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Abstract

Different faces of what we call hyperbolicity appear in Riemannian geometry,
in the theory of holomorphic and of quasiconformal maps, in the combinatorial
group theory and the theory of smooth, topological and symbolic dynamical
systems.1

We discuss essential results in these domains with an emphasis on the (some-
times conjectural) links between different fields. Also we formulate a variety of
open problems.

Our presentation is, for the most part, expository and aimed at non-experts:
everything is defined in full and is accompanied by examples; notations and
definitions are reminded to the reader everywhere in the text; the proofs are
furnished in detail and garnished with informal explanations.

1 Hyperbolicity: Its Roots, Ubiquitousness, Func-
toriality.

Is there a unified theory of hyperbolicity?

I collected evidence in favour of a positive answer and formulated a few
questions in a 1980-paper [49].

Here is a revision of [49] from a category theoretic perspective with an em-
phasis on functoriality of arrangements of hyperbolic patterns which underlies a
combinatorial (symbolic) representation of a priori continuous objets and con-
structions.

This functoriality is most apparent in the following, almost half a century
old, theorems by Michael Shub (1969) [104] and John Franks (1970) [40].

1.1 Topological Universality of Toral Endomorphisms.
Contracting, Expanding, Hyperbolic. A linear transformation T of a normed
space Y , e.g. of Rn, is (eventually) contracting if a power of T has norm < 1:

∣∣T k(y)∣∣ ≤ C ∣∣y∣∣

for some positive integer k, some C < 1 and all non-zero y ∈ Y , where we use
the standard abbreviation T k = T ○k = T ○ T ○ ⋅ ⋅ ⋅ ○ T

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k

∶ Y → Y .

1We do not know if hyperbolic partial differential equations need to be brought to this list.
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A T is called (eventually) expanding, if it is invertible and T −1 is (eventually)
contracting2.

T is called hyperbolic if there exist T -invariant splittings,

Y = Ycontr ⊕ Yexp and T = Tcontr ⊕ Texp,

where Tcontr ∶ Ycontr → Ycontr is a contracting map and Yexp → Yexp is an
expanding one.

(If Y finite dimensional, hyperbolicity is equivalent to all eigenvalues of T
having the absolute values ≠ 1)

Notation: Abel’s Maps etc. Let V be a compact locally contractible space,
e.g. a compact manifold and let A = A(V ) denote the homological Abel-Jacobi
torus of V ,

A =H1(V ;R)/(H1(V ;Z)/torsion),
that is (non-canonically) isomorphic to the n-torus Tn for n equal the first Betti
number rankRH1(V ) of V .

Let
Ab ∶H1(V ;R) →H1(A;R)

denote the tautological Abel’s isomorphism and observe that there exists a
unique homotopy class of continuous Abel’s maps q ∶ V → A for which the
induced homology homomorphisms q∗ ∶H1(V ;R) →H1(A;R) equal Ab.

Let f ∶ V → V be a continuous map, let f∗ ∶ H1(V ;R) → H1(V ;R) and
f∗ ∶ A → A be induced by f , where, observe, the linear map f∗ and the
torus endomorphism f∗ mutually determine each other via the covering map
H1(V ;R) → A.

[→∎ ] Topological Universality Theorem. Let either
[↑] the homology endomorphism f∗ is expanding, (Shub, 1969)

or
[�] f is a homeomorphism and f∗ is hyperbolic (Franks, 1970).
Then there exists a continuous map

α ∶ V → A,

such that
(1) the induced homomorphism α∗ ∶H1(V ;R) →H1(A;R) equals Ab, that is

α is in the Abel’s homotopy class of maps q ∶ V → A.
(2) The map α is a morphism in the category of spaces with Z+-actions;3 we

call such an α an f -morphism for

(α ○ f)(v) = (f∗ ○ α)(v), v ∈ V

that expresses commutativity of the diagram
2Sometimes we say strictly expanding and/or contracting to distinguish λ-expansion with

λ > 1 from mere λ ≥ 1
3Non-isomorphic morphisms X → X (and X → Y ) in the category of Z+-spaces disrespect-

fully called semicoqjugaces in the dynamical systems community.
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V f //

α

��

V

α

��
A f

∗
// A

Moreover,
(3) α is unique up to group translations of (the Abelian group) A that preserve

the fixed point set of α. (There are at most finitely many of these translations.)4

These (1), (2), (3) feel highly unlikely – no sound minded person would ever
dream that anything so sharp and precise might hold for all continuous maps
(or homeomorphisms) f in certain homotopy classes.

But the proof due to Schub and Franks (see next section), which streamlined
the original topological stability arguments by Smale and Anosov,5 turns out as
clean, short and simple as the statement of the theorem.

1.2 Shadowing, Quasimorphisms and Quasigeodesics.
The core ingredient of the proof of the Shub-Franks theorem is the following

Shadowing Lemma. Let X and Y be Z-spaces where the actions of Z on
X and Y is generated by maps that are denoted S ∶X →X and T ∶ Y → Y .

If Y is a metric, (e.g. linear normed) space, a map Q ∶ X → Y is called a
Z-quasimorphism if the function

x↦ distY (Q ○ S(x), T ○Q(x))

is bounded on the S-orbits {...S−2(x), S−1(x), x, S(x), S2(x)...} ⊂ X for all x ∈
X.

[i] If Y is a Banach space and T is hyperbolic, than every Z-quasimorphism
Q0 is shadowed by a unique morphism M ∶X → Y , that is

[2] M ○ S = T ○M

and where "shadowed" signifies that the the function

x→ distY (Q0(x),M(x)) = ∣∣Q0(x) −M(x)∣∣

is bounded on all orbits in X.
Proof. Rewrite [2] as the fixed point relation M = T (M) for the transfor-

mation
T ∶ Q↦ T −1 ○Q ○ S,

that applies to the space Y0 of maps Q ∶ X → Y for which the function
distY (Q(x),Q0(x)) is bounded on the S-orbits.

Since T = Texp ⊕ Tcontr, the existence and uniqueness of a fixed point for T
reduces to the two special cases where T is either expanding or contracting.

4There is an enticing similarity between α and the Abel-Albanese map which we tried to
understand in [58].

5Smale outlined the structural stability theory in his talks in Kiev (1961), [106] and in
Stockholm (1962) [108] The proofs were sketched by Anosov in 1962 [7] and written down in
details in 1967 [8].
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If T is expanding then T −1 is contracting; hence, T is also (obviously) con-
tracting for the space of maps with the sup-norm6 and the proof follows from
the Banach attractive fixed point theorem.

If T is contracting, then the Banach theorem applies to

Q↦ Q↦ T ○Q ○ S−1

that concludes the proof of [i].
(In the contracting case, unlike the expanding one, the map S ∶X →X needs

to be be invertible.)
Proof of [→∎ ]. Let Ṽ → V be the (Abel-Galois) covering with the Galois

(deck transfrmation group) Γ =H1(V )/torsion and let f̃ ∶ Ṽ → Ṽ and Q0 ∶ Ṽ →
H1(V ;R) be Γ-equivariant lifts of f ∶ V → V and of q0 ∶ V → A to Ṽ .

Compactness of V = Ṽ /Γ and Γ-equivariance of f̃ and of Q0, imply that Q0

is an f̃ -quasimorphism, that is the (Γ-invariant!) function

∣∣Q0 ○ f̃(ṽ) − f∗ ○Q0(ṽ)∣∣

is bounded on Ṽ and by [i] (with f̃ for S and f∗ for T ), Q0 is shadowed by a
unique f̃ -mophism

Q ∶ (Ṽ , f̃) → (H1(V,R), f∗).
Since Q is unique, it is necessarily Γ-equivariant; hence, it descends to the

required f -morphism

α ∶ (V = Ṽ /Γ, f) → (A =H1(V ;R))/Γ, f∗)

for Γ =H1(V )/torsion. QED.

The above proof of [i] (due to Franks, 1970) that is (notationally) five times
simpler than the one by Anosov of his original local version of shadowing,7 also
applies to R-actions; yet, when it comes to the main class of intended examples
– geodesic flows on manifolds with negaitive sectional curvatures8 – this delivers
only quantitative improvement of Anosov’s local shadowing theorem.

But the correct global shadowing property for quasigeodesics in hyperbolic
(Lobachevsly)spaces Hn was, in fact, proven by Marston Morse in 1924 for n = 2
[83] and by Efremovich and Tichomirova for all n in 1963, [37]

Namely,
[ii] the curves in Hn that have smaller distortions than horocycles in H2

are shadowed by geodesics.

Distortion, Horocycles, Quasigeodesics, Shadows.

Given a subset Y in a Riemannian manifoldX, the induced path metric distY
in Y is defined by the infima of the lengths of curves in Y between pairs of points
in Y , where this length is measured with respect to the Riemannian metric in
X ⊃ Y . This distY is greater than the distance function distX restricted to Y

6The sup-norms and the sup-metics in general are category theoretically preferable as they
pass from metric spaces Y to spaces of maps X → Y for all sets X.

7In dynamics, shadowing is usually stated in an equivalently form for quasiorbits rather
than quasimorphisms, i.e. for X = Z and S ∶ x↦ x + 1.

8See section 2.3 for basics on negative curvature for Riemannian and non-Riemannian
spaces.
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(the distance distY may be easily infinite) and the ratio of the two is called the
distortion of Y in X,

distor(y1, y2) =
distY (y1, y2)
distX(y1, y2)

, y1, y2 ∈ Y.

Thus, we regard a Y ⊂ X undistorted if distor(y1, y2) = 1 (with the agreement
distor(y, y) = 1). For instance distance minimizing geodesics as well as geodesi-
cally convex subsets in X are undistorted.

The l-distortion, denoted distorl = distorl(y1, y2), is the restriction of the
distortion, that is a function on Y ×Y , to the subset of the pairs (y1, y2), where
distY (y1, y2) = l.

Horocycles in H2 are curves with curvatures one.9 They are equidistorted in
H2: the distortion function distorl of a horocycle depends only on l. We denote
it by dishor(l) and observe that it is asymptotic to l/2 log l for l →∞,

dishor(l) ⋅ 2 log l

l
→ 1 for l →∞.

.
A curve C in a Riemannian manifold is called a (continuous) quasigeodesic

if it has bounded distortion,

sup
c1,c2∈C

distor(c1, c2) < ∞.

The argument by Morse (and of Efremovich-Tichomirova for this matter)
applies to all complete simply connected manifolds X with sectional curvatures
bounded from above by a negative constant, say by −1 to save the notation, and
yields the following.
[iii] If a curve C in X that is parametrized by a length preserving map R→X
is strictly less distorted on some scale l0 > 0 than horocycles in H2, namely, if

I sup
l0≤l≤2l0

(distorl(c1, c2) − dishor(l)) ≤ −ε < 0,

then C is shadowed by a unique geodesic G ⊂ X which means that there is a
bijection G↔ C(= R), such that the corresponding points g↔ c satisfy

distX(g, c) ≤D < ∞.

Moreover the geodesic shadow G = G(C) is continuous in C.
(The same is true for l0 = 0 with the curvature in the place of distortion.)
Proof. Let IL ⊂ C be a segment of length L > 10l0, let GL ⊂ X be the

geodesic segment between the ends of IL and let

d(c) = dist(c,GL), c ∈ IL
9This definition applies only to H2 with curvature −1, while in the case of general metric

spaces X, one defines horospheres in X as the boundaries of horoballs that are increasing
unions of (non-concentric!) R-balls with radii R → ∞ in X, see 2.2 and 2.13. For instance,
hyperplanes in Rn (but not in Hn) are horospheres.
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If D = maxc∈IL d(c) > 10l0, then, by continuity of the function d(c), there exists
a subsegment Il ⊂ IL of length l ∈ [l0,2l0], such that the distance function d(c)
on Il satisfies:

● d(c) ≥D/2, c ∈ Il,
● d(c) assumes its minimum, say D0 ≥D/2 at the two ends of Il;
thus, d(c) ≥D0 ≥D/2, c ∈ Il.
(One can not guaranty the existence of such Il for individual l, or even to

replace 2 by 2 − ε, unless d(c) has a unique maximum point in IL; however,
[iii] may reman valid with distorl instead of supl0≤l≤2l0 distorl.)

Since the curvature of X is ≤ 0, the normal projection10 of Il to the hypersur-
face HD0 ⊂X, where dist(x,GL) =D0 is convex and the normal projection from
IL toHD0 is distance decreasing, while the condition curvature ≤ −1 implies that

the l-distortions of the hypersurfaces HD0 ⊂X are bounded from below, up
to an error ε →

D0→∞
0, by dishor(l), that is the l-distortion of horocycles in

the hyperbolic plane H2 with curvature −1.
Therefore, the inequality I implies a bound on the maximal distance D from
c ∈ IL to GL independently of IL ⊂ C.

Now the geodesic G that shadows the curve C comes with L→∞,

G = G(C) = lim
L→∞

GL,

where the proof of the existence and uniqueness of this (obviously defined) limit
and of continuous dependence of the resulting G on C is straightforward.11

1.3 Negative Curvature, Geodesic flows and Geodesic Uni-
versality.

Given a Riemannian manifold, letG(V ) denote the space of naturally parametrized
geodesics in V that are locally isometric maps g ∶ R→ V and let pV ∶ G(V ) → V
be the evaluation at 0 map, g ↦ g(0) ∈ V . The natural action of R on G(V ) is
called the geodesic flow with the orbits being geodecis in V . (If V is C2-smooth,
then G(V ) equals the unit tangent bundle UT (V ) → V and the geodesic flow is
generated by the obvious vector field in UT (V ).)

Denote by G♯(V ) ⊂ G(V ) the (sub)set of the maps g ∶ R → V the lifts of
which to the universal covering Ṽ are isometric (also called distance minimizing)
geodesic.

Notice that if V is a complete manifold with non-positive curvatures, e.g. a
hyperbolic manifold V =Hn/Γ for a discrete isometry group Γ (= π1(V )) of the
hyperbolic Hn, then G♯(V ) = G(V ).

The following theorem is (essentially) proved (but formulated differently) by
Efremovich and Tichomirova in their 1963 paper [37]
?→ E.T. Geodesic Universality Theorem. Let V , W be compact

Riemannian manifolds where V has negative sectional curvatures and le φ ∶
π1(W,w0) → π1(V, v0) be an isomorphism between their fundamental groups.

10The normal projection to Y ⊂ X sends x ∈ X to the nearest point y ∈ Y .
11This argument extends to all geodesic metric spaces with uniformly strictly convex dis-

tance functions, see 2.5.

7



Then there exists a continuous map F→ ∶ G♯(W ) → G(V ) with the following
two properties.

(1) The composed maps F→ ○ g ∶ R → V send R to geodesics in W where
the lifts of these maps to the universal covering Ṽ are homeomorphisms from R
onto (hyperbolic) geodesics in Ṽ

(2) There is a (unique up to homotopy) continuous map F ∶W → V , F (w0) =
v0, that induces the isomorphism φ and such that the composed maps F ○ pW ∶
G♯(W ) → V and pV ○ F→ ∶ G♯(W ) → V are homotopic.

Moreover,
the map F→ is unique up to isotopies of the unite tangent bundle UT (V ) =

G(V ) that preserve geodesics (orbits) in UT (V ).

Proof. Since V has negative curvatures, its universal covering Ṽ is con-
tractible; therefore, there exists a continuous Γ-equivariant map F̃0 ∶ W̃ → Ṽ ,
Γ = p1(V ) = π1(W ), between the universal coverings of our manifolds, where,
due to compactness of W = W̃ /Γ, this map sends isometric geodesic from W̃ to
quasigeodesics C in Ṽ .12

Compose F̃0 on isometric geodesics G♯ ⊂ W̃ with the normal projections of
the corresponding quasigeodesics C in Ṽ to their geodesic shadows G(C) ⊂ W̃ ,
and denote by

F̃→0 ∶ G♯(W̃ ) → G(Ṽ ),
the resulting Γ-equivarinat map that is a collection of maps, say {f→0 }, that
send isometric geodesics G♯ from Ṽ , to geodesics G in W̃ .

These f→0 , albeit non-injective, are Lipschitz and strictly monotone increas-
ing on the large scale:

C−1(g1 − g2) ≤ f→0 (g1) − f→0 (g2) ≤ C(g1 − g2), g1, g2 ∈ G♯,

for some constant C = C(F0) ≥ 1 and all r1, r2 ∈ G♯, such that ∣r1 − r2∣ ≥ D for
some constant D = D(F0) ≥ 0 and where the formula is understood with the
length parametrizations of geodesics G♯ ⊂ W̃ and G ⊂ Ṽ (g denotes this length
parameter in G♯ ⊂ Ṽ ) that identifies them with R.13

There are several simple ways to canonically, hence coherently, modify such
maps f→0 ∶ R→ R in order to make them injective.

For instance, the injectivity is achieved with the operator f→0 ↦ f→ that is the
convolution of f→0 with the uniform probability measure on the segment [0,∆ =
10CD]; this operator, applied to all maps f→0 , transforms F̃→0 to an equivariant
map F̃→ ∶ G(V ) → G(W ) that descends to the required F→ ∶ G(V ) → G(W ).

Geodesic Rigidity Corollary.14 Let V and W be compact Riemannian
manifolds with negative sectional curvatures.
?↔ If V and W have isomophic fundamental groups, then there is a home-

omorphism between their unit tangent bundles that sends the geodesics from V
– that are the orbits of the geodesic flow in G(V ) = UT (V ) – to geodesics in W .

This rigidity, and even "mere" topological stability of the geodesic flow of V ,
i.e. where W = V and the Riemannian W -metric is a small C2-perturbation

12Strictly speaking, F0 must be chosen smooth, or at least Lipschitz, for this purpose.
13This identification is unique only up to translations in R but this causes no problem.
14This was suggested to the author by William Veech in 1976 as a counterpart to theMostow

rigidity theorem for manifolds with variable negative curvatures.
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of the V -metric, is as astounding as this property of hyperbolic toral auto-
morphisms. Probabaly, no-one (except René Thom?) believed until 1960 that
stability can be compatible with ergodicity. But when Smale conjectured struc-
tural stability of hyperbolic systems in 1961, this was proved by Anosov next
year.

It is hard to say what is more beautiful: delightful implausibility of the
statement or staggering simplicity of the proof.

1.4 Symmetric Spaces and Arithmetic Groups.
The most significant and intriguing aspect of negative curvature is the existence
of compact manifolds and also of singular spaces V with curvatures < 0 of di-
mension n, for all n, where the central issue is the structure of the fundamental
groups of these V .

At the first glance, on may expect a multitude of such manifolds, say with
constant sectional curvatures that are quotients of the hyperbolic spaces, V =
Hn/Γ. Indeed, the hyperbolic spaces Hn are, along with the Euclidean Rn,
distinguished, besides by containing infinite lines, (isometric copies of R ⊂Hn)
by being highly symmetric, that is satisfying the following (almost) Euclidean

Congruence Axiom: Full Metric Homogeneity.15 Isometries, i. e.
bijective distance preserving maps, between (finite if you wish) subsets in Hn,
extends to isometries of Hn,

Hn ⊃ A1 ↔
isom

A2 ⊂Hn extend to Hn ↔
isom

Hn.

But it is not at all obvious16 that these Hn admit free discrete isometry
groups Γ with bounded fundamental domains. There is no available geometric
source of such groups for large n – all known (unknown?) constructions, however
simple, rely on arithmetics of number fields.

It has not been realised by most (all?) differential geometers until mid-1960s
that they have had no inkling of an idea if their beloved compact n-dimensional
manifolds with negative curvatures existed at all for large n – even the existence
of these for n = 3 was not a common knowledge.

The light came in 1963 from the study of arithmetic group by Armand Borel
[19] who proved the following
T Compact Form Theorem. All simply connected17 Riemannan symmet-

ric spaces X, e.g. X = Hn, admit compact forms, that are compact manifolds
V locally isometric to X; hence having their universal coverings Ṽ isometric to
X. √

2-Example. The group Γ of Q-orthogonal (i.e. preserving Q) linear
transformations of Rn+1 for the quadratic form Q = ∑n1 x2

i −
√

2x2
n+1 defined

15If you want to allow H∞ on the one hand and/or to rule out Uryson-Fraïssé universal
spaces on the other hand you need to modify this condition

16The very existence of these (barely) non-Euclidean spaces Hn themselves is not "obvi-
ous" either: geometers have been struggling for 2000 years trying to prove the "obvious"
non-existence of these spaces, where the stumbling block was confusion in formulating the
existence/non-existence alternative in the absence of a mathematical concept of "space".

17Real projective spaces and flat tori are instances of non-simply connected symmetric
spaces, but the existence of compact forms is trivial for them.

9



by (n+ 1) × (n+ 1) matrices with entries {a+ b
√

2}, where a and b are integers,
is cocompact in the group OR(Q)(= O(n,1)) of Q-orthogonal transformations
with real coefficients, that is the quotient space OR(Q)/Γ is compact. Thus,
the isometric action of Γ on Hn represented by a connected component of the
−1-sphere {x}Q(x)=−1 ⊂ Rn+1 admits a bounded fundamental domain.

This Γ, by a theorem of Selberg, admits a finite index subgroup Γ′ with no
torsion,18 the action of which on Hn, besides being discrete, is free. Hence,

V =Hn/Γ′ is a compact manifold with constant negative curvature.19

About the Proof. A relatively simple geometric argument shows – this goes
back to a 1937 paper by B. A. Venkov [115] – that

if Q is an indefinite quadratic form with coefficients in a totally real number
field K, then the group Γ = Γ(Q) of integer points from K of Q-orthogonal
transformations is cocompact in OR(Q) if and only if Q admits a non-trivial
zero in K.

Now arithmetic enters.
_ Since

√
2 ↔ −

√
2 extends to a Galois automorphism of the field K =

Q(
√

2), the absence of non-trivial zeros inK for the positive form∑n1 x2
i +

√
2x2

n+1

implies that for our Q = ∑n1 x2
i −

√
2x2

n+1.
(Albeit the field Q(

√
2) is contained R, the Galois action can not be seen

in the R-geometry since it is discontinuous on its domain of definition that is
Q(

√
2) ⊂ R.)

Despite the explicit description, the algebraic structure of the groups Γ(Q)
clouded in mystery. For instance, one has a poor idea of what are (co)homologies
of these groups and of their subgroups Γ′ of finite index e.g. of the congruence
subgroups.

What one knows, for instance, is that the rough asymptotics of rankFHi(Γ′;F)
as index(Γ′) → ∞ for coefficient fields F of zero characteristic.

(If Γ′ has no torsion, than Hi(Γ′;F) = Hi(Hn/Γ′;F) for all fields F and the
Euler characteristic χ(Γ′) = Cnvol(Hn/Γ′) where Cn ≠ 0 for even n.)

Namely Atiyah’s 1976 L2-index theorem [9] in conjunction with Kazhdans
approximation of L2-forms on infinite coverings (1971) show that

rankFH
i(Γ′;F)

index(Γ′) → 0 for index(Γ′) → ∞

unless n is even and i = n/2, while this limit for i = n/2 and n even, equals to
the absolute value (virtual) of the (non-zero!) Euler characteristic of Γ.

Questions. (a) Do similar asymptotics hold for finite fields F? (See [11],
[103] for some results in this direction.)

(b) What part of the homology of Hn/Γ′ is representable by totally geodesic
submanifolds in Hn/Γ′?

(c) How much of the cohomology of the manifolds Hn/Γ′, m ≤ n/2, is gener-
ated by the cup-products of the one dimensional classes, in particular of those
that are Poincaré dual to totally geodesic hypersurfaces?

18One uses for this purpose the matrices with the entries divisible by a few first primes in
the ring {a + b

√
2}.

19I do not know if this example was known prior to Borel’s 1963 paper.
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(d) What are possible homomorphisms G ∶ Γ1 → Γ2? What kind of homo-
morphism can such a G induce between the (co)homologies of Γ1 and Γ2?

For instance, how common (if these exisist at all) maps of non-zero degrees
V1 → V2, for V1,2 = Hn/Γ1,2, where n ≥ 4, that are not homotopic to covering
maps?

(e) What are finitely presented subgroups Π ⊂ Γ?
For instance, which compact manifolds W with (non-constant!) negative

curvatures have fundamental groups isomorphic to these Π. (These W can not
be Kähler by Siu’s theorem stated below.)

Two Point Homogeneous Spaces

Besides Hn, call it here real hyperbolic space Hn
R, there are three other fam-

ilies of remarkable Riemannian symmetric spaces with negative curvatures that
are characterised as metric space by the following property (+ something obvi-
ous):

the groups isox(X) of isometries fixing x ∈X are transitive on the R-spheres
Sx(R) ⊂X for all x ∈X and R ≥ 0.

I. Complex Hyperbolic Spaces Hn
C. These have topological dimensions 2n

and they come with a natural complex analytic structures making them biholo-
morphic to the unit balls B2n ⊂ Cn. The Riemannian metrics in Hn

C equal
the unique (up to scaling) Riemannian metrics in B2n that are invariant under
biholomorphic transformations of B2n.

The compact quotient manifolds V = Hn
C/Γ(= B2n/Γ), for discrete (biholo-

morphic) isometry groups Γ of Hn
C, which are plentiful by Borel’s theorem, are

all projective algebraic by Kodaira’s theorem and they all enjoy the following
holomorphic version of geodesic universality.
= Holomorphic Universality of V = Hn

C/Γ, (Siu 1980) [107]. Let
f0 ∶W → V be continuous map where W is a compact Kähler manifold, e.g. a
projective complex algebraic one.

Then either f0 is homotopic to a unique holomorphic map W → V or, to a
map that factors through a map from W to a Riemann surface, W → S → V .

The main applications of this theorem include the following.
● Non-existence of Kähler manifolds W with certain fundamental groups,

e.g. isomorphic to subgroups Π ⊂ Γ = π1(Bn/Γ) that have odd homological
dimensions< dimR(W ).20

● Upper bounds on the numbers of deformations of complex structures of
certain Kähler manifolds associated to V = Bn/Γ, e.g the rigidity of the complex
structure of V itself for n ≥ 2.

On the other hand, there are no(?) visible examples of Kähler manifolds
W and of continuous maps f0 ∶ W → V that are not just deformations of
holomorphic maps used in the constructions of such W to start with.21

II. Quaternionic Hyperbolic Spaces, Hn
H of dimensions 4n.

These, except for H1
H =H4

R, are similar to symmetric spaces of R-rank≥ 2 in
their "rigidity". For instance, cocompact discrete isometry groups Γ of Hn

H for
20I am not certain what are examples of such Π apart of fundametal groups of real hyperbolic

manifolds and their subgroups.
21See [58] for a discussion of Siu theorem from the hyperbolic perspective similar to the

present one.
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n ≥ 2 (vol(Hn
H) < ∞ suffices) have Kazhdan’s property T (Kostant, 1969):

5 every isometric (allowing affine rather than only linear) action of such a
Γ on the Hilbert space R∞ (as well as on H∞

R and on H∞
C ) has a fixed point.

Question. Do cocompact isometry groups Γ of Hn
H for n ≥ 2 admit "non

obvious" factor groups Π? 22

For instance, if such a Π serves as the fundamental group of a compact
aspherical manifold23 W , (e.g of aW that admits a Riemannian metric with non-
positive sectional curvatures) is then the implied epimorphism Γ→ Π necessarily
an isomorphism?

III. the Cayley (octonic) plane H2
O of dimension 16.

The known geometric properties of H2
O are similar to these of Hn

H, but we
do not know what the unknown ones are.

1.5 Small Cancellation
Arithmetic groups fall down from the sky but you can see something less spec-
tacular but still interesting right under your feet.

Let W be a set of words in a formal language, let T be a semigroup of
transformations acting on W and let T ⊂ T be a generating subset of what we
call elementary transformations of words w in this language.

It is, in general, a fruitless task to describe the orbits of this action, e.g.
to decide if a given word w0 can be transformed to w1 by consecutively apply-
ing transformations τ ∈ T since, typically, a T -path w0 ; w1 needs to cross
insurmountably high Gödel-Turing mountains composed of words that are in-
comparably longer than w0 and w1. But a satisfactory answer to the following
question may lead to something interesting.

Question. What are (W,T ), where there is no such mountains and where
there always exists a downhill path w0 ; w1, assuming w1 can be reached from
w0 at all?

For instance let W be the set of words in a free groups, say in F2 generated
by a and b where the words are written in a, b, a−1, b−1 and let R ⊂ W be a
subset of words called relations.

Let T be the group generated by a set T that consists of:
● elementary conjugations: w ↦ cwc−1, c ∈ {a, b, a1, b−1};
● elementary cancellations: ucc−1v ↦ uv, c ∈ {a, b, a1, b−1};
● multiplication from the left and from the right the relation words: w ↦ rw

and w ↦ wr, r ∈ R.
T -Paths between these words are faithfully represented by homotopies be-

tween free loops,24 that represent words in the standard 2D-cell-complex K with
the fundamental group F2/T :

K is obtained by attaching 2-cells D2
r , r ∈ R, to the directed (a, b)-labeled

graph K1 = a↺↻b, by continuous maps denoted r→ from the (circular) boundary
of the disck D2 to K1,

r→ ∶ S1 →K1, S1 = ∂D2 ⊂D2,

22These are called underlattices in section 7.A.IV of [51].
23A topological space is called aspherical if its universal covering is contractible.
24"Freedom" signifies that we "forget" the base points in the loops.
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where r denote the maps corresponding to the words r ∈ R.
More generally, let K1 be an arbitrary graph with its edges being asigned

with the length structures and let R→ be a collection of closed curves in K1

that are continuous maps r→ ∶ S1 →K1.
Assume that all these maps are non-contractible and length minimizing, that

means in the present case they are locally injective, where, observe, every curve
is homotopic to a length minimizing one (that is constant in the contractible
case).

Call a map from a real segment I ⊂ R to K1, say p→ ∶ I →K1, a piece of an
r→ ∶ S1 →K1 if p→ factors through an imbedding [x, y] ↪ S1,

I ↪ S1 r
→

→ K1, where r→○ ↪= p→.
1
k
-Cancellation.

Say that R→ satisfies [≤ 1
k
]-condition if the lengths of the common pieces

p→ of curves r→1 , r
→
2 ∈ R→ satisfy

length(p→) ≤ 1

k
min(length(r→1 ), length(r→2 ))

for all r→1 , r
→
2 ∈ R→, where the lengths of the curves r→ and p→ are those inherited

from the graph K1.
Criticality of k = 6.

Given a graphK1 and a collection of continuous maps, R→ = {r→ ∶ S1 →K1},
let K2 = K2(R→) be the cell complex with the 2-cells attached to K1 via the
maps from R→,

D2 ⊃ ∂D2 = S1 r
→

→ K1, r→ ∈ R→.
It is (more or less) obvious that if k < 6, then the [≤ 1

k
]-condition does not

impose any constraint on the fundamental group of K2: every finitely presented
group Γ can be realised as π1(K2(R→) for some R→ = R→(Γ).

What is more amusing, albeit (almost) equally simple – this was shown (in
different terms) by Tartakovskii (1947 - 1949) [111] who introduced the concept
of small cancellation – is that there is a natural metric in K2 that extends the
lenght metric in K1 ⊂K2 (we shall describe it in Chapter 3 ), such that if k > 6
then

every curve w→0 ∶ S1 →K1 that is contractible in K2 ⊃K1 admits a homotopy

w→t ∶ S1 →K2 ⊃K1,

such that
w→1 maps S1 to K1 ⊂K2,

length(w→t ) ≤ length(w→0 ), 0 ≤ t ≤ 1,

and
length(w→1 ) < length(w→0 ).

Originally, the small cancellation theory was concerned with the solutions
of the word and the conjugacy problems that was achieved by interpreting

13



(combinatorial) curve shortenings as algorithms that solve these problems in
groups. 25

In the mid 1960s, the focus of small cancellation techniques shifted toward
constructions of groups with interesting and sometimes unexpected properties,
e.g. of infinite torsion groups by Novikov-Adian (1968).

Currently, small cancellations make a part of the hyperbolic (group) theory.

1.6 Locally Split Anosov-Smale Hyperbolic Systems.
Following Smale and Anosov, hyperbolicity of diffeomorphisms f ∶ X → X is
defined in terms of the corresponding properties of the differentialsDf ∶ T (X) →
T (X) as follows.

Let L → X be a vector bundle with the (topological R-linear spaces) fibers
denoted Lx ∈ L, x ∈ X, and let F ∶ L → L be a continuous fiberwise linear map.
Denote the background self map of X by F ∶ X → X and write, accordingly,
F = {Fx ∶ Lx → LF (x)}x∈X .

Hyperbolicity. Let the linear spaces Lx be endowed with norms, and say F
is (uniformly) hyperbolic if there is an ε > 0 and a splitting

L = Lcontr ⊕Lexp,

where Lcontr and Lexp are F -invarinat subbundles in L, such that

∣∣F i(l)∣∣ ≤ const(1 − ε)i∣∣l∣∣ for l ∈ Lcontr

and
∣∣F i(l)∣∣ ≥ const′(1 + ε)i∣∣l∣∣ for l ∈ Lexp

for positive constants cont and const′ and all i = 1,2,3, ...
Observe that hyperbolicity implies uniform expansiveness of F that is the

existence of an integer N such that

max(∣∣FN(l)∣∣, ∣∣F −N(l)∣∣) ≥ 2∣∣l∣∣, for all vectors l ∈ L.

Also observe that Lcontr and Lcontr can be effectively defined as subbundles
of L in two complementary ways.

A. Asymptotic Exponential Contraction:

l ∈ Lcontr⇔ lim sup
n→∞

1

i
log∣∣F i(l)∣∣ ≤ ν < 0

and
l ∈ Lexp⇔ lim sup

n→∞

1

i
log∣∣F −i(l)∣∣ ≤ ν < 0

(where, in the case where F is non invertible, "F −i(l)" reads as all l′ in the
pullback F −i(l) ⊂ L.) with hyperbolicity coming along with the condition

Lcontr +Lexp = L.
25An algoritmic solution of, the, say word, problem in the fundamental group of a compact

length space K – that was already obvious to Dehn – needs a very modest "curve shortening"
property: every closed curve in K of length l must admit a strict shortening w→0 ; w→1 by a
homotopy of curves of length ≤ L(l) for a recursive function L(l).
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B. Cocontraction. The subbundles Lcontr, Lexp ⊂ L, seen as sections of the
Grassmann bundle G = G(L) → X of linear subspaces in the fibers Lx, appear
as fixed points of the obvious action FG ∶ G → G induced by F ∶ L → L on the
space G of sections X → G.

This is a tautology. What is significant is that the fixed point of FG in G
that represents the subbundle Lexp is an attractive one.26

This trivially follows from the exponential discrepancy between the growths
of the norms ∣∣F i(l)∣∣ for vectors l in Lcontr and Lexp, that is the relation

∣∣F i(l1)∣∣
∣∣F i(l2)∣∣

≥ const(1 + ε)i, i = 1,2,3, ....

for all unit vectors l1 ∈ Lexp, l2 ∈ Lcontr.
Similarly, Lcontr is an attractive fixed point for F −1

G in G (understood in an
obvious sense if F is non-invertible).

It follows from A that, say if X is compact and the fibers Lx are finite
dimensional, then

hyperbolicity does not depend on the choice of norms in Lx;
while B implies that
small perturbations Fε ∶ L→ L of hyperbolic F ∶ L→ L remain hyperbolic.
(All of this can be transparently expressed in purely linear terms, since F is

hyperbolic if and only if some power FN of the associated linear map F ∶ L → L
on the Banach space L of sections X → L with the sup-norm is hyperbolic in
the sens of 1.1 with the latter obviously accommodated for non-invertible F .)

Anosov Actions and Foliations A C1-smooth action of the group Z on
a smooth Riemannian manifold X is called Anosov if the differential Df1 ∶
T (X) → T (X) of the the diffeomorthism f1 ∶ X → X that corresponds to 1 ∈ Z
is hyperbolic, where the corresponding subbundles that split the tangent bundle
T (X) are denoted Tcontr ⊂ T (X) and Texp ⊂ T (X)

A C1-smooth action of R on X with no fixed point is called Anosov if there
is a codimension one subbundle Thyp ⊂ T (X) (which is necessarily transversal
to the R-orbits of the action) such that the action of Df1, 1 ∈ R, on Thyp is
hyperbolic .

Dynamical Expansiveness. Uniform expansiveness27 of Df1 ∶ T (X) → T (X)
implies expansivness of Anosov Z-actions, where a family (e.g. a group) of
transformations fi ∶ X → X, i ∈ I, of a metric space is called (metrically)
expansive if

sup
i∈I

dist(fi(x), fi(y)) ≥ ε

for all x and y ≠ x in X and some positive function ε = ε(x) > 0.
If X is compact and fi = f i, i ∈ I = Z, are powers of a homeomorphism

f ∶ X → X, then expansiveness of {fi} (obviously) equivalent to exponential
expansiveness:

max (dist(f i(x), f i(y)), dist(f i(x), f i(y))) ≥ min(ε,C(dist(x, y))(1 + ε′)i)
26A fixed point of a transformation f of a metric space is called attractive if a power fN of

f is strictly contractive in some neighbourhood of this point.
27If X is compact uniformity is automatic.
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for all x, y ∈ X, some ε, ε′ > 0 and some positive monotone increasing function
C(d) > 0. In fact, uniform expansiveness of the differential Df ∶ T (X) → T (X)
(obviously) implies uniform exponetial expansiveness of f that is the inequality

max (dist(f i(x), f i(y)), dist(f i(x), f i(y))) ≥ min(ε,C(1 + ε′)i)

with C > 0 independent of x and y.
Similarly, Anosov R-actions are expansive "transversally to their orbits":

max (dist(f i(x), f i(y)), dist(f i(x), f i(y))) ≥ ε > 0,

for all x and y which do not lie on the same R orbit, where, as in the Z-
action case, Anosov R-actions satisfy the stronger (and equally obvious) uniform
exponential version of this inequality.28

The Anosov sub-bundles Tcontr ⊂ T (X) and Texp ⊂ T (X) are integrable:
they serve as tangent bundle of foliations call them Scontr and Sexp that are
partitions of X into C1-smooth submanifolds, called contracting (stable) and
expanding (unstable) leaves of dimensions equal the ranks of the bundles Tcontr
and Texp.

These foliations can be dynamically (and obviously) reconstructed in two
ways.

A◽. The contracting leaves equal the equivalence classes of the relation

x ∼ y⇔ lim
i→∞

dist(f i1(x), f i1(y)) → 0

and the expanding ones equal such classes for the relation

x ∼ y⇔ lim
i→∞

dist(f i−1(x), f i−1(y)) → 0.

B◽. Given a selfmap f of a metric space X, define the following map f[δ] on
families of subsets

{Ax ⊂X}x∈X ,
where the subsets Ax are contained in the δ-balls Bx(δ) ⊂X of radius δ around
the points x and

f[δ](Ax) = f(Ax) ∩Bf(x)(δ).
If f = f1, 1 ∈ Z, is an Anosov diffeomorphism on a compact manifold X,

then, for all small δ > 0 and 0 < ε ≤ δ,
the families of subsets in X,

{f i[δ](Bx(ε)) ⊂X}x∈X

converge for i → ∞ to (the connected components of) the expanding leaves
through the points x ∈X within the balls Bx(δ).

And if f = f1, 1 ∈ R, is the time one diffeomorphism of an Anosov flow ft
(no contraction or expansion in the R-orbits directions), then

28Diffeomorphisms with uniformly expansive differentials are called quasi-Anosov. Quasi-
Anosov actions on compact manifolds X where the union of minimal invarint subsets is
dense in X are Anosov. On the other hand there are quasi-Anosov diffeomorphisms, e.g. of
the connect sum on two 3-tori, which are not Anosov (see [102] for more information and
references).
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the expanding leaves in the balls Bx(δ) emerge as the double limits

lim
ε→0

lim
i→∞

{f i[δ](Bx(ε))}x∈X .

The basic examples of Anosov diffeomorphism are
(a) hyperbolic automorphisms f of the n-tori X = Tn = Rn/Zn where Anosov’

foliations descend from linear splittings Lcontr⊕Lexp for the corresponding linear
self-maps of L = Rn,

(b) geodesic flows in the unit tangent bundles UT (V ) of complete (e.g. com-
pact) manifolds V with sectional curvatures ≤ κ < 0, where the contracting and
expanding leaves are horospheres are lifted from the universal covering Ṽ ov V
to the unit tangent bundle UT (Ṽ ) → Ṽ of Ṽ and then projected to UT (V )).29

But it remains unclear how representative these examples are since the in-
fluence of hyperbolic dynamics on topology of the underlying spaces remains
mainly unknown. For instance,
?1. All presetly known Anosov diffeomorphisms f ∶ X → X are topologically

equivalent to hyperbolic endomorphisms f of infranilmanifolds; thus, every such
f descends from an automorphism f̃ ∶ X̃ → X̃ where X̃ is a connected nilpotent
Lie group.

However, one can not even rule out (confirm?) the existence of Anosov
diffeomorphisms on compact simply connected manifolds, such as S3 × S3 for
instance.

On the other hand, Margulis proved that the fundamental groups of 3-
manifolds which support Anosov’s R-actions have exponential growth;30 this
was extended in 1972 by Plante and Thurston, [95] to the flows where the con-
tracting (or expanding) foliations are 1-dimensional.

Local Shadowing.

Let X and Y be Z-spaces (i.e. continuously acted upon by the group Z)
where Y is endowed with a metric. Call a map Q ∶X → Y an ε-quasi-morphism
if the generators of the Z-actions in X and Y , denoted by f ∶ X → X and
g ∶ Y → Y, satisfy

distY (Q ○ f(x), g ○Q(x)) ≤ ε for all x ∈X.

Say that f and the Z-action generated by f amit a the unique local shadowing
if there exists a positive ε0 = ε0(Y, f) and a function δ = δ(ε) →

ε→0
0, such that

every ε-quasi-morphism for ε ≤ ε0 is δ-close to a unique Z-morphism
that is an M ∶X → Y , such that M ○ f(x) = g ○M(x).

Observe that if Y is compact, then this shadowing property is independent
of the metric in Y .

29The horoshere in the universal covering Ṽ that passes through a unit vector τ = τṽ ∈
UTṽ(Ṽ ) equals the limit of the R-spheres, R →∞, with the centers at the points ṽ(τ,R) ∈ Ṽ
that lie on the geodesic ray in Ṽ that issues from ṽ ∈ Ṽ in the direction τ and such that
dist(ṽ(τ,R), ṽ) = R.

30Margulis’s proof is written down in an appendix to a 1967 survey article by Anosov and
Sinai [?].
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If Y is a complete metric space acted by a homeomorphism g that admits
an invariant (Cartesian) splitting,

Y = Ycontr × Yexp and g = gcontr × gexp,

as in 1.1 without even assuming any linearity,31 then by the argument from
1.2 the transformation T satisfies the (now global) shadowing property for all,
arbitrarily large(!), ε > 0.32 And if all small neighbourhoods U ⊂ Y admits
(coherent in an obvious way) invariant contracting × expanding splittings,
then the same argument, or rather its obvious translation to the ε-δ-language,
delivers the local shadowing property.

Thus one arrives at
Anosov Shadowing Lemma. Anosov Z-actions admit unique local shad-

owings.
Indeed, small neighbourhoods U ⊂ Y split into products of contracting and

expanding leaves within these U . 33

Similarly, Anosov proves the local shadowing for his (locally split hyperbolic)
R-actions gt ∶ Y → Y , t ∈ R, where the ε-quasi-morphism property of a Q ∶
(X,ft) → (Y, gt) means that

distY (Q ○ ft(x), gt ○Q(x)) ≤ ε for all x ∈X and t ∈ [−1,1],

while an M ∶X → Y that shadows Q, by no means unique anymore, is required
to be an ε′-quasi-morhism that homeomorphically sends the ft-orbits from X
onto the gt-orbits in Y .

Smoothness and Continuity. Historically, this lemma was used by Anosov
to prove the following

structural stability of smooth locally split hyperbolic systems.
Theorem. Let Y be a compact C1-smooth manifold, g ∶ Y → Y be an Anosov

C1-diffeomorphism and f ∶ Y → Y a C1-diffeomorphism. (Here X = Y ).
If f is sufficiently close to g in the C1-topology, then there exists a home-

omorphism M ∶ Y → Y , that is C0-close to g such that f ○M =M ○ g.
In fact, take the Z-morphism M delivered by the shadowing lemma (we

already know this M is unique) for M .
Since the map M is C0-close to the identity map, it can not bring together

two points unless they are close one to another and since the underlying space
Y is a closed manifold the map M ∶ Y → Y , being continuous and homotopic to
identity, is necessarily surjective.

Since the differential of g is uniformly expansive the same is (obviously) true
for our f that is (sufficiently) C1-close to g and since M equivariantly sends the
orbits of f to orbits of g, no two points, even if they are close one to another,
can be brought together by such an M either. This means M is injective and
the proof of the structural stability of g is concluded. QED.

31This is why the direct sum sign "⊕” is replaced by that of the Cartesian product "×".
32To make this argument work one needs an uniform (e.g. bi-Lipschitz) equivalence, between

the original metric in Y and the "sum" of metrics in Ycontr and Yexp, that was automatic in
the linear case.

33Here and below in this section, Anosiov transformations are denoted by g and manifolds
supporting these actions by Y .
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Warning. No regularity condition on f and g can guaranty C1-smoothness
of M .

Isolation and Expansiveness. Expansiveness of a family G = {g} of trans-
formations g ∶ X → X can be expressed in topological (metric free) terms that
leads to a more general concept than the metric expansiveness for non-compact
spaces X.

Namely G is called (topologically) expansive if the diagonal X =X∆ ⊂X ×X
is (dynamically) isolated with respect to the family of the diagonal action G∆ =
{g, g} of the diagonal actions (x, y) ↦ (g(x)g(y)), where, in general,

a closed G invariant subset Y ⊂ X is called (dynamically) isolated or locally
maximal, if there is a neighbourhood U ⊂X of Y such that

⋂
g∈G

g−1(U) = Y.

Isolation is a well behaved concept:
pullbacks of isolated subsets Y ⊂ X under morphims, say φ ∶ X ′ → X, of

G-spaces are (obviously) isolated.
(If the spaces X and X ′ are compact and φ is onto, and then a subset Y ⊂X

is isolated if (as well as only if) its pullback φ−1(Y ) ⊂X ′ is isolated.)
There is an abundance of results on smooth hyperbolic systems obtained in

the 1960s - 1970s as well as of questions open since then. What we sketched
above hardly gives a glimpse of these.

But looking from a different perspective, smooth manifolds, smooth trans-
formations and Riemannian metrics mainly serve illustrative purposes, while
the core hyperbolicity is located within topological dynamics.

1.7 Symbolic Dynamics, Periodic Points and ζ-Functions.
Given directed graphs G and H, possibly with loops and multiple edges, let GH

denote the set of combinatorial maps H → G, where "combinatorial" means that
vertices from H are sent to vertices in G and directed edges are sent to directed
edges, such that these maps are compatible with the adjunctions between edges
and vertices in the graphs.34

This exponentiation of graphs, (G,H) ; GH is, obviously, (bi)functorial. In
particular,

● the automorphisms groups and, more generally, endomorphisms semi-
groups of G and H naturally act on GH where these action commute;

● there are natural restriction maps RI ∶ GH → GI for all subgraphs I ⊂H.
Besides, GH satisfies the following
⋆ Localisation Property. LetH be covered by two edge saturated35 subgraphs

I1, I2 ⊂H and let I1 ∩ I2 ⊂H denote the edge saturated subgraph the vertex set
of wich is the intersection of the vertex sets of I1 and I2 in H.

Take a points p ∈ GI1∩I2 , that is a combinatorial map p ∶ I1 ∩ I2 → G, and let

PI1(p) ⊂HI1 , PI2(p) ⊂HI1 , and PH(p) ⊂ GH

34More precisely, our maps are morphisms in the category of (1-dimensional) semisimplicial
complexes that are non-degenerate on the 1-simplices (edges).

35A subgraph I in a graph H is called edge saturated if it contains all edges of H the end
vertices of which are in I.
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be the pullbacks of p under the restriction maps

GI1 → GI1∩I2 , GI2 → GI1∩I2 and GH → GI1∩I2

correspondingly.
If I1 and I2 are edge disjoint in H away from I1 ∩ I2, that is no edge in H

may have one vertex in the complement I1∖I1∩I2 and another one in I2∖I1∩I2,
then PH(p) naturally decomposes into the Cartesian product

PH(p) = PI1(p) × PI2(p),

where "natural" means that the coordinate projections PH(p) = PI1(p)×PI2(p) →
PI1(p) and PH(p) = PI1(p)×PI2(p) → PI2(p) are equal to the restrictions of the
restriction maps RI1 ∶ GH → GI1 ⊃ PI1(p) and RI2 ∶ GH → GI2 ⊃ PI2(p) to the
subset PH(p) ⊂ GH .

The set GH possesses a rich combinatorial structure, but we are concerned
at this stage with the topology that is defined as follows.

(i) If H is finite then GH is endowed with the discrete topology.
(ii) In general, the topology in GH is defined via a basis, namely the one

that is comprised of the pullbacks of all subsets from GI under restriction maps
GH →HI for all finite subfraphs I ⊂H.

Markov Shifts.

Commonly used graphs for the role of H are the Cayley graphs of the
additive semigroup N = {1,2,3, ...,} generated by 1 ∈ N and of the group
Z = {−3,−2,−1,0,1,2,3, ...,} similarly generated by 1 ∈ Z. These are depicted
as

N→ = ●→●→●→●→●→●→●→●→●→●→●→●→●→●→●→●→●→●→●→●→●→●→●→●→●→●→...,

Z→ = ...→●→●→●→●→●→●→●→●→●→●→●→●→●→●→●→●→●→●→●→●→●→●→●→●→●→...,

where the corresponding spaces of maps, denoted G↝ = G N→ and G↭ = G Z→, are
visualized as the spaces of marked edge-paths in G which are one sided future
directed in the case of G↝ and two sided double infinite for G↭ and where G↝

is naturally acted by N and G↭ is acted by Z.
In symbolic dynamics, one usually assumes that the graph G is finite and,

consequently, the spaces of paths G↝ and G↭ are compact. In this case the
actions of N on G↝ and of Z on G↭ are called Markov (sub)shifts or subshifts
of finite type.

They are called "subshifts" since they are naturally realised as closed invari-
ant subsets of the (full) Bernoulli shifts which act on the spaces of the maps
from N and from Z respectively to finite set F , that are FN and FZ; in the
present case, one may take to the sets of edges in G for F :

G↝ ⊂ edges(G)N and G↭ ⊂ edges(G)Z

"Finiteness" of these subshifts refers to the finiteness of the number of condi-
tions (that are encoded in our picture by the combinatorics of the corresponding
finite graphs G) which together with the invariance define these subshifts.

Instead of graphs, subshifts of finite type can be defined with a use of basic
open (as well as closed) sets U ⊂ FZ: A subset Y ⊂ FZ is a subshift of finite type
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according to this definition if it equals to the intersection

Y = ⋂
g∈Z

g(U)

for some basic U ⊂ Z, which is, recall, is the pullback of a subset S ⊂ F I under
the restriction map FZ → F I for some finite subset I ⊂ Z. (The definition of
U = US ⊂ FZ does not depend on any structure in Z.)

Since the basic subsets U ⊂ FZ are closed as well as open, these Y are
dynamically isolated, and since all closed subsets in FZ equal to intersections of
basic sets, the converse is also true.

Thus, subshifts of finite type can be defined as dynamically isolated closed
invariant subsets in FZ. (The same applies to FΓ for all groups and semigroups
Γ including Γ = N.)

Example: Expansivness. The diagonals in G↝ ×G↝ and in G↭ ×G↭ are,
obviously, of finite type; hence, Markov shifts are expansive.

Annoying non-Example. The restriction of the obvious (kind of hyperbolic)
north-pole→south-pole push diffeomorphism of the sphere Sn to an invariant
Cantor set X ⊂ Sn may be a subshift but never of finite type.

Shadowing and Symbolic Approximation.

Let X be a topological space, f ∶X →X a continuous map and U = {U}U⊂Y
be a covering of Y , where these U will to assumed open (sometimes closed) later
on. Let G = G(U , f) be the graph on the vertex set U where U1 is joint with U2

by an edge whenever f(U1) intersect U2.
Observe that the points of G(U , f)↝ as well as the orbits of the action of

N on G(U , f)↝ are represented by certain N-families of subsets U ∈ U that are
sequences {Ui ∈ U}i∈N .36

Similarly, the orbits of the action of Z onG(U , f)↭ are Z-families {Ui ∈ U}i∈Z,
such that the intersections Ui ∩ f−1(Ui+1) ⊂ X are non-empty for all i ∈ Z.
(Topology of X and continuity of f are not needed for all this so far.)

The local shadowing property of f , say if Y is compact and f is a homeo-
morphism which generates a Z-action on Y , can be reformulated as follow.

Given an open cover V of X there exists a finite open cover U of X (which
is finer than V) and a surjective Z-morphism

φ ∶ G(U , f)↭↠ (X,f),

such that the orbits {Ui} of the Z-action on G(U , f)↭ are V-close to the cor-
responding orbits xi = f i(x0) ∈ X of our Z-action on X, where this "closeness"
means the following.

The subset Ui ⊂ X and the point xi ∈ Y are contained together in a certain
subset V ∈ V (depending on {Ui} and i ∈ Z) for all orbits {Ui} and all i ∈ Z.

And local uniqueness now says that if the covering V is sufficiently fine, then
there is at most one morphism G(U , f)↭ →X with the V-closeness property.
qq Combinatorial Shadowing in Markov Shifts The unique local shadowing

for Markov shifts translates to the the following obvious combinatorial fact.
Let,

36We tacitly use the bijective correspondence between points of a G-space X and G-orbits
for x↔ {g(x)}g∈G.
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φi ∶ {i, i + 1, ...i + k − 1, i + k} → G,
{i, i + 1, ...i + k − 1, i + k} ⊂ Z, i = ⋅ ⋅ ⋅ − 2,−1,0,1,2, . . . ,

be a (double infinite) sequence of combinatorial maps that are paths in G of
length k for some k, say k = 10, such that the restriction of

φi to {i + 2, ...i + k − 1} ⊂ {i, i + 1, ...i + k − 1, i + k}
is equal to the restriction of

φi+1 to {i + 2, ...i + k − 1} ⊂ {i + 1, ...i + k, i + k + 1}
for all i = ⋅ ⋅ ⋅ − 2,−1,0,1,2, . . . .

Then there is a unique combinatorial map (path) Φ ∶ Z → G, such that the
restrictions of Φ to the subsets {i+ 3, ...i+ k − 2} ⊂ Z are equal to the restriction
of φi on these subsets for all i = ⋅ ⋅ ⋅ − 2,−1,0,1,2, . . . .

What is more interesting is the local shadowing we met earlier which ilmplies
the following.
q↠l Compact manifolds with Anosov Z-actions, as well as compact spaces

with locally split hyperbolic – what Ruelle calls "Smale" – homeomorphisms,37

are representable as quotients of Markov shifts.
Moreover – this follows from the existence of Markov partitions as we shall

see below,
q●●● ↠ ●l Compact spaces X with (locally split hyperbolic) Ruelle-Smale

homeomorhsms f ∶ X → X admit arbitrary finite open coveres U such that the
surjective morhisms φ ∶ G(U , f)↭↠ (X,f) are finite-to one.

ζ-Function Corollary (Manning 1971 [77]).38 The sequences Peri of
i-periodic points of Ruelle-Smale’s diffeomorphisms f , that are the fixed points
of the powers f i ∶X →X, i = 1,2, ..., are finite linear combinations of geometric
progressions,

Peri = ∑
j=1,2,...,k

cjλ
i
j

Consequently, the generating functions

∞
∑
i=0

Periz
i and ζ(z) = exp

∞
∑
i=1

1

i
Periz

i

are rational functions in the variable z.
Proof. ([?]). If X = G↝ for a finite graph G and f is the Markov shift, then

its i-periodic points are nothing but directed cycles in G of the length i and
Peri = card(Fix(f i)) equals the trace of the i-th power of the matrix (gvw) on
the vertex set V of G, where gvw equals the number of edges going from v to w
in V .

Thus, the number Peri equals the sum of the i-th powers of the eigenvalues
λj , j = 1,2, ..., card(V ), (taken in several copies according to their multiplicities)
of this matrix and the decomposition Peri = ∑j cjλij . follows.39

37This means that every point in X admits a split neighbourhood U = Ucontr × Uexp such
that the following ineqialities are satisfied with respect to some metric on X.
dist(fn(x1), fn(x2)) ≤ const(1−ε)n for n = 1,2,3, ... and all x1, x2 in the contr-slices of U ,

i.e. for x1, x2 ∈ Ucontr × u, u ∈ Uexp, and dist(f−n(x1), f−n(x2)) ≤ const(1 − ε)n for x1, x2 in
the exp-slices.

38Manning states in his paper that he followed a suggestion by R. Bowen.
39This is usually attributed to a 1970 paper by Bowen and Lanford but it is hard to believe

this has not been known prior to 1970.
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Now, let a Z action on a space Y generated by a homeomorphism g ∶ Y → Y
be a finite-to-one quotient of a Markov shift f ∶X →X.

Then the numbers of fixed points y ∈ Y of gi can be expressed by those for
Markov shifts by the following implementation of the

Moivre-Sylvester inclusion-exclusion counting argument. Divide the fixed
points of f i into several classes according to the types of the actions of f i on
the finite sets φ−1(y) ⊂ X, where these "types" are determined by the periods
of the action of f i and the number of these types t is bounded by a constant
independent of i.

Thus, counting periodic points of g is reduced to an evaluation of the the
numbers Peri,t of fixed points of f i for all types t, and Manning’s ζ-theorem
follows from the "rational numerology" for the numbers Peri,t for all types t,
where the latter, in turns, is obtained by by the above graph-theoretic arguments
that works here to due to Markov (finite type) presentability of φ:

the subset of pairs {x1, x2}∼ ⊂ X ×X that satisfy the equivalence relation in
X corresponding to φ,

x1 ∼ x2 ⇔ φ(x1) = φ(x2)
is a subshift of finite type in X ×X ⊂ (E×E)Z, where E denotes the set of edges
of the graph that defines X.

(The Markov property of {x1, x2}∼, follows from expansiveness of our g,
since {x1 ∼ x2}∼, being the φ × φ-pullback of the dynamically isolated diagonal
in Y × Y , is also dynamically isolated.)

1.8 Markov Partitions.
Brief History. Such "partitions" were used in 1967 by Adler and Weiss for
showing that hyperbolic automorphisms of the 2-torus with equal entropies are
isomorphic in the category of measure spaces with Z-actions. [1].

In 1968, Sinai introduced the concept of a Markov partition, proved their
existence for the Anosov systems, and established, albeit not in full generality
at that time, the measure theoretic equivalence between Anosov systems and
Markov shifts [105].

In 1970, Bowen constructed Markov partitions for topological Ruelle-Smale
locally split hyperbolic systems [20].

What is called partition in this context means a covering of a topological
space X by closed subsets Vi which are fat in the sense that the interior int(Vi) =
Vi ∖ ∂Vi are dense in Vi for all i and where, one requires that the interiors
Ui = int(Vi) (rather than Vi themselves) do not pairwise intersect.

Equivalently, such a partition can be defined as a collection of mutually non-
intersecting open subsets Ui ⊂X – that correspond to the interiors int(Vi), such
that the union ⋃iUi is dense in X.

A partition {V ′
j }j∈J , is said to refine {Vi}i∈I , if there exists a map ι ∶ J → I,

such that V ′
j is contained in Vι(j) for all j ∈ J .

The simplest kinds of Markov partitions are associate with locally (including
globally) expanding maps40 of metric spaces, f ∶X →X, where the Markov prop-

40This means there exists a cover of X by open subsets Ui ⊂ X, such that the restrictions of
f to Ui are homeomorphisms on their images, Ui→

f
f(Ui) and such that the distances between

the pairs points in Ui increase under these maps for all i.
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erty of a partition {Vi} of X in this case requires that the f -pullback partition
{f−1(Vi)} refines {Vi}.

For instance, if X = Rn and f ∶ x↦ 2x then the standard partition of X into
the integer unit n-cubes is Markov.

Also – this is a kindergarten exercise – an arbitrary strictly expanding linear
map f ∶ Rn → Rn admits a Markov partition into convex polyhedral domains Vi
of diameters diam(Vi) ≤ 1 and with inradii (that are radii of maximal balls in
them) bounded from below, inrad(Vi) ≥ ε > 0.

On the other hand, Markov partitions {Vi} for strictly expanding endomor-
phisms f of the n-tori Tn = Rn/Zn are rarely so simple – piecewise linear or
piecewise smooth. Their construction (due to Sinai) described below delivers
fractal subsets Vi and, apparently, this fractality is unavoidable for majority of
f .

Construction of Markov partitions for locally expanding maps f ∶X →X.
Let {Ui}i∈I , be a collection of open subsets in a topological space X and let

U ′ ⊂X be yet another open subset.
Endow the index set I with a well-order structure41 and let imin = imin(U ′) ∈

I be the minimal i for which Ui intersects U ′.
Define a new collection {Unewi ⊂X} by attaching U ′ to Uimin at the expense

of other Ui. Namely,
let Unewi = Ui⋃U ′ if i = imin

and
Unewi = int(Ui ∖U ′) = Ui ∖ clos(U ′) if i ≠ imin.

Apply this to all subsets U ′
j from a given collection (rather than a single U ′)

{Uj ⊂X} and thus obtain {Unewi }, which we now denote

{Unewi } = {Ui} ↙ {U ′
j},

where
Unewi is obtained from Ui by attaching to it those U ′

j for which i = imin(U ′
j)

and by subtracting from Ui the closures of other U ′
j .

Denote by VI≺ the set of partitions {Vi}i∈I of X, where the index set I is
endowed with a well-order structure and, given a continuous map f ∶ X → X,
let

Υf ∶ VI≺ → VI≺
be defined in trems of the interiors Ui = int(Vi) as follows

Υf ∶ {Ui} ↦ {Ui} ↙ {f−1(Ui)}.

(We must allow empty subsets among Vi and/or Ui at this point. Alternatively,
we could supress I and deal we the space V≺ of well-ordered families of non-
empty subsets in X.)

Now the property
the pullback partition {f−1(Vi)} refines {Vi}

reads:
{Vi} ∈ VI≺ is a fixed point of the map Υf ∶ VI≺ → VI≺.

41In current examples, there are finitely many Ui and I can be represented by
{1,2, ..., i, ..., k}.
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If f ∶ X → X is a locally strictly expanding map, and X is compact (this
is not truly needed) then the map Υf is eventually contracting with respect to
the Hausdorff metric in VI42 and the existence of a fixed point follows by the
Banach fixed point theorem, where discontinuity of Υf is compensated by the
monotonicity of the orbits of Υf in the space VI≺,

{Vi} ≺ Υf({Vi}) ≺ Υf ○Υf({Vi}) ≺ Υf ○Υf ○Υf({Vi}) ≺ . . . ,

where "≺" is the partial order in VI≺ obtained by the I-lexicographic arrange-
ment of I-families of sets of subsets V ⊂ X with the partial orders defined by
inclusions between subsets.

And, besides the mere existence, one sees in this picture that the forward
periodic points, that are the fixed points of the powers Υi

f ∶ VI≺ → VI≺, i ∈ N,
are dense in VI≺.

Markov Partitions for Split Hyperbolic Actions. Let f ∶X →X be a Ruelle-
Smale, e.g. Anosov, locally split hyperbolic homeomorphism, and let us define
the Markov property of a partition {Vi} of X by two conditions.

(1) Each subset Vi ⊂ X from {Vi} Cartesian splits into an expanding ×
contracting factors,

Vi = V expi × V contri ⊂X
where f−1 strictly contracts V expi × vcontr ⊂ X for all vcontr ∈ V icontr while f
itself similarly contracts all vexp × V contri

(2) If L = Lexp ⊂ X is an expanding (i.e. strictly contracted by f−1) leaf,
then the partition {L⋂Vi} of this leaf by its intersections with Vi is refined by
the pullback partition {f−1

∣L (Vi)}, where f∣L ∶ L → X denotes the restriction of
f to L); and, symmetrically, the intersections of {Vi} with contracting leaves
L are refined by the images of {f−1(L)⋂Vi} under f∣f−1(L) (that are pullbacks
under (f−1)∣L).43

Route of the Proof. Close your eyes and proceed as follows. Take the space
V×I≺ of split partitions, i.e. of those which satisfy (1), show that (this is a trivial
"soft" staff) that this V×I≺ is non-empty and "split-hyperbolically adjust" the
contracting fixed point argument. You end up with Markov partitions in your
hands as well as with the density of these in V×I≺ for the powers of f i ∶X →X.

Return to the ζ-Functions.
Recall the graphs associated with coverings, in particular, with what we call

partitions {Vi}i∈I of spaces X which are acted by Z generated by homeomor-
phisms f ∶ X → X: in the present terms, such a graph G = G({Vi}, f) is based
on the vertex set I with the edges that correspond to the pairs i, j ∈ I, such that

f(Vi)⋂Vi+1 ≠ ∅.
42This is defined for partitions via the ordinary Hausdorff distance (see 2.6) between the

constituent subsets: disthau({Vi},{V ′
i }) = supi∈I disthau(Vi, V ′

i ). This metric for partitions
is finer than for individual sets but the map Υf is not truly contracting due to discontinuity
of Vj ↦ imin(Vj) ∈ I.

43Strictly speaking, {L⋂Vi} and {f−1
∣L (Vi)} are not partitions according to our definition,

since the intersections Vi⋂L are not necessarily fat subsets in L and the unions of interiors
of these intersections are not dense in L for certain L. In truth, the above conditions need to
hold only for those L where these intersections are fat.
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If the partition {Vi} is sufficiently fine, then Anosov’s shadowing lemma
delivers a a Z-morphism from the space of double infinite paths in G({Vi}, f)
to (X,f),

φ ∶ G({Vi}, f)↭ →X,

where a straightforward check up shows that the Markov property of a partition
{Vi} makes the shadowing map φ finite-to-one.

Then, as it was explained earlier, the rationality of the ζ-function that
counts the periodic points of f follows from such rationality of the ζ-functions
for Markov shifts by the Manning-Moivre-Sylvester inclusion-exclusion counting
argument.

Markov Presentation and Small Cancellation. There is a two (more?) way
interplay between Markov partitions of Z-actions and small cancellation of
groups:

There are (several kinds of) Markov style structures associated to small can-
cellation and to some more general groups, while Markovian representations of
(hyperbolic and similar) dynamical systems admit a combinatorial description
similar to that of small cancellation groups. In particular, action of certain rela-
tively hyperbolic groups on their ideal boundaries admit Markovian presentations
(see [30] and references therein) and a similar theory for generalised Grigorchiuk
groups44 was developed by V. Nekrashevych [85], [86], [87].

We shall discuss this at length in chapters 3 and 4.

1.9 Holomorphic and Conformal Hyperbolicity.
Hyperbolicity of a complex manifold X may be measured by how large the
spaces of holomorphic maps from Riemann surfaces to X are:

the smaller these spaces are the higher the "hypebolicity degree" of X is.
Exemplary hyperbolic manifolds X are bounded domains B ⊂ Cn , e.g. the

open unit ball B2n ⊂ Cn; also quotients of these by discrete, especially cocom-
pact, groups of holomorphic transformatons, such as compact Riemann surfaces
of genera ≥ 2

These X receive no non-constant holomorphic maps from C by Liouville’s
theorem.45

Another famous hyperbolicity phenomenon is
Picard’s Theorem.(1879) The universal covering of the complex plane mi-

nus two points is biholomotphic to the unit disc B2 ⊂ C; hence C∖{two points}
receives no non-constant holomorphic map from C.

In other words
44An essential feature of Grigorchuk’s groups Γ from our perspective is the existence of

expanding monomorphisms Γ × Γ→ Γ with finite index images.
45The unboundness of non-constant holomorphic maps C → C must have been known to

Cauchy who apparently proved (?) that the oscilations, i.e. differences between maxima and
minima, of holomorphic functions f in concentric disks of radii R and r < R satisfy what is
now-a-days called Cauchy-Gȧrding elliptic inequality:

oscf∣B(r) ≤
r

R
oscf∣B(R),

while Liouville stated (reproved?) I have not read the relevant 1847?,1879? papers by Liou-
ville.) this for elliptic functions. (I have not read the relevant 1847?,1879? papers by Liouville
and essentially rely on [116].)
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a non-constant complex analytic map C→ C must assume all values, except,
possibly, a single one (as the function z ↦ exp z does).

More generally, let f be a non-constant holomorphic map from a Riemann
surface X to C ∖ {two points}.

If X admits a complete Riemannian metric of finite area (as, for instance,
C does) and if it has finitely many ends (this can be significantly relaxed), then
X is biholomorphic to a compact Riemann surface with k ≥ 3 punctures and our
f ∶ X → C ∖ {two points} is a finite-to-one ramified covering map with at most
finitely many ramification points.

There are two main avenues of generalisation of this theorem which have
been especially thoroughly (yet, non-fully) explored.

1. Holomorphic maps from Riemann surfaces
to complex manifolds of dimensions >1.

The first(?) result here, due to Borel’s (1887), concerns maps from C to the
complex projective space CPn:

If a holomorphic map f ∶ C → CPn misses n + 2 hyperplanes in general
position then the image f(C) ⊂ CPn is contained in a hyperplane CPn−1 ⊂ CPn.

It easly follows (Montel 1927?) that
if f misses 2n+1 hyperplanes in general position then f is constant. (If n = 1

this is just Picard’s theorem.)
In 1928 -1933, Henry Cartan developed a Nevanlinna-type value distribution

type theory for maps f ∶ C→ CPn that was refined by Ahlfors in 1941 with some
contributions by Herman and Joachim Weyl (1939, 1941).46

In 1967, Kobayashi [70] defined his intrinsic metric, that is the maximal metic
on a complex manifold (and/or a complex space)X, such that every holomorphic
map H1

C → X, is (non-strictly) distance decreasing, where H1
C = H2

R stands for
the unit disk B2 ⊂ C with Poincaré’s metric, that is the hyperbolic plane with
the metric of constant curvature −1.

Obviously (but significantly) holomorphic maps f ∶ X → Y are distance
decreasing for the Kobayashi metrics in X and in Y while �covering maps f are
locally isometric; this implies in particular, that the Kobayashi metric in Cn (as
well as in any complex space with a selfsimilarity) is everywhere zero.47

Thus, Kobayashi metric in X vanishes on the images of holomorphic maps
C→X; therefore,

manifolds X with non-vanishing Kobayashi metrics receive no nonconstant
holomorphic maps C→X.

Kobayashi versus Liouville.

Liouville’s property is seductively simple and general:
46I follow here the expositions in [38] and [?].
The work by Cartan, this is pointed out by Eremenko in [38], remained in the dark for

about half a century: several "difficult problems", I recall, that preoccupied the experts in
1970s turned out to be among lemmas and theorems proved in Cartan’s papers.

Once, Serge Lang at his lecture on this subject matter asked Cartan, who was in the audi-
ence, why he had never mentioned his results to anybody. Cartan (born in 1904) responded
that he was embarrassed by the mathematics he was doing in his youth. (I was present at
this lecture but I am not certain that "embarrassed" was exactly the word Cartan used, but
he definitely projected his feeling of embarrassment.

47Our convention for metric allows 0 and ∞.
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an ordered pair of object (Y,X) in a category enjoys Liouville’s property
if every morphism Y → X factors through a morphism from Y to a terminal
object. And this concept gain a particular significance when one fixes one of the
variables X and/or Y , where the standard choice for X in complex analysis is
that of the unit disk B2 =H1

C while the distinguished X is X = C.48
Accordingly, a natural, term for Y where (Y,B2) is Liouville would be

Liouville-out , while X in the Liouville pairs (C,X) shuld be called Liouville-in.
But, customary, Liouville-out’s Y are called just Liouville 49 while Liouville-

in’s spaces X – which receive no non-constant holomophic maps from C – are,
starting from the late 1970s, associated with the name of Brody for the reason
we shall explain below.

"Liouville per se"– a bare non-existence of something – carries no significant
message concerning the structures of the spaces involved. Non-Surprisingly,
classical analysts – Nevanlinna, Landau, Bloch, Ahlfors,..., departing from Li-
ouville and Picard theorems, shifted the focus to the study of more structurally
rich properties, such as Nevanlinna-Ahlfors value distribution theory that was
extended to higher dimensions by Cartan and later by Ahlfors.

A few decades later, holomorphic maps were approached from a geometrical
and algebra-geometrical angle. Thus, in 1967, Kobayashi [70] introduced his
metric as an essential structurally significant ingredient of hyperbolicity, now-a-
days called Kobayashi hyperbolicity, responsible for arresting holomorphic maps
C→X.

Notice, that that in a the case where X is compact Kobayashi hyperbolicity
is equivalent to
compactness of the spaces of holomorphic maps Y →X for all complex spaces Y .

In 1978, Robert Brody [23] applied the Bloch (Landau-Robinson-Zalcman)
principle to holomorphic maps into general complex manifolds and concluded
that

if the Kobayashi metric in a compact complex space X (or in a compact
quasi-complex manifold for this matter) X, somewhere vanishes, that is if the
above compactness fails, then there exists a non-constant (quasi)holomorphic
map C→X.

Thus, if X is compact, then
Liouville-in ⇔ Kobayashi hyperbolic.50

This Bloch-Lanadau-Zalcman-Brody map C → X is obtained as a limit of
maps fi from suitably rescaled hyperbolic planes, called Yi, to X, where these
Yi themselves metrically converge to C.

Namely, denote by Y the unit disk with the Poincaré metric, that is the
hyperbolic plane with the metric of curvature −1, and also choose a metric in
X.

48Is there a purely category theoretic definition of such "Liouville distinguished" objects?
49Also Riemannian manifolds Y as well as spaces wiith random walks defined on them are

called Liouville if all harmonic maps Y → [01] ⊂ R are constant.
50There is no reference to Bloch(1926) Landau (1929), Robinson (1973) or Zalcman(1975)

in Brody’s paper and it is unclear what was the level of generality of the Bloch principle,
known to classical analists who worked it out, according to Robinson, [99] between 1915 and
1935. (Some references can be found in [117] and [2].)

Also Grothendiec’s blow-up construction (≈1960) of rational curves employs a limit argu-
ment similar to that by Landau-Zalcmanin-Brody.
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The vanishing of the Kobayashi metric in X says, in effect, that there exists
a sequence of holomorphic maps fi ∶ Y → X and a sequence of balls Bi ⊂ Y ,
such that

lim
i→∞

diamY (Bi) = 0 while diamX(f(Bi)) ≥ δ0 > 0 for all i.

Assume diamY (Bi) ≤ 1 for all i and let Y ′
i ⊂ Y denote the concemtric balls

Bi(1) ⊃ Bi with diameters 1 endowed with the Poincaré metrics.
Since these Poincaré metrics, call them Pi, blow up at the boundaries of

the balls Bi(1) ⊂ Y , the resulting Y ′
i = (Bi(1), Pi) (which are isometric to the

hyperbolic plane) contain balls Bmin
i ⊂ Y ′

i , such that diamX(f(Bmin
i )) = δ0 and

the Y ′
i -diameters εi of these Bmin

i themselves, denoted εi, areminimal among
the balls in Y ′

i the f -images of which in X have diameters δ0.
Rescale the spaces Y ′

i by the factors ε−1
i , denote the resulting spaces by

Yi = ε−1
i Y

′
i = (Bi(1), ε−1

i Pi)

and observe that the correspondingly rescaled balls

B♯
i = ε−1

i B
min
i ⊂ Yi = ε−1

i Y
′
i

have diametes 1 in Yi.
Since the diameters of the f -images of all balls with diameters ≤ 1 in all Yi

are bounded by δ0 < ∞ by the minimality condition on Bmin
i , the family of maps

fi ∶ Yi →X is uniformly continuous according to the Cauchy inequality.
Since diamY (Bi) → 0, the diameters εi of the balls B′

i ⊂ Y ′
i also tend to zero;

therefore, Yi (that are hyperbolic planes with the curvatures −ε2
i ) metrically

converge to C and sinceX is compact, some subsequence of fi ∶ Yi →X converges
to a holomorphic map f∞ ∶ C →X.

Finally, since δ0 > 0, this map is non-constant. QED.
Brody Curves. The Broody( Bloch-Lanadau-Zalcman) map f∞ is, obviously,

Lipschitz; in general Lipschitz holomorphic maps C→X are called Brody curves.

The construction of f∞ equally applies to maps Yi → Xi for convergent
sequences Xi →X; thus, this was pointed out by Brody,

Kobayashi hyperbolicity is stable under perturbations of the complex
structure in X.
(This is similar to the stability of Smale-Anosov hyperbolicity under C1-

perturbations.)
First Hyperbolic Examples.

The normalizing example which lies at the heart of Kobayshi’s definition
is that ofX =H1

C where theKobayashi metric equals the original Riemannian
metric with curvature −1 by Schwarz Lemma:

holomorphic maps H1
C →H1

C are distance decreasing.
(However simple, this, unlike all of the above, can not be proved by mere

hand waving.)
More generally, if X is a bounded symmetric complex domain, e.g. X =

B2n ⊂ Cn, then the Kobayashi metric equals the Riemannian (in fact Kählerian)
metric invariant under the full group of holomorphic transformations ofX. (The
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ball Bn with the Kobayashi metric is isometric to the complex hyperbolic space
Hn

C we met in section 1.4.)
By the same token, the Kobayashi metrics in Kähler manifolds X with

strictly negative holomorphic curvatures is bounded from below by this Kähler
metric times a positive constant.51

For instance, ifX is a subvariety in the complex torus Cn/Γ for some lattice Γ
isomorphic to Z2n, then it has strictly negative holomorphic curvature, unless it
contains a complex subtorus of positive dimension; hence, the Kobayashi metric
in such an X nowhere vanishes.

This in conjunction with the Abel-Jacobi-Albanese theorem, implies that
if the fundamental cohomology class [X]∗ ∈ H2n(X;Q) of a complex pro-

jective manifold X of complex dimension n decomposes into the ⌣-product of
1-dimensional classes, and if X contains no Abelian subvariety of positive di-
mension, then X is Kobayashi hyperbolic. This is attributed to Bloch but I did
not try to trace the corresponding paper.

Besides fully hyperbolic spaces, there many almost hyperbolic X where holo-
morphic maps f ∶ C→X, if not necessarily

constant, are, quite special, e.g. factors through maps from C to particular
varieties or satisfy some differential equations [13], [44].

Also higher order degree of hyperbolicity of a complex manifold X can
be measured by the maximum of ranks (of differentials) of holomorphic maps
f ∶ Cn → X, where a particular problem that have been studied since a 1971
article by Griffiths [45] concerns the bound rankf < n for maps to n-dimensional
algebraic manifolds, of "general type".

Is there a holomorphic counterpart to Markov partitions?

One may search for the answer in terms the natural action of C in spaces of
Broody maps in the spirit of [53], [78] with an eye to the Weierstrass product
theorem which suggests the direction one should follow.

2. Quasiconformality.
The second well studied class of maps that are subjects to "hyperbolic con-

straints" is that of quasiconformal maps between n-dimensional manifolds,
n ≥ 2, defined by the following properties.○ the complement of the domain U ⊂ X on which the map f is locally
homeomorphic has the Hausdorff dimension dimhaus(Xn ∖U) < n − 1.
c there exist a positive functions r(u) > 0 and a bounded positive function

K(u) ≤ K0 < ∞, such that the f -images of the r-balls Bu(r) ⊂ X with r ≤ r(u)
for all u ∈ U contain balls in Y of radii ≥K−1(u) ⋅ diam(f(Bu(r)));

(I am not certain what should be the most general/natural definition of these
maps.)

Notice that such maps are often called quasiregular while quasiconformal
is restricted to locally homeomorphic maps X → Y , i.e. where U = X in our
notation.

51Holomorphic curvature is the function on the complex projective bundle ProC(X) of the
complex lines in the tangent bundle T (X) which is obtained by restriction of the Riemannian
sectional curvature function from the Grassmannian bundle Gr2(X) ⊃ ProC(X) of the real
2-planes in T (X).
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If n = 2 qusiconformal maps are quite similar to holomorphic ones. For
instance, the proof of non-existence of non-constant quasi-comformal maps R2 →
R2 ∖ {two points} is as easy as that for conformal maps.

In fact (almost) all Nevanlinna’s value distribution theory was extended by
Ahlfors to the quasiconformal case.

If n ≥ 3, quasiconformal maps, at least locally homeomorphic ones, become
more constrained. For instance, global topological possibilities of locally homeo-
morphic quasiconformal maps in dimensions n ≥ 3 are rather limited: according
to a 1967 Zorich’s solution of Lavrentiev’s problem of 1938, [119]

a locally homeomorphic quasiconformal map from Rn, n ≥ 3, to the n-sphere
Sn is a homeomorphism onto Sn ∖ {point}.

(Recall that Sn ∖ {point} is conformally isomorphic to Rn, where this iso-
morphism, i.e. a conformal diffeomorphism, is established by the stereographic
projection Sn ∖ {point} → Rn.

Also notice that there are lots of locally homeomorphic conformal maps
C = R2 to S2, e.g. the integrals of exp f(z) for holomorphic functions f ∶ C→ C.)

The situation with non-locally homeomorphic quasiconformal maps is less
clear:

what are possible homotopy types (topologies?) of closed n-manifolds X that
admit non-constant quasiconformal maps f ∶ Rn → X without assuming that
these f are locally homeomorphic?

If such a quasiconformal map f ∶ Rn → X is locally homeomorphic, then –
this follows by Zorich’s argument – either X is homeomorphic to a manifold of
constant positive curvature, hence having Sn for the universal cover, or X is
homeomorphic to a manifold of zero curvature, hence, admitting a finite cover
homeomorphic to the torus Tn.

A definite result in this direction was obtained in 1980 by Rickman [100]
(who calls his maps quasiregular):

A quasiconformal map Rn → Sn may omit at most finitely many values.
But there is no bound on the number of the omitted points for n ≥ 3 [33]

and, annoyingly, there is
no known topological obstruction for the existence of non-constant quasicon-

formal maps Rn → X for closed simply connected n-manifolds (compare [101]
[16], [91].

Negative Codimensional Quasiconformality. The quasiconformality defined
by c makes sense for maps X → Y where dim(Y ) < dimX. In fact, the
(quasi)conformal structure itself can defined on X by a sheaf of this kind of
maps from U ⊂X to R2. But the following test question remains open.

For which m and n >m does Rn admit a smooth c-quasiconformal submer-
sion to Rm with bounded image?

Quasiconformality in Positive Codimensions. There is no geometric obstruc-
tions for immersions f ∶ Y m → Xn with a prescribed infinitesimal geometry for
m < n52 and in order to have a nontrivial constrain on f , one need to augment
quasiconformality by another geometric condition.

52It may be sometimes useful, e.g. in the study of the ideal boundaries of hyperbolic spaces
(see section 2.13) to define a (quasi)conformal structure in X via (quasi)conformal maps of
surfaces to X.
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A known condition of this kind is quasiminimality of (the image of) f that
says that for all domains V ⊂ Y the volumes of all m-dimensional subvarieties
W ⊂X with the boundaries ∂V equal to f(∂(Ω)) satisfy

volm(W ) ≥ c ⋅ volm(f(V )) for some c = c(f) > 0.

A pleasant local criterion which quarantines quasiminimality is taming (qua-
sicalinbration) of f by an exact differential m-form ω = dλ, where λ is (prefer-
ably) a bounded form, supx∈X ∣∣λx∣∣ < ∞, where "taming" means that the in-
duced form f∗(ω) is bounded from below in terms of the volume form Rf for
the Riemannian metric on Y induced by f ,

∣f∗(ω)∣ ≥ c∣Rf ∣, c > 0.

The most popular instances of such forms ω are powers of the symplectic Kähler
forms ω on complex manifols X which calibrate (hence, tame) holomorhic maps
to X. Such forms are not, in general, differentials of bounded forms (or of
any forms at all), but if ω is such a differential, then, by Ahlfors lemma, (see
distKob-non-degeneracy proposition in section 2.12) X is Kobayashi hyperbolic
(compare [56]).

Also the graphs Γf ∶ Y → Y ×X of equidimensional locally orientation pre-
serving quasiconformal maps between oriented Riemannian manifolds, Y → X,
are tamed by the sum of the oriented volume forms on X and on Y . In fact
quaisconformality is equivalent to this taming property if X is orientable.

Question. Probabaly, taming is the only class of functional local criteria
that would visibly enhance the quasiconformality condition for maps f ∶ Y →
X with positive codimension. But are there miningful global criteria besides
quasiminimaliy, such as lower bounds on the filling radii of the f -images of
spheres from Y ?

1.10 Old Problems and New Perspectives.
In the above sections, we summarised several aspects of hyperbolicity in

four domains:
dynamics, Riemannian geometry, group theory,

geometry of mappings.53

These "aspects" had acquired their present shapes by the late 1970s, but the
basic issues had remaining unresolved.

I. Is there a general theory such that the hyperbolic patterns
seen in these four domains would appear as special cases of
constructions and phenomena in this theory?

II. What are the most general/natural (category theoreti-
cal?) concepts behind constructions and properties of
hyperbolic objects individually in each of these domains?
What are classes of mathematical objects (categories?)
where it make sense to speak of hyperbolicity?

53One also encounters hyperbolicity in algebraic geometry where it is manifested by the rate
of growth of genera of curves of degrees d → ∞ and in arithmetic where it is associated with
bounds on the numbers of K-rational points of algebraic varieties. Since I feel incompetent
in these matters, I refer to [81] where one can learn about it.
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III. What are sources of hyperbolicty? What are the
essential/potential pools of examples of hyperbolic
objects?

IV. Which classes of hyperbolic objets are classifiable?

V. What is relative hyperbolicity? What are hyperbolic
morphisms. What are (functorial?) hyperbolic
constructions?

VI. What are invariants which portray hyperbolic features of
hyperbolic as well as of non-hyperbolic objects?

VII. What is the boundary of the realm of hyperbolicity and
what happens at this boundary?

In what follows, we describe a few concepts and results in hyperbolicity,
mainly developed since the 1970s. We try to do this in the most general (regr-
ertfully, not in purely category theoretical) terms, which, we think, may bring
us a step closer to approaching the above seven questions.
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2 Negative Curvature and Hyperbolic Spaces.
Perceiving the "true nature" of a class C of mathematical objects, such as hy-
perbolic spaces or a larger class of metric spaces, depends on simultaneous
resolution of the two complementary problems.
g Choosing a language which would allow a simple logically/conceptually perfect

definition of C, possibly more general that the commonly used one.
`, _, ^. . . Uncovering pools of the examples of mathematically/aesthetically

attractive objects from C, often with unexpected properties, e.g. with an abnormal
symmetry.

2.1 Induced Metrics, Lipschitz Maps, Pythagorean Prod-
ucts, Amalgamation, Localization and Scaling of Met-
rics, Minimal Paths and Geodesic Spaces.

We do not exclude metrics which assume zero and infinite values at some pairs of
distinct points, but when we say metric space we do make non-zero and finiteness
assumption.

Induced Metrics f∗(dist) Isometric Maps. Admitting zero values allow us to speak
of metrics induced by (not necessarily injective) maps f ∶ X → (Y, distY ) where the
induces metric on X is

f∗(distY )(x1, x2) = distY (f(x1), f(x2)).

If X is also a metric space, f is called isometric, if f∗(distY ) = distX , where the
word isometry is reserved for bijective isometric maps, or, better to say to isomor-
phisms in the category metric spaces and isometric maps.

Metric Lipschitz Categories ML{λ} and ML1. A map between metric spaces,
f ∶X → Y , is called λ-Lipschitz, λ ≥ 0, if the induced metric satisfies:

f∗(distY ) ≤ λ ⋅ distX .

A λ-Lipschitz map f is called λ-bi-Lipschitz, if it is one-to-one and the inverse map
from the image of to X is also λ-Lipschitz.

Spaces X and Y are called λ-bi-Lipschitz (isomorphic) if there exists a bi-Lipschitz
bijection between them.

Since λ’s multiply under composition of maps, metric spaces and λ-Lipschitz maps
make a R×

+-graded category, call it ML{λ}, where 1-Lipschitz, i.e. (non-strictly) dis-
tance decreasing maps constitute a subcategory denotedML1.
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Much (but not all) of metric geometry can be expressed in terms of this category.
For instance, isometries between metric spaces can be defined as isomorphisms in
ML1.

Geodesics. Another usefulML1-expressible concept is that of aminimizing geodesic
in X defined as a 1-Lipschitz map of a segment [a, b] →X, such that

distX(f(a), f(b)) = ∣a − b∣.

(Such maps, of course, are necessarily, isometric.)
Thus, geodesic metric spaces X, where all pairs of points are joint by a minimizing

geodesic are those where
the 1-Lipschitz maps from subsets A ⊂ R admit 1-Lipschitz extension to R.
Graphs and Trees. The basic examples of geodesic spaces are metric graphs, with

assigned length values to the edges and where the distances are defined as the lengths
of the shortest paths between pairs of points. The simplest, yet by no means trivial
among these are trees X, where all pairs of points serve as the ends of unique; hence,
lengh minimizing, topological segments in X.

As we shall see in section 2.3 the essential properties of graphs and trees extend
to high dimensional spaces with generalised curvatures κ ≤ 0.

Notice in passing – this is an easy exercise – that metric trees X enjoy the universal
Lipschitz extension property:

the 1-Lipschitz maps Y ⊃ A→X extends to 1-Lipschitz maps Y →X for all
metric spaces Y and all A ⊂ Y .
Scaling and Parametric Scaling. Multiplication of the distance function of a metric

space X = (X,dist) by a consant λ > 0 is a functorial operation inML{λ} and inML1,
denoted

×λ ∶X ↦ λX = (X,λ ⋅ dist).
More generally, given a positive function λ = λ(d) > 0, d ≥ 0, let the correspondingly

scaled space λ(d)X carry the metric

λ(dist(x1, x2))dist(x1, x2),

where this λ(dist) ⋅dist is a true metric, i.e it satisfies the triangle inequality, provided
the function λ(d) is monotone decreasing.

Product of Metric Spaces. The only metric in the Cartesian product of metric
spaces X = X1 ×X2 that makes X a product in the categoryML1 (as well as in the
isometric maps category) is the sup-metric.

distX((x1, y1), (x2, y2)) = sup(distX1(x1, y1), didstX2(x2, y2)),

where we say "sup" rather than "max" to allow infinite products ⨉iXi.
In general, given a positive function in two variables, say l(d1, d2), d1, d2 ≥ 0, the

corresponding distX = l(distX1 , distX2) may be taken for a metric in X, if l satisfies a
certain sublinearity condition that would guarantees the triangle inequality for distX .

An instance of such an l is the lp-function (dp1 + d
p
2)

1
p , p ≥ 1, where the most

beautiful one is the Pythagorean
√
d2

1 + d2
2.

Observe – this is obvious but significant – that the full set of the inequalities on l
expressing the above mentioned sublinearity follows from the triangle inequalities for
l(distX1 , distX2) for all 3-point metric spaces X1 and X2.

Sup-Amalagamation, Localization and Path Induction of Metrics. Given
metrics disti on subsets Ui ⊂X, define the sup-amalgamated metric

∐
i∈I
disti
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on X as the supremum of the metrics which are majorized by disti on the subsets Ui.
Given a metric space X = (X,dist), let distloc be the metric on X that is the

supremum of the sub-amalgamations∐i∈I disti, where disti are the restrictions of dist
to subsets UI ⊂ X and where and where the supremum is taken over all open covers
{Ui} of X.

Example: Localization versus Parametric Scaling. The metric obtained from dist
by parametric scaling obviously have their liocalizations equal to that of dist itself.

The localization of the induced metric on a Y mapped, e.g, embedded, to a metric
space X is called the path induced metric on X.

If, for instance, f is a smooth map between smooth manifolds and dist on X is
Riemannian, e.g, if X = Rn, then the path induced metric on Y is everywhere < ∞.
But, these metrics are everywhere infinite for generic continuous maps.

Path Metric Spaces. The metrics dist on X for which distloc = dist are called
localized and if X is path connected these are called path metrics, since the distances
between points in such a metric are equal to the infima of the lengths of the paths
between these points.

Accordingly, path connected spaces X with localized metrics are called path metric
spaces or length spaces.

If these infima are assumed by some paths that serve as minimizing geodesics
between the corresponding points and then

Thus, locally compact complete path metric spaces X are, in fact, geodesic spaces.
but this not true for complete metric spaces in general. However, the path property is
as good as the geodesic one for most practical purposes.

If X is a connected localized metric space then locally λ-Lipschitz maps X → Y
(obviously) are λ-Lipschitz for all metric space Y . And if Y is a geodesic space, e.g.
Y = [0,1], then the the converse is also true (and obvious).

In fact, a connected metric space is localized if and only if the 1-Lipschitz functions
X → [0,1] constitute a subsheaf (rather than a sub-pre-sheaf) in the sheaf of all
functions on X.

Coproducts/Amalgamation. Given isometric maps Y → X1 and Y → X2 with the
images Yi ⊂ Xi, i = 1,2, define the coproduct alsso called amalgamation of Xi over
(under?) Y

X =X1∐
Y

X2 =X1 ∐
Y1↔Y2

X2

by gluingX1 withX2 along Yi, i = 1,2, via the isometry Y1 ↔ Y2 which the composition
Y1 ↔ Y ↔ Y2 and by endowing the resulting set X with the sup-amalgamation of the
metrics distXi .

This, indeed, is a coproduct in the category of path metric spaces and 1-Lipschitz
maps.

Multiple Amalgamations. Let Xi, i ∈ I, be an arbitrary set of metric spaces, and
let

Xi ⊃ Yi ↔
fij

Yj ⊂Xj

be a set of isometries between certain subsets Yi ∈ Xi. If the graph G on the vertex
set I and with the edges corresponding to the arrows fij is acyclic, then the set

X = ∐GXi obtained by gluing all fij-corrspomnding points, xi ↔
fij

xj is covered

by copies of Xi and one equip the resulting set X – amalgamation of Xi – with the
sup-amalgamation distX of the metrics distXi .

And if G is a tree, i.e. it is connected as well acyclic, then distX < ∞ and (X,distX)
is a bona fide metric space.

g [U] Uryson’s Amalgamation. Albeit the above X1∐Y X2 is not a true coproduct
in the category of metric spaces and isometric maps, it serves for construction of
universal (category theoretically injective ) objects U in this category as follows.
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Let I be a set of metric spaces Xi and F be a set of isometric maps between them
(which do not necessarily constitute a category). Let G be the directed graph on the
vertex set I with the arrow-edges corresponding to fij ∈ F .

Let G̃ be the universal covering of this graph and let Ĩ and F̃ be the corresponding
sets of spaces and maps.

Since this graph is acyclic, the amalgamation

U =∐
G̃

Xĩ,

where the directions of the arrows f̃ij are forgotten, is correctly defined and and,
endowed with the sup-amalgamation distU of distX̃ ., the space U is called the Uryson
amalgamation of {Xi, fij}.

For example, let {Xi} be a countable set of finite metric spaces, which contains
isometric copies of all finite spaces with rational distances, and let F be the set of all
isometric maps between these Xi.

Then the metric completion U of Uryson’s amalgamation of these Xi is a complete
separable54) metric space, called Uryson universal metric space, which is characterised
by the universal extension property of isometric maps:

the isometric maps X ⊃ Y → U extends to isometric maps X → U for all
compact metric spaces X and all Y ⊂X.
In categorical terms , the isometric arrows Y → U and X ← Y can be completeed

to commutative diagrams of isometric maps.
X Y

U
To get a feeling for the geometry of Uryson’s U , look at a simple example where Xi

are integer real segments [m,n] ⊂ R, m,n ∈ Z, and F is the set of integer translations
[m1, n1] → [m2, n2] and of their compositions with the reflection x↦ −x.

In this case U is a tree with countably many branches at every vertex and with all
edges of unit length.

The universal extension property now concerns isometric maps of finite trees A with
unit edges to U which send vertices to vertices: these extend to such maps X → U of
all finite ambient trees X ⊃ A with unit edges.

Metric Spaces as setF -Functors. Many properties of metric spaces are expressible
in terms of finite subsets in them that suggests a view on general metric spaces as
functors F from a small categoryM of finite metric spaces to the category of sets. For
instance, such a use of a category M that contains all isometry classes of finite metric
spaces may provide an adequate language for the Hausdorff limits and ultra limits of
metric spaces.

But one needs much smaller category M to define the (generalised?) metric struc-
ture, for instance the category M2,R, where the pairs of real numbrs {a, b} are taken
for the objects, suffices.

What makes a functorial representation of metric spaces viaM2,R pleasantly attrac-
tive is that the triangle inequality is functorially elevated to a map between set-values
of the functors F from M2,R to sets:

setF {a, b} × setF {b, c} → setF {a, c}.

(This makes one think of these pairs {a, b} as of morphisms a→ b.)
One can only wonder if there are interesting geometric representations of such

functors besides metric spaces and if there are categories similar to M2,R leading to
worthwhile generalizations of the category of metric spaces.

54Separable means admitting countable dense subset.
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2.2 Standard Hyperbolic Spaces and their Small Brothers.
The general hypebolic theory departs from classical hyperbolic spacesHn

R , n = 0,1,2, . . .
which are members of a one parameter family of standard n-dimensional spaces of con-
stant curvatures κ ∈ (−∞,+∞) that are divided into three classes according to the sign
of κ.

[κ > 0]. The standard n-spaces of positive curvatures κ are n-spheres, where the
usual Euclidean realization of such a sphere in Rn+1 has radius 1√

κ
.

(Circles of lengths 2π/√κ, κ > 0, are regarded in this contex as standard 1-
dimensional spaces of curvature κ.)

[κ = 0]. The standard spaces with zero curvatures are the Euclidean Rn.
[κ < 0]. The standard spaces with negative curvatures κ are the hyperbolic spaces.

The standard spaces X carry natural geodesic distance functions and much (all?)
of what we care about these X and relations between them can be expressed in the
language of metric spaces as it is briefly indicated below.

Scaling and Curvature. The λ-Scaling X ↦ λX, λ > 0, transforms standard
spaces X with curvatures κ to standard spaces with curvatures κ/λ2, where λX is
isometric (better to say isomorphic) to X if and only if κ = 0.55

Isometric Maps, Planes and Lines. If X1 and X2 are standard spaces of the
same curvature κ then X1 admits an isometric, i.e. distance preserving, map to X2

if and only if dim(X1) = m ≤ n = dim(X2); if 1 < m < n, the images of these maps
are called m-planes; if m = 1 they are called lines and if (n − 1)-planes are called
hyperplanes.

These planes satisfy the familiar Euclidean property:
Every (m+1)-tuple of points in a standard n-dimensional space is contained in an

m-plane, which is unique unless these points are contained in an (m − 1)-plane.
Equidistorting Maps and Equidistorted Hypersurfaces. There is no isometric maps

between standard spaces with different curvatures56 but there are equidistorting maps
f ∶ Y →X, which parametrically scale our metrics:

f∗(distX) = λ(d)distY for some function λ(d).

Such an f is called normalized if λ(0) = 1, which is equivalent to f being path
isometric, i.e. having the path induced metric equal the original distY .

If dim(Y ) +m < n = dim(X) a normalized equidistorting map f ∶ Y → X exists if
and only if the curvatures κ′ of Y and κ of X satisfy κ′ ≥ κ, where the equality κ′ = κ
implies that such an f is isometric.

Every equidistorting f can be normalized by rescaling Y ↦ λ(0)Y (or by X ↦
λ(0)−1X) that does not change the image of f .

The images of codimension one, m = n− 1, equidistorted maps called equidistorted
hypersurfaces, play a special role in the geometry of Y .
r These hypersurfaces, call them Y ′ ⊂ X are complete convex which means they

serve as boundaries of closed (possibly unbounded) convex subset V ⊂ X, where the
latter convexity means that the path induced metrics in these V is equal to the induced
ones.

In fact, the hypersurfaces Y ′ are strictly convex unless the curvatures κ′ of the
path induced metrics in them are equal to the curvature κ of X in which case Y ′ are
(flat undistorted ) hyperplanes.

55Albeit 1-dimensional hyperbolic spaces H1(κ) are all isometric to the real line R1, they
neither isomorphic to R1 nor they are mutually isomorphic for different κ < 0 in the present
context.

56We disregard such maps for m = 1 for the reason indicated in the previous footnote.
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There are three kinds of equidistorted hypersurfaces in n-dimensional hyperbolic
spaces X.

(1) (n − 1)-Spheres which are the boundaries of the balls.
(2) Horospheres, which, with the path induced metrics in them, are isometric to

Rn−1.
(3) Equidistants to hyperplanes Y0 ⊂X, where such an equidistant Y ′ ⊂X has the

distance function dist(y′, Y0) constant in y′ ∈ Y ′.57

In general, both δ-equidistants Y ′
±δ ⊂ X of any equidistorted hypersurface Y ′ ⊂ X,

i.e. which have distX(x,Y ′) = δ and which lie on the two sides from Y ′, say Y ′
−δ is

inside the convex set V bounded by Y ′ and Y ′
+δ outside,58 are also equidistorted.

For instance, the δ-equidistants of spheres of radii r are the concentric spheres of
radii r ± δ (the interior ones dissaper for δ > r) and the ±δ-equidistants of horospheres
(these can be thought of as spheres of infinite radii) are again horospheres for all δ ≥ 0.

Exponential Expansion.

s r. Given two δ-equidistant equidistorted hypersurfaces Y1 and Y2 in a standard
space X, there is a unique bijective map

Y1 ←→ν = νδ Y2, where y1 ←→ν = νδ y2 if and only if distX(y1, y2) = δ.

This ν, called normal map, scales the metrics in Y ’s, namely, the metrics distY1 and
distY2 brought by ν to the same Y satisfy

distY1 = λ12distY2 where λ12 is a positive constant.

In general, λ12 ≠ 1, i.e. f is not isometric. In fact, it is isometric if and only if
Y1 = Y+δ and Y2 = Y−δ for a hyperplane Y ⊂X.

If the ambient space X is not a sphere, i.e. it has curvature κ ≤ 0, if Y1 is strictly
convex and Y2 is the exterior δ-equidistant of Y1 (i.e. outside V with ∂V = Y ), then
λ12 > 1 for all δ > 0.

And if κ < 0, then the path induced metrics of the exterior equidistants satisfy

distY+δ ≥ (1 − ε(δ))(exp δκ2) ⋅ distY where ε(δ) → 0 for δ →∞,

for all equidistorted hypersurfaces Y ⊂X.
(The factor 1 − ε(δ) < 1, which is essential for flat Y , is unneeded for spheres

and horospheres: equidistants to horospheres Y ⊂ X satisfy the equality distY+δ =
(exp δκ2) ⋅ distY and spheres enjoy the strict inequality distY+δ > (exp δκ2) ⋅ distY .)

This exponential expansion inequality is our main guide in working out a general
concept of hyperbolicity.

2.3 Negative Curvature According to Alexandrov, Buse-
mann, Pedersen and Bruhat-Tits.

In late 1940’s-1950’s, Alexandrov, Busemann and Pedersen introduced three different
classes of geodesic metric spaces X with generalized curvatures ≤ 0.

[κ ≤ 0]1, Pedersen’s Tube Convexity. [93]: ε-neighbourhoods of geodesic
segments G in X are geodesically convex.

That is if two points in X have distances≤ ε from a G, then all geodesic segments
between these points also lie within distances≤ ε from G;

57Unlike the Euclidean case, the δ-equidistants to hyperplanes in hyperbolic spaces are
strictly convex for all δ > 0.

58This V is non-ambiguous for strictly convex Y ′ but flat Y ′, i.e. hyperplanes, divide X
into two half-spaces, say V±, which are both (non-strictly) convex and have ∂V+ = ∂V− = Y ′.

These V± are indistinguishable: there exists a unique involutive isometry of X which inter-
changes V+ ↔ V− while keeping Y ′ fixed.
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[κ ≤ 0]2, Busemann’s Convex Spaces [?]: The distance function is geodesically
convex.

This means that
the restrictions of the distance function distX ∶ X ×X → R to the products of the

pairs of the geodesic segments G1 = [a1, b1] and G2 = [a2, b2] in X are convex (meaning
⌣) functions on these products G1×G2 ⊂X ×X which are isometrically identified with
the rectangulars [a1, b1] × [a2, b2] ⊂ R2.

[κ ≤ 0]3, Alexandrov’s CAT (0)-Spaces [6] The distance functions dy ∶ X → R
for dy ∶ x ↦ distX(x, y) restricted to the geodesic segments G ⊂ X are more convex,
for all y ∈ Y , than the corresponding distance function in the plane R2.

This means that if the values of d = dy at the ends a and b of a segment G = [a, b]
are equal to these values of an R2-distance function d′, then d ≤ d′ on [a, b].

Observe that Alexanfrov’s [κ ≤ 0]3 says, in effect, that certain 4-point metric spaces
admit no isometric maps to X and Bisemann’s [κ ≤ 0]2 is of the similar prohibitive
nature for certain 6-point spaces.59 But Pederson’s [κ ≤ 0]1, at least in its present
form, admits no such finitary description, besides, the definition of the distance to
a geodesic segment depends on an existential quantifier.60 Yet, it is obvious that
[κ ≤ 0]1 ⇐ [κ ≤ 0]2.

On the other hand the implication [κ ≤ 0]2 ⇐ [κ ≤ 0]3, which amounts to an
upgrading the convexity of dist(x, y) in x and y separately to the convexity in two
variables, is more subtle and it, probably, fails for the ordinary geodesic convexity. (I
did not try making counterexamples.)

But Alexandrov’s strong convexity in x, which, by definition, stronger than that of
the distance in the Euclidean plane, does imply such strong convexity in two variable
by a simple argument, which, however, relies on the existence of minimizing geodesics
[4].

From Local to Global: Cartan-Hadamard Theorem.

All three definitions of κ ≤ 0 have their local counterparts, where each point in
X admits a neighbourhood U ⊂ X, such that the κ ≤ 0 convexity condition holds for
points and geodesic segments contained in U and

local [κ ≤ 0]i integrates to [κ ≤ 0]i one for the simply connected spaces X.
Namely, the (generalized) Cartan-Hadamard theorem, proven under somewhat

different sets of assumptions in [26], [93], [6] and [3], says that
if a geodesic metric space X is locally [κ ≤ 0]i, 1,2,3, then the universal covering

X̃
is [κ ≤ 0]i.

On the surface of things, there are by far more Busemann’s convex [κ ≤ 0]2-
spaces than Alexandrov’s [κ ≤ 0]3 that are CAT (0). For instance, all strictly convex
Banach spaces61 are Busmann’s [κ ≤ 0]2 but only the Hilbertian one among them are
Alexandrov’s CAT (0).

And some naturally occurring Pedersen’s [κ ≤ 0]1-spaces, notably convex Euclidean
domains B with the projective Hilbertian metrics, are not [κ ≤ 0]2, unless B is an
ellipsoid [93].

But the predominant majority of spaces with κ ≤ 0 which one encounters in ge-
ometry are Alexandrov’s CAT (0) = [κ ≤ 0]3.

62 Apparently, all (known?) locally

59The original Busemann’s definition rules out certain 5-tuples of points.
60The geodesity condition also uses an existential quantifier, but, at least in Alexandrov’s

case, this can shoveled under the rug, see [4].
61One can slightly generalize Buseman’s definition of convexity to include all, possibly non-

strictly convex, normed spaces, i.e. those where the spheres contain straight segments.
62One may disagree with this, especially when it comes to non-locally compact infinite
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[κ ≤ 0]1-manifolds and polyhedra can be rendered [κ ≤ 0]3 by a simple modification
of their constructions. For instance, the classes of groups that serve as fundamental
groups of, say topologically polyhedral, locally [κ ≤ 0]1 spaces, probably(?), doesn’t
depend on i = 1,2,3,.63

The most prominent CAT (0), besides the Euclidean/Hilbertian spaces Rn, n =
1,2,3, .....∞, are
K metric trees X, where the path metric on such an X is defined by assigning the

length values to its segments, and
c the spaces eN = SLN(R)/SO(N), N = 2,3, . . . , of ellipsoids of volume one in

RN centerd at 0, which serve as the unit balls of the Euclidean metrics which are the
positive definite quadratic forms on RN with discriminants one.

These eN are endowed with Riemannian metrics invariant under the action of
the special linear groups SLN(R), where such a metric on eN is (obviously) unique
up to scaling.

Next come other
irreducible symmetric space X of noncompact types,64

such as the hyperbolic spaces Hn
R , H

n
C and Hn

H which we met earlier (where the hyper-
bolic plane H2

R is isometric to e2.)
All these X admit isometric embeddings toeN with large N = N(X). Conversely,

the complete Riemannian manifolds which admit isometric embeddings to eN are,
possibly reducible, symmetric spaces65 with κ ≤ 0.

[κ ≤ 0]-Operations: Products and Coproducts.

The classes [κ ≤ 0]1 and [κ ≤ 0]2 as well as their local versions of spaces X are
(this is obvious) stable under lp-products:

the metric (distpX1
+ distpX2

)
1
p in the Cartesian product X = X1 ×X2 of [κ ≤ 0]i-

spaces is [κ ≤ 0]i if i = 1,2 for all p > 1.
But the (local as well as of global) class of (local as well as of global) [κ ≤ 0]3, i.e.

CAT (0), is closed only under (finite and infinite) Pythagorean products, i.e. where

distX =
√
dist2X1

+ dist2X2
.

This seemingly innocuous, this product operation significantly enriches the ge-
ometry of spaces as it is already seen in the case of the Euclidean spaces which are
Pythagorean products of lines. A less familiar example is that of the (finite and infi-
nite) Pythagorean products of metric trees which have a beautifully elaborated, still
not fully understood, CAT (0)-geometry.

Instance of a Question. What kinds of countable, in particular finitely presented,
groups Γ can isometrically, (discretely and non-discretely) act on products of trees?

Convex Amalgamations. Recall that coproducts/amalgamations are obtained by
gluing metric spaces, say X1 with X2, by isometries between subsets in them,

X1 ⊃ Y1
iso←→ Y2 ⊂X2,

where the corresponding coproduct

X =X1 ∐
Y1↔Y2

X2

dimensional X, such as Banach spaces, for instance.
63It my be instructive to check this for projectively flat manifolds.
64Noncompact type in this context is synonimous to κ ≤ 0.
65This reducible means decomposable into a Cartesian/Pythagorian product, such as Rn,

for n ≥ 2, for instance.
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is endowed with maximal metric that is equal to distX1,2 on X1,2 ⊂ X, i = 1,2 (see
section 2.1).

If the spaces X1 and X2 are [κ ≤ 0]i-for an i = 1,2,3, and the subspaces Y1,2 are
geodesically convex, which is equivalent to be images of isometric embeddings from
a path isometric (necessarily [κ ≤ 0]i) space Y to X1 and X2, then one expects the
coproduct,

X =X1 ∐
Y1↔Y2

X2 =X1∐
Y

X2 =X1 ∐
Y⇉X1,2

X2

to be also [κ ≤ 0]i, since reflection of geodesics off convex subsets makes them diverge
only faster.

I am not certain if this has been verified for Pedersen [κ ≤ 0]i, but the validity of
this cases [κ ≤ 0]2 and [κ ≤ 0]3 are easily confirmed in the local and global cases, where
this is shown by observing that convexity of function d1(x1, y) and d2(x2, y) implies
that for

d(x1, x2) = inf
y∈Y

(d1(x1, y) + d2(x2, y))

where the supremum is taken over a convex domain Y . This is immediate for the
ordinary geodesic convexity (Buseman’s [κ ≤ 0]i) where it follows from the convexity
of projections of convex sets, and it is slightly harder for the stronger [κ ≤ 0]3-convexity
of Alexandrovs CAT (0) spaces, where the proof was given by Reshetnyak in 1960, see
[4]).

Alexandrov’s CAT (κ)-Spaces for κ ≠ 0. The concept of a metric space X with
curvature bounded from above by 0 generalizes to an arbitrary number κ by replacing
R2 in the above [κ ≤ 0]3-definition by the standard plane with curvature κ, i.e. by
requiring the distance function in X to be more convex than the distance in the two
sphere or radius 1/√κ for κ > 0 and/or in the hyperbolic plane with curvature κ < 0.

The basic examples of these are the following.
Graphs A non-simply connected metric graph X is CAT (κ) for a κ > 0 if and only

if all cycles in X have lengths ≥ 2π/√κ, while the trees are CAT (−∞), i.e. CAT (κ)
for all κ.

Alexandrov’s Cones. Normal cones66 over CAT (1)-spaces are CAT (0).
If a geodesic metric space X is locally CAT (0) in the complement to a point x0 ∈X

and if X is conical at this point then
X is locally CAT (κ) if and only if the base L of the cone is CAT (1).
This generalizes to κ ≠ 0 as follows.
Let X be a geodesic metric space X which is locally CAT (κ) in the complement

to a point x0 ∈ X and which is asymptotically conical at x0: the scaled spaces λX
Hausdorff (ultra) converges (see 2.7) for λ → ∞ to a normal cone over some metric
space L.

Then X is CAT (κ) if and only if L is CAT (1). (see [?] [4])
Question. What are the geometries of the bases of conical [κ ≤ 0]i-spaces for

i = 1,2?
1
≥6 -Complexes.67 Let X be a 2-dimensional simplicial polyhedron (complex)

where each 2-simplex ∆ is endowed with the metric of the regular unit triangle, say

66To get a fair picture of normal cones C over L, assume that L is path isometrically
imbedded to the unit sphere SN ⊂ RN+1 and take the ordinary cone with the apex 0 ∈ RN+1

made of the straight segments [0, l] ⊂ Rn+1, l ∈ L. If L is a smooth closed curve, such a cone
with the induces path metric is flat Euclidean away from the apex. It is CAT (0) (as well as
[κ ≤ 0]i=1,2) if and only if this curve has length ≥ 2π.

67This is, morally, the same 1
6
as the one appearing in the small cancellation theory (see

1.5), but the precise meaning of this "morally" remains unclear.
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of size ε, in the standard plane of curvature κ ≤ 0, i.e. in R2 for κ = 0 and in the
hyperbolic plane of curvature κ < 0.

Let the links with the angular metrics at the vertices of X be CAT (1), i.e. they
have lengths ≥ 2π.

(If κ = 0 this is equivalent to all cycles in these links to contain at least 6-edges
and if κ < 0 and ε is small, say ε ≤ 0.1κ2, the links are CAT (1) if these cycles contain
at least 7-edges.)

Since X is locally conical for the polyhedral metric (that is the sup-amalgamation
of the standards metrics in ∆ ⊂X), the CAT (1)-condition for the links implies that X,
is locally CAT (κ) and the universal covering X̃ of X is CAT (0) by Cartan-Hadamard
theorem.68

Uryson’s CATs and Bruhat-Tits Buildings. Let A be a standard space of
constant curvature κ, let Γ be a discrete isometry group of A and let ∆ be a convex
polyhedral fundamental domain of Γ. Let {Xi} be the set of convex unions of Γ-
translates of ∆ and F be the set of maps fij ∶ Xi → Xj , Xi,Xi ⊂ A, which are
isometries from Γ restricted to Xi and which move Xi to Xj .

The resulting Uryson amalgamations Ũ = ŨΓ,∆, defined via the universal coverings
G̃ of the graphs G of fij-arrows (see 2.1) are CAT (κ), by Reshetnyak’s amalgamation
theorem. (This theorem is valid for all κ, [4].)

For instance, if A = Rn, Γ = Zn an ∆ = [0,1]n ⊂ Rn, then the resulting Ũ are
isometric to products of trees.

Among these Ũ one distinguishes those which can be called Uryson’s Γ-buildings,
where ∆ ⊂ A is a convex simplex and Γ is generated by reflections of ∆ in the faces.

What we call here buildings are a spaces B which are obtained by convex amal-
gamation of copies of A, which admit isometric embeddings into some Ũ and such
that

● B ⊂ Ũ are union of copies of ∆, which are called chambers in this context.
● every two chambers in a B are contained in an apartment – a copy of A in this

parlance.
Besides, one often imposes some symmetry conditions B that, in particular, imply

that the isometry group of B is transitive on the pairs (A,∆), where A is an apartment
and ∆ ⊂ A is a chamber in it, [?] [?].

Two Perspectives on Singular Curvature. The apparent motivation of Alexandrov
in introducing his curvature inequalities ≤ κ69 was axiomatic scrutiny of the concept
of curvature and recapturing basic properties of curvature in the synthetic terms of
angular inequalities of geodesic triangles mimicking these for geodesic triangles in
surfaces, while Busemann’s idea of curvature≤ 0 was, probably, inspired by the Banach-
Minkowski geometries.

Extension of Distance Decreasing Maps to CAT (κ)-Spaces.

A difference between CAT (0) and alternative concepts of negative curvature is
demonstratively visible in the following, category theoretically attractive, property of
Alexandrov’s spaces.

K.L.S. Lipschitz Extension Theorem. Let X+ and X− be complete geodesic
metric spaces where

X+ is Alexandrov’ s space with curvature ≥ κ+; 70

68I am not cerain on what happens for κ > 0.
69Alexandrov also introduced the mirror siblings of his CAT (κ)spaces where the distance

functions are more concave than these in the standard spaces of curvature κ.
70You do not loose much if you assume that X+ is a Riemannian manifold with the sectional

curvatures bounded from below by κ+. In fact, the theorem is significant already where X+ is
the standard space with constant curvature κ ≥ κ+, e.g. X+ = Rn in the case κ+ = 0.
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X− is Alexandrov’s CAT (κ−), i.e. with curvature ≤ κ−, where in the case of κ− > 0
we additionally assume that all geodesics in X− are distance minimizing.71 (This is
always so for κ− ≤ 0.)

If κ+ ≥ κ−, then all 1-Lipschitz maps from subsets Y ⊂ X+ to X− extend to 1-
Lipschitz maps X+ →X−.

This was proven by M.D. Kirszbraun72 in 1934 for Euclidean spaces, that is for
κ+ = κ− = 0, and extended by Lang and Schroeder in 1997 to all CAT -spaces [74],[4].

At the heart of the proofs in the Euclidean and non-Euclidean cases, lies charming
Kirszbraun’s rigidity lemma a leading case of which is formulated below in a dual form.

Let ∆,∆′ ⊂ Rn be convex n-simplices with (flat) (n-1)-faces denoted Fi ⊂ ∆ and
F ′
i ⊂ ∆′, i = 1,2, ..., n + 1, such that the dihedral angles between these faces satisfy

∠(Fi, Fj) ≥ ∠(F ′
i , F

′
j), i, j = 1,2, ..., n + 1.

Then, in fact, ∠(Fi, Fj) = ∠(F ′
i , F

′
j).

Side Questions. What are convex polyhedra Q besides simplices with a similar
dihedral angles rigidity property?

Which Q admit and which do not admit deformations Q′ where the flatness of the
deformed faces F ′

i ⊂ Q′ is relaxed to positivity of their mean curvatures and such that
the dihedral angles between the (tangent spaces of the) pairs (F ′

i , F
′
j) of adjacent faces

are smaller than the angles between the corresponding faces Fi and Fj in Q? (See [?]
for partial answers.)

Alexandrov and Busemann felt uncomfortable with the singularities allowed by
their own definitions and tried to compensate by adding regularity conditions, such as
lower bounds on the curvature (Alexandrov’s school) and by the uniqie continuation
of geodesics (Buseman’s G-spaces).

Besides, it seems that Busemann, Alexandrov and their disciples were not inter-
ested in (aware of?) possibilities of particular geometries of concrete spaces, such as
symmetric spaces and polyhedra with curvatures≤ κ: trees, 1

6
-complexes – none of

these are ever mentioned in their papers.73

In 1972, two decades after Busemann (1948) and Alexandrov(1951), Bruhat and
Tits have arrived at curvature≤ 0 from an opposite direction: they discovered/constructed
a new class of spaces – affine buildings – comparable in their beauty to symmetric
spaces. And albeit Bruhat and Tits established basic κ ≤ 0-properties of their build-
ings, these were not recognised at the time as Alexandrov’s CAT (0). And a bit later,
Tits introduced spherical buildings which, a posteriori, were classified as CAT (1).

Thus, Busemann (generalized by Pederson, 1952) and Alexandrov contributed to
the development of [κ ≤ 0]-theory by introducing the basic concepts and proving
essential prperties of axiomatically defined spaces with negative curvatures while the
worthwhile classes of such spaces were furnished by 2d-polyhedra underlying small
cancellation groups of Tartakovskii (1947) and by Bruhat-Tits buildings.

2.4 CAT (κ)-Orbispaces and CAT (κ)-Constructions.
Ramified Coverings. The leading example of what we call a ramified coverings
between topological spaces is the quotient map X̃ →X = X̃/Γ where Γ is a group that

71This condition cannot be dropped, but, possibly, can be relaxed.
72Über die zusammenziehende und Lipschitzsche Transformationen. Fund. Math. 22: 77-

108.
73Singular piecewise flat metric on surfaces have been studied in Alexanfrov’s school where

the 1
6
-condition was well appreciated. However, the singular metrics on surfaces only confirm

what has been already known in the regular case – new phenomena start coming along with
advent of topologically singular spaces, such, as 2-polyhedra of the small cancelation theory.
But these were not approached in Alexandrov’s school.
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acts on X, where the action is discrete but may have fixed points.
We also allow on the roles of ramified coverings74 the maps f ∶ X̃ → X, for which

there exist
a space ˜̃X with an action of a group Γ, such that X = ˜̃X/Γ, and such that
X̃ = ˜̃X/Γ̃, for a subgroup Γ̃ ⊂ Γ, and where f is equal to the natural map

X̃ = ˜̃X/Γ̃ fÐ→ ˜̃X/Γ =X.

For instance, if f ∶ X̃ →X is an ordinary covering map, then the above works with
the universal covering of X taken for ˜̃X.

In general, f ramifies at the points in X over which f fails to be locally 1-to-1,
but what we call the ramification locus Rf ⊂X may be greater than that: it is

the union of the images of the fixed points sets of subgroups of Γ acting on ˜̃X

under the quotient map ˜̃X →X = ˜̃X/Γ. 75

In our examples, X and X̃ are path metric spaces, the actions of groups are discrete
isometric with finite or infinite isotropy groups at the fixed points76 and the maps f
are path isometric.

It follows from Reshetnyak’s amalgamation theorem, see [?] that
if X is locally CAT (κ), if the ramification locus Rf ⊂ X is locally convex and if

the pullback f−1(Rf) is locally CAT (κ), then X̃ is also locally CAT (κ).
For instance, locally symmetric spaces X of non-compact type that contain locally

convex (i.e. totally geodesic) submanifolds Y ⊂ X often (always?) admit ramified
coverings f ∶ X̃ → X with Rf = Y which provide a significant source of (singular)
CAT (0)-manifolds.

Orbistructures. An orbistructure on a topological space X is a representation of
all, sufficiently small neighbourhoods U ⊂X as quotient spaces, U = Ũ/ΓU for discrete
actions of groups ΓU on Ũ , where these representations must agree in an obvious sense
on the intersections of these neighbourhoods, [?].

An orbi-covering of an orbispace X is a ramified covering of X where the corre-
sponding quotient representation of X as ˜̃X/Γ locally agrees with the representations
U = Ũ/ΓU .

An orbicovering f ∶ X̃ → X is called universal if Ũ is connected and such that
every connected orbicovering f ′ ∶ X̃ ′ → X admits an orbicovering f ′′ ∶ X̃ → X̃ ′, such
that f = f ′ ○ f ′′,

X̃ X̃ ′ X// // &&

Universal orbi-coverings do not always exist: a connected locally contractible or-
bispace may admit no single orbicovering, but this rarely (never?) happens in the
CAT (0)-category.

Namely, define a local CAT (κ)-orbispace as a geodesic metric space X with an
orbistructure where all Ũ are endowed with local CAT (κ) metrics such that the actions
of ΓU on Ũ are isometric and where the quotient maps Ũ → U = Ũ/ΓU are path
isometric.

All known examples of local (non-pathological?) CAT (κ)-orbispaces, at least for
κ < 0, admit CAT (κ) universal coverings, where the simplest instance of this is where
the groups ΓU are trivial, U = Ũ and where the universal CAT (κ) covering is delivered
by elementary topology with CAT (κ)-condition confirmed by the Cartan-Hadamard
theorem.

74This is not the most general definition.
75This definition allows the restriction of f to f−1(R) ⊂ X̃ to be locally one-to-one.
76An instructive example of a ramified covering between CAT (0)-spaces, where such an

isotropy is infinite is the obvious map from the metric completion of the universal covering of
the punctures plane R2 ∖ {0} to R2.
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More amuzingly, every n-dimensional Brihat-Tits building X is the universal or-
bicovering of a flat n-simplex ∆ with a suitable orbistructure on it with all grops ΓU
being finite.

CAT (κ)-Orbicoverings. It is known in general [?] that

p a CAT (κ)-orbispace X, κ ≤ 0, admits the universal orbi-covering X̃, if the
actions of the groups ΓU on Ũ are rigid: if a γ ∈ ΓU fixes a non-empty open subset
in Ũ than it fixes Ũ .77

The proof of this follows in the steps of that of the (generalized) Cartan-Hadamard
theorem, but the CAT (κ)-role of p is different: Cartan-Hadamard serves to verify
the CAT (0)-condition for spaces known to be locally CAT (0) while p delivers new
local CAT (0)-spaces.

For instance, let X be an arbitrary 2-dimensional simplicial polyhedron. Then
choosing finite coverings L̃x of the links of the vertices x ∈ X defines an orbistructure
in X in an obvious way.

If these L̃x have no cycles with< 6 edges, then this structure is local CAT (0) for
the natuaral p.l. metric in X, and then the universal orbi-covering of X is CAT (0).
(See [?] for more general examples.)

CAT (−1)-Uniformization Conjecture. Every topological manifold admits a CAT (−1)
orbifold structure with finite groups ΓU .

Cubical CAT (0)-Spaces.

We conclude this section by describing yet another attractive class of CAT (0)-
spaces X, called cubical CAT (0)-spaces/complexes, where the [κ ≤ 0]-curvature con-
dition is easily verifiable and which support many interesting isometry groups acting
on them.

Such an X, say of dimension n, is covered by isometric copies of the cube [0,1]n,78
such that every two cubes in X intersect (if at all) across a common face and such that
the links L of all faces with their natural piecewise spherical geometries are CAT (1).

The pleasant feature of this class of spaces is a simple combinatorial criterion for
recognition of the CAT (1)-property:

if L and all its links contain no empty triangles,79 then L is locally CAT (1).80
.

2.5 Strict Convexity, Geodesics and Hyperbolicity Prob-
lem.

The [κ ≤ 0]1,2,3-spaces which allow zero curvatures lie on the boundary of the hyperbolic
domain; to enter this domain the strict inequality κ < 0 is required.

If i = 3, hypebolicity is furnished by Alexandrov’s CAT (κ < 0)-spaces but these
have no(?) canonical [κ < 0]1 and [κ < 0]2 counterparts.

However, albeit non-canonical, strict versions of the convexity inequalities [κ ≤ 0]1,2
achieve hyperbolicity even in more visible manner than CAT (κ < 0), where Pedersen’s
strict tube convexity defined below is most illuminating.81

77This p holds true for rigid [κ ≤ 0]3-orbifolds as well.
78One may allow cubes of different. possibly unbounded. dimensions.
79An empty triangle in a simplicial complex is a triple of vertices pairwise joined by edges

but not filled by a 2-simplex. For instance, empty triangles in graphs are cycles with 3 edges.
80A triangulated surface with CAT (1)-links is CAT (1), even if it contains empty triangles.
81The charm of Alexandrov spaces mainly comes from the richness of their local/infinitesimal

geometries while the large scale picture of hyperbolic spaces is better seen in the lights of
[κ < 0]1,2.
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Definition of [κ < 0]1. LetX be a geodesic metric space and denote by d(x) = dY (x)
the distance functions from x ∈X to a geodesic segment Y in X.

Say that X is strictly (tube) convex, if the value of dY at the mid-point between
x1, x2 ∈ X, such that d1 = d(x1) = d(x2) = d2 satisfy the following inequality for all
segments Y ⊂X and all x1, x2 ∈X:

Tε d(xmid) ≤ d1 − ε(d1, d12),

where d12 = dist(x1, x2), where xmid is defined by the equalities

dist(xmid, x1) = dist(xmid, x2) = d12/2.

and where ε = ε(d1, d12), d1, d12 > 0, is a function which is required to be strictly
positive in a neighbourhood of (0,0), say, for 0 < d1, d12 < ε0 > 0.

Since the inequality Tε for distance functions to the geodesic segments in X implies
the same inequality for d(x) = dist(x,Y ) for all convex subsets Y ⊂X, this Tε with any
ε > 0 implies uniform convexity, hence exponential growth, of the external equidistants
of convex hypersurfaces H = ∂Y in X (e.g. of concentric spheres, which we already
know for Hn, see 2.2) which yields all familiar properties of manifolds with negative
curvatures.

This growth of these equidistants, say HD, which are the sets of points inX with
distX(x,Y ) = D is accompanied with the lower bounds on their l-distortions (defined
as in 1.2) which can be formulated as follows.

The diameters of the curves C ⊂ HD of length l are bounded by a function
∆X(D, l)such that:

I ∆X(D, l) < l for all L,D > 0.
This is, essentially, (but not quite) a reformulation of Tε.
I ∆X(D, l) ≤ a ⋅ log(l+ 1)+ b for some constants a, b > 0, all l > 0 and D > l. This

follows from the exponential growth of (the lengths of curves in) HD for D →∞.. and
instantaneously implies shadowing of quasigeodesics C ⊂X by geodesics.

Moreover, (compare [iii] in 1.2) there is a function DX(l), such that
[i’] if a double infinite curve C ⊂ X has the diameters of all its segments Il ⊂ C

of length l for l0 ≤ l ≤ 2l0, l0 > 0, bounded from below by diam(Il) ≥ ∆X(D, l) for all
D ≥ DX(l), then C lies within finite Hausdorff distance (see 2.6) from a geodesic in
X.

Horospheres and Geodesic Flows.

Horospheres in complete geodesic spaces X with (generalized) curvatures κ ≤ 0 are
associated with geodesic rays R ⊂ X, also denoted [x0, x∞) ⊂ X, which are subsets
isometric to [0,∞) where x0 ∈ R ⊂X corresponds to 0 ∈ [0,∞).

The horoball associated to R, is the union of the r-balls with the centers x ∈ R
and with dist(x,x0) = r; the corresponding horosphere is the boundary of this ball
(compare 2.13).

It is easy to see that if X is strictly tube convex then the distortion of all convex
equidistance HD is asymptotic for D →∞ to that of horospheres. It follows that

the shadowing conclusion in [i’] (similarly to [iii] from 1.2) only needs the
distortion of C to be strictly smaller than that of the horospheres.

Horospheres also serve as "building blocks" of the expanding and/or contracting
leaves of the (not quite) foliations associated with the geodesic flow on the space G(X)
of isometric maps g ∶ R→X, which is defined by the obvious action of R on G(X).

What we call "leaves" and pass through all points g ∈ G(X), denote them Lexp(g)
and Lcontr(g.) where their projections to X are the horospheres for the two rays in the
geodesic g(R) ⊂X starting at x0 = g(0) which are g((−∞,0]) ⊂ g(R) = g((−∞,+∞)) ⊂
X and g([0,+∞)) ⊂ g(R).
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The projections Lexp(g), Lcontr(g) → X are far from 1-to-1 for singular spaces X
and formally speaking the geodesic flow applies to the leaves Lexp(g) and Lcontr(g)
in G(X) but not their projections yo X.

Yet, there is a half-flow that acts on the space G+(X) of isometric maps [0,∞) →X
which sends horospheresH to their internal equidistantsH−t by the normal projections
H →H−t which are contracting but not necessarily injective or surjective maps.

(To appreciate the picture, look at G(X) ad G+(X) for 2-dimensional polyhedra
X build of convex simplices with constant curvatures κ < 0 (the case of κ = 0 is also
instructive) and with all links being CAT (1).)

If you think dynamically, the horosphere H = H(R) ⊂ X associated with a ray
R0 ⊂X should be defined as follows.

A point x1 ∈ X is in H if and only if there exists a ray R1 ⊂ X issuing from x1,
such that

distX(x0(r), x1(r)) → 0 for r →∞,
where xi(r) ∈ Ri, i = 1,2,, are the points within distances r from the end points of the
rays.

The essence of κ < 0 can be now expressed in terms of geometry of such "horo-
spheres". In fact, to be consistent, one should forfeit X and work directly in the the
space of rays where hyperbolicity of the R+-action plays the role of k < 0.

From Strict Convexity to Hyperbolicity.

The shadowing property [i], as we know, implies the geodesic universality and the
geodesic rigidity (see ?→ and ?↔ in 1.3) which say, in effect, that

If X is compact locally strictly convex manifold, then the space G(X) of geodesic in
X and the geodesic flow are uniquely determined, up to reparametrization of geodesics.
by the fundamental groups Γ = π1(X).

This begs several questions:
1. Can one describe/reconstruct G(X) in terms of Γ?
2. Which properties of Γ make it suitable for the role of the fundamental group of

a locally strictly convex manifold?
3. Is there a natural class of what may be called "hyperbolic spaces" that would

enjoy the shadowing and the geodesic universality?
This class must be defined in terms applicable to manifolds as well as to discrete

spaces such as finitely generated groups and where discontinuous maps are allowed.
In the next section we shall introduce terminology needed for responding to these

questions.

2.6 Almost Isometries, Controlled Maps, Nets, Blow-up
Graphs, Quasiisometries, Quasigeodesic Spaces, Word
Metrics, etc.

Geometry of metric spaces X on a given scale D > 0 concerns pairs of points with
distX(x1, x2) ≥D, where the essential large scale concepts are as follows.

Almost Isometries. An almost isometry or, if you want to be specific, a D-almost
isometry, between metric spaces, say between Y and Y ′, is a correspondence Y ↔ Y ′

such that the pairs of corresponding points (y, y′) satisfy

∣dist(y1, y2) − dist(y′1, y′2)∣ ≤D,

where our "correspondences", are subsets in Y × Y ′ of pairs of corresponding points
y↔ y′,

{y, y′} ⊂ Y × Y ′,
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and where all y ∈ Y and y′ ∈ Y ′ participate in such a correspondence: the projections
of {y, y′} to Y and to Y ′ are onto.

Notice that a metric space B is bounded, i.e. diam(B) < ∞, if and only if it is
almost isometric to a single point; thus, passing from isometries to almost isometries
is like taking metric spaces modulo bounded ones.

Question. Can one formally define almost isometry via factorization of the category
of metric spaces by the subcategory of bounded (diameter < ∞) spaces?

Are there other factorizations of the category of metric spaces by classes of "small
spaces"?

Lipschitz on the Large Scale. A (possibly discontinuous) map between metric
spaces is called λ-Lipschitz on the scale D > 0 (better to say ≥D) if

distY (f(x1), f(x2)) ≤ λdistX(x1, x2)

for the pairs of points in X, for which distX(x1, x2) ≥D.
Displacements and Nets. A subset X ′ ⊂X is a D-net if the D-balls with the centers

in X ′ cover X; equivalently, if there exists a (possibly discontinuous) map Φ′ ∶X →X ′

with displacement bounded by D, which means that

distX(φ(x), x) ≤D for all x ∈X.

Often we do not specify D and say just "net" meaning "D-net for some D".
Hausdorff Distances. The directed Hausdorff distance distHau(X1 →X2) between

subsets X1,X2 ⊂ X is the infimum of the numbers D ≥ 0 for which there exists a
(possibly discontinuous) map X1 →X2 with displacement ≤D.

Then the ordinary symmetric Hausdorff distance is

max (distHau(X1 →X2), distHau(X2 →X1)) .

Quasiisometries between metric space X and Y were defined by Margulis in 1970
as bi-Lipschistz (i.e. λ-Lipschitz in both directions for some λ < ∞) maps between nets
X ′ in X and Y ′ in Y ,

X ⊃X ′ f↔ Y ′ ⊂ Y.
Observe that the all X, being nets in G≤D(X) are quasiisometric to G≤D(X) for

all D > 0.
Also notice that pairs of nets X ′

1,X
′
2 ⊂ X contain δ-separated82 subnets X ′′

i ⊂ Xi,
i = 1,2, which are related by bijections X ′′

1 ⇆ X ′′
2 with bounded displacements and

because of the δ-separation these bijections are necessarily bi-Lipschitz.83 Hence, all
nets in X are mutually quasiisometric. It follows that quasiisometry is an equivalence
relation between metric spaces.

Quasiisometries can be also defined as compositions of almost isometries and bi-
Lipschitz isomorphisms or else, as pairs of large scale Lipschitz maps X ⇆ Y (for
some λ and D), such that both composed maps X → X and Y → Y have bounded
displacements.

Exercise: Quasiisometries with Trees. Show that metric spaces quasiisometric to
R are almost isometric to R.

More generally if X is quasiisometric to metric tree with a geodesic metric then it
is almost isometric to such a tree.

Periodic Metrics and Burago’s Theorem. Quasiisometries are far from being almost
isometries for higher dimensional spaces. For instance, the balls B(R,κ) of radii R

82A subset X′ ⊂ X is called δ-separated if dist(x′1, x′2) ≥ δ > 0 for x′1 ≠ x′2.
83δ-Separated nets themselves, e.g. such nets in the plane R2, are not always mutually

bi-Lipschitz equivalent.[24],[80].
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in the standard spaces of constant curvatures κ with κ2 = R are λ-bi-Lipschitz to the
Euclidean balls, say with λ = 10 for all R, but there is no D-almost isometries between
these balls for R → ∞. In fact, that would imply isometry between B(1, κ) and an
Euclidean ball, since the rescaled balls 1

R
B(R,R2κ) are isometric to B(1, κ).

However, according to a theorem by D.Burago (1992) [?], this is true for almost
homogeneous spaces:

a metric space X is called almost homogeneous if the action of the isometry group
G on X is cobounded , i.e. the G-transforms of a bounded subset in X cover X.
p If an almost homogeneous geodesic metric spaceX is quasiisometric to Rn, then

X is almost isometric to Rn with some, (typically non-Euclidean) Banach-Minkovsky
metric, i.e. a geodesic metric invariant under translations of Rn.

An essential step in Burago’s proof is a construction of an almost selfsimilarity of
X, namely of an almost isometry between X and 2X = (X,2distX), which is obtained
with a use of the following rendition of the Borsuk-Ulam theorem.

Let µi, i = 1,2, ..., n, be summable (not necessarily positive), measures on the unit
segment [0,1] ("summable" means ∣µi∣[0,1] < ∞) with continuous densities. Then
there exists a partition of the [0,1] into two subsets – finite unions of subintervals –
say R± ⊂ [0,1] , which have equal µi-masses,

µi(R+) = µi(R−), i = 1, ..., n,

and such that the common boundary set of these subsets, Z = ∂R+ = ∂R− ⊂ [0,1],
consists of at most n-points.

(The space of ordered pairs R±, ∣∂R±∣ ≤ n, with the topology borrowed from the
space of 1-dimensional Z2-chains, is homeomorphic to the sphere Sn with the antipodal
map Sn ↔ Sn corresponding to the ±-involution, where the customary linear Borsuk-
Ulam can be recognized by looking at the space of polynomials of degrees ≤ n, the
zero sets of which, albeit non-uniquely, represent our Z.)

Questions. (a) Which almost selfsimilar spaces, in particular almost homogeneous
ones, are almost isometric to selfsimilar spaces? (This question is resolved in [72] for
some nilpotent groups, while the extent of deviation of general nilpotent groups from
being selfsimilar is evaluated in [21])

(b) Can one relax the coboundness of the isometry group action in p by the
existence of a transitive set of D-almost isometries of X for some D? (Should we call
such X almost-almost homogeneous?)

(c) Let the group Rn freely acts on a compact Riemannian manifold. Under what
conditions and to what extent (in the spirit of [21]) are the orbits with the induced
Riemannian metrics almost selfsimilar?

Blow-up Graph G≤D(X). This is the graph on the vertex set X where the pairs of
points with dist(x1, x2) ≤D are joined by the edges and where this graph is endowed
with the supremum of the metrics where all edges are isometric to the segment [0,D]
and where the distances between all pairs of vertices x1, x2 ∈X ⊂ G≤D(X) are bounded
by max(D,distX(x1, x2)).

It is clear that
● G≤D(X) with this metric is almost isometric to X,
● if X is a localized, e.g. path isometric, space then G≤D(X) is a geodesic
space,
● large scale Lipschitz maps X → Y correspond to Lipschitz maps G≤D(X) →

G≤D(Y ) for large D.
However quasiisometries X ↔ Y do not always yield bi-Lipschitz isomorphisms

G≤D(X) ↔ G≤D(Y ), essentially, because the spaces X and Y may have different
cardinalities.
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(One can artificially "thicken" the spaces by taking their products with some
bounded space Z of huge cardinality, but this only shows that quasiisometries are
inherently equivalences – they are vaguely similar to Morita equivalence– rather than
isomorphisms.)

λ(d)-Control The concept of large scale Lipschitz maps admits the following quan-
titative (essentially cosmetic) refinement.

A map between metric spaces, f12 ∶ X1 → X2, is called controlled by a (positive
monotone increasing) function λ(d), if the induced distance function f∗12(distX2) on
X1 satisfies

f∗12(distX2) ≤ λ(distX1).
For instance, λ-Lipschitz maps are controlled by the linear function d ↦ λ ⋅ d and

being λ-Lipschitz on the scale D, is essentially the same as being controlled by the
affine function λd +D.

The λ(d)-version of "large scale" has a (little) bonus:
the composed maps maps f13 = f12 ○ f23, where

X1
f12→ X2

f23→ X3,

are controlled by the compositions λ23 = λ12 ○ λ23 of the corresponding functions

R+
λ12→ R+

λ23→ R+.

This can be interpreted as a grading of the category of maps between metric spaces
by the semigroup of maps R → R, where, in the large scale Lipschitz case, this semi-
group lies in the group aff+(R) of orientation preserving affine maps of the line.84

Quasigeodesic Spaces. A metric space X is called quasigeodesic if it is quaisiiso-
metric to a geodesic space. In fact, this is only needed for the canonical embedding
X ↪ G≤DD(X) where the graph G≤D(X) defines above is now given the geodesic
metric with the edges of length D. (This is the localization of the metric defined
earlier.)

One can also define quasigeodesicity of spaces in an intrinsic way by requiring that
every two points x1, x2 ∈ X are joined by (i.e. contained in) a quasigeodesic segment
or a quasisegment E ⊂ X that is the image of a D-almost isometric isometric map of
a real segment [0, d] to X where D > depend on X but not on (x1, x2).

Exercise. Show that quasigeodesic spaces are almost isometric to geodesic ones.

An essential instance of the concept of quasiisometry used by Margulis (and by
everybody else since 1970) is as follows.


the universal coverings of compact Riemannian manifolds with isomorphic fun-
damental groups are quasiisometric.85

Albeit ostentatiously "soft" and childishly simple (see the proof below), this al-
lowed Margulis to conceptualise, simplify and generalize Mostow’s proof of his

84The (connected Lie) group aff+(R), when endowed with a (left)-invariant Riemannian
metric g, becomes isometric to the hyperbolic plane H2 with curvature κ = κ(g) < 0. Similarly,
Hn+1 is isometric to the group ho of homotheties x → λx + y of Rn with a (left)invariant
Riemannian metric. Amazingly, the symmetries of these metrics, besides (n + 1)-parameters
corresponding to the group translations, harbour extra n(n+1)

2
-parameters which correspond

to rotations of Hn+1 around a point.
85Margulis (privately) attributes the idea to Efremovich (1953) [36] and Ratcliff (see p. 572

in [97]) directs to a 1912 paper by Dehn.)
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Hyperbolic Rigidity Theorem: Compact Riemannain manifolds with constant
curvatures −1 of dimensions n ≥ 3 with isomorphic fundamental groups are isometric.86

The link between algebra and geometry furnished by 
 is demystified by an
introduction of the concept of a word metric in a finitely generated group Γ.87 Below
is the definition.

Cayley Graphs and Word Metrics. Given a group Γ and a (usually generating)
subset ∆ ⊂ Γ, let G∆ be the graphs with the vertex set Γ and where edges correspond
to the pairs (γ, γδ) for all γ ∈ Γ and δ ∈ ∆±1, i.e. either δ or δ−1 is in ∆.

The quasigeodesic (in fact, Z-geodesic) metric on Γ ⊂ G∆ induced from the geodesic
metric on this graph where all edges are assigned unit lengths is called the ∆-word
metric in Γ.

Equivalently, this can be defines as
an integer valued metric where the i-balls Bγ(i) ⊂ Γ, γ ∈ Γ, are the left88 γ-

translates of the set of the group products of the i-tuples of elements from ∆,

Bγ(i) = γ ⋅∆±1 ⋅∆±1 ⋅ ... ⋅∆±1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
i

⊂ Γ.

It is also obvious (but significant) that if

∆2 ⊂ ∆±1
1 ⋅∆±1

1 ⋅ ... ⋅∆±1
1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
i

and ∆1 ⊂ ∆±1
2 ⋅∆±1

2 ⋅ ... ⋅∆±1
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
i

for some i,

then the ∆1- and ∆2-metrics are (bi-Lipschitz) equivalent:

0 < c ≤ dist1
dist2

≤ C < ∞.

Observe that
● the left translations Γ→ Γ, where γ ↦ γ0γ, are isometries for these metrics,
● the right translations γ ↦ γγ0 have bounded displacements;
● the ∆-metrics associated with finite generating subsets ∆ in Γ are mutually bi-

Lipschitz equivalent; they collectively called word metrics.89

Now, let Γ be the fundamental group of a compact Riemannian manifold X, or of
any compact geodesic metric space for this matter. Then the word metrics in Γ are

bi-Lipschitz equivalent to the metrics induced on the orbits of the Galois (deck
transformation) action of Γ = π1(X) on the universal covering X̃ →X.

Proof. The Galois action of Γ on X̃ is free and discrete with the orbits, which are
the pullbacks of points x ∈ X under the covering map X̃ → X, being D-nets in X̃ for
D = diam(X).

Since the Galois action is isometric, the orbit maps Ox̃ ∶ Γ → X̃ for γ ↦ γ(x̃), are
Lipschitz for all x̃ ∈X and all ∆-word metrics in Γ with finite ∆ ⊂ Γ.

Since X is compact, Γ is finitely generated and, on the other hand, all R-balls
Bx̃(R) ⊂ X̃ intersect these orbits over finite subsets. Hence, these intersections, when
regarded as the pullbacks

∆R = O−1
x̃ (Bx̃(R)) ⊂ Γ,

86In his original paper Mostow assumes the manifolds to be diffeomorphic.
87I do not know where the word metric was explicitely defined for the first time. (Was it in

A.S. Svarc’, Volume invariants of coverings of 1955?
88You can not tell this "left" from"right" because there is a golden reason why a mathe-

matician’s mind cringes away from the concepts brewed in the pot of human culture.
89There are interesting metrics with infinite ∆, e.g. where ∆ is invariant under conjugations

in Γ, such as the commutator [Γ,Γ].
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are finite subsets which generate Γ for all sufficiently largeR (in fact, forR ≥ 2diam(X)).
Finally, since the subsets ∆R ⊂ Γ are finite and the orbit map Ox̃ is injective, the

inverse maps O−1
x̃ ∶ ∆R → Bx̃(R) are Lipschitz, and since the induced metric in the

orbits are quasigeodsic by �, the full inverse map O−1
x̃ is Lipschitz on the Γ-orbit of

x̃. QED.
Thus, if X is compact, then
� the orbit maps Ox̃ ∶ Γ → X̃ of the Galois action of Γ = π1(X) on X̃, are

quasiisometries for all word metrics in Γ and all Γ-invariant path metrics in X̃ (which
are the same as the path metrics path induced from path metrics in X).

2.7 Logic and Language of Metric Spaces: Errors, Points,
Maps, Limits, Asymptotic Cones and Isoperimetric
Inequalities.

The definitions of almost isometries quasiisometries, and of large scale Lipschitz maps
f ∶X → Y in general, present us with the following problems.

Specification/Quantification of Error Parameters. The quasification of metric con-
cepts depends numbers, such as D and λ which specify by how much the properties
of "quaisiobjects" deviate from these of the true ones: almost isometries and quasi-
isometries from isometries, quasigeodesics from geodesics and –this will come in 2.9 –
classes/concepts of hyperbolic spaces from these of metric trees, etc.

On the one hand, we do not care about specific values of these D and λ – on the
other hand, we must keep tracks of them in the course of arguments.

Question. Is there a concise way of writing down such arguments without an
explicit use of numerical constants; yet, keeping the exposition rigorous and non-
ambiguous?

This question hardly can be answered without
(1) a modification/generalization of the concept of metric space

and of
(2) a logical analysis of manipulations with numbers in arguments concerning

"quasipropertes" of properties of spaces and maps specified by parameters.
As far as (1) is concerned, we want to be able to operate with "spaces" and

morphisms between them, without, at least notationally, appealing to points in them,
where our motivation is as follows.

∗ A property of a map f ∶X → Y to be a an almost isometry or a quasiisometry is
rather insensitive to what happens at particular points x ∈X – removing a point does
not change the relevant property of f .

This is partly compensated by allowing multivalued maps X → Y that are cor-
respondences between X and subsets Y ′ ⊂ Y , but this is not a long term solution.

∗ Albeit the distances dist(x1, x2) ≤ D > 0 are not present in the definition of
quasiisometry, you can’t exclude them from metric spaces X, since dist(x,x) = 0.

Formally, "self-interacting" points can be excluded by introducing what can be
called

Pre-metric Spaces. These are defined (similar to a setF -functor from 2.1) as sets
P with the following structures:

● a partially defined composition, P × P ⊃ R → P , denoted

(p1, p2) → p1▷p2;

● a map P → R+, denoted p↦ ∣∣p∣∣ = ∣∣p∣∣P
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The principal examples of such P = (P , ▷, ∣∣...∣∣) are associated with metric spaces
X:

P = P (X) = X ×X, where R ⊂ X ×X consists of the pairs ((x1, x2), (x3, x4)),
such that x2 = x3, where

(x1, x2)▷(x2, x4) = (x1, x4)
and where the triangle inequality translates to ∣∣p1▷p2∣∣ ≤ ∣∣p1∣∣ + ∣∣p2∣∣.

Two other mutually logically similar classes of examples are normed spaces and
groups Γ with (left) invariant metrics, where ∣∣γ∣∣ = dist(γ, id).

The arrow X → P (X) for metric space X can be reversed by observing that x in
p = (x, y) ∈ P (X) is determined by the subset P ′ ⊂ P , such that (p′, p) ∈ R for all
p′ ∈ P .

This suggests a translation the language of metric spaces to the P -languge, where,
in particular, the D-scale definition is conveniently expressed in terms of

P≥D(X) = {p}∣∣p∣∣≥D ⊂ P (X).

However, this P , does not give a new conceptualization of quasiisometries, such as
their representation by isomorphisms (which is impossible anyway).
∗ Probably, the true solution, IF at all desired,90 must involve a more significant

extension of the category of metric spaces.
The first step could be passing from individual quasiobjects to families of these

over domains D of real parameters, where dimensions of these domains may grow in
the course of introduction of new quasiobjects.

For instance the full family of blow-up graphs G≤D(X), where D is running over
all of R+, must be regarded as a single object.

Geometric properties of metric spaces X on large scales D → ∞ can be (partly)
expressed in terms of the asymptotic cones

Con∞(X) = lim
D→∞

D−1X.

Recall that D−1X = (X,D−1distX), and that "lim" must be understood as the
ultralimit of the sequence Xi = i−1X, over a non-principal ultrafilter µ which is an
additive {0,1}-valued measure on the set {1,2, ...}, where "non-principal" means that
it takes value zero at some infinite subsets in {1,2, ...}.

Granted such a µ, the limit cone Con∞(X) = limµi
−1X is defined as the set of

µ-asymptotic classes of bounded sequences xi ∈ i−1X, i.e. such that i−1distX(xi, o)
remains bounded for i → ∞ and a fixed reference point o ∈ X, and where "µ-
asymptotically equivalent" xi ∼µ yi signifies that xi = yi on a subset of i ∈ {1,2, ...} of
µ-measure 1.

A pleasant feature of such limits in general, limµXi, is that they define a functor
from the category of sequences {(Xi, oi)} of metric spaces with reference points and
Di-almost isometries for Di → 0, to the category of metric spaces.

Also these can be seen as set theoretic models of limit points of the first order
theory over R 91 of finite subsets Y in metric spaces X with induced metric on Y ,
where the basic operation is what corresponds to the union Y1 ∪ Y2 in the language of
this theory.

This can be also expressed in terms of the first order R-theory (with limits) of
contravariant functors F from the categoryM of finite metric spaces to the category
of sets (where FX(M) is the set of isometric maps M →X.)

90The purpose of such a generalization is not so much application to metric geometry but
rather an extension of "metric ideas" to other categories.

91I am not certain this is the standard terminology.
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The first order language of finite tuples of "points" {xi} decorated with numbers
rij ≥ 0 is used in definitions of hyperbolic spaces in section 2.9, where we augment this
language with "segments" E and extend it further by allowing "quasisegments". And
in section 2.11 we introduce surfaces and their areas, which is harder to reconcile with
the idea of "first order language".

Below is a rare and quite amusing instance of possible utility of logical scrutiny of
a class of geometric arguments.

Sharp Isoperimetric Problem in CAT (0)-Spaces X. Do all (n−1)-cycles in X with
(n−1)-volumes A bound n-chains with volumes V ≤ V-(A), where V-(A) = V-,n(A)
denotes the the volume of the Euclidean n-ball with the boundary of (n − 1)-volume
A?

There are several proofs of this in the classical case where X is the Euclidean space
Rn and where especially logically simple proofs are known to exist in the dimensions
n = 2,4.

At the core of these proofs – Santalo’s (1953?) for n = 2 and Croke’s (1980) for n = 4
– lie "elementary" integral-geometric "formulas" that relate the volumes of Euclidean
balls to the volumes of the boundary spheres.

The essential feature of these "elementary formulas" is that they make sense for all
Riemannian manifolds, where in the case of κ ≤ 0 they have the correct error terms and
yield sharp isoperimetric inequalities. (Santalo and Croke adapted their arguments to
Romanian manifolds but they apply to all CAT (0) spaces.)

Besides n = 2,4, the sharp equidimensional (dim(X) = n) isoperimetric inequality
V ≤ V-(A) is known for 3-dimensional Riemannain manifolds with negative curva-
tures where it was proven by Kleiner (1992) (see [69] where further references can be
found) but his (variational Almgren’s style) proof is significantly "more transcenden-
tal" than those by Santalo and Croke. (In principle Klener’s proof may work in general
3-dimensional CAT (0)-spaces but it seems technically more difficult.)

Historically, all of the above was preceded by technically simple but logically rather
transcendental symmetrization arguments (Steiner 1838, Schwarz 1884) which show
that

sharp equidimensional isoperimetric inequalities hold in the standard spaces
of constant curvatures κ and yield our V ≤ V-(A) for κ ≤ 0.
Morover the inequality V ≤ V-(A) is inherited by Pythagorean products of
spaces, X = ⨉iXi.

Non-equidimensional Isoperimetry. If dim(X) > n, then the principal issue is not
evaluation of volumes of given domains (chains) in X in terms of their boundaries S,
but rather construction of small chains that fill-in given S.

This is relatively easy for dim(S) = 1, since, for instance, the geodesic cones over
circles in the CAT (0) spaces Cones0(S) ⊂ X, s0 ∈ S, have their induced path metrics
of curvatures ≤ 0. 92 Thus, the general inequality V ≤ V-(A) for n = 2 follows from
the equidimensional case.

And starting from a 1912 article by Dehn, combinatorial renditions of such (non-
sharp) inequalities – we shall meet them in section 2.11 – have been playing key roles
in the study of the small cancellation and of hyperbolic groups.

The sharp isoperimetric, or rather filling inequality V ≤ V-(A) in the Euclidean
spaces RN , for all n and N was proven my Almgren in 1986, where the argument is
both logically and mathematically quite complicated and seems hard to extend even
to the hyperbolic spaces HN .93

92This follows from the Gauss formula in the Riemannian case and the proof in singular
CAT (0)-spaces relies on an elementary/synthetic construction of "inexpanding mappings" by
Reshetnyak (1968).

93Non-sharp filling inequality in RN with a constant depending on N was proven by Federer
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Question. What would be a rigorous formulation of impossibility to proof the sharp
inequality VRn(A) in Rn for all n by a same "level of transcendence" argument as was
used for n = 2 and 4?

2.8 Cylindrical Towers of Spaces and Geometric Asymp-
totics of Group Actions.

There is a variety of large scale properties of spaces with κ ≤ κ0 < 0 which can be taken
for definition of hyperbolicity, where the essential requirements for such a definition
are:

quasiisometry invariance and quasi-locality for geodesic metric spaces X,
where the latter means that hyperbolicity of the R-balls in X for some R < ∞ and
simply connectedness of X must yield hyperbolicity of X.

Besides, this definition must accommodate the following

Model Examples of Hyperbolic Spaces.

The logic of hyperbolicity is a deformation of the logic of metric trees with geodesic
metrics (the meaning of this will become clarified later on), where, recall, a topological
space X is a tree if every two points x1, x2 ∈ X serve as the end points of a unique
topological segment (homeomorphic to [0,1], unless x1 = x2) in X.

A metric tree T with a vertex t0 ∈ T taken for the root, can be described in terms
of the r-spheres St0(r) ⊂ T of points with distances r from t0 or in the language of
shortest paths in T issuing from the root.

Accordingly there are two constructions of such trees.
Trees as [↓↓]-Cylindrical Towers. Think of the set R+ of real numbers r ≥ 0 as

a category, where the inequalities r2 ≤ r1 are taken for morphisms r2 → r1 and let
τ ∶ r ↦ S(r) be a covariant functor from this category to the category of sets, such
that τ(0) is a one point set. (This will serve as the root of the tree.)

Thus, τ defines an R+-family of sets S(r) and maps Pr1r2 ∶ S(r2) → S(r1) which
satisfy the composability relation for

S(r3) → S(r2) → S(r1) for r3 ≥ r2 ≥ r1.

Let T̃ be the graph with the disjoint union of∐r∈R S(r) taken for the set of vertices
and where the arrows

S(r2) ∋ s2

Pr1r2↦ s1 ∈ S(r1)
are taken for the edges with the lengths r2 − r1 assigned to them.

Denote by t̃0 ∈ T̃ the vertex corresponding to τ(0) and define the tree T = Tτ as
the quotient space of T̃ where pairs of points t̃1, t̃2 ∈ T̃ are identified if they have equal
distances to the (future) root,

distT̃ (t̃1, t̃0) = distT̃ (t̃2, t̃0)
and if there exists a vertex s ∈ T̃ and minimal paths, say [̃t0, s]1, [̃t0, s]2 ⊂ T̃ which
join t̃0 with s and such that ti ∈ [̃t0, s]i, i = 1,2.

[
b
] Amalgamations of Segments. Let T be a set of isometric copies of segments

[0, r(t)] ⊂ R+, t ∈ T , let R be the equivalence relation on T which
(a) identifies all zero points in these segments (which makes the root of the tree);
(b) glues pairs of segments by isometries along subsegments which, because of (a)

both contain zeros in them.
Then the quotient space T /R is a tree which we take for our T .
Hyperbolic Riemannian Cylinders. Let gr = gr(s), r ∈ R+, be Riemannian metrics

on a smooth manifold S and let g = gr + dr2 be the Riemannain metric on X = S ×R+.

and Fleming in 1960. Another proof with a constant depending on n was found by Michael
and Simon (1973) whose argument easily extends to all CAT (0)-spaces.
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Observe that S(r) = S × r ⊂X are mutually equidistant hypersurfaces in X, where

distX(S(r1), S(r2)) = ∣r1 − r2∣

and where
distX((s1, r1), (s2, r2)) = ∣r1 − r2∣ if and only if s1 = s2.

It follows that the curves s×R+ are geodesic rays in X which are distance minimiz-
ing on all subsegments [a, b] ⊂ R+ = [0,∞) and that every point x = (s, r) ∈ X admits
a unique nearest point sx in S(r0), for all r0, namely, sx = (s, r0).

Thus, the normal projectionsX → S(r0) are non-ambiguously defined for all r0 ∈ R+
and are given by (s, r) = x↦ sx = (s, r0)

The essential property of the family gr which leads to hyperbolicity (yet to be
defined) of X is the exponential growth of the metrics gt, which means that

expk ↑ ⋅gr+r′ ≥ (expkr′)gr for some k > 0 and all r, r′ ≥ 0.

In fact, if S is compact then expk ↑ does imply hyperbolicity of X the definition
of which is given later in this section.

About Curvature. The inequality expk ↑ is equivalent to the lower bound on the
principal curvatures of the (convex!) hypersurfaces S(r) ⊂X by our k.

The leading example of this is provided by manifolds with sectional curvatures
κ ≤ −k2 where, not only the principal curvatures K(r) of S(t) but also the derivatives
K′(r) are bounded from below.94 This bound implies that the X-distances d12(r) =
distX((s1, r), (s2, r)) grow exponentially, albeit with a rate k′ ⪅ k, in-so-far as d12

remains below ≤ 1/k. But I did not check whether expk ↑ suffices for this.
Exponential contraction. The inequality expk ↑ can be turned upside down, and

then it implies exponential contraction of normal projections

S × [r + r′,∞) =X≥r+r′
Pr→ X≤r = S × [0, r].

(Recall that Pr(x) ∈ S(r0) is, by the definition of normal projection, the nearest point
to x in S(r0).)

Namely, if a curve Y ⊂X lies r′-far from the subset X≤r ⊂X, i.e. distX(y,X≤r) ≥ r′
for all y ∈ Y , then

expk ↓ length(Pr(Y ) ≤ (exp − k(r′))length(Y ).

This parallels expansion↔ contraction correspondence (e.g. for foliations) under time
reversal of dynamical (e.g. Anosov’s) systems.

[
b
]-Perspective: Hyperbolic Divergence of Rays in X. If X is a hyperbolic geodesic

metric space then (we shall see it later) the pairs of minimizing geodesic rays in X,
that are isometric maps R+ = [0,∞) →X, denoted x1(r), x2(r) ∈X, r ∈ [0,∞), satisfy
the following condition.

There exist constants D⋎ =D⋎(X) and C⋎ = C⋎(X), such that if

dist(x1(r1), x2(r2)) ≥D⋎

for all r1, r2 ≥ 0, then

[
b
] dist(x1(r), x2(r)) ≥ 2r − dist(x1(0), x2(0) −C⋎ for all r ≥ 0.

(Notice that dist(x1(r), x2(r)) ≤ 2r + dist(x1(0), x2(0)) by the triangle inequality.)
Moreover, hyperbolicity implies the following.

94The sectional curvatures of X, are, essentially by definition, [48], equal to the derivatives
of the shape operators of equidistant deformations of hypersurfaces in X.
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[�] Quasi Convexity of Geodesic Pairs. This property says, in particular, that
the unions R1 ∪ R2 of pairs of minimizing geodsic rays R1,R2 ⊂ X are geodesically
quasiconvex, which means that

distance minimizing segments with the end-points in R1 ∪ R2 lie within distance
≤D from R1 ∪R2, where D ≤ dist(R1,R2) +C� and where C� depends only on X.

Notice that [
b
] and [�] are (obviously) satisfied by trees with D⋎ = C⋎ = C� = 0.

(Both properties sharply contrast with how it is in the Euclidean spaces.)
Also, since the above manifolds X = S × R+ with the exponential grows of the

metrics in S(r) are hyperbolic, the rays Rs = s × R+ in them satisfiy [
b
] and [�].

This make X look rather similar to rooted trees which are obtained by amalgamations
of copies of R+. (The branches in such trees are are infinite and there are no leaves.)

Remarks. (a) Dispite a rather explicit description, there is no (?) apparent direct
proof of [

b
] and [�] for the rays Rs in these X. (The proof we indicate below, albeit

short and simple, depends on a general hyperbolic setting.)
(2) It will be become clear later on (this is easy) that if two such (hyperbolic)

manifolds X1 = S1 × R+ and X2 = S2 × R+ are quasiisomtric, then the underlying
manifolds S1 and S2 are homeomorphic.

Conversely, if S1 and S2 are diffeomorphic (quasi-conformal homeomorphism will
do), and both families gr1 and gr2 grow conformally and moderately exponentially,

gri(s) = φi(r, s)g0i(s), i = 1,2, and expk′ir1 ≥ φi(r + r1, s) ≥ expkir1,

then the spaces X1 and X2 are quasiisometric.
(Spheres in manifolds with negative sectional curvatures bounded from below grow

moderately, while conformal growth of the spheres Sx(r) ⊂X around all points x ∈X,
with φi(r, s) constant in s ∈ Sx(r) is characteristic for manifolds X with constant
curvatures.)

Hyperbolic Horospherical Cylinders. Let us replace R+ by the full line R = (−∞,+∞),
and, given a family gr of metrics on a manifold S, now with r ∈ R, endow X with the
metric g = gr + dr2 as earlier.

We shall see with definition of hyperbolicity given in the next section that
if the metrics gr are complete and

gr+r1 ≥ (expkr1)gr1 for some k > 0, all r ∈ R and r1 ≥ 0,

then (X,g) is hyperbolic.
A simple, yet instructive, instance of this is where S is a Banach space, e.g. the

Euclidean Rn, with a strictly contracting linear operator A ∶ S → S and gr = (Ar)∗g
for the metric g associated with ∣∣...∣∣S .

Another example is where X is a complete simply connected Riemannian manifold
with strictly negative curvature and {Sr} ⊂ X is the family of mutually equidistant
horospheres associated with a geodesic ray [x0, x∞) ⊂X, where, recall, Sr is the limit
of the (r + R)-spheres with the centers xR ∈ [x0, x∞) and with dist(xR, x0) = R for
R →∞.

On Expansion and Contraction. If we want the geometry of the R-warped X−S×R
to be locally bounded, e.g. having sectional curvatures bounded from above and from
below, we need a uniform bound on the geometries, e.g. on the curvatures, of the
metrics gr on S. Such bounds come for free for expanding families. For instance,
scaling g0 by (arbitrary) large constants may only simplify local geometry.

But not all manifold S admit complete arbitrarily small metrics with, say, bounded
curvatures.

It is known, for example, that among compact manifolds (without boundaries)
only infranil manifolds may have almost flat metrics of small diameters and similar
non-compact S are also exceptional.
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(It is apparent that most metrics g0 on S admit no families gt ≤ ε(t)g0 with
uniformly bounded curvatures for ε(t) → 0 and topology of manifolds S which support
such families also is a subject to many obvious and non-obvious constraints, but a
comprehensive picture is yet to be developed.

Expanding [↓↓]-Cylinders. Recall, that the cylinder CylP of a map P ∶ A → B is a
subset Y ⊂ A ×B × [0,1] such that

(a, b, t) ∈ Y ⇔ P (a) = b.

In other words, Y is the union of the unit segments [a, b], where b = P (a) and where
A ⊂ Y is the top and B ⊂ Y is the bottom of this cylinder.

If A and B are metric spaces, this Y is equipped with the metric distY which is
induced from the, say Pythagorean, product metric in Y ⊂ A ×B × [0,1].

Now, let S(i), i = 0,1,2, ..., be disjoint unions of geodesic metric spaces, called
components of S(i), where we let S(0) be a single point.

Let Pi ∶ S(i) → S(i − 1), i = 1,2,3, ..., be uniformly contracting maps. This means,
Pi sends each component of S(i) to a component of S(i− 1) by a λ-Lipschitz map for
some λ < 1, e.g. with λ = 1/2 for all i and all components in S(i).

Let X be the union of the cylinders Yi = CylPi of the maps Pi with the obvious
identifications of the tops of Yi, that are S(i), with the bottoms of Yi+1, which are
also qual to S(i), and endow X with the supremum of the metrics which are equal to
distYi for (all components of) all Yi ∈X, i = 1,2, ....

Two Examples. (1) If S(i) are disjoint unions of points – no edges between vertices,
then this construction can be seen as a discretization of the above [↓↓]-representation
of trees, where the resulting trees now have the edges in them, which are the vertical
segments [si, P (si)], all of the unit lengths.

(2) The [↓↓]-construction also provides discretization of Riemannian cylinders. Thus,
for instance, if S(i), i = 0,1,2,3,4...., are (isometric to) the real segments of lengths
0,1,2,4,8... and Pi are the obvious surjective 1

2
-Lipschitz maps between them, then

the resulting [↓↓]-cylinder X is bi-Lipschitz equivalent, to the hyperbolic half-plane.
We shall see in 2.11 that
F a geodesic metric space X is quasiisometric to an expanding [↓↓]-cylinder

if and only if it is hyperbolic as it is defined in 2.9.
And below in this section, hyperbolicity of metric spaces is understood as being

quasiisometric to expanding [↓↓]-cylinders.

Dynamical Expansion and Spatial Hyperbolicity.

Let a metric space S = (S, dist0) be continuously acted upon by a group Γ. Given
a (preferably finite) subset ∆ ⊂ Γ, let dist∆ be the supremum of the induced metrics
γ∗(dist0), γ ∈ ∆ and let dist∆↑ε be the supremum of the metrics which are majorized
by dist∆ on the ε-balls for the metric dist0 in S.95

The asymptotics of metric invariants of the spaces

S∆↑ε = (S, dist∆↑ε) for ∆→ Γ and ε→ 0

carry much informations about the topological dynamics of (S,Γ). For instance, the
topological entropy for Z-actions is customary defined with

∆i = {−i,−i + 1, ..., i − 1, i} ⊂ Z

in terms of the asymptotics of the minimal numbers Niε of ε-balls needed to cover
S∆i↑ε as

enttop(S,Z) = lim
ε→0

lim
i→∞

1

i
logNiε.

95Think of ∆↦ dist∆ as kind of a distance valued measure on Γ.
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The spaces S∆↑ε can be brought together by making double cylinders, using the
identity maps arrows S∆′↑ε′ → S∆↑ε for ∆′ ⊃ ∆ and ε′ ≤ ε, e.g. as follows

Let ∆ be a finite generating set in Γ and let

∆i = ∆±1 ⋅∆±1 ⋅ ... ⋅∆±1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⊂ Γ

and let Xε be the [↓↓]-cylinder associated with the chains of maps

...→ S∆i↑ε → S∆i−1↑ε → ...→ S↑ε → {⋅}

. Then let X be the [↓↓]-cylinder for {...→Xεi →Xεi−1 → ...}, where, say, εi = 2−iε0.
Thus, the asymptotics of geometries of the dynamically generated S∆↑ε is encoded

in a single metric space X, which opens a possibility of using invariants of metric
spaces, for characterising dynamics of group actions.

Questions. (a) It it is not difficult to describe geometric invariants of these cylinders
(and double cylinders), such as the Lp-cohomology and the Novikov Shubin invariants
directly in terms of the metrics dist∆ on S.

But what is the dynamical meaning of these invariants?
(b) Topologically, the [↓↓]-cylinder for a Z-action is kind of "folded" cyclic covering

of the mapping torus of the generator of this action, where this torus is fibered over
the circle S1 – the classifing space of the group Z. This points toward a general
constructions grounded on the multidimensional classifing spaces of groups Γ.

But apparently, what is closer to the [↓↓]-cylinders is suggested by the assignments
∆ ↦ dist∆, ∆ ⊂ Γ, which define a kind of Γ-equivariant measures on Γ with value in
the space of metrics on S. Here, similarly to the [↓↓]-cylinders and unlike how it is in
the constructions of the classifying spaces, the arrows are the identity maps, while the
role of Γ is shifted from the action on S to the induced action on space of metrics on
S.

What is the correct (multiparmetric?) generalization, of the (one-parametric) [↓↓]-
cylinders for actions of non-cyclic groups Γ?

For instance, if (S,Γ) = (S1,Γ1) × (S2,Γ), we want to be able to reconstruct the
invariants of the actions of Γi on Si, i = 1,2.

Such invariants may serve for evaluation of the relative rates of growth of actions
of Γ on two metric spaces S and T , where such rates can be associated with homotopy
classes of continuous maps S → T , as follows.

Given a class h, characterize such a "rate" by λ(∆, h), ∆ ⊂ Γ, which is the minimal
number such that h contains a λ(∆)-Lipschitz representative for the metrics distS,∆
and distT,∆; similarly define λ(∆, h, ε) with dist∆↑ε instead of dist∆.

Another quantity one my like to measure is the range of (λ,D)(∆) for which the
spaces (S, distS,∆) and (T, distT,∆) are λ-bi-Lipschitz on the scale D.

***********
Say that the action of Γ is uniformly expansive (compare 1.6) if there exist an

ε0 > 0 and a finite subset ∆0 ⊂ Γ such that

dist∆0(s1, s2) ≥ 2dist0(s1, s2) whenever dist0(s1, s2) ≤ ε0.

It is straightforward to check that if ∆′ ⊃ ∆ ⋅∆0, then the maps S∆′↑ε′ → S∆↑ε , are
1/2-Lipschitz for all ∆ ⊂ Γ and all ε ≤ ε′ ≤ ε0. Cosequently,

if the action of Γ on S is uniformly expansive, then the above [↓↓]-cylinders
Xε are hyperbolic for all ε ≤ ε0.
In fact, albeit these cylinders are not exactly what we called "expanding" – the

metrics dist∆↑ε are not necessarily geodesic – Xε can be easily fit into our expanding
category, e.g. by passing to the blow-up graphs G≤D(S∆↑ε).
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2.9 Tree-like Arrangements of Points and Lines, Slim Tri-
angles and Rips Collapsibility Theorem.

Informally, a metric space X is hyperbolic if it looks on the large scale as a space
M with negative curvatures κ ≤ κ0 < 0. There are many ways to make it precise by
picking up a particular feature common to these M and taking it for a definition of
hyperbolicity.

Eventually, it became clear that almost all (all?) general properties of trees that
are shared by the classical hyperbolic spaces Hn with κ = −1 but not by the Euclidean
Rn lead to equivalent definitions of hyperbolicity.

Below is a strongest such definition with the explanation of terminology to follow.
l∀N . A quasigeodesic, e.g. geodesic, metris space X is called hyperbolic if the

finite unions of quasisegments in it,

Y = ⋃
i=1,...N

Ei ⊂X,

are almost isometric96 to a subset in a tree,

Y ↔ Y ′ ⊂ T

.
Segments, Quasisegments, Rays and Lines A subset E in a metric space is called

a segment with end points , x1x2 ∈ X, denoted [x1, x2] ⊂ X (even if such a segment
is not unique), if it is isometric to a real segment I = [a1, a2] subset(−∞,∞), where
we also allow infinite I = [a,∞) and I = (−∞,∞), where the corresponding E ⊂X are
called (geodesic) rays and lines.

Recall that an E ⊂ X a quasisegment if it is quasiisometric to a real segment I,
where, recall a quasiisometry is a λ-bi-Lipschitz bijection between D-nets in the two
spaces:

E ⊂ E′ ↔ I ′ ⊂ I.
We agree that the net I ′ in I contains the end points of I and the corresponding points
in E are regarded as the end points of E.

Segments versus Quasigeodesics. Quasigeodesics in section 2 defined as curves
Y ⊂ X parametrised by the arc length such that distX(y1, y2) ≥ λ−1∣y1 − y2∣ are in-
stances of λ-quasisegments. And general quasisegments E in geodesic spaces X can be
approximated by quasigeodesics E′ composed of segments [xi, xi+1], i = 1, ...n, where
ei ∈ E and where the lengths of these segments are between λ and 10λ.

Also recall that an almost isometry between metric spaces Y and Y ′, is a corre-
spondence Y ↔ Y ′ such that

y↔ y′ ⇒ ∣dist((y1, y2) − dist(y′1, y′2)∣ ≤D < ∞,

where we say D-almost isometry if we want to specify the error parameter D (compare
2.7).

Specification/Quantification of Error Parameters. The above definitions contain
numbers, such as λ and D which specify by how much the properties of our "quaisiob-
jects", deviate from the "ideal" case: quasisegments from segments, almost isometries
and quasiisometries from isometries, D-nets in X from all of X. (compare 2.7)

96It may seem more natural to require Y to be quasiisometric rather than almost isometric
to subsets in trees T . But, due to somewhat peculiar topology of trees, "quasiisometric" can
be upgraded to "almost isometric" in the key case where subsets Y consist of quasisegments
joining all pairs of points in finite subsets in X (e.g. for quasigeodesic triangles △ ⊂ X) by
modifying the geodesic metric in T .
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And the hyperbolic spaces, which appear as quasitrees in this setting, are also
burdened with error parameters, often denoted δ, that must be specified in individual
cases.

Now we make l∀N precise by quantifying it as follows.
X is hyperbolic if the finite unions of quasisegments,

Y = ⋃
i=1,...N

Ei ⊂X,

admit almost isometries Y
f↔ Y ′ ⊂ T the error parameters of which (D in this case)

depend on N and ErrEi (which are pairs (λi,Di)), written as

Errf ≤ δN(ErrEi)

for some functions δN , where the collection {δN}N=1,2,..., serves as the error parameter
Err(X).

Let us see what almost isometries f tell us for particular Y = ⋃Ei.
Geodesic Shadowing. The condition l∀N for N = 2 implies the shadowing property

for geodesic hyperbolic spaces X, which says that

(∣ all quasisegments E1 ⊂X are shadowed by segments E2 ⊂X.

To properly quantify this, let E2 have the same endpoints as E1 and let shad-
owings be implemented by correspondences E1

f↔ E2 with displacement ≤ D, (i.e.

dist(e1, e2) ≤D for e1
f↔ e2), where this D – the error parameter of f – depends only

on Err(E1) which specifies "quasi" of E1.
It is obvious that the existence of such f is equivalent to the existence of almost

isometries E1 ∪E2
F↔ Y ′ ⊂ T , such that 1/4 ≤ ErrF /Errf ≤ 4.

Thus, if X is hyperbolic, such f exist with the error parameters depending on
those of E1 and X,

Errf = Errf(Err(E1), δ2(X)).

The converse implication (∣ ⇒ l∀N – this parallels the definition of dynamical
hyperbolicity via (local) shadowing (see chapter 4) – is also true. The proof of it, due
to Bonk [14], is rather elaborate.

The simplest class of subsets Y ⊂ X for which the existence of almost isometries
Y

F↔ Y ′ ⊂ T is significant is where Y are four point sets97 and where the hyperbolicity
condition l∀N reduces to the following.

[●●●●] All quadruples of points in X are almost isometric to quadruples
in trees.98

Somewhat surprisingly, albeit this is not hard to prove, [●●●●] ⇒l∀N . In fact, the
following special case of [●●●●] can be taken for the definition of hyperbolicity [?].

.
[●() ●]-Condition: the diameters of the intersections of balls B1,B2 ⊂ X are

bounded by the radii R1,R2 of the balls and the distances d12 between their cen-
ters according to the following inequality,

()
δ

Diam(B1 ∩B2) ≤ 2(R1 +R2 − d12 + δ).

97The existence of quasiisometric embeddings of finite sets to trees, unlike, for instance, this
property for geodesic triangles, does not tell much: every finite metric space Y with n points
admits a λ-bi-Lipschitz map to R with λ < n.

98Here and below we don’t write down the error specification since misinterpretation is
improbable.
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Observe that [●() ●] makes sense for non-(quasi)geodesic spaces and that despite
the appearance, it concerns (rather special) quadruples of points in X and, at the
same time, it expresses the idea of uniform quasiconvexity of balls for d12 → ∞ with
R1 +R2 − d12 kept bounded.

And albeit neither [●() ●] nor [●●●●] are quasiisometry invariant in general, they
do enjoy this property for quasigeodesic metric spaces. In fact, most of what comes
below refers to geodesic spaces.

Also notice that Alexandrov’s CAT (κ) spaces are characterised by the inequalities
Diam(B1 ∩B2) ≤Diam(B′

1 ∩B′
2), where B′

1,B
′
2 are balls in the standard spaces with

curvatures κ, and where the raddii and the distances between the centers of B′
1,B

′
2

are equal to these for B1 and B2 in X, [4]

A geometrically most transparent case of l∀N is where N = 3 and Y is a geodesic
triangle △ ⊂X – the union of three segments between the vertices of △.

The existence of almost isometry between Y = △ ⊂ X and a subset in a tree, says
in effect that △ is Y-slim, or simply slim, if it is D-slim for some D > 0 according to
the following definition.

△ ⊂X is called D-slim if there a tree Y embedded to X which is the union of three
segments [x0, xi] ⊂X, i = 1,2,3,, where xi are the vertices of △, and such that

△ ⊂X lies D-close to Y ⊂X, i.e △ admits a map to Y with displacement ≤D.
the tree geometry in Y, that is the induced path metric in it, satisfies

distY ≤ distX +D,
(it is always distY ≥ distX),

This motivates the following.
[△ ; Y]-Condition: the geodesic triangles in X are slim.
Exercises. (a) Show that slimness of the triangles having a given point x0 ∈ X for

a vertex implies slimness of all triangles in X..
(b) Show that the unions Y of n-tuples of segments in hyperbolic spaces are Dn-

almost isometric to Y ′ ⊂ Tree, where
apprlog Dn ≤ δ logn for some (possibly large) δ = δ(X) > 0..
(c)Y Show that if X is hyperbolic and subsets in Yi ⊂ X, i = 1,2, ..., n, are almost

isometric to trees then their union Y = ∪iYi is almost isometric to a subset in a tree,
where the error parameter of the latter "almost" depends (only) on those of X, of Yi
and on n.

Recollection. Slimness of triangles in (the Cayley graphs of) hyperbolic groups was
emphasised by Ilya Rips, who was concerned with construction of combinatorially slim
triangles ▲ in 2-dimensional combinatorial (cellular) spaces X, where combinatorial
sliminess of ▲ and/or of △ = ∂▲, means, according to Rips, that the set of interior
points of ▲ can be covered by at most n = n(X) combinatorial units – cells in X.

He conjectured that if X is the universal covering of a polyhedral space X with
finitely many cells and with hyperbolic fundamental group Γ = π1(X), then all geodesic
triangles in X with their vertices in the 0-skeleton of X can be simultaneously Γ-
equivariantly deformed to combinatorially slim ones. (This may be regarded a coun-
terpart to Markov partitions in hyperbolic dynamics.)

Rips told me about this in ≈1980 along with his other unpublished results and
ideas about hyperbolic groups, e.g. his collapsibility argument (see below) of Vietoris’
complexes of hyperbolic groups. But, for all I know, the existence of combinatorially
slim triangles was confirmed by him only for small cancellation groups, the (probably
quite complicated) proof of which still remains unpublished(?).

From [△ ; Y] to l∀N .
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The slimness [△ ; Y]-condition, similarly to [●() ●] is, a priori, weaker than l∀N
and it is not quasiisometry invariant. But we shall see in (2.11) (compare [47] [28])
that hyperbolic universality of [↓↓]- cylinders yields the implication

[△ ; Y] ⇒ l∀N .
Exercise (d). Discretise the proof of [iii] in 1.2 or the arguments concerning

[↓↓]- cylinders in 2.11 and show, without a use of [↓↓]- cylinders and area estimates, that
[△ ; Y] yields shadowing of quasigeodesics by geodesics, which trivially implies the
above implication

Dehn Contraction and Rips Collapsibility. Let Y be a bounded subset in a geodesic
δ-hyperbolic space X. Then, for every C > 0,
� there exist points y⋏ ∈ Y,x↓ ∈X, such that

[⋏] dist(y, x↓) ≤ dist(y, y⋏) −C +D

for all y ∈ Y for which dist(y, y⋏) ≥ 2C and all sufficiently large D ≥D0(δ).
Proof. Assume without loss of generality that X is unbounded and that C > D.

Let x0 ∈X satisfy
sup
y∈Y

dist(y, x0) > 2C.

Let y⋏ ∈ Y be the the farthest point from x0 – one may assume such exists since
everything is estimated up to a positive error anyway – and let x↓ be the point in
a segment [x0, y⋏] ⊂ X within distance 2C from y⋏ ∈ Y . Then [⋏] is seen by either
looking at the (slim!) triangles {y, y⋏, x0} or by comparing with how it is trees.

Vietoris Blow-up Complex. Recall the blow-up graph G1 = G≤D(X) on the vertex
set X with the edges (x1, x2) where distX ≤D, and let G∗ = G∗

≤D(X) be the maximal
simplicial complex with the 1-skeleton G1. Thus, the simplices in G∗ corresponds to
cliques in G1, which are tuples of points in X with mutual distances ≤D.

Rips Lemma. If X is hyperbolic then, for sufficiently large D, every finite sub-
complex in G ⊂ G∗ is contained in a collapsable99 subcomplex G+ ⊂ G∗. Consequently
G∗ is contractible.

Proof. Let Y ⊂X be a finite subset, join all y ∈ Y by segments with a point x0 ∈X
and let Y+ ⊃ Y be a finite set such that the intersections of Y+ with these segments are
ε-nets in these segments for some (relatively) small ε > 0, say ε = 1.

Then �, say with with D ≥ 2 and C = 2D, shows that removing y⋏ from Y+
effectuates an elementary collapse from G∗

≤D′(Y+) to G∗
≤D′(Y+ ∖{y⋏}) for D′ ≥ 2C and

the proof follows.
However simple this lemma may appears, it has significant corollaries for word

hyperbolic groups Γ, which are finitely generated groups with hyperbolic word metrics.
In this case, the complexes G≤D(Γ, dist∆) are locally finite and the actions of Γ on

them are cocompact, i.e. admit bounded fundamental domains.
Besides these action are free on vertex sets of G≤D(Γ, dist∆) since these are are

equal to Γ.
At this point one applies Rips lemma to G≤D(Γ, dist∆) with large D and, observe

that contractibility of G≤D(Γ, dist∆) implies, in particular,
Rips Theorem. Finitely generated word hyperbolic groups are finitely
presented.

99An elementary collapse of a simplicial complexG is defined by a decompositionG = G−1∪∆
where G−1 is a subcomplex and ∆ is a simplex in G, such that the intersection ∆ ∩G−1 is
a proper face in ∆. A collapse in general is a chain of elementary collapses terminating at a
single point,

G ⊃ G−1 ⊃ G−2... ⊃ G−i ⊃ ... ⊃ {⋅}.
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2.10 Rough Convexity, Slim Triangles and Limit Trees.
So far, we have been only munching definitions; now let us bring forth a simple argu-
ment that is needed for showing that [↓↓]-cylinders from 2.8 are hyperbolic.

[Ct +D]-Convexity of Real Functions and of Metric Spaces. A positive function
f(r) on an interval in R is called [Ct +D]-(quasi)convex, where C ≥ 1 and D ≥ 0, if
the inequality

r2 − r1 ≥ C(f(r1) + f(r2)) +D
is satisfied for given r1 < r2 in the domain of f , then there exists a point r between ri,
i.e. r1 ≤ r ≤ r2, such that

f(r) ≤D/2.
Remark. In applications, such an r can be taken relatively close to the center of

the segment [r1, r2], e.g. such that r1 + ε(r2 − r1) ≤ r ≤ r2 − ε(r2 − r1).
A geodesic metric space X is called [Ct +D]-convex if the distance functions to

quasisegments E1 ⊂ X are [Ct +D]-convex on all segments E2 ⊂ X, where C and D
depend on the error parameters of E1 but not on E1 and/or E2.

For instance, trees are (obviously) [Ct +D]-convex. Consequently,
Hyperbolic spaces X are [t +D]-convex with D =D(X).

In fact, D depends on the error in the approximation of X by trees in the sense of
l∀N .

[Ct+D]-Lemma. Let f(r) be [Ct+D]-convex 1-Lipschitz function on [a, b]. Then
there exists a subinterval [a′, b′] ⊂ [a, b], such that:

● f(r) ≤ (C + 2)D for all r ∈ [a′, b′];
● f(r) ≥ 1

3C
dist(r, [a′, b′]) for r in the complement to [a′, b′], i.e. for a ≤ r ≤ a′ an

b′ ≤ r ≤ b.
Proof. (a) The lenght of an interval [α,β], that supports a [Ct+D]-convex function

f(r) such that f(α) = f(β) ≤ D and f(r) > D/2 for α < r < β is at most 2CD +D.
Hence, if f is 1-Lipschitz, then

f(r) ≤D +CD +D/2 ≤ (C + 2)D for all r ∈ [α,β].
(b) If a 1-Lipschitz [Ct+D]-convex function f(r) on [0, β], satisfies f(0) =D and

f(r) >D for r > 0, then f(r) ≥ r
3C

for all r.
Indeed, since f is 1-Lipschitz, the inequality f(r0) < r0

3C
, implies that r0 ≥ max(3DC,3Cf(r0))

and, by the [Ct +D]-convexity, there is a point 0 < r < r0 where f(r) ≤D/2 ≤D.
Now, if a′ is equal to the smallest r where f(r) ≤ D and b′ is the largest such r,

then the segment [a′b′] satisfy the conditions of the lemma.. QED.

From [Ct +D]-Convexity to l∀N -Hyperbolicity.

Hyperbolicity of [Ct +D]-convex spaces X follows in two steps.
(A) Shadowing. If the above segment E2 has the same end points as E1 then, it is

(C + 2)D-close to E1 by (a).
(B) Linear Divergence of Segments and Rays. Let [x0, x1] and [x0, x2] be two

segments in X, where [x0, x2] is longer than [x0, x1].
Let [x0, x

′
1] ⊂ [x0, x1] be the maximal subsegment for which

dist(x, [x0, x2]) ≤D for all x ∈ [x0, x
′
1]

and let x′2 ∈ [x0, x2] be the nearest point to x′1. Then the union

E = [x1, x
′
1] ∪ [x′2, x2] ⊂X

is a quasisegment in X, since the distance between x ∈ [x′1, x1] and y ∈ [x′2, x2] grows
linearaly in r = dist(x,x′1) according to (b).
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(One could take the broken geodesic E′ = [x1, x
′
1] ∪ [x′1, x′2] ∪ [x′2, x2] ⊂ X instead

of E, but this does not change anything, since dist(x′1, x′2) ≤D.)
(C) Slimness of Geodesic Triangles. Since E is a quasisegment, it is shadowed by

the segment [x1, x2], which means that the geodesic triangle with the vertices x0, x1, x2

is slim.
(D) Hyperbolicity. Since quasisegments are shadowed by segments, quasigeodesic

triangles are also slim, and, as we explained earlier, this (trivially) implies l∀N .
About C = 1. Isn’t it amusing that albeit [Ct +D]-convexity of functions does not

imply [t +D+]-convexity, this is so for geodesic metric spaces?.
Pedersen’s Style [Ct + D]-Convexity. The above definition of [Ct + D]-Convex

spaces has a purely geodesic counterpart where [Ct+D]-Convexity is required only of
distance functions to segments (rather than to quasisegments) in X, which is in the
spirit of Pedersen’s [κ < 0]1 (see 2.3, 2.5).

It is, probably, obvious to anybody how geodesic [Ct+D]-convexity yields slimness
of geodesic triangles – it is like a high school exercise in geometry of triangles..., except
for the annoying task of keeping track of the "error paramenters" .

The purpose of what is written below is to challenge the reader to find a better
language which would reduce the following (non fully detailed) argument to five(ten?)
lines of effortless and rigorous reasoning.

Start by observing that, by the above (B), the "purely geodesic" [Ct+D]-convexity
implies the following.

Let {x0, x1, x2} ⊂ X be (the vertex set of) a geodesic triangle △ in X and let
x′i ∈ [x0, xi], i = 1,2 be points with equal distances from x0.

[⋆λ] If
dist(x′1, [x1, x2]) ≥ λdist(x1, x2)

for some λ ≤ λ0(C,D) < ∞, then

dist(x′1, x′2) ≤ const = const(C <D)

(where const ≤ 10CD).
Let us upgrade ⋆ as follows. Subdivide the segment [x1, x2] by some pints xi ∈

[x1, x2] into n ≤ 10λ + 1 subsegments of lengths≤ 0.1λ, apply [⋆λ], to the n (narrow)
triangles {x0, xi, xi+1} add the resulting bounds on distances between the points xi ∈
[x0, xi].

By the triangle inequality, this yields the following qualitative self-improvement of
[⋆λ]. where the gain in the multiplicative constant is paid for by an increase of the
additive error. ("Additive" is insignificant on the large scale: At + b beats at +B for
large t.)

[⋆0.1] If
dist(x′1, [x1, x2]) ≥ 0.1dist(x1, x2),

then
dist(x′1, x′2) ≤ const = const(C,D)

(where const(C,D) ≤ 10nCD).
It follows, that

[∗] every geodesic triangle △ = {x0, x1, x2} ⊂X contains a vertex, namely the one
which is opposite to the shortest edge, let it be x0, such that the points x0i(r) ∈ [x0, xi],
i = 1,2, with distances r from x0 satisfy

dist(x01(r), x02(r)) ≤ const(C,D) for r ≤ 1
2
diam{x0, x1, x2}

66



Given a (large) geodesic triangle△= {x1, x2, x3}, let

(xij ∈ [xi, xj], xij′ ∈ [xi, xj′])

where i, j = 0,1,2, j ≠ i, j′ ≠ j, be three similar pairs of points on the pairs of edges of△ at the vertices xi, with distances

dist(xij′ , xi) = dist(xij , xi) = ri, i = 1,2,3,

such that
ri are the largest numbers for which the distances beween xij and xij′ are
≤ const(C,D).
According to the above (B), the edges of the (eight smaller) triangles△= {x0j0 , x1j1 , x2j2}

with the vertices on the three edges of △ (one needs only one such triangle, say
{x01, x12, x20}) keep within a controlled bounded distance from the corresponding
edges of △= {x0, x1, x2}; hence, the edges in △ diverge at the vertices xij as much,
up to a bounded error, as the corresponding edges of△ do beyond the points xi,j on
their edges where this divergence begins by the definition of these points.

It follows that diam(△) ≤ const′(C,D), otherwise △ would violate [∗]. Hence,
the (large) triangle△ is slim. QED

Exercises.(a) Let the subsets Y in a geodesic metric space X with diameters D and
cardinalities ≤ N = N(D) be ε0D-almost isometric to subsets in trees. (This means
that there are correspondences Y ↔ Y ′ ⊂ Tree, such that

∣distX(y1, y2) − distTree(y′1, y′2)∣ ≤ ε0 ⋅D for (y1, y2) ↔ (y′1, y′2).)

Show that if ε0 > 0 is sufficiently small, e.g. ε0 < 0.1, and N(D) → ∞ for D → ∞,
then X is hyperbolic. (According to apprlog-exercise (that is (b) in 2.9) such an
approximation in hyperbolic spaces X is possible for N = εD, ε = ε(X) > 0.)

(b) Show with (a) that
Clim⇔l∀N : a geodesic metric space X is hyperbolic if and only if all ultra limits

of the spaces λX = (X,λdist(X)) for λ→ 0 are trees.

2.11 Lengths-Areas Inequalities and Hyperbolicity of [↓↓]-
Cylinders.

Let X = ⋃iCylPi be a [↓↓]-Cylinder that is the (amalgamated) union of the the cylinders
of maps Pi ∶ Si → Si−1 with the distinguished point, x0 = S(0) ∈ X, where, by the
construction of the metric in X, each x ∈ X is joined with x0 by a unique segment
[x,x0] ⊂X (see 2.8).

Let Y ⊂ X be a, say piecewise geodesic, curve an observe that the induced path
metric in the the geodesic cone Z over Y ,

Z = Conex0(Y ) = ⋃
y∈Y

[x + 0, y] ⊂X,

is a Riemannian one away from x0, provided we use the Pythagorean product metrics
in the constituent cylinders CylPi ⊂ S(i) × S(i − 1) × [0,1] (see 2.1).

Let the maps Pi in the definition of X be uniformly contracting, say e−λ-Lipschitz
for some λ > 0. Then the the lengths of the equidistant curves Yr obtained by moving
Y by distance r toward x0 satisfy

length(Yr) ≤ (exp−λr)length(Y )

and
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area(Z) = ∫
∞

0
length(Yr)dr ≤ length(Y )∫

∞

0
exp−λr ≤ λ−1length(Y ).

Thus, X satisfies
aλ Linear 2D-Filling Inequality. all closed curves Y ⊂ X bound discs Z ⊂ X

with areas linearaly bounded by the lenghts of Y

area(Z) ≤ λ−1length(Y ).

This serves for estimating distances in hyperbolic space via the following
g Besicovitch-Loewner Square Inequality. Let Z be a disk with a Riemannian

metric, and let the circular boundary Y = ∂Z is partitioned, similarly to ◻, into four
arcs A,B,A′,B′.

Then the Riemannian distances between these arcs (measured by the minimal lengths
of curves between points) satisfy"

dist(A,A′) ⋅ dist(B,B′) ≤ area(Z).

Proof. Let A+r ⊂ Z denotes the r-equidistant to A, that is the set of points z ∈ Z
with dist(z,A) = r. If r ≤ d = dist(A,A′) then, by an elementary toplogy, there is a
connected component in A+r that meats B and B′; hence, the length of such an A+r
(understood as the 1-dimensional Hausdorff measure, if you wish) is bounded from
below by

lengthA+r ≥ dist(B,B′).
On the other hand, since

area(Z) = ∫
d

0
length(A+r)dr

by the coarea formula (rather obvious in the present case), the proof follows.
Derivation of [Ct +D]-Convexity from a&g. Let E1 ⊂ X be a ∆1-quasisegment

that we may assume being a piecewise geodesic simple curve in X, where every sub-
segment E′ ⊂ E1 with end points e′1, e′2 satisfies

length(E′) ≤ ∆1dist(e′1, e′2)

where ∆1 ≥ 1 is the distortion of E1, which is equal to one for undistorted E1 i.e.
(geodesic) segments in X.

Let E2 = [x1, x2] ⊂X be a (geodesic) segment, let e′1, e′2 be the points in E1 nearest
to x1 and to x2 and let Y be the closed curve composed of the segments [x1, x2], [x1, e

′
1]

[x2, e
′
2] and the subsegment E′ ⊂ E1 between e′1 ∈ E1 and e′2 ∈ E1.

If

L = length(E2) = dist(x1, x2) ≥ C(dist(x1, e
′
1) + dist(x2, e

′
2)) +D, C ≥ 1,D ≥ 0

then
dist([x1, e

′
1], [x2, e

′
2]) ≥ L − (L −D)/C ≥ C − 1

C
L

by the triangle inequality. Then we estimate the length of Y by comparing its piaces
to L and conclude:

length(Y ) ≤ 2L + 2∆1dist(e′1, e′2) ≤ 4∆1L.

Invoke aλ and Span Y by a disc of area

A ≤ 4λ−1∆1L.
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Apply g to this disc and evaluate the distance from E2 to E1 by

dist(E2,E1) ≤ dist(E2,E
′) ≤ A

dist([x1, e′1], [x2, e′2])
≤ 4λ−1∆1C

C − 1
.

Thus, the [Ct +D]-inequality holds in X for all C > 1 and

D ≥ 8λ−1∆1C

C − 1
.

Hyperbolic Universality of [↓↓]-Cylinders. Let us complete the circle of hyperbolic
implications by showing that all geodesic hyperbolic spaces X are almost isometric to
[↓↓]-cylinders.

To do this, fixe a point x0 ∈ X, let [x0, x1], [x0, x2] be geodesic segments and
attach to X the geodesic triangle ▲′ =H2

κ, with vertices x′i ∈H2
κ, where

● H2
κ is the hyperbolic plane with constant curvature κ

● distH2
κ
(x′i, x′j) = distX(xi, xj) i, j = 0,1,2,

● the triangles ▲′ are attached to X along the edges on their boundaries, namely
at the pairs issuing from x′0, by isometries [x′0, xi] → [x0, xi], i = 1,2.

Perform this attachment for all pairs of edges [x0, x1], [x0, x2] ∈X, where distX(x1, x2) ≤
D for some D > 0 and, as we did it many times earlier, we take the supremum of the
metrics d on the union of the so attached triangles, call it Xκ = X∐{▲′}, which are
majorized by the H2

κ-metrics on these triangles, where we identify points where the
resulting metric, call it distκ, vanishes.

(All such point lie in X ⊂ Xκ. For instance, distκ(x1(r), x2(r)) = 0 if x1(R) =
x2(R) for some R ≥ r or if the segments [x0, x1(r), [x0, x2(r)] extend to two rays with
the distance ≤D/2 between them.)

Such an Xκ carries a natural [↓↓]- cylindrical structure as the normal projections
of the (r + 1)-spheres in Xκ around x0 to the concentric r-spheres are uniformly con-
tracting maps. (They contract as much as such projections in H2

κ.)
It is also clear that all of Xκ lies within bounded distance from X, or rather from

what remains of X after identification of points in it with distκ zero. In fact, X may
collapse to a single ray for κ << −1, which happens, for instance, to H2

κ′ if κ
′ > κ.

But if κ > 0 is sufficiently close to zero, such that the asymptotics of the growth of
X far away from x0 dominates the growth of H2

κ′ , then the collapse is insignificant:
the difference distκ − distX stays bounded on X. QED.
[△ ; Y] ⇒ l∀N -Corollary. "Insignificance of collapse" follows from the [Y]-

slimmnes of the triangles △ in X which have x0 for one of their vertices. Thus,
[△ ; Y] does imply the hyperbolicity of X which was defined in 2.9, by l∀N via
approximation of n-tuples of quasisegments in X by trees.

Remark+Open Problem. The space Xκ is locally CAT (κ) at all points except for
x0. One can make such a space everywhere locally CAT (κ) by moving x0 to infinity,
but then the resulting space Xκ loses simple connectivity.

it is probable, however, that all hyperbolic spaces X are quasiisometric (almost
isometric?) to Pedersen’s strict tube convex [κ < 0]1-spaces (see 2.3) but it is unlikely
with CAT (κ) instead of [κ < 0]1. The obvious candidates for counterexamples are
[↓↓]-spaces S × R with the metric erds2 + dr2 where S is an infinite dimensional non-
Riemannian space, such as L∞[0,1]. .

What is known in this regard is that locally bounded geodesic hyperbolic spaces
X, i.e. where the balls of radius R can be covered by at most expR of unit balls, are
almost isometric to CAT (κ)-spaces, namely to convex subsets in HN

κ , according to a
theorem by Bonk and Shramm (2000) [18].
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Their construction also allows similar embeddings of a class of, possibly infinite
dimensional, hyperbolic spaces with uniform exponential divergent rate of geodesics to
Pedersen’s strict tube convex spaces like the above (S ×R, erds2 +dr2), but we are far
from answering the following.

Question. What are hyperbolic spaces with discrete isometry groups Γ acting
on them which are Γ-equivariantly quasiisometric to Pedersen’s negatively curved
Γ-spaces.

2.12 Quasiminimal Surfaces, Conformal Kobayashi Met-
rics and Spaces of Curves.

The linear filling inequality aλ, as it was explained above, is equivalent to hyperbolicity
of path metric spaces X, provided one has a reasonable concept of area of maps from
surfaces Y to X, e.g. if X is a polyhedral space with a piecewise Riemannian metric.
For instance – this suffices for our present purposes100 – one can define the area of a
map f ∶ Y →X as

the infimum of the areas of the Riemannian metrics g on Y for which the map f
is distance decreasing.
Granted this, one defines
filling area arfl(S) of a closed (possibly disconnected) curve S ⊂ X, that is the

infimum of areas of surfaces Y mapped to X with boundaries ∂Y = S with an obvious
convention for the meaning of this equality.

In these terms, the corresponding linear filling inequality reads
- arfl(S) ≤ λlength(S) for all closed curves S ⊂X and some constant λ = λ(X).
(This - is weaker than aλ since it allows surfaces Y which do not have to be

disks. However, it implies hyperbolicity similarly to a because the Besicovitch-Loewner
square inequality g is impervious to the topology of Y . Thus, the validity of - for all
closed curves in a simply connected X implies aλ.)

Since we are mainly concerned with the large scale geometry the existence of
minimal surfaces with the areas equal to arfl(S) is non-essential: almost minimal
surfaces with areas ≤ arfl(S) + const serve equally well. Another class of suitable
surfaces Y in X are quasiminimal ones where the areas of the domains Y ′ ⊂ Y with
boundaries S′ satisfy

areaX(Y ′) ≤ cost ⋅ arfl(S′).
On the other hand, there is no problem with minimality in 2-dimensional cell spaces

G2 with all 2-cells having equal areas: the closed curves in the 1-skeleta G1 ⊂ G2 do
bound minimal surfaces. And since the geodesic spaces X are quaisiisometric to the
2-skeleta G2

≤D(X) of the Vietoris blow-up complexes G∗
≤D(X), one may discard of the

existence problem in the study of large scale properties of X.
Conformal Surfaces in X. A Lipschitz map from a Riemann surface, i.e. a surface

with a Riemannian metric, to a metric space, f ∶ Y →X is metaconformal if it becomes
path isometric after a conformal change g0 ; g1 of the original Riemannian metric gi
on Y , which means that g1 = φg0 for a positive locally square summable measurable
function φ = φ(y).

In general, such maps are far from conformality, after all Riemann surfaces admits
path-isometric maps to the plane R2, but if such a surface is minimal, then metacon-
formal is what one could regard as conformal, at least at the points y ∈ Y where the

100Sharp geometric inequalities need a finer notion of area, such, e.g. as Hilbert 2-volume
introduced in [57].
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map Y →X is locally one-to-one.101

Kobayashi Construction. The conformal Kobayashi (possibly degenerate) met-
ric on a metric space X is the maximal metric, such that all minimal (meta)conformal
maps from the hyperbolic plane H2 (with curvature −1) to X are 1-Lipschitz.

This definition and the preceding discussion are justified by the following
q distKob-Nondegeneracy Proposition (Ahlfors Lemma). If the space X sat-

isfies -, and if closed curves in X of length l ≤ 1 bounds discs of areas ≤ C2 ⋅ l2,
then

distKob(x1, x2) ≠ 0 for x1 ≠ x2.

Proof.102 To prove the non-vanishing of distKob it is sufficient to bound the diam-
eters of the images of the unit balls under conformal minimal maps H2 →X.

We start with observing that the linear filling inequality - for curves of lengths
l ≥ 1 and the quadratic inequality for l ≤ 1 (trivially) imply, when taken together, that
the curves S of all lengths l satisfy

ar(s) ≤ Cαlα for all 0 < α < 2,

where the constant C = Cα also depends on the above C2 and the constant in -.
Then the proof reduces to the following
Lemma. Let φ = φ(y) be a positive measurable function on H2, such that the

integrals of φ2 over the balls (discs) B ⊂ H2 are bounded in terms of the integrals of
φ over the boundaries S = ∂B as follows.

◯α, ∫
B
φ(y)2dy ≤ Cα (∫

S
φ(s))

α

ds,

where α is a constant in the interval 1 < α < 1 1
3
.

Then every pair of points in H2 with the distance ≤ 1 between them can be joined
by a curve Σ ⊂H2, such that

∫
Σ
φ(σ)dσ ≤ const⋆,

where const⋆ depends only on Cα.
Proof of the Lemma. It suffices to show that, for every point y ∈H2, there exist
[●E ] a segment E = Ey, say of of length 0.11, issuing from y, such that
∫E φ(e)de ≤ const1

and
[●S ] a circle S = Sy centered at y of radius r = r(y), where 0.1 ≤ r ≤ 0.11 and
such that ∫S φ(s)ds ≤ const2.
Let φ0 = φ0(y) be obtained by averaging φ over the rotation group around y0 ∈H2

and observe that the existence of Ey0 and Sy0 for φ follows from that for φ0 by the
convexity of the function(al) φ↦ ∫ φ2.103

To conclude the proof with a minimal computation, let us pass from the the punc-
tured hyperbolic plane H2 ∖ {y0} ⊂ H2 to the conformally equivalent to it cylinder
(−∞,0) × S1 with length(S1) = 1.

The (S1-symmetric!) function φ0 becomes here a function in r ∈ (−∞,0), call it
ψ(r), r < 0, where the inequality ◯α says that

Ψ(r) = ∫
r

−∞
ψ(r′)2dr′ ≤ Cαψ(r)α,

101"Conformal" is hardly applicable to the points in Y small neighbourhoods of which have
1-dimensional images in X.
102This, probably, goes back to Ahlfors.
103This is the moment where linearization built into the lemma becomes essential.
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or
ψ(r)2 = dΨ(r)

dr
≥ C−α

2
α Ψ(r)

2
α = cβΨ(r)β , where 3/2 > β > 1.

Since β > 1, the inequality dΨ(r)
dr

≥ cβΨ(r)β implies the bound

Ψ(r) ≤ C(r), r < 0

for some function
C(r) ∼ −r−

1
β−1 , r < 0,

since

d(−r−
1
β−1 )

dr
= aβ ⋅ (−r−

1
β−1

−1) = aβ ⋅ (−r−
1
β−1 )

β

where aβ = (β − 1)−1.

And since 1
β−1

= 2 + ε, ε > 0, for β < 3/2, the integrals ∫
−1

−∞ ψ(r)dr are bounded in
terms of

Ii = ∫
−i

−(i+1)
ψ(r)2dr = Ψ(i) −Ψ(i + 1) ≤ Cε

1

i2+ε
, i = 1,2..., ε > 0.

as follows

∫
−1

−∞
ψ(r)dr ≤

∞
∑
1

I
1
2
i ≤ constε < ∞.

The bound ∫
−1

−∞ ψ(r)dr ≤ const directly implies the above [●E ] and, together heter
with the inequality

min
0.101r0≤r≤0.1r0

ψ(r) ≤ 1000∫
−1

−∞
ψ(r)dr for all r0 ≤ −10,

it yields [●S ]. This concludes the proof of the lemma and
non-vanishing of the metric distKob in hyperbolic metric spaces follows. QED.
It is also not hard to show that the converse is true:
non-vanishing of distKob on the blow-up 2-complex G2

≤D(X) implies hyperbolicity
of X, compare section 6.8 in [?].

In fact, there is a stronger result due to Bruce Kleiner (unpublished) which proi-
vides a direct derivation of the linear isoperimetric inequality from a bound on dilations
of conformal maps.

Exercise: Ahlfors-Picard Theorem. Prove that the discs Y immersed into the triply
punctured sphere, S2 ∖ {⋅ ⋅ ⋅}, satisfy area(Y ) ≤ const ⋅ lenght(∂(Y )) and show that
that there is no (non-constant) quaisconfomal map R2 → S2 ∖ {⋅ ⋅ ⋅}.

What is "Space"?
There is something wrong with the above proof of q :

why two pages instead of two lines?104

Apparently, the concepts of metric space and large scale geometry are poorly
adapted to the 2-dimensionality of surfaces, areas and conformal maps.

A more expressive language (motivated by the ideas of the conformal field theories)
would be that of spaces (categories?) S∗ with the properties imitating these of the
spaces S∗(X) of closed oriented(?) curves S in metric spaces X (with any number
i = 0,1,2, ... of components in S) with the structure(s) imposed by the geometries of
(quasi)minimal (and harmonic?) surfaces bounded by these curves.

This S∗, seen as the space of 1-dimensional Z-cycles, has a structure of an Abelian
group, where the genera and areas of (minimal) surfaces Y bounded by s ∈ S∗ serve

104This proof is not even, strictly speaking, complete: a few technicalities, let them be trivial
ones, were swept under the carpet.
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as "norms" of these s. And finer parameters are encoded in the (possible) conformal
structures of Y .

Questions. What would be the counterpart(s) of the large scale geometries for
such S∗?

How does this "geometry" look, for example, if S∗ = S∗(X) where X is a compact
negatively curved manifold?

Which S∗ can be regarded as "hyperbolic"?

2.13 Ideal Boundary, Conformal Geometries and Asymp-
totic Invariants of Metric Spaces.

The asymptotic cones Con∞(X) = limD→∞D
−1X give only a rough idea of the geom-

etry of metric spaces X at infinity. For instance, these cones are mutually isometric
for most (all?) interesting CAT (−1)-spaces, including all manifolds with negative
curvatures≤ −1. (Trees with finitely many branches, such as R and R+, are among the
exceptions.)

An incomparably richer spectrum of images unveils in front of your eyes if instead
of large balls B(R) ⊂X you look at large spheres S(R) = ∂B(R) with localized induced
metrics, possibly, scaled by D−1, say, with D = exp−βR, 0 < β < ∞. (Thinking quasi-
isometrically, it is better, instead of spheres, to use annuli between concentric spheres
S(R1) and S(R2) with arbitrarily large ratios R2/R1.)

Then, traditionally, the sphere at infinity, denoted ∂ray(X), is defined as the set
of rays R ⊂X – images of isometric embeddings [0,∞) →X – modulo the equivalence
relation R1 ∼Hau R2 which signifies the boundness of the Hausdorff distance (see 2.6)
between rays: distHau(R1,R2) < ∞.

This serves well for CAT (0) spaces and for expanding [↓↓]-cylinders: the boundary
∂ray(X) for such an X is equal to the projective (inverse) limit of the concentric R-
spheres S(R) ⊂X, around a reference point x0 ∈X, where these S(R) map to S(r < R)
by radial (which are also normal) projections.

In other words, ∂ray(X) is equal to the space of geodesic rays issuing from x0 ∈X,
which makes the pictured most transparent for manifolds with negative curvatures
where the space of rays issuing from x0 identifies with the unit sphere in the tangent
space Tx0(X).

This ∂ray(X)may be not so nice for such spaces as Rn with the sup-norm ∣∣(x1, ..., xi, ..., xn)∣∣ =
max∣xi∣, where there are two many rays. For instance, the map r ↦ (x1(r), x2(r), ..., xn(r)),
r ∈ [0,∞), is isometric (hence, it defines a ray) for all monotone increasing 1-Lipschitz
functions xi(r) if one of them, say, x1(r) is equal to r.

This problem does not arise in the alternative definition, where X is embedded to
the space F of real functions on X with the sup-norm by x ↦ f(y) = dist(x, y) and
then F is factorized by a subspace Fsmall of "small" functions, e.g, of constants or
of bounded functions. Then ∂∞(X) is defined as the set of the limit points105 of the
image of X in F /Fsmall.

This boundary, if it is defined with small = bounded, is (obviously) invariant under
almost isometries. What is more interesting is that

if X is geodesic hyperbolic then ∂∞(X) is a quasiisometry invariant. Moreover,
quasisometric embeddings Y →X induce topological embeddings ∂∞(Y ) → ∂∞(X).

In fact, it (easily) follows from the shadowing property that

∂∞(X) = ∂geo(G≤D(X)),D > 0.

Why G≤D(X)? The blow-up graph G≤D(X) is needed to take care of (artificial)
cases where almost rays are not shadowed by rays; one could avoid using G≤D by

105A limit point of a subset A ⊂ B is a point in the closure of A which is not in A itself.
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redefining ∂geo(X) with almost rays – images of almost isometric maps [0,∞) → X –
instead of rays.

In what follows below, we assume for the sake of brevity that almost rays are are
shadowed by rays and also almost lines shadowed are by lines; thus we dispose of G≤D.

Then we have no problem, for instance, with the existence of
lines joining pairs of points at infinity,

denoted ]p1, p2[⊂X for all p1, p2 ∈ ∂∞(X), p1 ≠ p2.
Quasiconformal Structure on ∂∞. If X is equal to the standard hyperbolic space

Hn, then the radial projection of spheres, Sx(R) → Sx(r), x ∈ X, scale the metrics
in the spheres. This is not so for the radial projection Sx(R) → Sy(r), but this
projection is asymptotically conformal for R →∞, since the geodesic rays issuing from
y are asymptotically normal to the spheres Sx(R) for R →∞.

Thus,
the conformal structure in ∂∞(X) induced by the radial projection to Sx(r) does

not depend either on r (which is obvious) or on x (which is more interesting).
Consequently,
The isometries of X = Hn extend to conformal homeomorphisms of the sphere

Sn−1 = ∂∞(Hn).
Less obviously,
T quasiisometries of Hn extends to quaisiconformal homeomorphisms of the

sphere Sn−1 = ∂∞(Hn).
Historical Remark. Generalizing/refining earlier analytic results by Mori (1957,

n = 2,) and Gering (1963, n = 3) Mostow (1968) [?] proved (on 30 pages in [84] that
(A) quasi conformal maps of the unit n-ball, n ≥ 3, quasiconformally extend to the

boundary of the ball.
Since Hn is conformally equivalent to the (open) ball, (A) implies that
(B) bi-Lipschitz homeomorphisms of Hn extends to quasiconformal homeomor-

phisms of the sphere Sn−1 = ∂∞(Hn).
Then Margulis (1970) gave a half a page proof ofTfollowing in steps of the Morse-

Efremovich-Tichomirova shadowing argument (see below.)
Notice also that (A) follow from T, since
quasiconformal (not necessarily locally homeomorphic) maps f ∶ Hn → Hn, n ≥ 2,

are Lipschitz on the large scale.
This follows from Ahlfors Lemma which we proved in section 2.12 for n = 2, but

the argument automatically extends to all n.
(Our argument needs f to be almost everywhere differentiable but this is not

difficult to take care of.)

Margulis-Sullivan Quasiconformal Structure on ∂∞X and the proof of T.
Start with the case at hand where X = Hn and describe annuli between (n − 2)-

spheres in Sn−1 = ∂Hn in terms of geodesic rays issuing from a point x0 ∈ Hn as
follows.

Given a ray R0 in Hn from x0 to a point s0 ∈ ∂Hn let UL,d(R) ⊂ ∂Hn be the subset
represented by rays R issuing from x0, such that the initial segments R of length L lie
within distance ≤ d from R0.

These subsets UL,d = UL,d(R0) are balls in Sn−1 = ∂Hn around s0 for the metric
in Sn−1 coming from the unit sphere Sn−1

x (1) ⊂ Hn, where the radii r of these balls
are, roughly r ≈ d ⋅ e−L for d << L and where the essential point is that

the ratios of the radii of the balls UL1,d1 and UL2,d2 inSn−1, where L2 ≥ L1 and
d1 ≥ d2, are bounded by

r1

r2
≤ constd1

d2
exp(L2 −L1).
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Now let f ∶Hn →Hn be a quasisometry that sends x0 ↦ x′0 and let R′
0 be the ray

issuing from x′0 which shadows f(R0) ⊂ Hn. The segments in R′
0 which correspond

to the initial L-segments in R have lengths L′ ≈ a ⋅ L±1; thus the extension of f to
Sn−1 = ∂Hn, still called f , is not usually Lipschitz but Hölder Ca.

And since the boundness of the differences L2 − L1 and of the ratios d1/rd is
preserved under quasiisometries,

the f -images of the r-balls in Sn−1 are pinched between balls the radii of which r′−
and r′+ have the ratios bounded by r′+/r′− ≤ constf . (These radii themselves may be
≈ ra.)

Hence, the map f is quasiconformal on Sn−1. QED.
The description of annuli via the sets of (quasi)rays make sense for all hyperbolic

spacesX, where it serves as the definition of the quasiconformal structure ∂∞X (I recall
Sullivan making this remark many years ago), where this structure was analysed earlier
in different terms by Mostow (1973) in his proof of the (strong) rigidity of the locally
symmetric spaces with negative (not necessarily constant) sectional curvatures.

Conformal Invariants of Flows. The growth rate characteristics of R-actions on
spaces S, such as the topological entropy, are not invariant under the time reparametriza-
tion, but certain ratios of these "characteristics" are invariant.106 This may be seen in
terms of the [↓↓]-cylinders Xε (see section 2.8) associated with these actions, where the
quasiisometry classes of Xε are invariant under time reparametrization and, at least
in the hyperbolic case, the conformal invariants of R-actions are seen in S which is
identified for this purpose with ∂∞(Xε).

Clarification. The definition of the metrics dist∆ and dist∆ ↑ε on S and of the
corresponding [↓↓]-cylinders Xε given in 2.8 for actions of discrete groups, applies to
R, with ∆i = [−i, i] ⊂ R, but this action can not be uniformly expansive, since it does
not expand the R-orbits. This can be (artificially) compensated by scaling the metric
dist∆i along the orbits with the factor (1+ ε)i. Alternatively, one may restrict dist∆i
to a transversal slice to the orbits.

Higher Dimensional Groups and Foliations. The above applies to (generously un-
derstood) foliations. e.g. to orbits of continuous groups actions, where dist∆i measures
the Hausdorff distances (see 2.6) between i-balls in the leaves with the localized in-
duced metrics in them.

2.14 Semihyperbolic Spaces.
We search for a class (classes?) of spaces X which could be taken for a "boundary" of
the class of the hyperbolic spaces, where the failure of hyperbolicity in these X should
be localized on (quasi)flat (or similarly simple) subspaces.

Below are a few (potential) examples of subclasses of such spaces.
[B]. This is an extreme generalization of Bruhat-Tits buildings: the minimal class

of geodesic spaces which contains convex subsets in Banach spaces and which is closed
under amalgamation over convex subsets. (Also one may insist that [B] is closed under
inductive limits and/or ultra limits.)

Example: Gersten’s spaces. LetH be the set of the affine hyperplanesH =Hij ⊂ Rn
given by the equations xi = j, i = 1,2, ..., n, j = ... − k, ...,0, ..., k....

The Gersten space XGer is obtained from copies of Rn by amalgamation along
hyperplanes H ∈ H, such that there are two copies of Rn attached to every copy of
each H in X.
106We discuss specific invariants of this kind, such as Pansu’s conformal dimension [92], [51]
and conformal entropy spectrum [52] later in this paper.
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For instance if n = 1, this H is the set of the integer points in R and XGer is
isometric to the regular tree with four edges at every vertex in it.

Exercises. (a) Show that the R-spheres Sx(R) ⊂X have diam(Sx(R)) ∼ R2, where
these diameters are measured with respect to the path metrics in the complements to
the open balls Bx(R) ⊂X, i.e. dist(s1, s2) is defined as the length of the shortest path
in X ∖Bx(R) between these points. (See [43], [10], [76], [112] for more about it.)

(b) Describe the isometry groups of the spaces XGer for n ≥ 2.
[Bδ] This class of geodesic metric spaces X is defined by the following property:
if subsets Yi ⊂X, i = 1,2, ..., k, are almost isometric to spaces from [B]
then the union Y = ∪iYi is almost isometric to a subset in a space from [B],

where the almost isometry parameter D of Y depends, besides the parameter δ which
characterises X itself, only on these parameters Di of Yi and on k. (compare exercise
(c)Y in 2.9)

Another rather general class, call it [↓↓]λ, is comprised of [↓↓]-cylinders, where the
maps S(i) → S(i − 1) are λi-Lipschitz, e.g. for λi ≤ i

i−1
.

Among these "cylinders" with λi ≤ i
i−1

one finds
Pederesens [κ ≤ 0]1-spaces, as well some (undesirable?) nilpotent Lie groups with

Carnot-Caratheodory metrics.
Two other examples – these are motivated by the group theory – are the following.

[7] 2-dimensional polyhedral spaces where every closed 2-cell ∆ has the
following property: if an open topological disc in D2 ⊂X contains
∆ then D2 intersects the interiors of at least 6 2-cells in X besides ∆.
(The universal coverings of the complexes associated with
[≤ 1

6
]-presentations of groups are instances of such spaces.)

[V] Complete polyhedral, e.g. Riemannian, spaces X where all complete
simply connected quasi-minimal surfaces are quasiisometric to
simply connected surfaces with non-positive curvatures.

The above list neither perfect nor complete. Other directions of generalizations
of κ ≤ 0, are suggested by the concepts of combing and bicombing and and/or of
divergence rates of geodesics in X. But the main questions remain open (compare [?]).

What are classes of spaces deserving the name "semihyperbolic"?
What are relations between different classes of semihyperbolic spaces X,
especially between classes of almost homogeneous X?

3 Hyperbolic Symmetries and Hyperbolic Groups.
In the same vein, as the class of hyperbolic spaces is a geometric/logical perturbation
of the class of trees, the class of hyperbolic group is an algebraic/logical perturbation
of the class of free groups.

4 Symbolic Coding and Markov Partitions.
Similarly to how it is with hyperbolic groups, the class of hyperbolic dynamical systems
is a combinatorial/logical perturbation of the class of the Bernoulli actions.

76



5 Bibliography.

References
[1] . R. Adler, B. Weiss, Entropy, a complete metric invariant for automorphisms of

the torus. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1573-6

[2] Agranovskii Shoiykhet. Lawrence Zalcman at Sixty, in Complex Analysis and
Dynamical Systems II: A Conference in Honor of Professor Lawrence Zalcman’s
Sixtieth Birthday, June 9?12, 2003, Nahariya, Israel

[3] , Stephanie B.; Bishop, Richard L. (1990), The Hadamard-Cartan theorem in
locally convex metric spaces, Enseign. Math. (2), 36 (3-4) 309-320.

[4] S. Alexander, V.Kapovitch, A. Petrunin Alexandrov geometry
https://www.math.psu.edu/petrunin/papers/alexandrov-geometry/

[5] [1951] Alexandrov, A. D. A theorem on triangles in a metric space and some of
its applications. Trudy Math. Inst. Steks. 38 (1951), 5-23 (Russian).

[6] A.D.,Alexandrov Berestovski, V.N., Nikolaev, I.G., Generalized Riemannian
Spaces. Russian Math. Surveys 41:3 (1986) 1-54

[7] Anosov Roughness of geodecis flows on compact Riemannain manifolds of negative
curvature ,DAN SSSR 145 (1962), 707-709 (Russian)

[8] D. Anosov Geodesic fows on closed Riemann manifolds with negative curvature,
Trudy Mat. Inst. Steklov, 90, (1967).

[9] M. F. Atiyah. Elliptic operators, discrete groups and von Neumann algebras.
Asterisque 32-3 (1976), 43-72.

[10] Jason Behrstock and Cornelia Drutu. Divergence, thick groups, and short conju-
gators. Illinois J. Math. Volume 58, Number 4 (2014), 939-980.

[11] Nicolas Bergeron, Akshay Venkatesh The asymptotic growth of torsion homology
for arithmetic groups, 2010 arXiv:1004.1083v1

[12] A. Besicovitch On Two Problems of Loewner - Journal London Mathematical
Society jlms.oxfordjournals.org/content/s1-27/2/141.full.pdf+html

[13] , Bogomolov, F. A. (1977). Families of curves on a surface of general type. Doklady
Akademii Nauk SSSR (in Russian). 236 (5): 1041?1044. MR 457450.

[14] M. Bonk Quasi-geodesic segments and Gromov hyperbolic spaces. Geom. Dedi-
cata 62, 1996, 281-298.

[15] Bonk, Mario; Heinonen, Juha; Koskela, Pekka. Uniformizing Gromov Hyperbolic
Spaces, Asterisque 270 (2001).

[16] Bonk M., Heinonen J., Quasiregular mapping and cohomology Acta Mathematica.
September 2001 Volume 186, Issue 2, pp 219-238.

[17] Quasi-hyperbolic planes in hyperbolic groups, Mario Bonk, Bruce Kleiner. Proc
AMS Volume 133, Number 9, Pages 2491?2494 2005

[18] M. Bonk, O. Schramm, Embeddings of Gromov hyperbolic spaces, Geom. Funct.
Anal. 10, 266-306 (2000)

[19] [1963] A. Borel, Compact Clifford-Klein forms of symmetric spaces , Topology 2
(1963), 111-122.

[20] . R. Bowen, Markov Partitions for Axiom A Diffeomorphisms. American Journal
of Mathematics, Vol. 92, No. 3 (Jul., 1970), pp. 725-747

[21] E. Breuillard, E Le Donne On the rate of convergence to the asymptotic cone for
nilpotent groups and subFinsler geometry arXiv:1204.1613

77



[22] M. Bridson, A. Haefliger, Metric Spaces of Non-Positive Curvature Springer 2011

[23] R. Brody, Compact manifolds and hyperbolicity, Trans. Amer. Math. Soc. 235
(1978) 213-219.

[24] , Burago, D., and Kleiner, B., Separated nets in Euclidean space and Jacobians
of bi-Lipschitz maps, Geom. Funct. Anal. 8 (1998), no. 2, 273-282.

[25] Dmitri Burago, Yuri Burago, Sergei Ivanov, Course in Metric Geometry,
http://www.math.psu.edu/petrunin/papers/alexandrov/bbi.pdf

[26] [1948] H Busemann, Spaces with non-positive curvature, Acta Mathematica 80
(1), 259-310

[27] R. M. Charney and M. W. Davis, Strict hyperbolization, Topology 34 (1995),
329-350.

[28] M. Coornaert, T. Delzant, A. Papadopoulos, "Géométrie et théorie des groupes:
les groupes hyperboliques de Gromov" , Lecture Notes in Mathematics , 1441 ,
Springer (1991)

[29] Izzet Coskun The arithmetic and the geometry of Kobayashi hyperbolicity,
arXiv:math/0412102v1

[30] F. Dahmani, Yaman. Symbolic dynamics and relatively hyperbolic groups.
Groups, Geom. Dyn. 2 (2008), 165?184

[31] T. Das, D. Simmons M.Urbanski. Geometry and dynamics in Gromov hyperbolic
metric spaces. arXiv:1409.2155

[32] [1911] M. Dehn, Über unendliche diskontinuierliche Gruppen, Mathematische An-
nalen 71, 116-144.

[33] David Drasin, Pekka Pankka. Sharpness of Rickman’s Picard theorem in all di-
mensions, arXiv:1304.6998

[34] Bruno Duchesne. Superrigidity in in
nite dimension and
nite rank via harmonic maps. Groups Geom. Dyn., 9(1):133148, 2015.

[35] T Dymarz Bilipschitz equivalence is not equivalent to quasi-isometric equivalence
for finitely generated groups. 2009,
https://www.math.wisc.edu/ dymarz/BIJJune29.pdf

[36] [1953] V. Efremovich, The proximity geometry of Riemannian manifolds (Rus-
sian), Uspekhi Mat. Nauk 8, 189.
.

[37] V. Efremovich, E. Tichomirova, Equimorphisms of hyperbolic spaces, Isv. Ac.
Nauk. 28, 1139 -1144. 1963.

[38] A. Eremenko, Ahlfors’ contribution to the theory of meromorphic functions. Lec-
tures in memory of Lars Ahlfors (Haifa, 1996) volume 14 of Israel Math. Conf.
Proc. pages 41?63. Bar-Ilan Univ., Ramat Gan, 2000.

[39] Farrell and Ontaneda, Exotic Topology in Geometry and Dynamics http ∶
//www.math.binghamton.edu/agogolev/indexf iles/SurveyFGO.pdf

[40] J. Franks, Anosov diffeomorphisms, in "Global Analysis" (ed. S. Smale), Proc.
Sympos. Pure Math., 14, Amer. Math. Soc., Providence, R.I., 1970, 61-93.

[41] John Franks and Clark Robinson. A Quasi-Anosov Diffeomorphism That is Not
Anosov Transactions of the American Mathematical Society Vol. 223 (Oct., 1976),
pp. 267-278

[42] David Fried. Finitely presented dynamical systems, Ergodic Theory and Dynam-
ical Systems (1987) 489-507

78



[43] Gersten Quadratic divergence of geodesics in CAT(0) spaces. Geometric & Func-
tional Analysis GAFA January 1994, Volume 4, Issue 1, pp 37-51

[44] Green, M., Griffiths, P.: Two applications of algebraic geometry to entire ho
lomorphic mappings. The Chern Symposium 1979. Proc. Intern. Symp. 41-74,
Springer, New York (1980)

[45] P. Griffiths Holomorphic mappings into canonical algebraic varieties Annals of
Mathematics. Second Series . 93 (1971) 439-458.

[46] Rostislav Grigorchuk, Tatiana Nagnibeda, Complete growth functions of hyper-
bolic groups, Inventiones Mathematicae, September 1997, Volume 130, Issue 1,
pp 159-188

[47] E. Ghys (ed.) P. de la Harpe (ed.) Sur les groupes hyperboliques d’après Mikhael
Gromov Progress in Maths. , 83 , Birkháuser (1990)

[48] M. Gromov, Sign and geometric meaning of curvature. M. Seminario Mat. e. Fis.
di Milano (1991) 61: 9.

[49] M. Gromov, Hyperbolic manifolds groups and actions, in Riem, surfaces and
related topics, Ann. Math. Studies 97 (1981), p.p. 183-215.

[50] M. Gromov. CAT (κ)-spaces: construction and concentration. Zap. Nauchn. Sem.
S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 280(Geom. i Topol. 7):100?140,
299?300, 2001.

[51] M. Gromov Asymptotic invariants of infinite groups. Geometric group theory,
Vol. 2: edited by A. Niblo and Martin A. Roller, London Math. Soc. Lecture.
Note Ser., vol. 182, Cambridge Univ. Press.

[52] M. Gromov, Carnot-Carathodory spaces seen from within. Sub-Riemannian ge-
ometry, 79-323, Progr. Math., 144, Birkhuser, Basel, 1996.

[53] M. Gromov, Topological Invariants of Dynamical Systems and Spaces of Holo-
morphic Maps: I , Mathematical Physics, Analysis and Geometry 2: 323-415,
1999.

[54] M. Gromov, Dirac and Plateau Billiards in Domains with Corners, Central Eu-
ropean Journal of Mathematics August 2014, Volume 12, Issue 8, pp 110-1156

[55] M. Gromov, Infinite Groups as Geometric Objects, Proceedings of the Interna-
tional Congress of Mathematicians. August 16-24, 1984

[56] M. Gromov, M. Kähler hyperbolicity and L2-Hodge theory. J. Differential Geom.
33 (1991), no. 1, 263-292.

[57] M. Gromov, Hilbert volume in metric spaces. Part 1 Central European Journal
of Mathematics April 2012, Volume 10, Issue 2, pp 371-400

[58] M. Gromov, Super stable Kählerian horseshoe? In Essays in mathematics and its
applications, pages 151-229. Springer, 2012.

[59] Vincent Guirardel. Geometric small cancellation.
http://www.math.utah.edu/pcmi12/lecture−notes/guirardel.pdf

[60] F. Haglund. Complexes simpliciaux hyperboliques de grande dimension. 2003
http://www.math.u-psud.fr/∼haglund/cpl−hyp−gde−dim.pdf

[61] M. Handel, Global shadowing of pseudo-Anosov homeomorphisms. Ergod. Th. &
Dynam. Sys. (1985), 5, 373-377.

[62] B. Hasselblatt, Hyperbolic dynamical systems. Handbook of Dynamical Systems
1A, 239-319, Elsevier North Holland, 2002

[63] Steven Hurder. A Survey of Rigidity Theory for Anosov Actions. Proceedings of
the workshop on Topology, Rio de Janeiro, AMS; Contemporary Math. (1992)
http://homepages.math.uic.edu/∼hurder/papers/47manuscript.pdf

79



[64] T. Januszkiewicz et J. Swiatkowski, Hyperbolic Coxeter groups of large dimen-
sion, Commentarii Math. Helvetici 78(2003) pp.555-583.

[65] Tadeusz Januszkiewicz Jacek ?wi?tkowski, Simplicial nonpositive curvature. Pub-
lications Mathématiques de l’Institut des Hautes Études Scientifiques November
2006, Volume 104, Issue 1, pp 1-85

[66] Vadim A. Kaimanovich, Boundary amenability of hyperbolic spaces,2004,
arXiv:math/0402353v1

[67] Ilya Kapovich and Nadia Benakli Boundaries of hyperbolic groups. 2002,
arXiv:math/0202286v1

[68] by M.D. Kirszbraun Über die zusammenziehende und Lipschitzsche Transforma-
tionen. Fund. Math. 22: 77-108, 1934.

[69] B. Kleiner, An isoperimetric comparison theorem. (1992).Inventiones math. 108:1,
pp 37-48.

[70] S. Kobayashi, Intrinsic Metrics on Complex Manifolds Bull. Amer. Math. Soc. 73:
347?349. 1967

[71] Linus Kramer, Metric Properties of Euclidean Buildings
2011 https://arxiv.org/abs/1012.2218

[72] S. A. Krat, On pairs of metrics invariant under a cocompact action of a group,
Electronic Research Announcements - AMS, Volume 7, Pages 79-86 (September
28, 2001)

[73] Jean-Francois Lafont, Shi Wang. Barycentric straightening and bounded coho-
mology, 2015 arXiv:1503.06369

[74] U. Lang and V. Schroeder, Kirszbraun’s theorem and metric spaces of bounded
curvature, Geom. Funct. Anal. 7(1997), 535-560.

[75] J. Lelong-Ferrand, Transformations conformes et quasiconformes des variétés rie-
mannienne; application á la démonstration d’une conjecture de A. Lichnerowicz,
C,R, Acad, Sci, Paris Sér, A-B 269 (1969), A583-A586.

[76] Macura N, CAT(0) spaces with polynomial divergence of geodesics
arXiv:1101.3355

[77] ] A. Manning, Axiom A diffeomorphisms have rational zeta functions, Bull .
London Math . ‹. Soc . 3 1971 , 215-220.

[78] Shinichiroh Matsuo, Masaki Tsukamoto, Brody curves and mean dimension
arXiv:1110.6014, Journal: J. Amer. Math. Soc. 28 (2015), 159-182

[79] G. Margulis, The isometry of closed manifolds of constant negative curvature with
the same fundamental group, Soviet Math. Dokl. 11, 722-723. [1970]

[80] C. McMullen, Lipschitz maps and nets in Euclidean space, Geom. Funct. Anal. 8
(1998), no. 2, 304-314.

[81] McQuillan Old and New Techniques in Function Field. Arithmetic. Michael Mc-
Quillan. June 17, 2012
http://www.mat.uniroma2.it/∼mcquilla/files/oldnew.pdf

[82] I. Mineyev, N. Monod, Y. Shalom. Ideal bicombings for hyperbolic groups and
applications arXiv:math/0304278

[83] M. Morse A fundamental class of geodesies on any closed surface of genus greater
than one, Trans . Amer . Math . Soc . 2 6 (1924) , 25-61

[84] G. Mostow, sl Quasiconformal mappings in n-space and the rigidity of hyperbolic
space forms, Inst. Hautes Etudes Sci. Publ. Math. 34, 53-104. 1968

80



[85] Volodymyr Nekrashevych. Finitely presented groups associated with expanding
maps. 2013, arXiv:1312.5654.

[86] Volodymyr Nekrashevych. Symbolic dynamics and self-similar groups, "Holomor-
phic Dynamics and Renormalization: A Volume in Honour of John Milnor’s 75th
Birthday", volume 53 of Fields Institute Communications., 2008, p. 25-73.

[87] Volodymyr Nekrashevych. Combinatorial models of expanding dynamical sys-
tems, Ergodic Theory and Dynamical Systems, vol. 34, (2014), pp. 938-985.

[88] Volodymyr Nekrashevyc Hyperbolic groupoids and duality, Memoirs of the Amer-
ican Mathematical Society, vol. 237, No. 1122, (2015).

[89] P. Ontaneda, Normal smoothings for Charney?Davis strict hyperbolizations.
Journal of Topology and Analysis, April 2016, Pages: 1 - 39

[90] Damian Osajda. A Construction of Hyperbolic Coxeter Groups, 2010.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.726.326&rep=rep1&type=pdf

[91] Pekka Pankka, Juan Souto, On the non-existence of certain branched covers,
arXiv:1008.1694

[92] P. Pansu, Large scale conformal maps Pierre Pansu 2016, arXiv:1604.01195

[93] F.P. Pedersen, On spaces with negative curvature. Mater. Tidsskrift. B. (1952),
66-89.

[94] E. Picard, Sur une propriété des fonctions entières, C. R. Acad. Sci. Paris 88
1024-1027

[95] J.F. Plante, W.P. Thurston, Anosov flows and the fundamental group Topology,
Volume 11, Issue 2, May 1972, Pages 147-150

[96] Ian F. Putnam. Lecture Notes on Small Spaces July 16, 2015 Lecture Notes on
Smale Spaces.
http://www.math.uvic.ca/faculty/putnam/ln/Smale−spaces.pdf

[97] J. Ratcliff, Foundations of Hyperbolic Manifolds (Graduate Texts in Mathemat-
ics) Springer 2006

[98] Christophe Reutenauer. N-Rationality of Zeta Functions, Advances in Applied
Mathematics Volume 18, Issue 1, January 1997, Pages 1-17

[99] Abraham Robinson, Metamathematical Problems, The Journal of Symbolic Logic
Vol. 38, No. 3 (Dec., 1973), pp. 500-516

[100] S. Rickman. On the number of omitted values of entire quasiregular mappings.
J. Analyse Math., 37, 100-117, 1980

[101] Rickman, S. Simply connected quasiregularly elliptic 4-manifolds 2006 In : An-
nales Academiae scientiarum Fennicae. Mathematica. 31, p. 97-110.

[102] K Sakai Quasi-Anosov diffeomorphisms and pseudo-orbit tracing property.
Nagoya Math. J. 111 (1988), 111-114.

[103] Peter Scholze. On torsion in the cohomology of locally symmetric varieties, Ann.
of Math. 182 (2015), Pages 945-1066.

[104] M. Shub, Endomorphisms of Compact Differentiable Manifolds. Amer. J. Math.
XCI (1969), 175-199

[105] Ya. Sinai, Markov partitions and C-diffeomorphisms Jour. Funktsional. Anal. i
Prilozhen. 1968 2 :1 64–89

[106] S. Smale A structurally stable differentiable homeomorphism with an infinite
number of periodic points, Qualitative methods in the theory of non-linear vibra-
tions, Proc. Internat. Sympos. Non-linear Vibrations, Vol. II, 1961) Izdat. Akad.
Nauk Ukrain. SSR, Kiev, 1963, pp. 365-366 and in Stockholm (1962)

81



[107] Y. T. Siu, The complex-analyticity of harmonic maps and the strong rigidity of
compact Kahler manifolds, Ann. of Math. (2) 112:1 (1980), 73-111

[108] S. Smale Dynamical systems and the topological conjugacy problem for diffeo-
morphisms, Proc. Internat. Congr. Mathematicians Stockholm, 1962.

[109] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 747-817.
1967.

[110] A. Svarc, Volume invariants of coverings. (Russian), Dokl. Akad. Nauk, 105,
32-34

[111] [1947] V. Tartakovskii, On identity problem in some clasees of groups Dokalady
Ac. Sci USSR, 58, No 9 1909-1910.

[112] H.Tran, Relative Divergence, Subgroup Distortion, and Geodesic Divergence
(2015) http://dc.uwm.edu/etd/1088/

[113] A. Treiberg, Steiner Symmetrization and Applications
http://www.math.utah.edu/ treiberg/Steiner/SteinerSlides.pdf

[114] P. Tukia, On quasiconformal groups, J. Analyse Math. 46 (1986), 318-345.

[115] B. A. Venkov, On the reduction of positive quadratic forms", Izv. Akad. Nauk,
3 1937, 16?62.

[116] Liouville’s theorem(complex analysis), Wikipedia.

[117] H. Wu, Some theorems on projective hyperbolicity and J. Math. Soc. Japan Vol.
33, No. 1, 1981.

[118] A. Zimmer. Gromov hyperbolicity, the Kobayashi metric, and C-convex sets.
arXiv:1602.01444v1 [math.CV]

[119] V. Zorich, A theorem of M. A. Lavrent’ev on quasiconformal space maps. Mat.
Sb. (N.S.), 1967, Volume 74(116), Number 3, Pages 417?433 .

82


