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1 Introduction

Consider a ”crystal”, that is, the standard lattice Γ = Z3 in R3 with identical
”molecules” positioned at all sites (points) γ in Γ. Denote by M the configuration
space of such a molecule which is assumed to be a smooth finite dimensional
manifold and let X = MΓ be the configuration space of the crystal, that is, the
infinite product of Γ copies of M . Suppose adjacent molecules interact via a
potential (energy) which is, by definition, a smooth function of two variables, say
f : M ×M → R. Then the total energy of the crystal could be thought of as the
(infinite !) sum of copies of f over all adjacent pairs of sites (γ, γ′), called edges
of Γ (with six edges at each site) :

F (x = (xγ)) =
∑

edges(γ,γ′)

f(xγ , xγ′). (∗)

Such an F is clearly almost everywhere infinite for non-trivial f but its gradi-
ent (differential) is obviously well defined and finite at all points x in X. Thus
one may speak of the critical points of F , also called the stationary states of the
crystal. Observe that the set S of stationary states make a closed subset in X
invariant under the obvious (shift) action of Γ on X. The basic question is that
of evaluating the entropy of the dynamical system (S, Γ) in terms of the topology

∗Research supported by a FNRS Chargée de Recherches contract

1



of M and/or some generic features of f . One still does not have a satisfactory
criterion for non-vanishing of this entropy except for a few specific cases, such as
the discretized geodesic flow on a Riemannian manifold for instance, but one can
give a lower bound on the asymptotic distribution of the critical values of F as
follows.

Exhaust Γ with some standard subsets Ωi, e.g. by concentric cubes of edge size
2i, and let Fi denote the ”restriction” of F to Ωi, that is, the sum of the terms
in (∗) corresponding to edges in Ωi. This sum is regarded as a function on MΩi ,
call it Fi : MΩi → R. It is further normalized by letting F ′i = 1/ card(Ωi) Fi.
The functions F ′i take values in a fixed interval, namely in [f− = 6 inf(f), f+ =
6 sup(f)]. We count the number #i(I) of critical values in each subinterval I of
[f−, f+], and set

crii(I) =
1

card(Ωi)
log #i(I).

The purpose of this paper is to provide a Morse theoretic lower bound for lim inf crii(I),
i → ∞, in terms of a certain (strictly positive !) concave function (entropy) on
[f−, f+] capturing the homological behaviour of functions F ′i for i →∞.

Aknowledgements We wish to thank the referee for having noticed some mis-
takes in the text.

2 Framework

Consider a countable group Γ endowed with a left-invariant metric d : Γ × Γ →
R+. Given a finite subset Ω ⊂ Γ, its cardinality is denoted by |Ω|. The set of
finite subsets of Γ is denoted by B(Γ). The distance d is extended to a map
d : B(Γ)×B(Γ) → R+ (not a distance) as follows :

d(Ω,Ω′) = inf{d(γ, γ′); γ ∈ Ω, γ′ ∈ Ω′}.

Given a nonnegative number N , the N -boundary and the N -interior of Ω ∈ B(Γ)
are the sets

∂NΩ = {γ ∈ Γ; d(γ,Ω), d(γ,Γ− Ω) ≤ N},
intNΩ =Ω − ∂NΩ.

When reference to N is clear the set intN/2Ω will be denoted by Ω̃. Given Ωo and
Ω, two finite subsets of Γ, we denote their amenability ratio by α(Ω,Ωo), that is

α(Ω,Ωo) =
|∂DoΩ|
|Ω| ,

where Do = sup{d(γ, γ′); γ, γ′ ∈ Ωo} is the diameter of Ωo. Let us recall that a
countable group is said to be amenable if it admits an amenable sequence (Ωi),
i.e. an increasing sequence of finite subsets exhausting Γ such that for any non-
negative number N ,

lim
i→∞

|∂NΩi|
|Ωi|

= 0.
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Let X be a compact topological space endowed with a Γ-action ρ : Γ ×X →
X : (γ, x) )→ γx.

Let fo : X → R be any continuous function with fo(X) = [0, 1]. For Ω in B(Γ),
we define the average of fo along Ω to be the function

fΩ(x) =
1
|Ω|

∑

γ∈Ω

fo(γ−1x).

3 Product-like actions

We will impose on the group action ρ a restrictive assumption of homological
nature expressing abundance of multiplicative structure. It will ensure that the
homological measure defined in the next section will have a well-defined exponen-
tial growth. Its statement requires the introduction of some elements of notation.

Let F be a field and let H"(X;F ) denote the singular cohomology of X with
coefficients in F . Given a finite-dimensional subalgebra A ⊂ H"(X;F ) and a finite
subset Ω of Γ, we denote by AΩ the (finite-dimensional) subalgebra of H"(X;F )
generated by the translates of A along Ω, i.e.

AΩ = Alg
〈 ⊕

γ∈Γ

γ∗A
〉
,

where γ∗ = (γ−1)∗ denotes the induced (left) action of γ on H"(X;F ).

Assumption 3.1 There exists a nontrivial subalgebra A ⊂ H"(X;F ) for which
any finite-dimensional subalgebra A ⊂ A admits a number N = N(A) ≥ 0 such
that if Ω,Ω′ ∈ B(Γ) satisfy d(Ω,Ω′) > N(A), then the cup product map is injective

AΩ ⊗AΩ′ ↪→ AΩ∪Ω′ : a⊗ a′ )→ a ∧ a′. (×)

Remark 3.2 Assumption 3.1 The word nontrivial in the statement above should
be given the meaning that the algebra A contains some nonzero finite-dimensional
algebra.

When this assumption is satisfied, the action ρ is said to be a product-like action,
in reference to the following example.

Example 3.3 (Products) Let M be a manifold. Consider X = MΓ, the infinite
product of Γ copies of M , or equivalently, the set of maps

Γ → M : γ → xγ ,

with the topology of pointwise convergence (or product topology). Assumption 3.1
holds. Indeed, an algebra A satisfying the condition (×) is the direct limit of the
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direct system of subalgebras described hereafter. To each finite subset Ω ⊂ Γ is
associated a finite-dimensional subalgebra A(Ω) of H"(MΓ;F ) :

A(Ω) = p∗Ω(H"(MΩ;F )),

where pΩ : MΓ → MΩ is the canonical projection. When Ω′ ⊂ Ω, there is a map
pΩ,Ω′ : MΩ → MΩ′

and hence a pullback iΩ,Ω′ : A(Ω′) → A(Ω). The algebra

A = lim−→
Ω∈B(Γ)

A(Ω)

is a subalgebra of H"(MΓ;F ) that satisfies (×). Indeed, let A ⊂ A be a finite-
dimensional subalgebra. There exists a finite subset Ωo ⊂ Γ such that A ⊂ A(Ωo).
Given Ω, the space AΩ is contained in A(Ω · Ωo) and, as the Künneth formula
implies, it suffices to use N(A) = diam(Ωo · Ω−1

o ).

A class of examples of Γ-spaces not of the product type, but enjoying the product-
like property is described below in Section 12.

Remark 3.4 Assumption 3.1 is not satisfied when X is a manifold, or when
H"(X;F ) has finite rank.

4 Homological measure of thickened level sets

We will define homological invariants associated to a continuous function fo on X.
They can be interpreted, roughly speaking, as a measure of the amount of coho-
mology supported in the various thickened level sets of the averages of fo over the
finite subsets of Γ, and therefore could be called homological measures of slices. If
X was a manifold and if fo wasa smooth function, these invariants would provide a
measure for the number of ”homologically-detectable” critical points of the various
functions fΩ located in the various thickened level sets of fΩ (cf. Section 8). The
real purpose is to consider the exponential growth of this invariant as the finite sub-
set becomes large. The resulting object will depend upon two variables : the level
and the normalized degree in cohomology. It is called hereafter the homological
entropy of the function fo, in analogy with the traditional entropy of an observ-
able ([4]). The entropy is well-defined provided these invariants satisfy certain
properties. Classically these properties are submultiplicativity and Γ-invariance.
In contrast, the homological measure is invariant as well (Lemma 5.2), but su-
permultiplicative (Lemma 5.1). To define entropy in this situation necessitates
the introduction of an additional assumption on the group, called here tileability
(cf. Section 6).

Notation 4.1 If a is a cohomology class and if O is an open subset of X, the
expression supp a ⊂ O (”a is supported in O”), means that for some open set
O′ such that X = O ∪ O′, the restriction of a to O′ vanishes. Observe that if
supp a ⊂ O and supp b ⊂ U then supp a ∧ b ⊂ O ∩ U .
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Given A ⊂ A a finite-dimensional subalgebra, an open set O, a non-negative
number &, a positive number ν and a finite subset Ω ⊂ Γ, we consider the subal-
gebras

H"
AeΩ

(O) = {a ∈ AeΩ; supp a ⊂ O},
H#,ν

AeΩ
(O) = {a ∈ AeΩ; supp a ⊂ O & (&− ν)|Ω| < deg a < (& + ν)|Ω|}.

Recall the convention that Ω̃ denotes intN/2 Ω, where N = N(A) is the number
associated to A ⊂ A from Assumption 3.1. The inequalities involving the degree
of a have to be verified by each component of pure degree. Finally, the open
sets considered hereafter will be sublevel, superlevel or thickened level sets of the
function fΩ, typically :

O = f−1
Ω (−∞, c + δ) or f−1

Ω (c− δ,+∞) or f−1
Ω (c− δ, c + δ),

for some c ∈ [0, 1] and δ > 0. Then consider the map

ϕ#,ν
A,Ω,c,δ : H#,ν

AeΩ
(f−1

Ω (−∞, c + δ)) →

Hom
(

H"
AeΩ

(f−1
Ω (c− δ,+∞)), H"

AeΩ
(f−1

Ω (c− δ, c + δ))
)

(
ϕ#,ν

A,Ω,c,δ(a)
)
(b) = a ∧ b.

Its rank is denoted hereafter by

b#,ν
A,Ω(c, δ) = rankϕ#,ν

A,Ω,c,δ.

Definition 4.2 b#,ν
A,Ω(c, δ) is called the (&− ν, &+ ν)-th homological measure of the

thickened level f−1
Ω (c− δ, c + δ) with respect to AΩ.

5 Properties of the homological measure

We prove in this section the two properties – supermultiplicativity and Γ-invariance
– necessary to obtain a well-defined homological entropy.

Lemma 5.1 The map B(Γ) → R : Ω )→ b#,ν
A,Ω(c, δ) is supermultiplicative. More

generally, let Ω,Ω′ ∈ B(Γ) be disjoint finite subsets, let c, c′ ∈ [0, 1] and let &, &′ ≥ 0,
then

bα#+(1−α)#′,ν
A,Ω∪Ω′ (αc + (1− α)c′, δ) ≥ b#,ν

A,Ω(c, δ) · b#′,ν
A,Ω′(c′, δ), (1)

where α = |Ω|
|Ω∪Ω′| and thus 1− α = |Ω′|

|Ω∪Ω′| .

Proof. The argument relies on the few simple observations listed below :

- Let Ω and Ω′ be disjoint finite subsets of Γ, then

fΩ∪Ω′ = |Ω|
|Ω∪Ω′|fΩ + |Ω′|

|Ω∪Ω′|fΩ′ = αfΩ + (1− α)fΩ′ .

Thus f−1
Ω∪Ω′(αI + (1− α)I ′) ⊃ f−1

Ω (I) ∩ f−1
Ω′ (I ′) for intervals I and I ′.
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- If a class a is supported in f−1
Ω (I) and if a class a′ is supported in f−1

Ω′ (I ′),
then the class a∧a′ is supported in f−1

Ω (I)∩f−1
Ω′ (I ′) ⊂ f−1

Ω∪Ω′(αI +(1−α)I ′).

- If Ω and Ω′ are disjoint then the distance between Ω̃ and Ω̃′ is greater than
N and Ω̃ ∪ Ω̃′ ⊂ Ω̃ ∪ Ω′. Therefore Assumption 3.1 provides us with an
injective map

AeΩ ⊗AeΩ′ → A
Ω̃∪Ω′ .

This explains the choice of Ω̃ instead of Ω.

- The degree of a ∧ a′ if the sum of the degree of a and that of a′. Thus

a ∈ H#,ν
AeΩ

a′ ∈ H#′,ν
AeΩ′

}
⇒ a ∧ a′ ∈ Hα#+(1−α)#′,ν

A
Ω̃∪Ω′

.

Combining the previous observations we obtain an injection :

ΨI,I′ : H#,ν
AeΩ

(f−1
Ω (I))⊗H#′,ν

AeΩ′
(f−1

Ω′ (I ′)) → Hα#+(1−α)#′,ν
A

Ω̃∪Ω′
(f−1

Ω∪Ω′(αI + (1− α)I ′)).

Now consider the following sequence of maps. We will abbreviate αc + (1 − α)c′
to c̃ and α& + (1− α)&′ to &̃.

H#,ν
AeΩ

(f−1
Ω (−∞, c + δ))

⊗
H#′,ν

AeΩ′
(f−1

Ω′ (−∞, c′ + δ))
↓

Hom
(

H"
AeΩ

(f−1
Ω (c− δ,+∞)), H"

AeΩ
(f−1

Ω (c− δ, c + δ))
) ⊗

Hom
(

H"
AeΩ′

(f−1
Ω′ (c′ − δ,+∞)), H"

AeΩ′
(f−1

Ω′ (c′ − δ, c′ + δ))
)

↓

Hom
(

H"
AeΩ

(f−1
Ω (c− δ,+∞))⊗H"

AeΩ′
(f−1

Ω′ (c′ − δ,+∞)),

H"
AeΩ

(f−1
Ω (c− δ, c + δ))⊗H"

AeΩ′
(f−1

Ω′ (c′ − δ, c′ + δ))
)

↓

Hom
(

H"
A

Ω̃∪Ω′
(f−1

Ω∪Ω′(c̃− δ,+∞)), H"
A

Ω̃∪Ω′
(f−1

Ω∪Ω′(c̃− δ, c̃ + δ))
)

.

The first arrow stands for the map ϕ#,ν
A,Ω,c,δ ⊗ ϕ#′,ν

A,Ω′,c′,δ. The second arrow is a
classical isomorphism, indeed,

Hom(A, B)⊗Hom(C, D) 2 Hom(A⊗ C, B ⊗D)

for finite-dimensional vector spaces A, B, C, D. The third one is the injection in-
duced by a choice of complementary subspaces to the images of the maps Ψ(c−δ,+∞),(c′−δ,+∞)

and Ψ(c−δ,c+δ),(c′−δ,c′+δ) respectively. We will denote the composition of second
and third map by Φ. There is also another sequence obtained from composing

Ψ =Ψ (−∞,c+δ),(−∞,c′+δ)
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with
ϕα#+(1−α)#′,ν

A,Ω∪Ω′,αc+(1−α)c′,δ.

These two sequences commute :

Φ ◦
[
ϕ#,ν

A,Ω,c,δ ⊗ ϕ#′,ν
A,Ω′,c′,δ

]
= ϕα#+(1−α)#′,ν

A,Ω∪Ω′,αc+(1−α)c′,δ ◦Ψ.

Since Φ and Ψ are both injective, this implies that

rank
(
ϕ#,ν

A,Ω,c,δ ⊗ ϕ#′,ν
A,Ω′,c′,δ

)
≤ rankϕα#+(1−α)#′,ν

A,Ω∪Ω′,αc+(1−α)c′,δ

Lemma 5.2 The map

B(Γ) → R : Ω → b#,ν
A,Ω(c, δ)

is Γ-invariant.

Proof. The proof follows from the simple facts stated below. Let Ω ∈ B(Γ), let
γo ∈ Γ and let I ⊂ [0, 1] be any interval. Then

- f−1
γoΩ(I) = γof

−1
Ω (I).

- AγoΩ = (γo)∗AΩ.

- γ̃oΩ = γoΩ̃.

- (γo)∗ induces an isomorphism between H#,ν
AeΩ

(f−1
Ω (I)) and H#,ν

γo∗AeΩ
(γof

−1
Ω (I)).

6 Superadditive Ornstein-Weiss Lemma for tilea-
ble groups

The &-th Betti number entropy of fo will be defined from the exponential growth,
with respect to the index i, of the sequence (b#,ν

A,Ωi
(c, δ))i≥1, where Ωi is an

amenable sequence in Γ, that is to say, from the limit

lim
i→∞

ln(b#,ν
A,Ωi

(c, δ))
|Ωi|

,

when it exists. Lemma 5.1 implies that the map Ω )→ ln(b#,ν
A,Ω(c, δ)) is superadditive

on disjoint sets, while the Ornstein-Weiss lemma [3] provides convergence of the
sequence of averages h(Ωi)/|Ωi| under the hypotheses that the map h : B(Γ) →
R+ is Γ-invariante and subadditive. The proof of the Ornstein-Weiss Lemma
requires the construction of ε-quasi-tilings that any amenable group admits. In
contrast, a proof of the superadditive version of this lemma seems to necessitate
the construction of disjoint such tilings which might not exist in general (although
we do not know of any counterexample). Whence the following definition.
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Definition 6.1 An amenable group Γ is said to be tileable if it admits a tiling
amenable sequence, that is, an amenable sequence (Ωi) such that given ε > 0 and
a subsequence (Ωin) of (Ωi), there exists a finite subsequence of (Ωin), denoted
Ω1, . . . ,Ωs, such that any finite subset Ω with sufficiently large amenablility ratios
α(Ω,Ωj), j = 1, . . . , s can be disjointly ε-tiled by translates of the Ωj’s, i.e. there
exists center γj,k, 1 ≤ j ≤ s, 1 ≤ k ≤ rj in Γ such that

- γj,kΩj ⊂ Ω,

- γj,kΩj ∩ γj′,k′Ωj′ = ∅ for (j, k) 5= (j′, k′),

- | ∪j,k γj,kΩj | ≥ (1− ε)|Ω|.

Examples 6.2 Weiss introduces in [5] the notion of monotileable amenable groups.
Those are groups admitting an amenable sequence (Ωi) consisting of monotiles.
This means that for each index i there exists a set Ci ⊂ Γ for which the various
translates Ωic of Ωi along Ci form a partition of Γ. Such groups belong to the
class of tileable amenable groups. Moreover, Weiss proves that any residually finite
amenable group is monotileable, implying that the following amenable groups are
also tileable.

- Abelian and solvable groups.

- Amenable linear groups, i.e. linear groups not containing F2 as a subgroup.

- Grigorchuk’s groups of intermediate growth.1

Lemma 6.3 (Superadditive Ornstein-Weiss lemma) Let Γ be a tileable amenable
group. Let h be a nonnegative function defined on B(Γ) and satisfying the following
two conditions :

- superadditivity : h(Ω ∪ Ω′) ≥ h(Ω) + h(Ω′) for disjoint subsets Ω and Ω′,

- Γ-invariance : h(γΩ) = h(Ω) for any γ ∈ Γ.

Then, given a tiling amenable sequence (Ωi), the following limit exists

lim
i→∞

h(Ωi)
|Ωi|

.

Remark 6.4 Observe that under the hypotheses of the previous lemma, the limit
is independent of the choice of a tiling amenable sequence in Γ.

Proof. Let ε > 0 and let (Ωi) be a tiling amenable sequence. Extract a sub-
sequence Ωi1 , . . . ,Ωis with which we can ε-tile any element Ωi of the initial se-
quence with sufficiently large index. Suppose also that if h+ stands for the
limsup of the sequence h(Ωi)/|Ωi|, then h(Ωij )/|Ωij | ≥ h+ − ε for all j. Let

1Grigorchuk, Rotislav I., Degrees of growth of finitely generated groups and the theory of
invariant means. Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), no. 5, 939–985.
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γj,k, 1 ≤ j ≤ s, 1 ≤ k ≤ rj denote the centers of a disjoint ε-tiling of Ωi by
translates of the Ωij ’s and let Ω′i = ∪j,k γj,kΩij . Then

1
|Ωi|

h(Ωi) ≥ 1
|Ωi|

(
h(Ω′i) + h(Ωi − Ω′i)

)
≥ 1

|Ωi|
h(Ω′i)

≥ 1
|Ωi|

∑
j,k h(Ωij ) ≥

1
|Ωi|

∑
j,k(h+ − ε)|Ωij |

≥ 1
|Ωi|

(h+ − ε)(1− ε)|Ωi| = (h+ − ε)(1− ε).

Hence
lim inf
i→∞

1
|Ωi|

h(Ωi) ≥ (h+ − ε)(1− ε).

Since this holds for arbitrary ε, the limit limi→∞ h(Ωi)/|Ωi| exists.

7 Homological entropy of functions

Let (Ωi)i≥1 be a tiling amenable sequence in the tileable amenable group Γ and
consider the exponential growth of the sequence b#,ν

A,Ωi
(c, δ) :

b#,ν
A (c, δ) = lim

i→∞

1
|Ωi|

ln
[
b#,ν
A,Ωi

(c, δ)
]
. (2)

As implied by Lemma 5.1, Lemma 5.2 and Lemma 6.3, this limit indeed exists.
Observing that the function b#,ν

A (c, δ) is increasing in ν and δ, we let δ and ν
approach 0 :

b#
A(c) = lim

ν→0
lim
δ→0

b#,ν
A (c, δ).

Independence on A is obtained by considering the supremum over all possible
choices of a finite-dimensional subalgebra A of A :

b#(c) = sup{b#
A(c);A ⊂ A & dim A < ∞}.

Definition 7.1 The function b# : [0, 1] → R : c )→ b#(c) is called the &-th Betti
number entropy of fo.

Remark 7.2 One may also define the sum of the Betti number entropy of fo by
the same process except that the cohomological degree is not restricted. The two
functions are related as follows :

b(c) = sup
#

b#(c).

(This is a consequence of the general fact that the exponential growth of the sum of
two sequences coincides with the exponential growth of the maximum sequence.)

Remark 7.3 The condition that Γ be tileable is only used to guarantee existence
of the limit (2).
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8 Relation with classical Morse theory

This section is devoted to showing how, in the setting of a manifold M endowed
with a Morse function f : M → R, the sum of the Betti number entropy essentially
coincides with the sum of the Betti numbers of M and provides a lower bound for
the number of critical points of f (cf. Proposition 8.1).

Let M be a connected, closed, oriented smooth manifold. Consider a Morse
function f on M . Let F be a field. We recall that if O is some subset of M and
if a is a cohomology class in H"(M ;F ), the expression supp a ⊂ O means that
a|O′ = 0 for some open subset O′ containing M − intO. We denote by Critc(f)
the set of critical points of f at level c. Define

H"(O) =
{

a ∈ H"(M ;F ); supp a ⊂ O
}

,

ϕc,δ : H"(f−1(−∞, c + δ)) → Hom
(
H"(f−1(c− δ,+∞)), H"(f−1(c− δ, c + δ))

)
,

a )→
[
b )→ a ∧ b

]
,

b(c, δ) = rankϕc,δ,

b(c) = limδ→0 b(c, δ).

We might sometimes denote b(c, δ) by b(c − δ, c + δ) or consider b(I) when I is
some interval.

Proposition 8.1

(a)
∑

c∈R
b(c) = SB(M).

(b) b(c) ≤ Critc(f).

Proof.
(a) The main ingredient is the specific version of Poincaré duality mentioned below
in Section 10.1. Indeed, if a ∈ H"(M ;F ), define

ca = inf{c; supp a ⊂ f−1(−∞, c)}.

Since for all δ > 0 the restriction of a to f−1(ca − δ,+∞) does not vanish, there
exists a class b with supp b ⊂ f−1(ca − δ,+∞) such that a ∧ b 5= 0 (cf. Proposi-
tion 10.2). Hence a provides a contribution to b(ca). Here follows a more precise
argument taking into account the following difficulty : there might exist two classes
that have same ca and are independent, but who do not generate a 2-dimensional
space of classes with same ca.

Decompose the range I of fo into intervals as follows :

I ⊂
K⋃

k=1

(Ik = [ak, ak+1)) ak < ak+1.
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If J ⊂ R, let rJ : H"(M ;F ) → H"(f−1(J);F ) denote the restriction map. Then
consider the following increasing sequence of subspaces

{0} = Ker rI1∪...∪IK ⊂ ... ⊂ Ker rIK−1∪IK ⊂ Ker rIK ⊂ H"(M ;F ).

Choose a corresponding sequence of spaces V1, ..., VK such that

Ker rIk∪...∪IK ⊕ Vk = Ker rIk+1∪...∪IK k = 1, ...,K.

(For k = K, we mean Ker rIK ⊕ VK = H"(M ;F ).) If 0 5= a ∈ Vk then ca ∈ Ik.
Hence b(Ik) = rankVk and

K∑

k=1

b(Ik) = SB(M). (3)

This is true for arbitrarily fine subdivisions of I. Now observe that for each c,
either b(c) = 0, in which case b(c − δ, c + δ) = 0 for all sufficiently small δ > 0,
or b(c − δ, c + δ) 5= 0 for all δ > 0. Relation (3) implies that there are finitely
many numbers c with b(c) 5= 0. So

∑
k b(Ik) is constant, equal to

∑
c b(c), for all

sufficiently fine subdivisions of I.

(b) Given a ∈ H"(M ;F ), ca must be a critical value, otherwise we would be able
to move f−1(−∞, c+ δ) below level c− δ by an ambient isotopy, disjointifying the
supports of the classes a and b. In consequence, a ∧ b would vanish. This alone
implies (b) when b(c) ≤ 1 for all c. We will argue that if b(c) = 2 then f cannot
have a single critical point at level c (the general case can be handled in a similar
way). Suppose on the contrary that {x} = Critc(f). Let x1, ..., xm be coordinates
on M , centered at x, for which f has the canonical form

f(x) = −x2
1 − ...− x2

n + x2
n+1 + ... + x2

m.

Let a1 and a2 be two independent classes with ca1 = ca2 = c. Consider piecewise
smooth cycles α1 and α2 representing their Poincaré dual homology classes. We
will make the following assumptions on αi, i = 1, 2 :

- αi is supported in f−1(−∞, c],

- αi ∩ f−1(c) = {x},

- x is a regular value of (each of the simplices composing) αi,

- αi intersects the local unstable manifold Wu(x) = {x;x1 = ... = xn = 0} of
x transversely at x.

It is long but not difficult to verify that these hypotheses are not restrictive.

Now, we will show that the degree of αi must equal the index n of x. The
degree of αi can certainly not exceed n, otherwise αi would not be supported in
f−1(−∞, c]. If the degree of αi was less than n, one could slide αi down the stable
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manifold of x (in a direction transverse to that of Txαi) below level c.

Then, one can subdivide all the simplices of αi containing x in such a way
that x lies in the interior of each simplex to which it belongs and that each such
simplex can be isotoped to a fixed simplex that coincides with the stable manifold
Ws(x) of x in a neighborhood of x. Thus,

αi = f0
i σ0

i +
∑

j≥1

f j
i σj

i ,

where f0
i , f j

i ∈ F , where σ0
i is a piece of Ws(x) containing x and where σj

i avoids
x. It follows that f0

1 α2 − f0
2 α1 vanishes near x, hence that cf0

1 a2−f0
2 a1 < c. So a1

and a2 do not generate a space contributing to b(c), a contradiction.

Remark 8.2 The previous lemma implies the Morse theoretic lower bound an-
nounced in the introduction. Referring to the notation used therein, one observes
that the previous proof implies in particular that if I ⊂ R is some interval, then
CritI(F ′i ) ≥ bA,Ωi(I), where A 2 H∗(M ;F ). Hence

lim inf
i→∞

crii(I) ≥ bA(I).

(The function F ′i defined in the introduction does not quite coincide with the
function fΩi defined in Section 2, but the difference will not affect the asymptotic
behavior of the objects considered here). Moreover, as proved later on, the function
bA(I) is concave and strictly positive.

9 Concavity of the entropy

The above-defined function b : R+ × [0, 1] → R is concave. This follows mainly
from Lemma 5.1, with a slight help from the following fact.

Lemma 9.1 The function b is upper semi-continuous.

Proof. Let (&k, ck) be a sequence converging to some pair (&, c) in R+×[0, 1]. Since
b#,ν
A,Ω(c, δ) is increasing with respect to both intervals (&−ν, &+ν) and (c−δ, c+δ),

b#,ν
A,Ω(c, δ) ≥ b

#k, ν
2

A,Ω (ck, δ
2 )

for sufficiently large k and for all A and Ω. Hence b#(c) ≥ b#k(ck). Thus b#(c) ≥
lim supk→∞ b#k(ck).

Proposition 9.2 The function b is concave. That is to say, for any &, &′ ∈ R+,
any c, c′ ∈ [0, 1], and any α ∈ [0, 1],

bα#+(1−α)#′(αc + (1− α)c′) ≥ α b#(c) + (1− α) b#′(c′). (4)

12



Proof. Let (Ωi) be an amenable sequence. For each i, let Ω′i = γi · Ωi be disjoint
from Ωi. Then the sequences (Ω′i) and (Ωi ∪ Ω′i) are amenable as well. Besides,
Lemma 5.1 implies that

bα#+(1−α)#′,ν
A,Ωi∪Ω′

i
(αc + (1− α)c′, δ) ≥ b#,ν

A,Ωi
(c, δ) · b#′,ν

A,Ω′
i
(c′, δ),

with α = 1
2 . Hence

b
1
2 #+

1
2 #′

(
1
2c + 1

2c′
)
≥ 1

2b#(c) + 1
2b#′(c′). (5)

This implies that the relation (4) holds for any dyadic rationnal α. The result for
arbitrary α follows from the upper semi-continuity of b (Lemma 9.1).

10 Nontriviality of the entropy for products

Let F be a field. Let M be a closed F -orientable manifold, that is to say
Hm(M ;F ) 2 F for m = dimM . In other words, either M is orientable, or
F = Z2. Let fo : X = MΓ → R be a continuous function with range [0, 1].

Proposition 10.1 The associated homological entropy of fo achieves a strictly
positive value.

This results holds because a products MΓ inherits some Poincaré duality (cf.
Lemma 10.3) from the manifold M .

10.1 Poincaré duality on a closed orientable manifold

Here follows the specific version of Poincaré duality that is needed below.

Proposition 10.2 If a is a class in H"(M ;F ) whose restriction to the open set
O does not vanish, then there exists a class b with support in O such that a∧b 5= 0.

Proof. Let a ∈ Hi(M ;F ) with a|O 5= 0. Then there exists a homology class
β ∈ Hi(O;F ) such that < a, β >5= 0. Let b be the Poincaré dual of β. Then a ∧ b
does not vanish since its evaluation on the fundamental class of M coincides with
< a, β >. Moreover, if β is represented by a chain c, the class b can be represented
by a form whose support is contained in any given neighborhood of the image of c.

10.2 Poincaré duality in a product MΓ

Let id ∈ Ωo ⊂ Γ be a finite subset and let A = A(Ωo) = p∗Ωo
(H"(MΩo ;F )), where

pΩo : MΓ → MΩo is the canonical projection. Let also N = N(A) (cf. Assump-
tion 3.1 and Example 3.3). If Ω ⊂ Γ is another finite subset, we can define the
positive number

δΩ = δΩ(fo,Ωo) = 4 sup{
∣∣fΩ(x)− fΩ(y)

∣∣;xγ = yγ for γ ∈ Ω · Ωo}.

Observe that δΩ is decreasing in Ω. In fact δΩ approches 0 as Ω becomes large
(cf. Lemma 10.4).
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Lemma 10.3 (Poincaré duality in MΓ) Let a belong to AΩ. Then there exists a
level cΩ

a and an element b in AΩ such that

- supp a ⊂ f−1
Ω (−∞, cΩ

a + δΩ),

- supp b ⊂ f−1
Ω (cΩ

a − δΩ,+∞),

- a ∧ b 5= 0.

Proof. The level cΩ
a defined below obviously satisfies the first condition.

cΩ
a = inf{c ∈ [0, 1]; supp a ⊂ f−1

Ω (−∞, c)}. (6)

As explained below, existence of the class b follows from Poincaré duality in any
finite product MΩ. Choose a point o in MΓ and define new functions gΩ : MΓ →
[0, 1] by gΩ(x) = fΩ(x̂), with

x̂γ =

{
xγ if γ ∈ Ω · Ωo

oγ otherwise.

By definition of δΩ,

sup
x∈MΓ

∣∣fΩ(x)− gΩ(x)
∣∣ ≤ δΩ

4
.

Now observe that the restriction of a to g−1
Ω (cΩ

a − 3
4δΩ,+∞) does not vanish.

Indeed, if it did vanish then supp a would be contained in g−1
Ω (−∞, cΩ

a − 1
2δΩ)

which itself is contained in f−1
Ω (−∞, cΩ

a − 1
4δΩ). This contradicts the definition

of cΩ
a .

Since gΩ depends only on the variables indexed by Ω·Ωo, the open set g−1
Ω (cΩ

a −
3
4δΩ,+∞) coincides with the pullback p−1

Ω·Ωo
(O) of some open subset O of MΩ·Ωo .

Combined with the fact that a = p∗Ω·Ωo
a for some class a in H"(MΩ·Ωo ;F ), this

implies that the restriction of the class a to O does not vanish. Poincaré duality
in closed orientable manifolds yields a class b ∈ H"(MΩ·Ωo ;F ) with supp b ⊂ O
and such that a ∧ b 5= 0. The class b = p∗Ω·Ωo

(b) satisfies the required conditions.

The following result implies that in Lemma 10.3 one can replace δΩ by any
given δ > 0 at the cost of considering only ”large” Ω’s.

Lemma 10.4 Let (Ωi)i≥1 be an amenable sequence. Then the sequence δΩi con-
verges to 0.

Proof. Let δ > 0. By (uniform) continuity of fo, there exists a η = η(δ) > 0 such
that d̂(x, y) < η ⇒ |fo(x)− fo(y)| < δ. The symbol d̂ denotes one of the following
(compatible) metrics on MΓ :

d̂(x, y) =
∑

γ∈Γ

do(xγ , yγ)
λ|γ| ,
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where do is some Riemannian metric on M , where λ is some fixed number in
(1,+∞) and where |γ| = d(id, γ). In particular d̂(x, y) < η when sufficiently many
components of x and y coincide. More precisely, there exists Ωδ ∈ B(Γ) with
Ωδ 7 id such that d̂(x, y) < η(δ) as soon as xγ = yγ for all γ ∈ Ωδ.

Now fix Ω = Ωi and let x, y ∈ MΓ be such that xγ = yγ for γ ∈ Ω · Ωo. Then
∣∣fo(γ−1x)− fo(γ−1y)

∣∣ < δ

when γ ∈ intD(Ω·Ωo), where D denotes the diameter of Ωδ. Set Ω̂ = intD(Ω·Ωo)∩Ω
and decompose fΩ into a convex linear combination as follows :

fΩ = |Ω̂|
|Ω|fΩ̂ + |Ω−Ω̂|

|Ω| fΩ−Ω̂.

Then
∣∣fΩ(x)− fΩ(y)

∣∣ ≤
ˆ|Ω|

|Ω|
∣∣fΩ̂(x)− fΩ̂(y)

∣∣ + |Ω−Ω̂|
|Ω|

∣∣fΩ−Ω̂(x)− fΩ−Ω̂(y)
∣∣

≤ |Ω̂|
|Ω| δ + |Ω−Ω̂|

|Ω|
≤ 2δ,

provided the index i is sufficiently large. Indeed, Ω− Ω̂ ⊂ ∂DΩ = ∂DΩi.

10.3 Repartition of classes according to degree and support

Now we are ready to prove the nontriviality of b. It follows from Lemma 10.3 and
Lemma 10.4 and does not further use the assumption that X is a product.

Proof of Proposition 10.1 Let A = A(Ωo) as before and let (Ωi) be an amenable
sequence in Γ. Lemma 10.3 implies that for each i and each a ∈ AΩi , there exists
a cΩi

a ∈ [0, 1] such that
ϕ"

A,Ωi,c
Ωi
a ,δΩi

(a) 5= 0.

Thus any a in AΩi contributes to b#,ν
A,Ωi,c,δΩi

for some c and &. Using the pigeon-hole
principle, in the spirit of Proposition 8.1, we will find some & and some c for which
exponentially many classes of degree around &|Ωi| are supported around f−1

Ωi
(c).

The degree of a is an integer number between 0 and m|Ωo · Ωi| ≤ mωo|Ωi|,
where m = dimM and ωo = |Ωo|. Fix r ∈ No. Then for each i, there exists an
interval Ji = [ s−1

r , s
r ] ⊂ [0, mωo] for which the rank of the space AJi

Ωi
of classes in

AΩi whose degree belongs to the interval Ji|Ωi| =
[ (s−1)

r |Ωi|, s
r |Ωi|

]
satisfies

rankAJi
Ωi
≥ 1

rmωo
rankAΩi .

Lemma 10.5 Fix k ≥ 1 and i ≥ 1. Then there exist an interval Ii = [ j−1
k , j

k ] ⊂
[0, 1] and a subspace Ai ⊂ AJi

Ωi
such that

- a ∈ Ai ⇒ cΩi
a ∈ Ii,
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- rankAi ≥
1
k

rankAJi
Ωi

.

Proof. If I ⊂ [0, 1] and if a is a cohomology class in H"(MΓ;F ), denote by rI(a)
the restriction of a to the open set f−1

Ωi
(I). Let [0, 1] = ∪k

j=1Ij , with Ij = [ j−1
k , j

k ].
We decompose the space AJi

Ωi
into a direct sum

AJi
Ωi

= A1 ⊕ . . .⊕Ak

in such a way as to satisfy the following properties :

Ak ⊕
(
Ker rIk ∩AJi

Ωi

)
= AJi

Ωi
,

and for j = 1, . . . , k − 1,
{

Aj ⊂
(
Ker rIj+1∪...∪Ik ∩AJi

Ωi

)

Aj ⊕
(
Ker rIj∪...∪Ik ∩AJi

Ωi

)
=

(
Ker rIj+1∪...∪Ik ∩AJi

Ωi

)
.

Thus if a ∈ Aj then cΩi
a ∈ Ij . Now there exists a j = j(i) such that rankAj(i) ≥

1
k rankAJi

Ωi
. Let Ai = Aj(i).

The collection of intervals Ji and Ii being finite, there exist

- a subsequence of (Ωi), denoted (Ωi) as well,

- an interval J = [&− 1
2r , & + 1

2r ], with & = &(r),

- an interval I = [c− 1
2k , c + 1

2k ], with c = c(k),

such that δΩi ≤ 1
4k , Ji = J and Ii = I for all i. Moreover, for each i and each

a ∈ Ai,
supp a ⊂ f−1

Ωi
(−∞, cΩi

a + δΩi) ⊂ f−1
Ωi

(−∞, c + 1
k ).

Furthermore, Lemma 10.3 provides a class b ∈ AΩi such that

supp b ⊂ f−1
Ωi

(c− 1
k ,+∞) and a ∧ b 5= 0.

Thus the map ϕ
#, 1

2r

A,Ωi,c, 1
k

is injective on Ai for all i. Therefore,

b
#, 1

2r
A (c, 1

k ) ≥ lim
i→∞

1
|Ωi|

ln
(
rankAi

)

≥ lim
i→∞

1
|Ωi|

ln
(1

k

1
rmωo

rankAΩi

)

= lim
i→∞

1
|Ωi|

ln
(1

k

1
rmωo

(
rankH"(M ;F )

)Ωi·Ωo
)

= lim
i→∞

|Ωi · Ωo|
|Ωi|

ln
(
rankH"(M ;F )

)

≥ ln
(
rankH"(M ;F )

)
.
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To conclude, observe that & = &(r) and c = c(k). Let ν, δ > 0. There exists a
subsequence &(rs) of &(r) (respectively c(kl) of c(k)) such that &(rs) (respectively
c(kl)) converges to some & ∈ R+ (respectively c ∈ [0, 1]). Since b#,ν

A,Ω(c, δ) increases
with the size of (&− ν, & + ν) and that of (c− δ, c + δ),

b#,ν
A (c, δ) ≥ b

#(rs), 1
2rs

A (c(kl), 1
kl

) ≥ ln
(
rankH"(M ;F )

)
,

for l and s sufficiently large. Thus

b#(c) ≥ ln
(
rankH"(M ;F )

)
> 0.

Remark 10.6 At least for products, b#
A(c) = b#(c) provided A contains H"(M ;F ).

Indeed, let Ao = p∗γH"(M ;F ), some γ in Γ, and let A be another finite-dimensional
subalgebra of A containing Ao, necessarily contained in some subalgebra A1 =
p∗Ω1

H"(MΩ1 ;F ) with Ω1 7 γ. Thus Ao
Ω ⊂ AΩ ⊂ A1

Ω and

b#,ν
Ao,Ω(c, δ) ≤ b#,ν

A,Ω(c, δ) ≤ b#,ν
Ao,Ω(c, δ) +

(
rankH"(M ;F )

)|Ω·Ω1−Ω|
.

Thus

b#,ν
Ao (c, δ) ≤ b#,ν

A (c, δ) ≤ max
{

b#,ν
Ao

(c, δ) ,

lim
i→∞

|Ωi·Ω1−Ωi|
|Ωi| ln

(
rankH"(M ;F )

)}
= b#,ν

Ao (c, δ).

Example 10.7 Let Fo : S1 → [0, 1] be a Morse function with two non-degenerate
critical points, x−, the minimum, and x+, the maximum. Let fo = Fo ◦ pid. The
entropy of fo can be computed explicitely (cf. [4], §A4). Indeed, let µ denote the
fundamental class of M = S1. Then any class in H"(MΩ;F ) is of the type

∑

Ω′⊂Ω

nΩ′µΩ′
,

where nΩ′ ∈ F and where µΩ′
= ∧γ∈Ω′(p∗γµ). Moreover, for a monomial a = µΩ′

,




cΩ
a =

|Ω− Ω′|
|Ω| ,

deg a = |Ω′|.

The first equality is a consequence of the fact that the fundamental class µ can
be supported in an arbitrarily small neighborood of any point (e.g. x−), implying
that the class µΩ′

can be supported in any neighborhood of MΓ−Ω′ × {x−}Ω′
. It

is now easy to convince oneself that if A = p∗idH
"(M ;F ), then

b#,ν
A,Ω(c, δ) = #

{
Ω′ ⊂ Ω;






|Ω− Ω′|
|Ω| ∈ (c− δ, c + δ),

|Ω′|
|Ω| ∈ (&− ν, & + ν).

}
.
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Let n = |Ω|. Then

b#,ν
A,Ω(c, δ) =

∑

(c−δ)n<j<(c+δ)n
(1−#−ν)n<j<(1−#+ν)n

(
n

j

)
.

Therefore

sup
(c−δ)n<j<(c+δ)n

(1−#−ν)n<j<(1−#+ν)n

(
n

j

)
≤ b#,ν

A,Ω(c, δ) ≤ 2δn sup
(c−δ)n<j<(c+δ)n

(1−#−ν)n<j<(1−#+ν)n

(
n

j

)
.

Besides, by Stirling’s formula,

1
n

ln
(

n

j

)
∼ 1

n
ln

( nn+ 1
2

jj+ 1
2 (n− j)n−j+ 1

2

)

∼ −
( j

n

)
ln

( j

n

)
−

(
1− j

n

)
ln

(
1− j

n

)
.

where we have removed terms that would produce a nul contribution in the limit.
Now

b#,ν
A (c, δ) = sup

c−δ<x<c+δ
1−#−ν<x<1−#+ν

(
−x lnx− (1− x) ln(1− x)

)
.

And thus (using Remark 10.6)

b#(c) = b#
A(c) =

{
−∞ if c 5= 1− &
−c ln c− (1− c) ln(1− c) if c = 1− &.

So b is concentrated along the diagonal c = 1− & and vanishes at the corners (0, 1)
and (1, 0). The sum of the Betti number entropy is therefore given by

b(c) = −c ln c− (1− c) ln(1− c).

Remark 10.8 As suggested by the previous example, it is always true in the
product case that, provided the functions fΩ have constant range, the function
b(c) is nonnegative (i.e. does not achieve the value −∞). This is a consequence of
the presence of the fundamental class whose support can be concentrated around
any given point in M .

11 Generalized Poincaré duality

It has been observed in the product case that a class a in AΩ, whose restriction
to an open subset O does not vanish, admits a nontrivial pairing with a class b
in AΩ provided ”O is not too small”, meaning is of type p−1

Ω (Oo) for some Oo in
MΩ (in the case A = p∗idH

"(M ;F )). This suggests that a condition generalizing
Poincaré duality (more precisely its Lemma 10.3 version) should involve a filtration
(T Ω)Ω∈B(F ) of the topology T of X such that Poincaré duality holds in AΩ for
open subsets of T Ω (a precise statement follows). In the product case the topology
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T Ω is the one generated by the supports of the classes belonging to AΩ. It seems
necessary to assume in addition that these topologies are induced by a family
of (continuous) maps (X, T Ω) → (X, T ) converging uniformely to the identity
map. In the product case, for A = p∗idH

"(M ;F ), these maps are the compositions
so
Ω ◦pΩ, where so

Ω is a section MΩ → MΓ associated to a point o ∈ MΓ as follows :

(
so
Ω(x)

)
γ
=

{
xγ if γ ∈ Ω
oγ if γ /∈ Ω.

A last detail : Lemma 10.3 holds when A is the full cohomology algebra of a finite
product. If A is not of this type (e.g. M = T2 and A is generated by one coho-
mology class in H1(T2)), then the class b does belong to BΩ instead of AΩ, where
B = H"(M Ω̃;F ) and Ω̃ is the smallest set for which H"(M Ω̃;F ) ⊃ A.

Before stating the condition, we introduce the convention that whenever a se-
quence somethingΩ (thus indexed by the set B(Γ)) is said to converge to something,
it means that somethingΩi converges to something whenever (Ωi) is an amenable
sequence in Γ.

Condition 11.1 For any finite-dimensional subalgebra A ⊂ A, there exist an-
other finite-dimensional subalgebra B with A ⊂ B ⊂ A and a family of continuous
maps (rΩ : X → X)Ω∈B(Γ) such that if T Ω denote the topology obtained by pulling
back that of X via rΩ, then

- γ ◦ rΩ = rγ·Ω ◦ γ,

- rΩ converges uniformly and monotonously to the identity map,

- for any a ∈ AΩ and O ∈ T Ω such that a|O 5= 0, there exists a class b ∈ BΩ

with {
supp b ⊂ O
a ∧ b 5= 0.

When, in addition to Assumption 3.1, the previous condition is fulfilled, one may
carry through the proofs of Lemma 10.3 and of Lemma 10.4, and hence that of
Proposition 10.1.

Let A be a finite-dimensional subalgebra of A. Let δ > 0. Define gΩ = fΩ ◦rΩ :
(X, T Ω) → [0, 1] and let

δΩ = 4 sup{|fΩ(x)− gΩ(x)|;x ∈ X}.

Lemma 11.2 (Poincaré duality under Condition 11.1) If a belongs to AΩ for
some Ω ∈ B(Γ), then there exist a level cΩ

a and a class b in BΩ such that

- supp a ⊂ f−1
Ω (−∞, cΩ

a + δΩ),

- supp b ⊂ f−1
Ω (cΩ

a − δΩ,+∞),

- a ∧ b 5= 0.
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Proof. As in the proof of Lemma 10.3 let

cΩ
a = inf{c ∈ [0, 1]; supp a ⊂ f−1

Ω (−∞, c)}.

Now define O1 = f−1
Ω (cΩ

a − δΩ,+∞) and O2 = f−1
Ω (cΩ

a − 1
2δΩ,+∞). By construc-

tion,

sup
x∈X

∣∣∣fΩ(x)− gΩ(x)
∣∣∣ =

δΩ

4
.

Hence

O2 ⊂
(
gΩ

)−1(c− 3
4δΩ,+∞) ⊂ O1.

Let O denote (gΩ)−1(c− 3
4δΩ,+∞). Then a|O 5= 0. Since O ∈ T Ω, there exists a

class b ∈ BΩ with supp b ⊂ O and a ∧ b 5= 0.

Lemma 11.3 The sequence δΩ converges to 0. In other words, the sequence of
functions gΩ − fΩ converges uniformly to 0.

Proof. Let δ > 0. Since rΩ converges uniformly and monotonously to the identity
map and since X is compact, there exists a finite set Ωo ⊂ Γ containing id such
that for any Ω ⊃ Ωo for which the amenability ratio α(Ω,Ωo) is sufficiently small,

∣∣∣f(rΩ(x))− f(x)
∣∣∣ < δ ∀x ∈ X.

Let Do = diamΩo. If γ ∈ intDo Ω, then
∣∣∣f(γ−1rΩ(x))− f(γ−1x)

∣∣∣ =
∣∣∣f(rγ−1Ω(γ−1x))− f(γ−1x)

∣∣∣ < δ.

Let Ω̃ = intDo Ω. Then
∣∣∣feΩ(rΩ(x))− feΩ(x)

∣∣∣ ≤
1
|Ω̃|

∑

γ∈eΩ

∣∣∣f(γ−1rΩ(x))− f(γ−1x)
∣∣∣ < δ.

Hence

∣∣∣gΩ(x)− fΩ(x)
∣∣∣ ≤ |Ω̃|

|Ω|

∣∣∣feΩ(rΩ(x))− feΩ(x)
∣∣∣

+
|Ω− Ω̃|
|Ω|

∣∣∣fΩ−eΩ(rΩ(x))− fΩ−eΩ(x)
∣∣∣

≤ |Ω̃|
|Ω|δ +

|Ω− Ω̃|
|Ω|

≤ 2δ,

Where the very last equality holds when, once more, Ω and Ωo have a sufficiently
small amenability ratio.

Combining Lemma 11.2 and Lemma 11.3 we obtain the following result, whose
proof is essentially the same as that of Proposition 10.1.

Proposition 11.4 The function b achieves a strictly positive value.
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12 Non-product example

Let M be a projective algebraic variety, e.g. the projective space CPn, and let
Y be a symbolic algebraic subvariety in X = MΓ (in the sense of [1] and [2]),
that is, a compact subset Y such that YΩ, the ”restriction” of Y to each Ω in
B(Γ), defined as the image of the natural projection MΓ → MΩ, is an algebraic
subvariety in MΩ. So Y comes as the projective limit of the YΩ’s, where one
may (or may not) assume that Y is Γ-invariant. We assume that for large enough
d(Ω,Ω′) (depending on Y ), the projection YΩ ∪ YΩ′ → YΩ∪Ω′ is onto. Observe
that surjective maps between projective (in general Kähler) varieties are injective
on the top-dimensional cohomology with complex coefficients due to existence of
multivalued algebraic sections. (In fact if the fibers of such a map have, in a
suitable sense, degree d, the same injectivity holds for Fp-coefficients, provided p
does not divide d). Therefore, if the target variety is non-singular, then the map
is injective on all cohomology by Poincaré duality.

Subexample 12.1 Let M = CPn and consider a hypersurface in M ×M repre-
sented by an equation h(x, x′) = 0. Then the infinite chain of equations h(xi, xi+1) =
0, i = ....,−1, 0, 1, ... defines a subvariety Y in X = MZ invariant under the Z-
action.

Remark 12.2 Unfortunately, even for generic h, it is unclear whether this Y is
non-singular in the sense that the restrictions of Y to the intervals [i, i+1, ..., i+k],
denoted Y[i,i+1,...,i+k], are non-singular. However, a small (but non-Z-invariant)
perturbation Y ′ of such a Y , allowing different h’s, i.e. equations hi(xi, xi+1) = 0, is
non-singular by a simple argument (see [1] and [2]). Furthermore, the non-singular
pertubations of Y are all canonically homeomorphic and thus their cohomology
can be attributed to Y (alternatively, one may speak of a random Y in X with a
suitable Z-invariant probability measure on the space of strings {hi} and similarly
introduce random potentials on Y (and/or on X itself). This significantly adds
to possible examples and needs only a minor modification of our setting (with a
reference to the sub-additive ergodic theorem).

Continuation of the example. The cohomology of our (desingularized) Y
enjoys the above product-like action on cohomology. In particular, for Γ = Z, the
homological entropy of a function exists.

Remark 12.3 It seems hard to compute the (co)homologies of the above Y[i,i+1,...,i+k]

or even to elucidate the properties of (the analytic continuation of) their entropic
limit. However, it is easy to calculate the Chern numbers and thus the Euler
characterictics of the Dolbeaut (and thus the ordinary) cohomology of all (desin-
gularized!) Y[i,i+1,...,i+k].

13 Poincaré polynomial

This section consists of defining the entropic Poincaré polynomial of a Γ-space.
It does not require the action to be product-like nor the group to be tileable.
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Amenability is the only condition required here.

Consider the AΩ-Poincaré polynomial of X :

pA,Ω(t) =
∞∑

d=1

td rankAd
Ω,

where Ad
Ω denote the set of classes in AΩ of (exact) degree d.

Lemma 13.1 The Poincaré polynomial of X is Γ-invariant and subadditive, that is

pA,Ω∪Ω′(t) ≤ pA,Ω(t) pA,Ω′(t) for t ≥ 0. (7)

Proof. First observe that for any Ω1,Ω2 ∈ B(Γ), the map
⊕

d1+d2=d

Ad1
Ω1
⊗Ad2

Ω2
→ Ad

Ω1∪Ω2

is surjective. Thus

rankAd
Ω1∪Ω2

≤
∑

d1+d2=d

rankAd1
Ω1

rankAd2
Ω2

,

which immediately implies the relation (7).

Thus the limit
lim

i→∞

1
|Ωi|

ln
(
pA,Ωi(t)

)

exists whenever (Ωi) is an amenable sequence in Γ (cf. [3]). We define the Poincaré
polynomial of the group action ρ : Γ×M → M to be

p(t) = sup
A

lim
i→∞

1
|Ωi|

ln
(
pA,Ωi(t)

)
.

Remark 13.2 This definition is analoguous to that in [1] §1.14. Indeed, the
process of factoring away ε-fillable classes corresponds roughly to restricting to
classes in AΩ.
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