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Abstract

The DNA of a cell is an object which admits a simple mathemat-
ical description and a convenient representation in a computer (it is
given by an easily manipulatable list, a finite sequence in four letters
typically of length between one million and 10 billions). In contrast to
this there is no simple way of describing the cell neither statically and
even less temporally (dynamically). We shall indicate here a possi-
ble formalism of combinatorial and numerical (entropic) structures on
spaces of sequences which reflect, up to some degree, the organization
and functions of DNA and proteins.

1 A view on DNA out of the cell

Let Si be the space of sequences in the letters A, T, C, G of length i
and let S =

⋃Si be the disjoint union of the spaces of sequences of
length 1, 2, 3, .... Denote by E the environmental parameter space (of
the cell), represented as E = [0, 1]d where d is of order 102 − 104 for
unicellular organisms.

Remark. The individual parameters in E represent the temperature,
pH content, the concentration of particular chemical compound, etc.
We exclude the interaction of cells with macromolecules, such as pro-
teins, which is unavoidable in true biological situations, especially for
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a cell being a member of a multicellular organism. If we allow pro-
teins in the environment, the potential number of different species of
molecules becomes exponentially large, of order 20300 1. The drastic
difference between the information content of the environment for a
free living cell and a member of a multicellular organism is consistent
with the physiology. A significant part of the genome of a multicel-
lular organism is occupied by genes involved in signalling pathways
responsible for cell interaction with intercellular proteins (these are
proteins that are secreted by one cell and influence another cell). The
formalism which we sketch below is essentially motivated by the struc-
ture of imaginary bacteria living in a free environment, not in another
organism and not interacting with other cells and viruses.

Fitness is a function F : S × E → R, where the value F (s, e)
represents the fitness or viability of a cell with a genome s in the
environment e.

Main conjecture of computational genetics: one can
design experiments that could be implemented within sev-
eral decades, say 50 years, such that the results can be
encoded in a database D of order 1010 − 1013 bytes, and
such that, using D one can design a feasible 2 algorithm for
computing F .

Remarks and explanations.

1. A biologist is usually concerned with DNA sequences of length
between 106 − 1010 3, thus the relevant S is large but still a finite
space. On the other hand, E being a continuum, appears infinite.
However the relevant range of values of parameters is rather small,
in practice, of order of 10 for suitable choices of parameterization.
Thus, E may have cardinality 10100 which is much smaller than the
cardinality 4106

of the space of smallest genomes.

1A protein is encoded by a sequence of 20 amino-acids with an average length ≈ 300.
2The word “feasible” refers to a realistic time as several minutes, hours or weeks at

most.
3The smallest viruses have genomes of 1200 base pairs (bps), the smallest bacteria such

as Mycoplasma Genitalium have less than half a million bps, the most studied bacterium,
Escherichia Coli has 4.6 · 106bps, the second most studied mammal, Homo Sapiens, has
DNA of about 3 ·109bps, and some genomes, e.g. of the lungfish, have more than 1011bps.
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2. Customary F represents the reproduction rate of a cell. A rougher
F would be a 0, 1-valued function expressing the idea of existence of
a viable (alive) cell in a given environment. Thus, F is represented
by the subset C∗ = CF ⊂ S × E of functional cells, where F (s, e) = 1.
The subset C∗ is the union of the subsets Ce ⊂ S corresponding to
genomes viable in the environment e.

3. The algorithm in the conjecture is supposed to be neither deter-
ministic nor sharp. It may occasionally fail and even when it works,
it might give only an approximate value of F .

4. Designing experiments and the software for constructing and pre-
dicting genomes makes a large part of the ongoing project in genomics.
The conjecture is an abstraction of the currently pursued world-wide
research program.

5. Denote by G ⊂ S the set of genomes found in living organisms. This
set is much smaller than S as it contains at most 1010 (essentially)
different sequences, corresponding to different species of organisms,
including bacteria that make this bound so large. In formulating the
conjecture, one should limit S to a certain “neighborhood”, or to
an extension G∗ ⊃ G in S consisting of sequences reachable from G
by feasible chains of mutations where all intermediate genomes are
viable.

6. This conjecture is not Popperian: even if stated in the most refined
form, it is not falsifiable unless one admits an unfeasible search for
all possible programs of a certain length. The positive solution, if
a solution exists, will be found in many intermediate steps guided by
sub-conjectures: our purpose is to develop tools for the formal analysis
of sequences of such steps.

7. We believe that in order to resolve the conjecture one needs a math-
ematical interface between experimental biology and computational
biology (bio-informatics). Identifying formal mathematical structures
encoded in our F and C∗ may facilitate the design of the algorithm
and also may help biologists in the design of relevant experiments.

The purpose of this article is to give an outline of possible math-
ematical structures that could be used for designing an interface be-
tween experiments and computations. In order to be concise, we are
faithful neither to the biological reality nor to the mathematical rigor.
In future articles we shall give a more rigorous presentation better
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connected to biophysical features of the cellular chemo-architecture,
such as folding and self-assembly of macromolecules, chemical kinetics
and enzymatic activities. Also, we shall try to formalize more elab-
orate aspects of the chemo-architecture such as the organization of
membranes and compartments of the cell that can be (partially) cap-
tured by the combinatorics in the sequence space rather than by a
straightforward geometrical and physical description.

2 Combinatorial and open label struc-

tures in genomes

Motivations. Let a genome of an organism be represented by a long
sequence (string) of letters A, C, T, G. There are biologically signifi-
cant substrings σ within this long sequence such as protein encoding
genes and regulatory genes. We think of such a feature as a member of
an abstract (structured) set and we regard a statement such as “σ is a
gene” as a function assigning the label “gene” to the segment σ. The
distinguished segments, such as genes, can be related to each other
in a variety of ways. For example, several exons may be contained in
the same gene or several genes may be encoding proteins involved in
a common function in the cell. Thus we distinguish specific subsets of
segments and assign to such a subset a label(s) indicating the nature
of the mutual relationship between the segments within the subset.

Definition of a genoplex. A genoplex (a network of genetic links) Σ is
given by the following data:

1. a finite collection, also called Σ, of strings, σ1, . . . , σk, where each
σi is a finite sequence of letters A, T, C, G;

2. a set L of objects, called labels, divided in several classes called
types of labels; the number of types τ will be few and in what
follows we shall distinguish two types of labels: positional labels
and functional labels. The set of labels within each type is not
a priori specified and this is especially important for functional
labels as they correspond to certain functions performed in the
cell, some of which maybe yet unknown.

3. for each type τ , there is a function, called τ -labelling, that assigns
to certain subsets L ⊂ Σ a label L from L of type τ . Thus, each
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labelling is a partially defined function on 2Σ, where one keeps
track of the domain of definition of the labelling, i.e. the set of
the above L’s.

Hypergraph structures and open label structures in a genoplex. The
combinatorial skeleton of a genoplex is represented by several hyper-
graph structures on a set of strings: these are the domains of defini-
tion of the labels. Recall that the hypergraph structure on a set Σ of
vertices σ ∈ Σ is given by distinguishing certain subsets in Σ called
hyperegdes, or links in our context. This reduces to a graph structure
if the cardinality of the subsets equals 2. The second combinatorial
component of a genoplex is the representation of the vertices of the
hypergraphs by strings of symbols A,C,T,G.

Labels are not so formally defined and each of them represents a
specific information attached to every link. The set of labels makes a
universe on its own independent on a particular genoplex. Eventually
one wants to find a mathematical structure in the set of biological
labels, as complete as possible, to bring genoplexi associated to cells
maximally close to formal mathematical objects. At the present stage,
neither the full set of labels nor the relations between them are spec-
ified. One is open to introducing new labels and relations between
them. This motivates the “open” terminology.

Apology. It seems impossible to follow the mathematical tradition of
introducing all fundamental concepts at the beginning, as this depends
on the current state of knowledge derived from the experiments. Our
logic is rather similar to the logic behind the development of certain
software, where we allow the introduction of new objects, i.e. labels,
and new logical connections in the course of arrival of new information.
The combinatorics of the resulting logical graph is not necessarily con-
straint by common mathematical requirements such as connectivity,
consistency, etc. The overall structure contains a well-defined math-
ematical core as well as less sharply defined chemical, genetic and
biological data, with a continuous flow of information between the
three empirical components coordinated by the core.

Examples of genoplexi. a. Let us give a more detailed description of
the genoplex associated to a given genome:

1. segmentation of the genome: we distinguish certain segments,
the strings of the genoplex; in the simplest case, it consists of
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dividing the full genome sequence into non overlapping segments
of biological significance such as genes 4, regulatory regions, pos-
sibly exons and at times introns, etc.;

2. functional labelling: the links correspond to groups of segments
involved in common functions in the cell, with the labels describ-
ing these functions;

3. positional labelling: this specifies the mutual positions of the
segments in the genome. A label may say, for example, that
“σ1 is contained in σ2”, or that “σ1 lies a certain number of
base pairs upstream of σ2”. The choice of a particular positional
information depends on the problem at hand. In what follows we
suppress this labelling for the simplicity of the exposition, but
whenever needed the information encoded by this structure can
be brought back in an obvious way.

4. other types of labels: as example of these we indicate “σ1, σ2, . . .
are homologous” and “DNA segments corresponding to σ1, σ2

are spatially close in a chromosome”.

b. A virus-bacterium system, can be regarded as a genoplex where the
relevant set of strings consists of the protein coding genes of the virus
and of the part of the bacterial genome encoding proteins relevant for
the virus life-cycle.

c. An organism which is genetically modified by introducing several
genes. The pertinent genoplex consists of these genes and the original
genes of the organism which directly interact with the newly intro-
duced genes.

Examples of labels on strings:

“σ is a gene”

“σ is a protein coding gene”

“σ is a gene encoding a ribosomal protein”

The above indicates possible structures in the space of labels; for
instance, the three labels are linearly ordered in the obvious way.

Examples of labels on links:

4Genes may overlap. This is rather common in viruses.

6



“σ1 is a regulatory region for the gene σ2”, for the 2-link τ = {σ1, σ2};
“the proteins encoded by σ1 and σ2 make a dimer”;

“σ1, σ2, . . . , σk represent binding sites involved in the regulation of the
same gene”;

“the proteins associated to genes σ1, σ2, . . . , σk are involved in a spec-
ified metabolic process”.

Remark. A customary way in biology is to speak about graphs or net-
works relating genes and/or proteins produced by these genes. Among
them one distinguishes the protein-protein binding graphs, and gene-
gene regulatory graphs. A priori, graphs have the advantage of having
more compact representation than hypergraphs since a graph on k
strings is given by at most k2 non-zero entries in the incidence matrix
while the full hypergraph may require up to 2k entries. However, only
relatively few links will enter the hypergraph with non-empty labels,
and moreover the sets of links and labels carry additional structures
that eventually allow a compression of the representation of biolog-
ical genoplexi. A simple example is a simplicial complex that is a
hypergraph where every subset of a link is again a link. Here, one
only needs the simplices of the maximal dimension as their faces are
automatically in the hypergraph. Whenever such situation arises in
biology, namely if we are only concerned with the maximal set of
genes/proteins involved in a given function, we do not spend time and
space in enumerating all subsets of this set unless there is a special
reason for that.

There is a simple dictionary translating from “graphs” to “hyper-
graphs”; choosing the particular language depends on the suitability
for the problem at hand. The links of our hypergraph typically repre-
sent clusters of genes and proteins involved in the same function. Such
a hypergraph may be, sometimes but not always, formally derived
from the underling graph structure, e.g. where the clusters appear as
connected components of the graph.

What genoplexi might be good for. The combinatorial structure of a
genoplex (encoded in a hypergraph structure and/or in the combina-
torial structure of the space of labels) mediates between the syntactic
structure of the strings and the biological information carried by the
labels. Ideally we want the “category of genoplexi” 5 to adequately ap-

5Here, we refer to categories as understood in abstract algebra or to structures in a
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proximate the “category of biological systems”; also, ideally, the com-
binatorics of genoplexi should be uniquely determined by the syntactic
content of the constituent strings. Granted this, one could explicitly
relate the genotypes and phenotypes of organisms.

A more modest goal is to express the bulk of biological constraints
imposed by functional requirements of an organism in terms of the
genomic sequences. We think of biological functions as “equations”
imposed on genomic sequences and suggest a quantitative approach to
these equations in Section 5.

3 Collective label structures in S
Unlike an individual sequence (string), the space S of all sequences car-
ries a variety of intrinsically defined combinatorial structures. More-
over, these structures are enhanced by biological labels attached to
them. They are called collective as they involve interrelations between
different genome sequences.

Point substitution: deletion and insertion. The space of sequences
naturally makes a graph where the edges correspond to point muta-
tions, that are deletion, insertion or substitution of a single letter into
a sequence. We extend our usage of labels to the present context and
consider the following kinds of labels associated to the edges:

1. type of the mutation: “deletion”, “insertion”, “substitution”;

2. syntactic content of the mutation, e.g. a letter A is substituted
by G;

3. position of a mutation;

4. probability of mutation; this is a number between 0 and 1 ex-
pressing the probability of this mutation per generation.

The above 1−4 define a mathematical structure in S, the syntactic
label structure. The following type of labels is of biological nature, and
hence not formal:

5. basic physiological effects of the mutation: “neutral mutation”
which means that it does not significantly change the function
F (s, e) as for s mutated to s′; “lethal mutation” which makes

similar spirit.
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F = 0 for all e ∈ E; “advantageous (disadvantageous) mutation”
which increases (decreases) the value of F (since F depends on E
one should specify the range of the parameters where F increases
(decreases)); “unknown mutation” where the information is not
available;

The probability of occurrence of two consecutive point mutations
is assumed to be the product of the two of them. However a muta-
tion of a segment, may have much higher probability than the product
of the probabilities of mutation of its constituent letters (due to re-
combination and horizontal transfer of genes). Because of this, one
distinguishes segment mutation.

6. segment mutation: in the course of this mutation a given segment
may disappear, it may double, it may invert, it may interchange
the location with another segment, or it may appear in several
copies in a tandem . Each of these characteristics is viewed as a
label attached to the edge of the corresponding graph structure
on S. Also, we assign positional, functional and probabilistic
labels as for the point mutations, and we consider insertion of
segments coming from other genomes (it may happen naturally
through viruses or artificially by means of genetic engineering).

4 Relations between the structures

Let us explain how the segmentation structure can be derived from
the labelled graph structure on S by identifying extremal (minimal or
maximal) ”significant” segments in a genome. The word ”segment”
may have two meanings: 1) content-segment, earlier referred to as
a string, that is a sequence of letters of relatively short length, 2)
position-segment, that is a subsegment in a longer sequence where one
forgets the letter content of the subsegment and remembers only its
position.

Given a content-segment, we consider possible insertions of it in
all sequences s ∈ S and see what kind of changes this makes in the
values of the fitness potentials at S. Here are several possibilities:

1. all fitness potentials, that are Fe(s) = F (s, e) for e running over
E, change very little, for all, most or many genomes of viable
cells;
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2. for all, most or many genomes, the change is lethal;

3. the values of some fitness potentials change strongly without
being lethal, for all, most or many genomes.

The third possibility, is referred to as a ”significant” change. In
what follows, we want to pinpoint significant content-segments which
bring non-lethal significant changes. Given a content-segment σ, let
∆F (σ) = ∆Fe(σ, G, p) denote the variation of the fitness potential(s)
of the genome G when σ is inserted at the position p. The segment σ
is considered to be “significant” if ∆′F (σ) = ∆F (σ)−∆F (σ′) is large
for random perturbations σ′ of σ.

There are many unavoidable ambiguities in this definition, such as
the choices of e, G, p and the notion of “random perturbation”. Let us
explain possibilities for the latter. It may be a replacement of σ by a
totally random σ′ having nothing to do with σ; another possibility is
a random modification of a small number of letters in σ; or it can be
a random modification of a certain percentage of the letters. In any
case, ∆′F (σ) appears as a random variable and its largeness should
refer to a suitably chosen expectation value of this variable.

One can think that significant segments are those which are recog-
nized by cells as meaningful words (sentences), when inserted in the
genome of the cell. For this reason, one calls them reads.

Now, let us see what can happen when we remove a segment σ
from a given genome, thought of as a window in the genome sequence.
Here, ∆′F (σ) refers to changes of ∆F (inflicted by the removal of σ)
which occur when we replace σ by a nearby segment σ′ (i.e. σ′ is
obtained by a small sliding, stretching or shrinking of the window).
Another possibility leading to essentially the same picture appears
when we make a random modification of σ rather than removing it
from the genome. The (position of) σ is called significant, if ∆′F (σ)
is large.

Remark. The above is only a sketch of a definition meant to illustrate
the idea of how a gene can be defined via the collective structure in S.
It is meant to capture, besides protein encoding genes and regulatory
regions, such entities as exons, regions producing functional RNA’s
and possibly some other segments whose function is still unknown.

Functional and combinatorial role of labels on strings. We want to
reconstruct the labels on the strings that are significant segments of
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the genome in the above sense, along the same lines as we distinguished
significant segments. Of course, one cannot reconstruct the biological
function of a particular distinguished segment, e.g. being a protein
coding gene, but one can trace such a property in the combinatorial
geometry of the genoplex. Eventually, we want to find some similarity
function on (pairs of) strings depending on the distribution of these
labels in the full combinatorial architecture of the totality of genoplexi
corresponding to living cells.

Links and their labels. One can try to identify significant links in the
same way as we defined significant strings by substituting “letters” by
“strings” and “strings” by “links” in the discussion above. In other
words, significant links are those whose substitution/removal from a
genome, has a distinctly significant effect on the fitness potentials.

Remark. The above combinatorial description ties up labels to par-
ticular strings, links and genomes. However, it is desirable to define
biological significant labels independently of particular genomes as it
was indicated for the above examples, such as “protein” label, “pro-
tein complex” label, etc. This is necessary both for a mathematical
satisfactory formalism and for conceiving databases.

Viability, consistency and evolutional feasibility. A genoplex is called
viable if it can be implemented by a set of DNA strands 6 of some
genome(s) such that the physiological functions (properties) of these
strands agree with what is written in the labels.

A genoplex is called consistent if its labelling is consistent with the
present day biophysical and biochemical data on the functioning of
the cell.

A genoplex is called evolutionary feasible if there is a feasible 7

chain of mutations leading to building such a genoplex within the
allotted evolution time.

Despite the fact that these three notions are not precisely defined,
they will guide our requirements on genoplexi: we want them to be
viable, consistent and evolutionary feasible.

6A strand refers to a segment of DNA made out of the bases indicated in the corre-
sponding string.

7Natural evolution allows from hundred thousands to billions of generations. In artifi-
cial evolution one is limited to tenths, hundreds and rarely to thousands of generations.
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5 Syntactic geometry and entropy in

sequent spaces

Let Sn denote the space of sequences of length n in a finite alphabet
of r letters, not necessarily made of A, C, T, G. Examples we have in
mind are spaces of A, C, T, G-sequences making a gene of length about
1000, and spaces of sequences in 20 letters of length about 300 repre-
senting amino-acid contents of proteins. We are interested in subsets
L ⊂ Sn corresponding to labels L associated to sequences. Such a set
L, consisting of the strings that fulfill the function described by L, is
called the syntactic image of L. Typical examples are sets of amino-
acid sequences encoding globular proteins that properly fold under
specified (sometimes unspecified) conditions, and/or have functional
domains with specified binding or enzymatic properties.

The number of subsets L ⊂ Sn is double exponentially large, and
therefore, for n > 100, one can assume it faithfully reflects the in-
formational content of any conceivable biological label. On the other
hand, due to the size of the set, it is unfeasible to describe it formally
and explicitly without appeal to the biological meaning of the label.
What is more practical is to identify essential properties of such a set
L and relate them to the biological features of L.

The basic characteristics of a set L is its cardinality |L| as compared
to the cardinality of the space Sn. This can be conveniently measured
by the absolute and relative syntactic entropies:

entsynt(L, n) = logr |L|
and

ent%synt(L) = ent%synt(L, n) =
logr |L|

n
.

To have a feeling on which kind of subsets L may appear in this
context, let r be a power of a prime, e.g. r = 4, and think of Sn as the
n-dimensional vector space of the field of r elements. We want to think
of a label L to be a system of constraints imposed on sequences rep-
resentable by a system of linear equations, where L represents the set
of solutions of these equations. If we have m independent equations,
then entsynt(L, n) = n − m. In other words, this entropy plays the
role of dimension. This suggests the definition of syntactic coentropy
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for an arbitrary label L

coentsynt(L) =def n − entsynt(L, n).

Similarly, normalizing by n, one introduces

coent%synt(L) =def 1 − ent%synt(L).

The absolute coentropy is suitable when the label refers to the few
(say < 10) amino-acids that make the active domain. The relative
entropy is more convenient when the constraint imposed by L is global
(non easily localisable), e.g. saying that the whole chain makes an α-
helix or just stating that the protein properly folds.

The basic heuristic principle manipulating these codimensions read

if L = L1 ∧ L2 then

coentsynt(L) = coentsynt(L1) + coentsynt(L2)

provided there is no apparent mutual dependence between
the functions encoded by L1 and L2, and where the nota-
tion L1∧L2 means that the label L consists of both L1 and
L2.

A typical instance of two labels attached together is where L1

is the proper folding label and L2 stands for binding specificity. One
does not expect these labels to be truly independent since an unfolded
protein cannot specifically bind. This leads to the introduction of a
more realistic coentropy

coentsynt(L2|L1) = coentsynt(L1 ∧ L2) − coentsynt(L1).

Next, suppose that L3 is the label for a binding or enzymatic
activity in some region of protein far away from the active side of
L2. For example, L2 and L3 refer to two different folding domains or
to two different zinc fingers. Then

coentsynt(L2 ∧ L3|L1) = coentsynt(L2|L1) + coentsynt(L3|L1).

These rules for evaluating entropies of composed labels can be
justified not only by the intersection rules of linear (and more gener-
ally, algebraic) subvarieties but also by the corresponding properties
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of independent random subsets. On the other hand, the geometric
properties of syntactic images of biological significant labels do not
appear random with respect to the natural geometry in S, e.g. with
respect to the Hamming metric.

To grasp the picture, let us evaluate

Spread of random subsets in Sn. Look at the Hamming ball Ball(σ, i)
in the space Sn of binary sequences of length n. The cardinality
(thought of as volume) b(n, i) of this ball is n!/i!(n − i)!. If i ≪ √

n
then one can think of b(n, i) as a polynomial in n of degree i:

b(n, i) ≈ Ci · ni for Ci = 1/i!

For large i ≈ n, the function b(n, i) becomes exponential in n. In fact,
by the Stirling formula m! ≈ e−mmm one has, for i = α · n,

b(n, i) ≈ (αα(1 − α)1−α)−n

Fix a point σ ∈ Sn, and take 2δ·n random points in Sn. The probability
that none of these points is contained in the Ball(σ, i) equals

(1 − b(n, i)

2n
)2

δ·n

= ((1 − b(n, i)

2n
)

2n

b(n,i) )2
(δ−1)n

·b(n,i).

Since

(1 − b(n, i)

2n
)

2n

b(n,i) ≈ e−1,

the latter expression is

≈ e−2(δ−1)n
·b(n,i).

This is close to 1 if and only if b(n, i) ≪ 2(1−δ)n. It follows that
the characteristic distance between points in a random subset L of
cardinality 2δ·n for δ ≪ 1, is proportional to n. In other words, a
typical point in a random subset L with ent%synt(L) = δ < 1, contains
no other points of L within distance i, unless i is of the order of n.

If a biologically significant label L were represented by such a set
L, then every mutation at i locations, with i ≪ n, would destroy
the implied biological function of L. This drastically contradicts to
observed rates of mutation for most genes and proteins, and tells us
that the syntactic images of biological functions are very far from
being random.
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As another extreme, look at least random subsets in Sn, that are

Coordinate planes. A coordinate plane of dimension m = δ · n is
defined by specifying the values 0, 1 at given 1 − m locations in the
sequence, and leaving free the remaining m locations. If σ ∈ L, then

|Ball(σ, i) ∩ L| =
m!

i!(m − i)!
≈ Cim

i = Ciδ
ini

where Ci = 1/i! and where we assume i ≪ √
n. Thus, the local size of

L near σ is much larger than that for random sets L. This picture is
close to biologically significant situations and motivates the following
definitions.

Local entropies and coentropies. The δ in the above formula, adapted
to a realistic (non-Hamming) metric(s) in S, can be experimentally
computed since one can analyze the biological functionality of (poly-
nomially many) strings σ′ obtained by a few point mutations of σ.
Therefore, this δ can be used for computing (experimentally unreach-
able) syntactic coentropies of a label by the study of the data coming
from natural and artificial evolution, which deliver the σ′’s.

The δ, encoding the cardinalities of the intersections of L with
small balls around points in L, can be regarded as a local coentropy or
functional entropic rigidity of L and used for the computation of the
global entropy. (Similarly to how the dimension of a manifold can be
computed by looking at the tangent space at a generic point. In fact,
every genome comes along with a family of “infinitesimal neighbor-
hoods” represented by genomes of the evolutionary related species.)

Super-rigid bioplexi. In certain situations the above local entropy is
essentially zero as it happens, for example, for Histone 3 and Histone
4 proteins, and possibly for some part of viral genomes. In this cases,
one should renormalize the entropy in order to obtain a meaningful
number. One can hardly compute it in the case of histones by the
present day techniques, but the “renormalized viral entropy” can be
hopefully evaluated from the data on the evolution of viruses (due to
their fast reproduction rate and small genome sizes).

Evaluation of entropy by stereo-chemistry: molecular coentropy. Sup-
pose that a label refers to an active site composed by a short peptide
chain of q < 10 amino-acids. The space of possible spatial config-
urations of this chain makes a domain A in the Euclidean space of
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dimension proportional to q, where the determination of A is given
by stereo-chemical data on such chains, e.g. the Ramachandran plot.
Denote by AL ⊂ A the set of configurations compatible with the label
L. In the first approximation the syntactic coentropy of L is propor-
tional to 1− vol AL

vol A
, where vol stands for the Euclidean volume in the

configuration space. In fact, one should replace the Euclidean volume
by a suitable Gibbs type measure 8, which can be evaluated on the
basis of known chemical/physical data. (One may think of mutated
sequences preserving L as Monte-Carlo samples of AL.) The resulting
number can be regarded as the molecular entropic rigidity of the label.

What is more difficult to evaluate is the geometry of the set AL

since it depends on particular functional constraints imposed by L.
In the case of highest specificity, AL consists of a single point, or
rather of a ball of radius ǫ around a single point, where ǫ is of the
order of a 1Å and it can be evaluated more precisely depending on the
physical/chemical nature of L.

Following these lines of reasoning, one can evaluate the length of
the whole protein needed to realize a given function L by considering
the map from the space of protein sequences Sn to A and thus relating
the syntactic entropy to a suitable ǫ-entropy of A (that measures the
number of ǫ-balls needed to cover A).

Finally, the syntactic coentropy can be estimates by evolutionary
data on the conservation of a given protein, thus suggesting the notion
of a evolutionary entropic rigidity. The evaluation of this entropy is
straightforward for point-mutations, but the availability of segment
substitutions depends on the genetic pool within a given organism
and/or within the population. Apparently there is a difference be-
tween these mutations for prokaryotes and eukaryotes. The former
use horizontal transfer of genomic segments between organisms where
most of the segments are functionally significant. On the other hand,
eukaryotic genomes contain large amount of non-functional quasiran-
dom sequences, thus allowing substitution of random segments into
the genome. Also, one should distinguish mutation/variation possibil-
ities for diploid and haploid genomes in the context of the evolutionary
entropic rigidity.

When everything (molecular composition, function and phyloge-

8The distribution of states of a physical system often obeys the Gibbs law where the
probability of a state is proportional to e−E/kT where E is the energy of the state, T is
the absolute temperature and k is the (normalizing) Boltzmann constant.
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netic tree) is taken into account, the three kinds of rigidity must co-
incide. If the three entropies are far away, one should reasses the co-
entropies of the labels and/or search for extra functional constraints
(labels).

This approach can be extended to more complicated bioplexi, in-
cluding proteoplexi and genoplexi, where a proteoplex is defined in the
same way as a genoplex with nucleotide sequences replaced by amino-
acid sequences, and where a bioplex refers to any kind of a labelled
hypergraph on a set of strings or on a set of syntactically describable
biochemical objects. For example, one may think of a protein as a
peptoplex, and of a metabolic network as a metaboplex. Also, a gen-
eral notion of a bioplex should incorporate the environment where S is
replaced by “space of strings” × “space of environmental parameters”.
Eventually, one wishes to bring together evolutionary, molecular and
functional data for achieving the entropic (rigidity) consistency of the
bioplexi.

6 Omissions

This article represents a fragment of a general formalism (the language
of bioplexi) that we believe may be useful for describing biological
systems. The missing components are:

- our formalism needs to be linked to the static and temporal (stochas-
tic dynamics) cellular chemo-architecture of the cell. A part of this
architecture, e.g. a protein traffic along DNA, can be expressed in the
language of bioplexi. Other biological aspects of the chemo-architecture,
such as the spatial localization of an enzyme or the schedule of a par-
ticular process, can be incorporated into the labels.

- we did not describe the interfaces between different bioplexi. Some
of these are rather immediate such as the relations between genoplexi
and proteoplexi, due to the linear correspondence between genes and
proteins. Other relationships are less clear, such as the relation be-
tween peptoplexi and metaboplexi.

- in our definition of bioplexi we insisted that the vertices of the hy-
pergraphs supporting the label structures are represented by strings
of symbols. In certain situations, e.g. for peptoplexi and metaboplexi,
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the vertices may be represented by non-linear structures, e.g. Lewis
diagrams of molecules.

- there are several natural operations that one can perform over bio-
plexi such as taking inclusion (sub-bioplexi), factorization (e.g. by
compressing or forgetting the information contained in certain links),
amalgamation of two bioplexi along isomorphic sub-bioplexi, substi-
tution of vertices of a genoplex with other genoplexi (e.g. proteins in
a protoplex may be seen as peptoplexi) etc. Such operations, when
they are implemented by evolution, can be (hopefully) seen in suit-
ably labelled phylogenetic trees. Other operations may correspond to
artificial genetic modifications.

- the organization of natural bioplexi bears traces of the essential fea-
tures of the structure of cellular processes. Among them, one dis-
tinguishes the specificity/universality principle. Many mechanisms
in the cell are universal such as the production of RNAs and pro-
teins, functioning of tRNAs, phosphorilation of proteins, methylation
of DNA, various pathways of degradation (e.g. the ubiquitin system),
etc. Some of these processes are implemented by universal molecular
machines such as RNA polymerase, ribosomes, proteosomes, chaper-
ons, ubiquitin, etc. that can be viewed as bioplexi serving as vertices
of larger bioplexi.

Among specific phenomena, one finds the preferential binding of
proteins to particular targets, especially in the context of immuno-
plexi, and enzymatic activities.

One needs to explicitly identify the combinatorial properties of
bioplexi reflecting this principle.

- when one evaluates the information content (coentropy) of specific
strings and links in a bioplex, one should keep track of mutual re-
lations between these links which reduces coentropy. In particular,
the symmetry is systematically employed by the cell to “save” infor-
mation, with the most pronounced example given by the icosahedral
symmetry of viruses.

One may distinguish at least five kinds of symmetries:

syntactic symmetry seen, for example, in the repetitions of genomes
and in palindromic patterns,

spatial symmetry, e.g. the symmetry of virus coats and of many poly-
meric enzymes,
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temporal symmetry seen in cyclic behavior of bio-chemical processes,

combinatorial symmetry of bioplexi such as the metaboplexi; the es-
sential characteristic of such symmetry is measured by the degree of
repetitiveness of small sub-bioplexi inside a bigger one, while the en-
tropy measures the number of combinatorially distinct sub-bioplexi,

functional symmetry, expressing high degree of similarity of certain
functions in the cell; this symmetry is close to universality.

The basic problem is to relate these symmetries and use them for
the evaluation of the entropic characteristic of genoplexi. In general,
there is no simple link between different symmetries, but there are
some exceptions such as the palindromic symmetry of binding sites of
homodimeric restriction enzymes.

- Besides symmetry/entropy one seeks for other invariants of bioplexi
expressing their overall complexity, where one should differentiate be-
tween the overall size and the combinatorial depth of the structure.
The latter refers to several layers of organization such as metabolic,
regulatory, signal transduction, etc. where the number of layers in-
creases in the course of structurally innovative evolution.

- One believes that, among all organisms, viruses are those whose geno-
plexi have their maximal possible functional coentropy, and therefore
these can be used as reference points for the study of the entropies of
bioplexi of other organisms.

- For an effective computer implementation, a bioplex should be re-
duced to a size not exceeding the informational content of a realistic
genome. Moreover, the information contained in a bioplex should be
organized in several levels according to their biological and logical sig-
nificance, such that even the first level carrying incomplete information
could be conceptually and practically usable.

7 Summary and programme

We proposed a framework that reorganizes the common language for
describing biological systems and fragments of these. This allows the
incorporation of evolutionary data as well as physical/chemical charac-
teristics of macromolecules in the cell. We indicated a mathematical
formalism for finding correlations between these two kinds of data,
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some coming from inside the cell (e.g. biochemistry) and some from
outside (e.g. the data on evolution of genomic and protein sequences).
We plan to analyze existing data having in mind practical applica-
tions such as the evaluation of time needed for the design of proteins
with specific properties by means of artificial evolution/selection; also,
this may apply to natural evolution/selection processes including the
immune system.
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