (on the right).

ampli�cation by PCR. Thus, we cannot round o� small quantities and have

to keep track of them using the framework of random populations.

temperature control, hybridization and denaturation: raising temperature

to su�ciently high degree denaturates DNA and gives us an obvious map

from P = P(D

�

) to the space of population of strands denoted by P(S).

Conversely, lowering the temperature, leads to hybridization, that is a map

P(S) ! P(D

�

). If the free energy of hybridization has a unique deep min-

imum (with a large attraction basin), then the hybridization is essentially

unique and non-ambiguous. In general, it is not so and the true map lands

in the space of random populations of diagrams. Also, the time pro�le of the

temperature may have signi�cant e�ect on the result of hybridization. For

example, if one mixes certain partly hybridized diagrams, they may hybridize

along sticky ends arriving at a metastable state corresponding to a deep local

minimum of the free energy. After heating and slow cooling, one arrives at

the global minimum providing a population of maximally hybridized strands

(which may appear in di�erent knotting/linking conformations).

Hybridization can be designed in order to serve (at least) two purposes:

the controlled self-assembly of a diagram out of strands and the realization

of non-deterministic algorithms. In the �rst case, one needs the free energy

with a unique sharp pronounced minimum, and in the second case one seeks

free energy functions with several deep (local) minima with equal values of

the free energy. These two purposes are achieved by taking a collection of
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randomly labelled strands modulo the following condition: there is a distin-

guished relatively small set of mutually complementary words which appear

as subwords in our strands. (See Fig. 26.) Then, the minima of free energy

are realized by diagrams hybridizing across these words. In both cases, one

starts with many copies of each strand. For self-assembly purposes, one needs

to purify the resulting population of diagrams in order to exclude undesirable

hybridizations. To realize a non-deterministic tree with N leaves, one needs

as many copies of each strand as is necessary to realize N di�erent minima

with non-zero probability.

making primers: this means construction of speci�ed vectors of measures in

P or in R, supported on the space of relatively short strands.

separation: this is a map s = s

�

: P ! P

N

, where � is a partition of P intoN

subsets corresponding to the physical characteristics involved. The map s

�

consists of restricting a measure to each, among N , subsets of the partition.

The partitions � that we have in mind are those which can be biochemically

realized. For example, one can separate strands with gel-electrophoresis ac-

cording to the length, or diagrams according to their mass and overall topol-

ogy.

puri�cation: it is the multiplication of a measure by the characteristic func-

tion of some subset in D

�

, interpreted as �ltering away the diagrams where

the function vanishes. This should be physically realizable.

extraction: this is a map ex = ex

�;r

: P ! P

N

, where � is a partition of

P into N subsets, r = fr

i

g

N

i=1

are positive weights � 1, and where the i-th

component of ex(p) equals p restricted to the i-subset of the partition times

r

i

. Formally speaking, extraction can be reduced to separation, puri�cation

and mixing, but, in practice, a particular extraction may be feasible while

the corresponding separation and/or puri�cation are not necessarily so. For

example, one can extract those diagrams which have a non-hybridized seg-

ment(s) with a given labelling(s) using complementary probes attached to a

solid support.

detection of p 2 P: this refers to the evaluation of the integral p(d) of a

given function d : D

�

! R. We use those d's where this evaluation is

experimentally feasible, preferably even for small values of p(d). An example

of this is provided by molecular beacons, where the function d take values 0; 1

depending on the presence or absence of a given subword in a strand, and the
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intensity of luminescence equals the integral (average) of this (characteristic)

function.

changing connectivity of S: an enzyme is a map e

i

: D

�

! D

�

which breaks

or ligate strands at given locations, which are speci�c for a given enzyme. We

admit enzymes making several cuts within the same location (for example

EcoRI makes two cuts, as illustrated in Fig. 19). Thus every enzyme is

characterized by the size of the site at which it can work, by the combinatorics

and labelling of the site, and by the combinatorics of the site after the action

of the enzyme. Given e

i

, we obtain a map E

i

: P ! P by linearly extending

e

i

.

disactivation of ligation: one can disactivate the ends of the strands in a given

tube (compare to the paragraph on Synthesis of polynucleotides in Section 5)

and thus prevent the strands from ligation. The disactivation is a labelling

of certain ends of strands that allows a design of a wider variety of ligation

maps e

i

.

complementation: given a diagram, one can generate from it the complements

to all non-hybridized segments using some replicase enzyme in the presence

of an excess of free nucleotides. This amounts to adding the formal sum of

these subsegments to the �-measure supported on this diagram.

Also, one may generate a speci�c subsegment of each non-hybridized seg-

ment, starting from a given short subword in it and using a primer com-

plementary to this subword together with DNA polymerase enzymes. This

amounts to an operation on populations similar to the above.

ampli�cation: repeatedly applying complementation and denaturation leads

to measures on D

�

having an exponentially large weight on speci�c strands.

In particular, with replicase, one can multiply a given measure, symmetric

under complementation, by 2

n

in n steps.

Granted these operations with speci�ed parameters for the free energy

and error margins expressed in the degree of randomness of the arising dia-

grams, one poses two questions:

- can one faithfully assemble a particular diagram? Here, one is addition-

ally interested in a diagram with a prescribed embedding into R

3

, e.g. in

the realization of speci�ed DNA knots. (Many classes of single and double

stranded knots have been already chemically implemented.) For this, one
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has to modify the above formalism by incorporating in it the combinatorics

of the double helical structure of DNA;

- which (non-deterministic) computations can be modeled by the above op-

erations on population of diagrams? For example, given two populations

p

1

; p

2

, how many operations one should perform over p

1

in order to obtain

p

0

1

approximating p

2

with a prescribed error?

Lesson from D

�

. Our formal description of DNA is by no means �-

nal neither from a bio-chemical nor from a mathematical standpoint. It is

not su�ciently speci�c for practical applications; yet, it illustrates some of

the general principles mentioned earlier: complementarity and templating,

self-assembling where hybridization and denaturation serve as sca�olding for

making/breaking covalent bonds, repetitiveness of stochastic motives, chan-

neled relaxation via designed free energies.

On the mathematical side, one seeks for a more general class of models

incorporating random walks on combinatorial moduli spaces and the design

of (free energy) functions with speci�ed symmetry of local minima with an

explicit separation of several (at least three) scales. (In the D

�

-model the

weak bonding serves as intermediate between thermal energy and covalent

energy, where the concentration of activated bases appears as \covalent tem-

perature".)

Self-assembly.

Tilings. Consider a connected subset T (tile) in R

3

, for example a convex

polyhedron, with a distinguished subset of mutually complementary (possi-

bly overlapping) non-empty domains on the boundary, denoted D

b

;

�

D

b

� @T ,

where b runs over a (possibly in�nite) set B. We are interested in assem-

blies generated by T , that are subsets A in the Euclidean space, decomposed

into a union of congruent copies of T where two copies may intersect only

at their boundaries and have a \tendency" to meet across complementary

domains on the boundary. We have in mind a protein molecule T with com-

plementary active sites D

b

;

�

D

b

such that di�erent copies of T bind along the

complementary domains and self-assemble into complexes. In the geometric

context we specify the binding properties by introducing (binding) isome-

tries b : R

3

! R

3

to each b 2 B such that T and b(T ) intersect only at the

boundary, and b(D

b

) =

�

D

b

. From now on B is understood as a subset in the

eucledian isometry group Iso(R

3

).
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Accordingly, we de�ne an assembly A associated to (T;B) by the following

data:

- a connected graph G = G

A

with the vertex set 1 : : : N ,

- subsets T

i

in R

3

, where i = 1 : : :N , which may mutually intersect only at

their boundaries,

- an isometry b

k;l

: R

3

! R

3

moving T

k

onto T

l

, for each edge (k; l) in G,

such that there exists an isometry a

k;l

which moves T

k

to T and conjugates

b

k;l

to some isometry b in B. Notice that this b is uniquely determined by

b

k;l

up to conjugation.

Several tiles. If we start with several di�erent tiles T

1

; : : : ; T

n

rather

than with a single T , we consider the sets of pairs of binding isometries

B

i;j

� Iso(R

3

)�Iso(R

3

) such that b

i;j

1

(T

i

) and b

i;j

2

(T

j

) intersect only at their

boundaries and their intersection is non-empty. The de�nition of an assembly

associated to (fT

i

g; fB

i;j

g) goes as above with the following modi�cations:

the graph G has vertices colored by the index set 1 : : : n, the corresponding

subsets in R

3

are denoted T

i

k

where i = 1 : : : n and k = 1 : : : N

i

, and �nally, we

forfeit the isometries b

k;l

and for each edge (k

i

; l

j

) we emphasize an isometry

of R

3

which moves T

i

k

to b

i;j

1

(T

i

) and T

j

l

to b

i;j

2

(T

j

).

In what follows, we sometimes refer to the union of tiles de�ned above,

as an assembly.

Qualities of an assembly. The tightness of the tiling is one quality that

chemists appreciate. This can be measured by the number of cycles in the

graph G, or equivalently by the minus Euler characteristic of the graph.

The imperfection of a tiling is measured by the \unused" areas of the

boundaries of the tiles. First de�ne the active domain @

act

(T ) � @T as the

union of the intersections of @T with b(T ) for all b 2 B. Then de�ne the

\unused boundary" @

un

(A = [T

i

) as the union [

N

i=1

@

act

(T

i

) minus the union

of the pairwise intersections [

(k;l)2G

T

k

\ T

l

. An assembly is called perfect if

the area of the imperfection equals zero. We say that an assembly contained

in a given subset X � R

3

is perfect with respect to @X, if @

un

(A) � @X.

The uniqueness refers to the uniqueness of an assembly subject to some

additional constraints. For example, given an X � R

3

, one asks �rst if X can

be tiled by (T;B) and then asks for the uniqueness of such a tiling. We say

that (T;B) generates an unconditionally unique assembly if every imperfect

assembly uniquely extends to a perfect assembly.
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Figure 27: Vernier. Rodlike tiles di�ering in length form an assembly that

grows until the ends exactly match.

assembly

template

 binding sites

Figure 28: A tile is stable in the assembly only if it binds at two adjacent

binding sites. The stability of the whole assembly is insured by the enforced

stability of the template. The formal description of this example is not

completely captured by our model.

The essential problem of tiling engineering is designing a relatively sim-

ple tile or a few such tiles which assemble with high quality into large and

complicated subsets in R

3

. Here is a speci�c example for the unit sphere

S

2

rather than S

3

, where one uses the obvious extension of the notion of

tilings to homogeneous spaces. Given �; � > 0, consider triangulations of the

sphere into triangles � with Diam(�) � � and area(�) � �Diam

2

(�). It

is easy to see that the number of mutually non-congruent triangles in such

a triangulation, call it n(�; �), goes to 1 for � ! 0 and every �xed � > 0.

The problem is to evaluate the asymptotic behavior of n(�; �) for �! 0 and

either a �xed � or � ! 0.

Real life examples. It remains unclear, in general, how cells control the

size of (imperfect, with some unused boundary,) assemblies, but certain mech-

anisms are understood. For example, out of two rodlike molecules of length

three and �ve, one gets a double rod of length 15 as illustrated in Fig. 27.

Another strategy is starting an assembly from a given template (see Fig. 28

for a speci�c design). Sometimes, tiling is non-isometric: tiles slightly bend

in order to �t, and the assembly terminates when the bending energy be-

comes too costly or when the accumulated bending deforms and disactivates

the binding sites (see Fig. 29). Also, the binding of a ligand to an active
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Figure 29: Polymeric structure growing until the energy required to �t new

subunits becomes too large.

new binding site

Figure 30: Tiles which di�er in shape and binding sites. Their binding

generates a new contiguous binding site.

64



site might change the shape of the molecule and thus in
uence the binding

activity of other sites. Another possibility is the creation of a new binding

site distributed over two or more tiles bound together on an earlier stage of

the assembly (see Fig. 30).

These mechanisms may produce a non-trivial dynamics in the space of

assemblies in the presence of free-energy. (The delivery of free-energy into

a self-assembling system is hard to realize bio-chemically. Even mathemat-

ically, modeling such processes does not seem easy.) In particular, one may

try to design a periodic motion of a tile over a template, something in the

spirit of a RNA-polymerase cycling around a plasmid.

Programmed design. Can one �nd a small set of relatively simple tiles such

that, starting from a template supporting a linear code (that may be a DNA

or RNA molecule incorporated into a macromolecular complex), the assembly

process will create a given three dimensional shape in the space? We think

here of interacting tiles performing a transformation from labelled templates

into three dimensional structures and we ask what kind of transformations

can be realized in this way. Also, we want to understand how much the

complexity of the construction depends on the complexity of the tiles, where

the latter can be measured by the number of the binding sites of the tiles,

the size of the sets B

i;j

, etc.

Liposomes and minimal surfaces. Consider a smooth closed surface S �

R

3

and let S

�

denote a small normal �-neighborhood of S, that is the union

of the 2�-segments [��; �]

s

� R

3

, over all s 2 S. We want to think of S

�

being tiled by the segments [��; �]

s

and to make this realistic we replace the

segments by thin rods as follows: pack the surface S by N �-discs D

s

i

;�

� S,

where i = 1 : : : N , s

i

2 S and where � is much smaller than �; let l

s

i

;�;�

be

the union of the segments [��; �]

s

0

over s

0

2 D

s

i

;�

. The union L = L

S;�;�

=

[

N

i=1

l

s

i

;�;�

is called the micelle assembled out of the rods l

s

i

;�;�

.

Such \micelles" appear in nature, in particular in cellular membranes,

where the major structural component is a phospholipid bi-layer built of

rod-shaped molecules having one hydrophobic and one hydrophilic end. Such

bi-layer surfaces, called liposomes, can assemble spontaneously in a solution

containing phospholipids. See Fig. 31. The shape of a liposome is determined

by the equations governing hydrophobic forces which transform, in the limit

for �; � ! 0, to speci�c partial di�erential equations on the resulting surface

S. For example, the membrane of an erythrocyte (i.e. red blood cell) is
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S

δ

δ

point s of S

disc with radius ε

Figure 31: The schema of a rod lying along a surface S (left), and the section

of a liposome, a bi-layer surface packed with rod-shaped molecules (right).

believed to minimize its integrated squared curvature with a given area, and

enclosing a given volume

40

. This suggests the following:

Question. Given an isotopy class of closed surfaces in R

3

does there exist

a surface S in this class with a given area and a given enclosed volume which

minimizes the integral of a given function of principal curvatures? (The most

studied case concerns the integrated squared mean curvature as it enters

the Willmore conjecture; other integrants were not apparently investigated

much.)

Tilings, energies and variational equations. Let us encompass the above

into a more general scheme incorporating energy into the idea of assemblies

of tiles.

Let V be a smooth manifold (V = R

3

in the previous discussion) and let

P ! V be a smooth �bration associated to the full frame bundle Fr ! V .

We think of the �ber P

v

� P, for v 2 V , as the con�guration space of a

tile (a protein molecule) in V located at v. In fact, the position of a tile

40

This is assumed by the bio-medical community but apparently there is no mathemat-

ically rigorous proof. The main technical point is to establish the axial symmetry of the

solution of the variational problem.
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in the Euclidean space is uniquely determined by the location v 2 R

3

of its

center of gravity and an orthonormal frame at this point, that is a 3-tuple

of orthonormal tangent vectors at v. Similarly, a phospholipid molecule is

modelled by a tangent vector in R

3

.

The con�guration space for N identical tiles is the Cartesian power P

N

,

where the rules of tiling are encoded into a (energy) function U : P

N

! R. A

distinguished class of energies is given by the two-particle interactions, that

are functions u : P

2

! R, with U de�ned in the usual way:

U(p

1

; : : : p

N

) =

N

X

i;j=1

u(p

i

; p

j

):

Example. In the language of the paragraph on Tilings (see earlier in

this section), the function u is de�ned on the pairs of frames (p

1

; p

2

) in R

3

representing pairs of tiles (T

1

; T

2

) as follows:

- if the interiors of the tiles T

1

and T

2

intersect, then u(p

1

; p

2

) = +1.

- if T

1

intersects T

2

across binding domains on their boundaries de�ned with

b 2 B, then u(p

1

; p

2

) = u

0

(b) for a given negative function u

0

: B ! R

recording the corresponding binding energy.

- if the tiles T

1

and T

2

are disjoint then u(p

1

; p

2

) = 0.

Observe that this potential is singular and discontinuous. A natural class

of potentials is constituted by those which are smooth on strata of some

strati�cation of the con�guration space. Often, one needs to regularize them

and keep track of the �ne local geometry of the strati�cation.

One can de�ne tilings/assemblies as local minima of U . Everything we

said about tilings before can be reformulated in this language. Physically

speaking, this (local) minima correspond to (meta)stable states at zero tem-

perature. In order to bring in positive temperature, we need a canonical

measure on the space P and thus, on the space P

N

. Usually, for instance

for frames and rods in the Euclidean space (and in Riemaniann manifolds V

in general), there is a non ambiguous canonical measure invariant under the

Euclidean isometry groups. In most cases, the choice of the canonical mea-

sure is in
uenced by the Louiville measure on the phase space \overlying"

P

N

.
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Given a canonical measure d�, one can speak of Gibbs states (measures)

e

��U

d� and model an approach to equilibrium (Gibbs) states by biased ran-

dom walks in P

N

. The quality of a tiling can be now expressed as the rate

of approach to equilibrium and the size(s) of the attraction basins of var-

ious states. Much of the discussion on population of diagrams extends to

population of tilings.

Minimal surfaces. Given a class of subvarieties W � V distinguished by

a variational equation, one wants to obtain them as limits of Gibbs states

with suitable U on P

N

, for N !1, with simultaneous rescaling of U . Is it

always possible? Can one go away with two-particle potentials? (The idea

is to divide a minimal surface into \particles" corresponding to in�nitesimal

elements, dissolve them in a tube and then reassemble them, following a bi-

ased random walk guided by some energy function between the particles. We

want the reassembled object to satisfy the original partial di�erential equa-

tions.) The latter seems unlikely in view of the fact that the hydrophobic

forces shaping liposomes are not two-particle

41

. (If one thinks of the limits

of N -tuples fp

i

g as measures on P, one is lead to a generalization of Alm-

gren's theory of varifolds where the potential is not reducible, or at least not

immediately, to interactions between �nitely many particles.)

Bending, curvature and multi-jets spaces. In order to incorporate bending

and the resulting energy of molecules, one can generalize the above discussion

by replacing Fr by the k-jet frame bundle Fr

k

which, for example, encodes

curvatures for k = 2. This suggests looking at higher order variational equa-

tions, where basic examples are provided by complex algebraic geometry.

Given a complex submanifold W of dimension m in a K�ahler manifold

V , one can associate to it submanifolds W

k;N

in larger K�ahler manifolds by

taking N -tuples of suitably reduced k-jets of germs ofW in V . Each of these

W

k;N

is volume minimizing in the ambient (complex) space (which comes

with a natural K�ahler metric), and thus the original W satis�es a hierarchy

of multi-di�erential equations. Can these equations be recaptured from ap-

propriate Gibbs states? How much of the complex analytic nature of W is

re
ected in the (di�used) Gibbs states? Probably one needs here a multiscale

41

Probably, one can formally reduce hydrophobic forces to two-particle interactions by

explicitly introducing the water molecules into the picture. Here, one needs to go to the

double limit, size(H

2

O)=� ! 0 and � ! 0, expressing the idea that the water molecules

are small compared to the size � of phospholipids.
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Figure 32: Protein complexes formed by binding of complementary rigid sur-

faces (left), by helix-like coiling (center), and by binding of a long polypeptide

chain with a rigid surface (right).

limit where the energy comes on di�erent levels (weak bonds, covalent bonds,

etc.) and takes care of di�erent derivatives and/or singularities.

Complementarity, affinity and protein design.

An approximate complementarity relation on a set P (which may be a set

of proteins or of macromolecules in general) is a positive symmetric function

a : P � P ! R, where a(p

1

; p

2

) measures a certain a�nity between p

1

and

p

2

. One thinks of the relation A

�

= f(p

1

; p

2

)ja(p

1

; p

2

) � �g � P � P as a

multivalued map A

�

: P ! P and one wants to express the idea of this map

being an approximate involution. This is done with the inequality

(�) a(p

1

; p

4

) � F (a(p

1

; p

2

); a(p

2

; p

3

); a(p

3

; p

4

))

where p

i

2 P , for i = 1 : : : 4, and F = F (a

1

; a

2

; a

3

) is a positive symmetric

function monotone increasing in each variable (chosen accordingly to a given

situation). Such an F is supposed to capture the idea of the approximate

key-lock binding mechanism between proteins and other (macro)molecules.

See Fig. 32 for possible geometric patters of binding mechanisms.

Examples. Let P consist of the polynucleotides of a given length l and

let a be the energy of the best hybridization between them, where we as-

sume that the energy of the hybridization equals the number of mutually

complementary pairs at the corresponding positions j = 1 : : : l. We write a

polynucleotide as a string p(j) and agree that p

1

(j) � p

2

(j) = 1 if the bases

p

1

(j) and p

2

(j) are complementary, and 0 otherwise. We express the hy-

69



bridization energy as

a(p

1

; p

2

) = hp

1

; p

2

i =

l

X

j=1

p

1

(j) � p

2

(j):

Clearly, (�) is satis�ed here with F = maxf0; a

1

+ a

2

+ a

3

� 2lg. This

is meaningful only for large a's, namely � 2=3. On the other hand, the

a�nity between two random strands equals 1=4 of l. Furthermore, if p

i

, for

i = 1 : : : 4, are random strings conditioned by the inequalities a(p

i

; p

i+1

) � a

i

,

for i = 1; 2; 3, then there is a better (easily computable) lower bound on

a(p

1

; p

4

). This suggests that it may be more useful for practical problems

(see below) to restrict a to random points p 2 P where (�) is satis�ed with

a greater F .

Design of antibodies. Given p

0

2 P , one seeks p 2 P with possibly large,

ideally maximal, value of the a�nity function a(p

0

; p). In practice, p

0

is a

given macromolecule, e.g. a protein, and one looks for a protein p which

fast and strongly binds to p

0

. \Strongly" usually refers to the dissociation

time T

dis

between p and p

0

, that is the half life of the association between

p and p

0

. \Fast" is indicative of the association time T

ass

, i.e. the average

time needed for forming the bound state from the unbound one. In practice,

one does not work with only two single molecules p

0

and p but rather with

ensembles of them in solution, and the times T

dis

; T

ass

are measured per given

concentrations.

Ideally, one wishes an antibody to be both strong and fast. Pharma-

cologically, one is happy with p with a relatively short (but not too short)

dissociation time and the shortest possible association time. (Early immune

response is crucial for �ghting an invader.)

Let X be the space representing pairs of molecules p

0

and p in solution

(where the space scale is adjusted to implement a realistic concentration of

ensembles of molecules in solution: two particles ask for a very small tube!).

The ratio of the times T

dis

=T

ass

can be expressed in thermodynamical terms

as the ratio C

/

of the Gibbs measure on X of the bound states (p

o

m p) and

the Gibbs measure of the unbound states (p

0

6m p)

T

dis

=T

ass

= C

/

= �(X

m

)=�(X

6m

);

since the space average equals the time average. This ratio depends on the

binding energy of p

0

to p and can be, in principle, computed provided that
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we know the geometry/energy pro�les of the binding sites of the molecules

p

0

and p.

The second relevant thermodynamical invariant, the average transition

rate R

/

, refers to the \area" of the common boundary X

/

between X

m

and X

6m

in X. This depends not only on the Gibbs measure but also on

the dynamics in the space X describing the time behavior of the molecules

and equals the average number of intersections of time orbits with X

/

. An

alternative geometric de�nition is �

�1

times the Gibbs volume of the �-orbit

of X

/

, for � ! 0. (This makes sense for stochastic as well as deterministic

time behavior and we shall return to this later.) The times T

dis

and T

ass

are

expressible in terms of C

/

and R

/

as follows:

T

dis

=

C

/

(C

/

+ 1) �R

/

and T

ass

=

1

(C

/

+ 1) �R

/

The theoretic determination of R

/

for proteins is more di�cult than that

of C

/

because it depends on the e�ects of weak a�nity over the whole surfaces

of the proteins, and not only at their binding sites. On the other hand, the

times T

dis

and T

ass

can be measured experimentally with essentially equal

ease (or di�culty).

The a�nity function a extends by bilinearity to the space � of populations

of proteins, that are measures � on P . The experimental techniques provide

a bonus of measuring a(�

1

; �

2

) essentially with the same ease as a(p

1

; p

2

):

given two populations �

1

; �

2

in two tubes, one mixes the contents of these two

tubes and isolates the pairs of proteins which stuck together. In practice, the

proteins from the population �

1

, that are the antigene(s) for which we seek

an antibody, are attached to a solid support, and used to extract antibodies

p's from �

2

that are free in the solution. The latter are the antibodies which

are displayed for example on the coating of viruses (as mentioned at the end

of Section 5). This allows one to measure not only the value of a(�

1

; �

2

) but

also to identify speci�c proteins in the populations �

1

; �

2

with mutual high

a�nity.

The computational power of such an experiment is quite impressive: with

10

5

proteins on the solid support and 10

5

in the solution (these amounts are

realistic) one achieves a selection among 10

10

possible pairs of proteins.

This procedure is repeated many times using arti�cial evolution of viruses

selected according to a�nity of the corresponding antigene(s). Mathemat-

ically speaking, one maximizes the function a(p

0

; p) by the following algo-
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rithm: start with an arbitrary p which hopefully gives a relatively large

value to a(p

0

; p), and then take a population of small (� 10

5

) variations p

i

of

p. Choose among the p

i

's, the one with the largest a(p

0

; p

i

) and repeat the

procedure with this p

i

instead of p.

One can make this process more e�cient with the same computational

e�ort by varying p

0

as well as p. For example, at the i-th step one can

replace p

0

with a population �

0

(i) of proteins, where �

0

(i) converges to p

0

for i ! 1, and apply the i-th step to a(�

0

(i); p). This is a schematization

of the approach being currently implemented by Bill Huse in collaboration

with Michael Freedman (personal communication by Huse)

42

. One wonders

whether the approximate complementarity of the antibody/antigene interac-

tion expressed by (�) can be of any use for protein engineering.

States, dynamics and relaxation.

There are several dialects in the language of dynamical systems. We

shall limit ourselves to three of them: point dynamics, fuzzy dynamics and

stochastic dynamics. To get the idea, start with a Riemaniann manifold V

where:

- point states are tangent vectors and the dynamics is given by the geodesic


ow;

- fuzzy states are subsets U � V and the image after the dynamics t-map is

the t-neighborhood of U , that is the set of point in V within distance � t from

U . Alternatively, one may restrict to the boundary @U transformed to the

boundary of the t-neighborhood of U , following, apart from the wavefront

singularities, the geodesic 
ow applied to Legendrian submanifolds in the

unit tangent bundle.

- stochastic states are (probability) measures on V and dynamics is the com-

mon di�usion semi-group de�ned by the heat kernel.

Following the classical physics paradigm, one looks for point dynamics

describing real life systems. If necessary, the space is enlarged by introduc-

ing extra \hidden parameters". In the cell, however, the \complete states"

carrying the full information for the time development, are apparently not

points but probabilities on the con�guration space X of atoms and molecules

42

Another context where the idea of introducing parameters appears is the Shub-Smale

algorithm for �nding zeros of complex polynomials.
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constituting the cell. (It seems unreasonable to keep track of momenta of

particles; some quantum parameters of the molecular states though, may be

relevant for the functioning of the cell.)

The space X is too large and too �ne to be directly observable and what

one sees in experiments are states in some reduced spaces which are certain

quotient spaces of X

43

de�ned by classes of phenomenological observables.

This cannot be explained without resorting to formal de�nitions.

A point predynamics on X is a map A : X � T ! X, where T is the

time domain which is usually either R or R

+

. It might become a more

general semi-group, if needed, such as R

n

for Cartesian products of n systems

with a possible symmetry reduction due to permutations between identical

particles

44

.

A fuzzy predynamics on X is a map A with X replaced by the space P(X)

of subsets of X, or by some \reasonable" subspace in P(X), e.g. measurable

subsets, closed subsets, semi-algebraic subsets, Lagrangian and Legendrian

submanifolds, etc. One usually requires A(X

1

[X

2

; t) = A(X

1

; t) [ A(X

2

; t)

and A(X

1

\X

2

; t) � A(X

1

; t) \ A(X

2

; t), for X

1

; X

2

� X.

Similarly, linear stochastic predynamics is de�ned with the spaceM(X) of

measures on X instead of P(X), where we usually restrict to Borel measures

� on topological spaces X (or to smooth measures on manifolds X) and we

require A to be linear in � 2 M(X).

A point predynamics on X naturally induces the fuzzy and the stochastic

predynamics.

A predynamics A is called dynamics if it satis�es the semi-group property:

A(A(x; t

1

); t

2

) = A(x; t

1

+ t

2

).

Example. Let X be a metric space and A be a fuzzy predynamics, where

A(Y; t), for Y � X, equals the t-neighborhood of Y . If X is a Riemaniann

manifold or an arbitrary length space for this matter, then this predynam-

ics is a dynamics. Conversely, if this A is a dynamics then X is a length

space (modulo trivial readjustment). Thus, a fuzzy dynamics structure on

a space generalizes the (non-symmetric) length metric structure. (One can

meaningfully generalize further, by allowing a multi-dimensional T . Compare

43

There are other mechanisms of reduction besides na��ve quotients, such as the sym-

plectic reduction for example, but these lie out of the scope of the present article.

44

The classical geometric situation of \interesting" time presents itself in the Weyl cham-

ber 
ows over real and p-adic locally symmetric spaces.
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footnote 44.)

The Gauss' shortest path construction of the intrinsic metric out of the

extrinsic one, suggests how to go from a predynamics A to a dynamics

 

A

in

general:

 

A

(x; t) =

def

lim

i!1

A

(i)

(x; i

�1

t):

Here, A

(i)

stands for the i-th iteration of A, and we apply this de�nition to

T = R

+

whenever the limit exists. (In the physical tradition, every limit

exists unless otherwise proven.)

Involutive dynamics. A point dynamics is called involutive

45

(time re-

versible) if there exists an involution on the space X reversing the direction

of the dynamics

A(Invo(x); t) = Invo(A(x;�t)):

For example, the geodesic 
ow is obviously involutive as well as the system

of classical mechanics described by second order di�erential equations.

A fuzzy dynamics is involutive if

(A((A(Y; T ))

?

; t))

?

� Y

where Y � X and ? is the operation of complementation of subsets of X.

Riemaniann geometry is involutive as the metric is symmetric. The non-

strictness of the displayed inclusion is due to the presence of wavefront sin-

gularities.

A stochastic dynamics is involutive if the in�nitesimal generator � of A,

provided it exists, is a symmetric operator. This is the case, for example, for

the di�usion on Riemaniann manifolds where the symmetry of the (Laplace

operator) � results from the symmetry of the metric. Similarly, in the chemi-

cal kinetics, the involutive property (detailed balance) of the underlying point

dynamics implies that for the stochastic dynamics (Onsager relations).

Reduced dynamics. Given a surjective (factorization) map f : X ! V , we

want to derive a dynamics on V , representing the space of phenomenological

states, from a given A on X. Every fuzzy (in particular, point) dynamics

on X obviously projects to the fuzzy predynamics on V . Sometimes it needs

to be transformed to a dynamics by the above procedure, but sometimes

45

Flows of Weyl chambers suggest larger re
ection groups compatible with dynamics.
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it comes for free. (As it happens, for example, to the geodesic dynamics

projecting from the tangent bundle to the underlying Riemaniann manifold.)

The reduction of stochastic dynamics needs distinguished (canonical)

measures, one on X and one on V

46

, so that certain measures, called smooth,

are representable by density functions. Such a function can be lifted from

V to X, turned into a measure, transformed by A and then pushed forward

back to V . This brings down a stochastic dynamics from X to V under a

suitable smoothing e�ect of A on measures.

If we start with an involutive point dynamics on X and the map f is

involutive (i.e. f(Invo(x)) = f(x)), then the resulting fuzzy dynamics is

involutive. This is also true in the stochastic case if (in the agreement with

the Onsager relations) the point dynamics preserves the canonical measure

and this measure pushes forward to V .

In some cases, the full space of point states can be reconstructed from its

phenomenological reduction(s) V in a meaningful way. For example, if V is a

Riemaniann manifold or a general length metric space then one may take the

space X of all locally isometric maps from R to V with the obvious action

of T = R. Clearly, the symmetry of the metric make the geodesic dynamics

involutive. If the space V is smooth (or more generally, of curvature bounded

from below), then the geodesics cannot branch. This corresponds to causality

in a physical situation. On the other hand, the branching of geodesics at the

point of in�nite negative curvature is reminiscent to the decay of a molecule in

the course of a chemical reaction. The latter process seem to need an in�nite

dimensional spaceX even if we start with a �nite dimensional space V , due to

in�nite repetitions of the ambiguities involved in the decay process. Here is a

construction of X showing this phenomenon. Let A

1

; A

2

be point dynamics

on spaces V

1

; V

2

respectively, and let W be a multivalued correspondence

between V

1

and V

2

which is given by a pair of \�brations"W ! U

1

� V

1

and

W ! U

2

� V

2

. De�ne X as the space of orbits constructed as follows: take

a point v 2 V

1

[V

2

, say in V

1

, and follow it by the A

1

dynamics until its �rst

entry u

1

2 U

1

; then take a point u

2

2 U

2

corresponding to u

1

, which means

that u

1

and u

2

come from the same point in W . Continue by applying A

2

to

U

2

, until the orbit returns to U

2

and repeat the same process inde�nitely.

This construction makes sense in a variety of contexts (measurable dy-

namics, piecewise smooth dynamics, etc.) and it models the chemical associa-

46

The measure on V typically comes as the push-forward of that on X .
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tions/dissociations of molecules when V

1

represents the con�guration (phase)

space of molecules entering the reaction and V

2

describes the product of the

reaction, while W corresponds to the short life transition states.

In many biological situations, the phenomenological reduction of the \uni-

versal" space X is too drastic to recapture X. The purpose of molecular

biology is to �nd su�ciently many observable parameters needed for recon-

structing the point dynamics on X.

Isoperimetry, Cheeger constant and the transition rate. Let X be a space

with a fuzzy dynamics A and a distinguished measure � on X. De�ne

m

A

(�

0

; t) = �(A(X

0

; t))

for X

0

� X and �

0

= �(X

0

). The class of functions m

A

= m

A

(�

0

; t) is called

the isoperimetric pro�le of A, where the essential information is encoded by

the Cheeger \constant"

Ch(�

0

; t) = inf

X

0

�X;�(X

0

)�

0

m

A

(�

0

; t)� �

0

t � �

0

The basic invariant of a stochastic dynamics is the rate of approaching

equilibrium (transition rate) which can be expressed in terms of the �rst

eigenvalue �

1

of the in�nitesimal generator of A. In geometry, �

1

can be

bound from below in terms of the Cheeger constant and this idea extends to

more general stochastic dynamics, in particular those obtained by reduction

of point dynamical systems.

The rate of relaxation (transition) problem relevant to biological systems

can be formulated either in the point dynamics framework for a given class

of phenomenological observables, or in terms of the stochastic dynamics of a

reduced system. In the former case, we start with a linear subspace � in the

space of all functions (observables) on X and we look for an upper bound

on a suitable norm (e.g. the L

2

-norm) on � in terms of a similar norm on

t

�1

�(��A(�; t)), for � 2 �, and for the action of A on observables induced by

the action on X. If � is a characteristic function of a subset Y � X, such a

bound can be thought of as an isoperimetric inequality, with the �-boundary

of Y de�ned as @

�

(Y ) =

S

0�t��

A(Y; t) \ Y .

In general, there is no non-trivial bound

47

of the measure �(Y ) by �

�1

�

�

@

�

(Y )

, for (in�nitesimally) small �, but such bounds are expected for many

47

Such bounds are possible for non-amenable measurable actions: thy are always present

for actions of Kazhdan's T-groups.
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particular observables, especially those lifted from su�ciently \strong" and

\regular" factorizations V of X. Here, \strong" means that the �bers of the

map f are su�ciently large, e.g. they have a relatively low codimension and

they are predominantly transversal to the orbits, while \regular" may refer

to the regularity of the map f as well as to the invariants of f under some

symmetries of the space X.

There is a variety of techniques in geometry for proving isoperimetric

inequalities, where many of them are based on the variational techniques re-

ducing the general problem to the \worst" case in a given class of observables

(or domains Y � X) and then showing that the worst case is not so bad after

all. In science, in order to bound from below the rate of transition one looks

for an explicit realization of the intermediate states allowing fast transitions.

Example: hybridization. We mentioned earlier in this section how hy-

bridization proceeds in steps via the zipping mechanism ensuring a high

transition rate between fully dissociated and fully hybridized states.

Example: regulatory proteins. The association time for a regulatory pro-

tein �nding the regulatory region on DNA is reduced by a certain a�nity

of this protein with DNA all along the strand. The association process is

divided in two stages: �rst, the protein �nds DNA by randomly moving in

the solution. The resulting weak binding of the protein to the DNA takes

signi�cantly less time than �nding the regulatory region on random, since

the size of DNA is by far larger than that of the regulatory region. Next, the

protein starts a random dance in the vicinity of DNA and eventually �nds

the regulatory region. This random dance on DNA is more time e�cient

than a random walk in the solution since the size of DNA is small compared

to the volume of the cell.

We have also seen intermediate energy sca�olding in the self-assembly

processes as well as in the binding of antibodies to antigens. The sca�olding

can be justi�ed by a simple computation showing the drastic reduction of

the association time within the range of parameters actually observed in the

cell, where the relevant parameters in the case of regulatory proteins are:

- the energies of the weak and strong (at the regulatory region) bindings,

the thermal energy and the related rate of di�usion (the random walk in

solution);

- the volume of the cell, the size of DNA and of the size of the regulatory

region, all of them measured in entropic terms.
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The above can be interpreted in terms of parametric quantitative ergodic

theory, where one is concerned with the rate of convergence R

n

of the time

average of � 2 � over the interval [0; t], where the space � as well as the

dynamics A depend on auxiliary parameters, say � and �. For example, � may

signify the magnifying power of an observational device, and the dependence

of A on � may encode the ratio between the energies which goes to in�nity

for � ! 1. The problem consists in evaluating R

n

for the parameters

t; �; � ! 1 in a certain coherent way, where the dynamical system and the

space of observables may degenerate in the limit.

Such an ergodic theory, incorporating the variational isoperimetric tech-

niques, may prove helpful for �nding transition states (sca�olding) enhancing

relaxation in cells (e.g. protein folding), and for suggesting numerical algo-

rithms modeling the relaxation process. A more ambitious goal concerns the

fundamental transitions from non-life to life, where one may start with de-

veloping evolutionary realistic scenarios of replication of dynamical systems.

Population states and population dynamics. In many physical, chemical

and biological situations, the con�guration (phase) space X is (partially)

shared by identical or closely related representatives of several species. For

example, an ideal monoatomic gas can be represented by a collection of

points in R

3

, where atoms do not interact with each other. More generally,

a gas is constituted by several species of molecules with internal (classical or

quantum) degrees of freedom and with mutual hard-core interactions. The

system becomes more interesting if we allow chemical reactions leading to

the global con�guration (phase) space of 
uctuating dimension. In biology,

one speaks of populations of bacteria in solution where each bacterium in

itself makes a statistical dynamical system.

The (classical) symmetry of a population under permutations of individu-

als within a given species, can be encompassed by the language of population

states. A population state over X is a measure � on X where �(Y ), Y � X,

is interpreted as the number of representatives of a given species in Y . If we

deal with several species, this � should be vector valued, where the dimension

of the range of this measure equals the number of species. Furthermore, if

the species have internal degrees of freedom, the measure may take values

in a more sophisticated category than in R

+

or R

n

+

. Sometimes, this can be

viewed as a measure of some extension of X. For example, for a diatomic

gas in R

3

, the relevant � is the measure on the space of line elements in R

3

.

78



The above discussion can be formally shifted from X to the space �(X)

of populations (measures) �(X), where one should be aware of the following

issues:

- measures � representing actual populations are of rather special nature.

For example one can limit to integer valued measures or to measures with a

quite small support in X.

- relevant dynamics on �(X) are not linear, but often the non-linearity is

well localized. For example, if one has an ensemble of identical particles with

hard-core interactions, then the non-linearity occurs only at the collisions.

- a pertinent de�nition of fuzzy populations and stochastic populations must

incorporate the speci�city of the space �(X). The classical example is the

Poisson distribution � on a space X, which is, in the present language, a

stochastic population of points (states) in X. This is a probability measure

on the space � = �

Z

+

(X) of integer valued measures on X, which satis�es

the Poisson independence axiom: let Y

i

, with i 2 I, be open subsets inX and

let m

i

be non-negative integers. Denote by P

i

2 � the subset of measures �

such that �(Y

i

) = m

i

. If the subsets Y

i

are mutually disjoint, then

�(

\

i2I

�

i

) =

Y

i2I

�(�

i

):

An essentially equivalent way to express the same idea is by saying that

� de�nes a Boltzmann sheaf, that is a sheaf of measurable spaces over X.

(The notion of such a sheaf makes sense since the category of measure spaces

admits �ber products.)

The formalism of stochastic population may look rather farfetched but it

seems necessary for a consistent statistical description of biological systems

where one needs an even more re�ned language describing the local/global

features of the system and the rate of decay of correlations between individ-

uals in a population. We shall postpone a detailed discussion of this until

another occasion.

Genotype, phenotype and syntactic envelops.

The idea of genotype can be formalized in a variety of ways starting from

the space S of 4 letter sequences, for simplicity of a �xed (large) length N .

Most naively, a genotype is represented by a single sequence S 2 S; next, it
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may be a subset in S; more appropriately, one deals with probability mea-

sures on S, interpreted either as random genomes, or as populations. Speak-

ing of populations, one enlarges the setting by allowing sets of populations

and random populations.

It is less clear what are mathematical objects corresponding to the notion

of phenotype. Intuitively, the \mathematical phenotype" should represent an

equivalence class of dynamical systems of the kind seen in the previous sec-

tion, capturing essential features of their behavior. Eventually, a phenotype

reduces to a point in some space of observables or to a probability measure on

such a space. Furthermore, a phenotype usually appears not as an individual

object but rather as a category of these, where the morphisms correspond to

transformations (reductions) of observable quantities.

After having chosen suitable de�nitions for spaces G of genotypes and P

of phenotypes, one studies the correspondence (is it a map?) from G to P.

The �rst issue is �nding a simple syntactic description of a given genotype

G 2 G with a prescribed (phenotypical) error bound. We think of this

description as an enlargement of a given sequence or of a sample of sequences,

and call it a syntactic �-envelop of G, where \syntactic" refers to a chosen

formal language and \�" is the size of the phenotypical error.

As a matter of example, let us brie
y indicate syntactic possibilities of

describing probability measures on S. The simplest class of measures is given

by the product measures with weights assigned to the four letters. Such a de-

scription is very di�erent from explicitly writing down an individual random

sequence with the distribution law described by the measure. The latter,

for a large N , is much longer than the formal description of the underlying

product measure: the product measure on the space fA; T; C;Gg

3�10

9

with

four equal weights for occurrences of the letters, is essentially described in the

above line and a half; a description of a point in this space, e.g. the genome

of a human individual, takes at least 10

7

�10

8

such lines. On the other hand,

the phenotypical e�ects of two quite di�erent random strings with identical

underlying probability measure will be most similar if not identical: no living

system run by such a genotype exists or can exists.

Fibered measures. Next class of measures on the space S = S

N

of words

of length N is constituted by �bered measures de�ned by four sequences of

functions p

i

: S

j

! [0; 1], where i = 1; : : : ; 4, j = 1 : : : N � 1 and

P

p

i

=

1. Given the functions p

i

, one obtains �bered measures �

j

(S

j

) where the
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corresponding random sequences are de�ned by the following rule: the j-th

letter in a word is chosen on random with the probability weight equal to the

value of p

i

evaluated on the previous j�1 letters of the word. The complexity

of such a measure is understood as the complexity of the functions p

i

, where

the many options for measuring complexity are o�ered by the traditional

computational complexity theory. (There are many variations of this class

of measures, essentially due to di�erent ways (or precisions) of ordering the

letters, dividing them into blocks etc.)

Parametric measures. Given a measure �

0

on S

M

and a parameterization

map  : S

M

! S

N

, we have the push-forward measure � =  

�

(�

0

) on

S

N

. The complexity of � can be measured by the sum of the complexities

of �

0

and of the map  , where the latter is understood as for a boolean

function. (One could embrace �bered and parametric measures in a single

more general de�nition. Also, one could generalize parametric measures by

allowing random maps from S

M

to S

N

, that are linear maps between the

spaces of probability measures of the corresponding sequence spaces.)

The upshot of the two above constructive de�nitions is the possibility to

introduce a notion of complexity (in fact several such notions) for measures

on S

N

.

Questions. Given a measure �

0

(e.g. coming from experiments), a phe-

nomenological map f : S

N

! P, e.g. for P = R

k

, and an � > 0, when and

how can one evaluate (from above and from below) the complexity of a mea-

sure � such that dist(f

�

(�); f

�

(�

0

)) � �, for a suitable notion of distance on

the space of measures on P

48

. (If P = R

k

, then one can use k �(f)��

0

(f) k

for example.)

What happens to complexity of measures and approximations, when S

N

converges to the Cantor set (of in�nite sequences), for N !1?

Both questions have relativized counterparts, where the complexity is

measured modulo additional information. For example, 3 �10

9

letters making

the individual human genome can be reduced to mere 10

5

� 10

6

symbols

describing single nucleotide variations (SNP's) provided the genome is known

for another human.

Remark. The above suggests a (possibly useful) interpolation between

48

Mathematical statistics is concerned with �nding rather explicitly described measures

�, such as Gaussian measures, approximating an \experimental" measure.
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two foundations of the probability theory: the Kolmogorov complexity and

the traditional measure theoretic approach (also due to Kolmogorov).

Remark. The phenotypical map f is not explicitly given in any realistic

situation, and can be treated, to a certain extent, as the above \experimental

measure" �

0

49

.
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