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0. Essential manifolds

A topological space K is said to be aspherical if the higher homotopy groups

iTi{K) for / ̂  2 vanish. This condition is equivalent to the contractibility of the

universal covering K of K in case K has the homotopy type of a cell complex.

Then the homotopy type of K is uniquely determined by the fundamental

group Π = πx{K\ and Kis called the Eilenberg-MacLane ΛΓ(Π, Y)-space.

A closed (i.e., compact without boundary) connected manifold V = Vn is

said to be 1 -essential (or, for brevity, essential) if for some map into an

aspherical space, /: V -» K, the induced top dimensional homomorphism on

homology does not vanish, i.e., / J F ] φ 0. Here [V] stands for the integral

fundamental class, i.e., [V] e Hn(V\ Z) » Z, in case the manifold Fi s oriented.



FILLING RIEMANNIAN MANIFOLDS 3

This [V], for nonorientable manifolds F, denotes the fundamental Z2-class in
the group Hn(V;Z2)^Z2.

Examples. Aspherical manifolds V are essential as the identity map /:
V -»• V satisfies / J F ] Ψ 0. In particular, surfaces of positive genus are essen-
tial, as well as ^-dimensional manifolds F, which admit metrics with nonposi-
tive sectional curvatures. In fact the universal coverings of these manifolds V
are homeomorphic to R". The real projective space PnR is essential for all
n— 1, . Indeed the space P°°R is aspherical, and the inclusion map /:
P"R -> ?°°R gives the nonzero class, 0 T ^ / J ^ R ] e Hn(P°°R; Z 2) = Z 2, for
aU/ι= 1,2, .

If V admits a map of nonzero degree onto an essential manifold F', then the
manifold Fis essential. In particular, connected sums V — V'#V" are essen-
tial for all closed manifolds F", provided V is essential.

0.1. Main isosystolic inequality. Let sys^F) denote the lower bound of the
lengths of closed noncontractible curves γ in a Riemannian manifold F.
(Compare §0.3.)

0.1.A. Theorem. // F is a closed essential manifold of dimension n, then

(0.1) sys,(F) < constrt(VolF)1/M,

for some universal constant in the interval,

0 < constM < β(n + \)nn{(n + 1)! .

In particular, V admits a closed geodesic γ such that

length γ < constrt(Vol V)Wn.

We prove this theorem in §§1.2 and 4.3 by first imbedding Finto the space
of functions L°°(V) with the uniform norm (see §1.1) and then by analyzing
quasi minimal (n + l)-dimensional chains which span (fill in) the cycle [F] in
L°°(V). In fact, our main technical result is a generalization of Federer-
Fleming's isoperimetric inequality (see [28] and §3) to infinite dimensional
Banach spaces (see §4.2).

We introduce in §1 our key notion of the filling radius of F, which links
together the isoperimetric problem and the inequality (0.1). The filling radius is
accompanied by a whole spectrum of interesting geometric invariants of F
which are discussed at various points in this paper.

Observe that the inequality (0.1) may fail for nonessential manifolds, no
matter how large the fundamental group irx{V) is. In fact, if any manifold V is
multiplied by a simply connected manifold V" of Vol F" — ε, then the product
y=yχ V" has the same fundamental group as V and also the same length
of the shortest noncontractible geodesic, while Vol V—ε Vol V -> 0 for ε -» 0.
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(This does not exclude possible interesting relations between Vol V and inf

length γ for contractible geodesies γ in nonessential manifolds V.)

0.2. An upper bound for the isosystolic constant. The isosystolic inequality

(0.1) can be significantly improved for many essential manifolds V. Namely,

we shall see in §6 that the constant const n of the inequality (0,1) tends to zero

as the " topological complexity" of V goes to infinity.

Let a Riemannian manifold V be homeomorphic to a closed ^-dimensional

manifold Vo of negative sectional curvature such that

sup curvature Vo < - 1 .

Then the total Riemannian volume of Vo may serve as a measure of the

topological complexity of Vo » V. (Compare [74], [32].) We shall prove in §6.4

the following inequality with this volume Vol Vo.

0.2.A. Theorem. There exists a positive constant, const = const(«, θ), for

every θ in the interval 0 < θ < 1, such that

(0.2) (VolF)(sys 1K)w > const(VolF0)".

Observe that the inequality (0.2) with θ - 0 reduces to (0.1).

Notice that (0.2) may fail for θ = 1. Indeed every manifold Vo of constant

negative curvature = -1 admits a sequence of finite JΓsheeted coverings

^o(O ~~* K)> f°Γ dtr -» oo as / -» oo, such that the shortest geodesic γ(/) in V(i)

has length γ(ί) -> oo for i -> oo. (In fact, length γ( ι)~logέ/ l for an ap-

propriate sequence of coverings.) Thus the inequality (0.2) with θ = 1 is

violated by the manifolds V0(i) as / -* oo.

0.3. Historical remarks and references. A classical result in geometry of

numbers states that the length of the shortest closed geodesic γ in a flat torus

Tn satisfies

sys, Tn = lengthy < constw(Vol Tn)x/n.

It is easy to see that const2 = (2/\/J) 1 / 2 . The extremal 2-torus, for which
sYsi = [(2/1/3~) Area] 1 / 2, is the quotient of R2 by the hexagonal lattice, whose

fundamental domain is a regular hexagon in R2.

Loewner proved that the 2-torus with an arbitrary (!) Riemannian metric

also admits a noncontractible geodesic γ of length / < [(2/ ^3") Area] 1 / 2 . (See

[64], [8].)

Loewner's proof is a straightforward application of the so-called length-area

method (see [48]). The key ingredient of this method is the existence of a

conformal homeomorphism of a torus T2 with an arbitrary metric onto a flat

torus TQ. If Area T2 = Area Γo

2, then the conformal map T2 -> Γ0

2 increases

the lengths of the homotopy classes of closed curves in T2 (see §5.5), and thus

the problem is reduced to the above case of flat tori.
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Recall that the length of a (homotopy) class of curves by definition is the
lower bound of the lengths of the curves in the class.

Pu pointed out (see [64]) that Loewner's method equally applies to Rieman-
nian metrics on the real projective plane RP 2 . Pu's estimate for the shortest
noncontractible geodesic is

I2 ^ π/2 Area,

with the equality for the metrics of constant curvature on RP 2 .
Loewner's inequality was generalized by Accola [1] and Blatter [15] to

surfaces V of genus g > 1,

(sysj V) < constgArea V,

where const 1 = 2/ ^3" and

2σ
const σ « —- for e ^ oo.8 πe

(Observe that our inequality (0.2) is stronger for large g -> oo. Namely const
< g~θ for every fixed θ < 1 and for large g -> oo.)

These results were overhauled and brought into a general perspective in a
series of papers by Berger (see [9], [10], [11]). Berger introduces the k-dimen-
sional systole of a Riemannian manifold, sys^ F, as the lower bound of the
/c-dimensional volumes of those /c-dimensional subvarieties (possibly with
singularities) in V which are not contractible (in V) to the (k — l)-skeleton of
(some triangulation of) F. (Berger's original definition for k > 1 slightly differs
from ours.) Berger has estimated these systoles for a variety of examples and
proposed the following general question. What is the best constant const =
const (topological type of F) for which the isosystolic inequality

sys^(F) < const(Vol V)k/n

holds?
An easier question is to decide whether such a constant, const, exists at all

for a given topological type of manifolds V. Our Theorem 0.1.A gives the
positive answer to this question for the one-dimensional systoles of essential
manifolds. The sharp constant in our inequality (0.1) of §0.1 is known only for
surfaces homeomorphic to T2 and to RP2 by the work of Loewner and Pu. In
order to obtain the sharp constant for a more general manifold V of a given
topological type one should determine (or at least guess) the extremal metric on
V, for which the ratio Vol/ίsys!)", « = dimF, assumes the least value.
Unfortunately, the extremal metrics are not the "natural" metric one may
expect. For example, no flat metric on the Klein bottle is extremal, as some
small perturbations of the "square" flat Klein bottle (which has (sys,)2 = Area)
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diminish the ratio Area/is}^)2. This also happens to metrics of constant

negative curvature on surfaces of genus ^ 2. (See [11].) However, every surface

Vo of constant negative curvature is extremal for an asymptotic (or stable)

isosystolic inequality. Namely, let N(V; I) denote the number of the homotopy

classes of closed curves in V of length < /.

O.3.A. Theorem. // the surfaces V and Vo are homeomorphic and Area V =

Area Fo, then

lim [log7V(K; / ) / l o g # ( F 0 ; /)] > 1.
/-•oo

This is a special case of a more general result due to Katok [49]. Katok uses

an ergodic version of the length-area method (see §5.5), and derives from his

asymptotic isosystolic inequality the following remarkable corollary.

If the topological entropy of the geodesic flow on a closed surface V of negative

curvature equals the metric entropy, then the surface V has constant curvature.

Katok's asymptotic inequality admits a generalization to manifolds of di-

mension n ^ 3. (See [32].) However, the "isosystolic constant" obtained in [32]

is not sharp, and is yet unknown if hyperbolic manifolds (curvature = -1) of

dimension > 3 are extremal for the asymptotic isosystolic inequality.

There is a class of isosystolic inequalities which apply to manifolds with

boundary. For example, a lemma of Besikovic gives the following lower bound

for the volume of an arbitrary Riemannian metric on the ^-dimensional cube

in terms of the distances between the n pairs of opposite faces (see §7):

n

(0.3) Volume^ Π distf .
ι=l

Besikovic' lemma also applies to some closed manifolds (See [17], [37] and

also §7.) Inequalities like (0.3) are sometimes called inverse isoperimetric

inequalities. (See [17] where the reader will find an exhaustive account on

various geometric inequalities.)

The volume of a Riemannian manifold V controls some other geometric

invariants of V besides the systoles. Namely, the following remarkable isem-

bolic inequality of Berger [12] gives a sharp upper bound for the injectivity

radius of V:

Inj Rad V ^ TΓ [Vol F/Vol Sn ]x/n,

for the standard sphere Sn with the metric of constant curvature 4-1.

Furthermore, Hersch [44] has found the following sharp upper bound for the

first eigenvalue of the Laplace operator on surfaces V diffeomorphic to the
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sphere S2:

2(Area S2/Area V),

with the equality for V — S2.
Hersch proves his inequality by using a conformal map /: V -> S2 C R3, for

which Jyf(υ) dv = 0. His method was generalized to surfaces of higher genus
by Yang and Yau [77].

1. Filling radius

Let a closed connected ̂ -dimensional manifold V be topologically imbedded
into an arbitrary metric space, so that V C X. Denote by Fill Rad(F C X) the
infimum of those numbers ε > 0 for which V bounds in the ε-neighborhood
Uε(V) C X, that is the inclusion homomorphism Hn(V) -> Hn(Uε(V)) vanishes.
Here Hn may denote the singular homology with any given coefficients. In our
applications below we use the coefficient group Z for orientable manifolds V
and Z 2 for nonorientable ones.

Examples. If V does not bound at all in X, for instance, if V — X, then Fill
Rad = oo.

The filling radius of a hypersurface Γ C R " + 1 equals the radius of the
largest ball in the region bounded by Vn. In particular, round spheres Sn in
Rn+ ] (as well as S" in Rq for R« D Rn+ \ q > n 4- 1) have Fill Rad = Rad Sn.

Next we define the filling radius of an abstract manifold V with a given
metric by using an isometric imbedding of V into a Banach space.

Warning. Embeddings of Riemannian manifolds, V -+ W, which preserve
the Riemannian metric, may not be isometric. In fact, such embeddings are
only path-isometric; they preserve the length of curves and therefore are

def

distance-decreasing maps as dist(υl9 v2) = inf (the lengths of curves between
υλ and υ2 in V). However, such path-isometric maps may strictly decrease the
distance. For example, no path-isometric map of a closed manifold Vn, n > 0,
into R̂  is isometric in our sense (see §9).

1.1. Imbedding V C L°°(V). Let L°°(F) be the Banach space of bounded
Borel functions f on V, where

def

||/lU-= sup |/(w)|.

(As we allow discontinuous functions, the spaces L°°(V) are isometric for all
manifolds V of positive dimensions.)
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Any distance function (that is a metric) on V imbeds Finto L°°(F),

v \-+fυ(w) = dist(ϋ, w).

The triangle inequality shows that this imbedding V C L°°(V) is isometric.
Definition. The filling radius of a closed connected manifold V with a

given metric is

Fill Rad V = Fill Rad(F C L°°(V)).

The space L°° - L°°(V) is used for the following universal property: an
arbitrary distance-decreasing map of a subspace of a metric space into L00,

Y -> L°° for Y C X,

extends to a distance-decreasing map X -» L00. Indeed, one may extend a map
L00 = L°°(F) by the following map:

(fy(v) + dist(x, >>)),

for all x 6 I l n particular, every distance-decreasing map Vx -> V2 extends to
a distance-decreasing map L°°(VX) -> L°°(K2). Hence the filling radius decreases
under distance-decreasing maps Vx -> V2 of degree one.

Another corollary. Isometric imbeddings into an arbitrary metric space V =•» X

satisfy

Fill Rad(F C X) > Fill Rad V.

Examples. The Riemannian sphere S" of sectional curvature +1 isometri-
cally imbedds as an equator into Sn+ι and so

Fill Rad Sn < Fill Rad(Sn C Sn+ι) = π/2.

In fact, Fill Rad Sn - ^arc cos(- (TrtryX (see [50]). For instance, the filling
radius of the circle of length 2m is ττ/3. The same circle 5 ! C R 2 but now with
the (non-Riemannian!) metric induced from R2 has Fill RadS 1 = \/J/2 <
FillRadίS1 C R2) =- 1.

Also observe that all closed Riemannian manifolds Fhave

Fill Rad V < \ Diameter F,

with the equality for real projective spaces of constant curvature (see [50]).
Furthermore, the Fill Rad over Z 2 of Cartesian products satisfy

Fill Rad(F, X F2) = min(Fill Rad K,, Fill Rad F2).

Proof. If the "smallest" of the two manifolds, say Vx C L°°{VX\ bounds in
some ε-neighborhood Uε(Vx) C L°°(VX), then the product Vx X F2 bounds in
the product Uε(Vx) X F2. This gives us the upper bound for Fill Rad(^ X F2).
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To get the lower bound we extend the projections

F , X F ^ Vx and F, X F2 -> F2

to some distance-decreasing maps

px:L">(Vx X F2) - Z/^K,) and/>2: L»{Vλ X F2) - L°°(F2).

If for some ε > 0 none of the manifolds Vx and F2 bounds in their respective

ε-neighborhoods in L°°(F,) and L°°(F2), then the fundamental cohomology

classes of F, and F2 extend to some cohomology classes in these neighbor-

hoods, say to the classes ωx E Hm(Uε(Vx)) for m = dimF1 ? and to ω2 E

H"(Uε(V2)) for n = dimF2. We take the pullbacks of these classes under the

maps/?, and/?2, and thus we get the classes in the ε-neighborhood Uε{Vx X F2)

C Γ ( F , X F2),

ω* E Hm(Uε(Vx X F2)) and ωj E Hn(Uε(Vx X F 2 )).

The cup product ωf U ωj extends the fundamental class of the product

Vλ X F2 to the ε-neighborhood Uε(Vx X F2), and so the manifold Vx X F2 does

not bound in this ε-neighborhood.

1.2. An upper bound for the filling radius. We shall prove in §4.3 the

following.

I.2.A. Main theorem. Let V be a closed connected Riemannian manifold of

dimension n. Then

(1.1) Fill Rad F < const;(Vol F ) 1 / n ,

for some universal constant,

0 < const; < (n + \)nn]fnϊ.

This inequality (1.1) implies (0.1) of §0.1 with the following.

I.2.B. Lemma. Let f be a continuous map of V to an aspherical space K.

Suppose that all closed curves in V of length < /, for some / > 0, are sent by f to

contractible curves in K. Let P C U°{V) be a simplicial polyhedron, which

contains V C L°°(V) as a subpolyhedron and is contained in the ε-neighborhood

of V for some ε > 0,

VC.P C Uε(V) CL°°(F).

// / > 6ε, then the map f extends to a continuous map P -> K. Furthermore,

closed essential manifolds V have

(1.2) s y s ^ ^ ό F i l l R a d F .

Proof. As the space K is aspherical it suffices to extend the map / to the

2-skeleton of P.
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We assume, subdividing the polyhedron P if necessary, that all simplices in

P have diam Δ < {I - 2ε. We send the vertices pv of P to some points vv in V

for which

If a pair of points vv and vμ in V comes from vertices of some simplex in P, say

from/?,, and/?μ in Δ, then

d i s t ^ , vμ) < 2ε + diam Δ < \l,

and so this pair can be joined by a segment of length < y/ in F. We extend the

map/?, H> vv to a retraction of the 1-skeleton Pι C P to Vby sending the edges

of the complement [pv, pμ] C P\V to these short segments in F. We addition-

ally assume (subdivide P further if necessary) all edges [pv, pμ] in V — P Π F

to be already short, of length < y/, or at least to be homotopic to such short

segments. Then our retraction P 1 -* V sends the boundary ΘΔ of each 2-sim-

plex Δ C P to a curve of length < / in F, or to a curve which can be

homotoped to the length < /. The composition of the retraction P 1 -> V with

the map/: F -> AT extends this/to the 1-skeleton P 1 of P, and the boundary 3Δ

of every 2-simplex Δ goes to a contractible curve in K. Therefore this

composition extends further to the 2-skeleton of P, and as K is aspherical any

map extends from the 2-skeleton the whole polyhedron P.

I.2.C. The proof of the inequality (1.2). If the manifold V C L°°(V) bounds

in some ε-neighborhood U£V) D F, then there exists by definition some

singular chain c in Uε(V), whose boundary dc is contained in V and represents

the fundamental class [V] of V. Thus using a piecewise linear approximation of

c one constructs a polyhedron P in Uε(V) such that V is contained in this P

and the fundamental class [V] vanishes under the inclusion homomorphism

Hn(V) -> Hn{P). Therefore no maps/: V -> K for w h i c h / J F ] ^ 0 extends to

P, and //ie /e«g//z o/ί/ie shortest noncontractible curve in the {essential^ manifold

V is at most 6 Fill Rad F.

This argument yields in fact the following generalization of the Theorem

0.1. A.

I.2.D. Theorem. Let V — Vn be a closed Riemannian manifold, and let Nι

denote the normal subgroup in the fundamental group πγ(V) which is generated by

the homotopy classes of closed curves of length < /. Let /: F -» A^Π, 1) be the

classifying map for Π = πλ(V)/Nh that is, f induces a surjective homomorphism

V\(V) - tfi(*(Π, 1)) = Π with kernel N,. If I > constw(Vol V)x/n for the constant

const n of Theorem 0.1.^4, then the map f sends the fundamental class of V to zero,
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1.2.D'. Example. // V is homeomorphic to the connected sum of k tori Tn,

then there exists k closed curves in V of length < const rt(Vol V)λ/n whose

homology classes generate a free abelian subgroup of rank k in the first homology

group HX{V).

Indeed, if some curves generate a subgroup A C Hλ{V) of rank < k, then by

linear algebra there are some one-dimensional cohomology classes ω,, ,ωπ in

H\V), whose cup-product equals the fundamental cohomology class [K]* E

Hn(V) and such that each class ω, , i = 1, ,n, vanishes on the subgroup

A C Hλ{V). Using these ω, one constructs a map / ' : V -» Tn (compose Abel's

map V -* Tnk with a linear projection Tnk -> Tn\ which sends A to zero in

Hx(Tn) and for which f'JLV] Ψ 0. Now the Theorem 1.2.D yields a curve in V

of length < constM(Vol V)λ/n whose homology class is not in A (factor the map

/ ' through the classifying map/: V -> K(π{(V)/N; 1) for the normal subgroup

TV C irx(V) generated by the curves in question). Therefore the group generated

by all curves of length < constM(Vol V)ι/n has rank > k.

Remark. The inequality (1.2)

6 Fill Rad

is shaφ. In fact, the real projective space of constant curvature 4-1 has

sysj RPn = 6 Fill R a d R P V / 6 ,

(see [50]). Furthermore, a straightforward analysis shows that flat tori Tn also

have

Tn = 2 Inj Rad T" = 6 Fill Rad Tn.

2. Filling volume

We define the volume of a singular simplex in an arbitrary metric space σ:

Δ"+ ] -» X as the lower bound of the total volumes of those Riemannian metrics

on Δ n + 1 for which the map σ is distance-decreasing. Then we also have the

notion of the volume of a singular chain c = Σ, ησi9 namely,

Vole = 2 k IVolσ,.,

where the coefficients η may be real numbers, integers of residues mod 2. In

the latter case the "absolute value" | Λ | is assumed zero for r — 0 and | r \ — 1

for r Φ 0. Next for an ^-dimensional singular cycle z in X we define the filling

volume of z as the lower bound of the volumes of those (n + l)-dimensional

chains c in X for which 3 c = z. The cycle z may be taken with integral, real or

Z 2 coefficients, and then one uses chains c with integral, real or Z 2 coefficients
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respectively. Finally, we define the filling volume of a closed submanifold V'VΔX

as the lower bound of the filling volumes of ^-dimensional cycles in V C X

which represent the fundamental class of V. For an abstract manifold V with a

given metric we put

Fill Vol V = Fil Vol(K CL°°(V)).

2.1. Filling volumes of hypersurfaces. Let W be a compact Riemannian

manifold with boundary. Then the boundary dW has, with the induced

(non-Riemannian) metric,

(2.1) Fill Vol dW < Vol W.

Indeed, the isometric embedding dW'=» U°(dW) extends to a distance-de-

creasing map W -> L»(WV).

Furthermore, // the manifold W is Riemannian flat as well as simply con-

nected, then

Fill Vol dW= Vol W.

Proof. The manifold W admits a locally isometric map into Rw + 1 for

n + 1 = dim W, and this map is distance-decreasing (nonstrictly) on the

boundary dW. It suffices to show that this map on the boundary extends to a

volume-decreasing map of any chain which spans (fills in) the manifold dW in

L°°(3W). In fact, we shall prove in §4.1 the following more general result.

2.1.A. Proposition. Take a subspace Y in an arbitrary metric space X, and let

f: Y^>Rn+ι be a distance-decreasing map. Then this map f extends to a

Lipschitz map F: X -* RM+1 for which

dist(F(*,), F(x2)) < ]ln + 1 dist(jc l5 JC 2), forxx,x2 G X,

and which decreases the volumes of all (n + \)-chains in X.

The only known examples of equality in (2.1) come from the flat manifolds

above and also from more general Riemannian domains (which may be

ramified if singular metrics are allowed) over R n + 1 . However, the inequality

(2.1) can not be, in general, improved as the following consideration shows.

2.2. The filling volume of the boundary dW of W. Take a closed H-dimen-

sional manifold V with a metric dist0, and take an (n + l)-dimensional

manifold W with boundary dW = V. Consider all those Riemannian metrics g

on W for which the corresponding distance functions distg satisfy on the

boundary dW = V

(2.2) d i s t g | dW> dist0,

that is,

dist g (ϋ,, v2) > distoίϋj, v2) for all vx and v2 in V.
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Denote by M — M{V,W) the lower bound of the total volumes of the
metrics g:

M = inf Vol(JF, g).
g

This number M is the minimal volume of the Riemannian manifolds of a fixed
topological type (homeomorphic to W\ which span (fill in) V — (V, dist0).

If the manifold V is oriented, then W also is assumed to be oriented.
Furthermore, we extend the definition of M(V,W) to noncompact manifolds
W (yet with boundary dW = V) by allowing only those competing Rieman-
nian metrics g on W for which the metrics dg on W are complete (otherwise the
minimal volume M(F, W) vanishes for noncompact manifolds W).

In fact, this minimal volume M(V9W) depends only on V — (F,dist0) but
not on the topology of W, provided V is connected and oriented and
dim V ^ 2. Moreover, we shall prove in Appendix 2 the following.

2.2.A. Proposition. // V is a connected oriented manifold of dimension > 2,
then

(2.3) M = Fill Vol F.

This equality leads to an alternative definition of the filling volume even for
those manifolds V which bound no compact manifold W. Indeed, every V
bounds the product V X [0, oo).

This result also shows that the filling volume of the product of two
manifolds Vλ and V2 does not exceed

min[(Vol Vx )Fill Vol V2, (Vol V2)Fill Vol Vx].

However, the equality need not hold. For example, the inequality is strict for
the product of two unit circles 5 ' c R 2 with the induced (non-Riemannian)
metrics.

I do not know if there is such an example of a Riemannian manifold. In fact,
I do not know the explicit value of the filling volume of any single Riemannian
manifold. A natural conjecture for the spheres of constant curvature is

Fill Vol Sπ = i Vol S n + 1 .

2.2.B. Counterexamples. (1) Take a connected bounded domain W in R"+ *
whose boundary dW has two components, i.e., dW = Vx U V2. These mani-
folds Vx and V2 bound domains, say Wx and W2 in Rn+\ such that W = WX\W2

(or W — W2\WX if Vx is inside V2). We have according to Propositions 2.1.A
and 2.2.A

M = M(dW,W) = VolW,



14 MIKHAEL GROMOV

as well as

i i ( i i i for/ = 1 , 2 ,

and so M is strictly less than

M, 4- M2 = M(dW, Wλ U W>).

Therefore disconnected manifolds F = ΘWmay violate the equality (2.3).

(2) Now let W be a compact connected surface of genus g > 0 with

boundary 3W = S1. Take a flat Riemannian metric g0 on JF induced by some

immersion W -> R2. Then every surface JF of genus q' < q which spans the

manifold dW — Sλ with the induced metric distgo | ΘPFhas

(Vol W)-ε> Vol W = Fill Vol dW,

for some fixed number ε > 0, and so this manifold Sι = (dW,distgQdW)

violates (2.3). Moreover, if one allows degenerate metrics on Sι

9 for example

the "metric" induced by a map/of Sι into a closed surface X of genus q, such

that this / lifts in the universal covering X -> X to a homeomoφhism of Sx

onto the boundary of some fundamental domain, then one gets

M(S\ W) = 0 for genus(W) > q,

M(S\W) >ε>0 for genus(JF) < ^.

(3) Take the degenerate "metric" on the sphere Sn induced from the real

projective space P" by the double covering map Sn -» Pn. The non-oriented

filling volume of Sn with this "metric" is zero. However, the oriented filling

volume is nonzero for n odd. Yet it is zero for n even. Therefore this "metric"

on Sn (or rather an actual metric obtained by an arbitrary small perturbation)

extends to a complete metric on the product Sn X [ 0, oo) with an arbitrary

small volume for n even but not for n odd.

2.3. Isoperimetric inequality (see §4.2). The filling volume of every n-dimen-

sional cycle z (with real, integral or Z2-coefficients) in an arbitrary space L00

satisfies

(2.4) Fill Vol(z) < C,,(Vol zf
n+X)/\

for some universal constant in the interval 0 < Cn < nn]/(n + 1)! . In particular,

all closed connected Riemannian manifold V have

(2.5) Fill Vol(K) < Q ( V o l κ ) ( Λ + 1 ) / \

The inequality (2.5), together with the Propositin 2.2.A, implies the follow-

ing.

2.3.A. Corollary. An arbitrary Riemannian metric g0 on a closed manifold V

can be extended to a complete Riemannian metric g on the infinite cylinder
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W= VX [0, oo) such that

dist g I V X 0 = distg o,

(2.6) vo\(w, g) < ς,(voi(κ,
The case of V — SK Proposition 2.2.A does not formally apply to Sι, but

Corollary 2.3.A is obvious for Sι anyway.
Remarks. The inequality

for ^-dimensional cycles in L = RN is due to Federer and Fleming [28]. This
result was sharpened by Michael and Simon [58] who proved the isoperimetric
inequality (2.4) for L — TϋN with a constant which depends onn — dim(cycle)
rather than on the dimension N of the ambient space. This is equivalent to
(2.4) in the infinite dimensional Hubert space.

Our proof of (2.4) in §§3.3 and 4.2 closely follows the original elementary
argument of Federer and Fleming. We do not rely, as Michael and Simon do,
on the theory of minimal varieties. Observe that the inequality of Michael and
Simon also applies to locally minimizing subvarieties in R ,̂ while the inequal-
ity (2.4) needs a nontrivial modification in order to apply to locally minimizing
subvarieties in a general Banach space. In fact, by our choice of "Vol" there
even exist closed (!) locally minimizing submanifolds in some Banach spaces.
For example, Flat tori Tn C L°°(Tn) are locally minimizing as it follows from
Proposition 2.1. A.

2.4. On the relation between the filling volume and the filling radius. Let us

assume that the inequality (1.1) does hold with some universal constant const;
for all manifolds V of dimension n. Then we claim the relation

(2.6) const; <<:„' = ( « + ! ) < ; >

for the isoperimetric constant Cn of the inequality (2.5). That is, we claim (1.1)
to hold with const; replaced by the new constant Q.

To see this we take an arbitrary manifold F, span it by a cylinder W — V X
[0, oo), for which

(2.7)

and then consider the levels of the distance function

d(w) = dist(w,| VX 0),

which are

Vr = d'ι(r) C
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Assume for the moment these levels to be smooth submanifolds in W, and

observe the obvious inequality for the filling radii Rr of the manifolds Vr with

the induced Riemannian metrics,

(2.8) Rr>R0-r foral l r^O.

The inequality (1.1) for Rr = Full Rad Vr yields

(2.9) const;(Vol Vr)
x/n >R0~r.

We invoke the coarea formula,

fR°(Yo\Vr) dr = Vol d~ι[09 Ro] < Vo\W,

which together with the inequality (2.9) gives

0

that is,

(2.10) Rn

0

+] < (n

This inequality (2.10) says, in fact, that

(Fill Rad V)n+X <(n+ 1) (const;)" Fill Vol V.

Now we apply (2.7) and obtain

(2.11) Ro < (Q) 1 / < n + 1 )(const'n)" / ("+ 1 )VolF.

The inequality (2.11) improves (1.1) as long as const; > C'n — (n 4- \)Cn, and

so the manifold V — Vo does satisfy (1.1) with const; replaced by the constant

Finally, we remove the regularity assumption on the levels Vr by taking a

smooth approximation of the distance function d(w).

Warning. The above argument does not prove that the inequality

Fill Rad <C;(Vol)1 / n

follows from (2.7), as the constant const; of (1.1) might apriory be infinite.

However, we shall refine this conditional argument in §4.3 in order to make it

free of the assumption const; < oo. Only then we shall prove the implication

(2.6).

3. Filling inequalities for submanifolds V in R^

3.1. The method of Federer-Fleming. Let V be an arbitrary ^-dimensional

submanifold in the Euclidean space R .̂
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3.I.A. Proposition. There exists a continuous map f of V into an (n — 1)-

dimensional subpolyhedron Kn~~ι in RN

9 such that the Euclidean distance between

f and the identity map Id: V -* F C R N satisfies

for all v G V and for some constant CN < \yfN{N\/{n\(N - n)\))ι/n.
Proof. We divide the space R^ into the unit N-dimensional cubes which are

the fundamental domains of the lattice in R^ spanned by a fixed system of N
orthonormal vectors ex : G RN, i = 1, -,N. Observe that the /-skeleton Ki of
this subdivision of R^ is the grid of integral translates of the /-dimensional
coordinate subspaces R*, for v — 1, -9N\/(i\(N — /)!).

Let us project all cubes radially from the centers to their respective
boundaries, and let us denote the resulting (discontinuous) map by PN-X:
R^ -> KN~ι. Next we apply these radial projections to the (N — l)-faces of
our cubes, then to (N — 2)-faces and so on. Thus we obtain some maps Pt\
R^ -»• Kι for all / = N — 1, iV — 2, ,0. Each map Pi is continuous outside the
dual grid of (N — i — l)-dimensional subspaces which is the translate of
KN~i~ι by the vector iΣjL, ef .

Denote by Q = Q(V) the sum of the volumes of the images of the normal
projections of the manifold V to the coordinate subspaces R^ for v —
1, -9N\/(n\(N - n)\). If Q < 1, then some parallel translate V of V does
not intersect the dual (N — «)-grid, and so the map Pn_x is continuous on V\
As Q < N\/(n\(N - n)\)Yo\V and d i s t ί / ^ J d ) < ^y/N, this map PM_1

satisfies the required relation on V in case Vol(F') = Vol(F) = (n\(N —
n)\)/N\. Finally, any manifold can be scaled to have volume = (n\(N —
n)\)/N\, and the proof is completed.

3.1.A'. Corollary. The filling radius of every closed submanifold V in ΈLN

satisfies

(3.1) FillRad(F C R") < C^(VolK)1/π.

Proof. The manifold Fis spanned by the cylinder of the map/.
This corollary is sharpened and generalized in §4.3. However, Proposition

3.1.A and its proof carry some additional information which is not contained
in the inequality (3.1). Namely, Proposition 3.1.A estimates another invariant
Rad^(F CR^) which is defined as the lower bound of those numbers ε > 0 for
which there exists a continuous map / of V into some /c-dimensional subpoly-
hedron of R ,̂ such that dist( /, Id) < ε. Then Proposition 3. LA claims the
inequality

(3.2) Radw_,(FC R") < C^(VolK)1/π

for all (not necessarily compact) ̂ -dimensional submanifolds V in R .̂
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3.1.A". Examples, (a) If V is connected, then Rad o (FC R^) equals the
radius of the minimal ball in R^ which contains F.

(b) If the manifold V is simply connected, then it is contractible in the
ε-neighborhood Uε(V) C R" for ε = Rad,(F C R"). Indeed, if irλ{V) = 0, then
the map /: V -> Kι is contractible.

In particular, if the manifold Vis homeomorphic to S2, then it is contractible in
the neighborhood Uε(V) C R" for ε < CV(Vol F ) 1 / 2 , as it follows from (3.2).
This contractibility property may fail for higher dimensional spheres. For
example, the Hopf map S3 -> S2 C R3 gives a 3-dimensional "sphere" in R3 of
zero volume, which is contractible in no ε-neighborhood for small ε > 0.

(c) Let V be an n-dimensional submanifold with boundary in W. Then
RadM_!(F CR") equals the radius of the largest Euclidean ball inside V.

Proof. Denote by V — ε the largest subset in V whose ε-neighborhood also
is contained in F. Clearly, this set V — ε is contained in the image of any
continuous map /: V -> R ,̂ for which dist(/, Id) < ε. The resulting inequality
Volίlmage^) >• Vol(F — ε) gives us the desired lower bound for RadM_1(F C
R").

Next we consider the cut locus Cut C V of V relative to the boundary dV.
Then the normal map f: V -> Cut gives us the upper bound for R a d ^ / F C
R"), since dim Cut < n — 1.

Remark. The classical isoperimetric inequality implies

Vol(F-ε) < ( 1 -ε/R)VolF, for ε < R a d ^ . ^ F C RM),

where R denotes the radius of the Euclidean «-ball of volume = Vol F. Then
the (continuous!) normal map fε of V onto the union Cut U (F — ε) satisfies
for all positive ε ^ Radπ_,(F C R"),

dist(/ e,Id)<e,

Vol(Image/ε) < (1 - ε/R)\o\V.

The existence of maps fε with these properties is, in fact, equivalent to the
classical isoperimetric inequality.

Question. Can one replace the constant CN in the inequality (3.2) by the
constant which depends only on n — dim F?

The proof of the Proposition 3.1.A admits several improvements. For
example, one may average over all orthogonal frames {eλ, -,eN) in R^ thus
diminishing the factor yfN of CN. (One could avoid the trouble by using the
/^ norm in R ,̂ that is, IUII/oo = max 1 < f < ^| x, | , instead of the Euclidean l2-
norm .) Then one could use the independence of translations in the directions of
mutually orthogonal subspaces R", thus diminishing the second factor of CN.
Finally, one might seek for a sharp inequality like (3.2) but with the quantity
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Q(V) in place of Vol V. Unfortunately, none of these improvements reduce CN

t o Q .
3.2. The isoperimetric inequality of Federer-Fleming. An arbitrary n-dimen-

sional cycle z in R^ satisfies

for some universal constant CN.
PROOF. Let Kf denote the dual (N — n — l)-grid (see the proof of Proposi-

tion 3.LA). Then the norm of the differential of the projection Pn: R
N -> K"

satisfies

\\Df(x)\\<AN[dist(x,K')]-\

for some constant AN. Indeed, the map Pn is piecewise projective; it projects
some simplices with integer and half-integer vertices to some lower dimen-
sional faces. As the integral of the function 8(x) — (dist(x, K'))~n over any
unit TV-dimensional cube is finite, there exists a translate z' of the cycle z such
that the integral of 8(x) over z' satisfies

f δ(x)dz'^A'NYo\z,

where A'N is a universal constant. Therefore the projected cycle z" — Pn(z') has

and the cylinder of the map Pn satisfies

Vol(cylirider) < {{N A'N Vol z.

Since all ̂ -dimensional cubes of the complex Kn have unit volume, the number
of those cubes which are totally covered by the cycle z" is at most Vol z". It
follows that z" is homologous in Kn to a cubic cycle z'" which consists of at
most Vol z" unit cubes. The chain coin K" for which 9c0 = z'" — z" has zero
(n + l)-dimensional volume.

Finally, the diameter of (the support of) z"' is at most Jn Vol z", and so z"f

bounds a cone for which

Vol(cone) < ̂ - γ ( d i a m z'")Vo\ z'" < ̂ ^ - j (Vol z) 2.

Now the chain c = Cylinder + c0 + cone which spans the cycle z' has Vol(c)

This implies the isoperimetric inequality in case Vol z— 1. If Vol z φ 1, we
scale the cycle z to the unit volume, q.e.d.

This proof is due to Federer-Fleming [28]. Also see [17], [16].
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3.2.A. An important remark. The Federer-Fleming construction delivers a

filling chain c which is contained in the ε-neighborhood Ue of (the support of) z

for some ε < const^(Vol z)x/n. Thus we get a bound on the filling radius of

the cycle z as well as on its filling volume. Moreover, we get the following

sharpened isoperimetric inequality:

Fill Vol(z C UE) ^ CN(Vol zf
n+l)/n.

3.3. The Federer-Fleming inequality with a constant Cn for n — dim V. We

shall prove in this section the inequality

(3.3) Fill Vol(FC R") ^ C I I(VolK) ( f l + 1 ) / # l,

for closed submanifolds V in RN. This result is due to Michael and Simon, who

derive (3.4) from their more powerful isoperimetric inequality for minimal

subvarieties W in R^ which span V. Our proof below is more elementary and

generalizes to submanifolds in Banach spaces. This is crucial for our ultimate

purpose of estimating the filling radius of a (non-embedded!) Riemannian

manifold.

Our proof is based on the two following elementary facts.

(1) The cone inequality:

Fill Vol( V C R") < - ^ - y (Diam V)Vol V.

In fact, V bounds the cone from a point v0 E V over V, and

Vol(cone) < — J - r ί dist(t>, t?0) dv < ^ - r ( D i a m F)Vol V./
V

The cone inequality also holds for an arbitrary cycle z in R^, where we

define

Diam z = Diam(support z).

(2) The coarea inequality. Let d(x), x E R ,̂ denote the distance to a subset

#CR":

d(x) = dist(x, H).

We intersect V with the levels of the function d(x), we put

The(w — l)-dimensional volumes

are related to the ^-dimensional volumes

0(0 = Vol 6(0
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by the coarea inequality

β(t) > (Ta(t)dt, fora l lΓ>0.

This inequality also applies to an arbitrary π-dimensional cycle z in R .̂
Observe that the intersections a(t) = z Π d~\t)aτe(n — l)-dimensional cycles
for almost all / E (0, oo), while the intersections b(t) — z Π d~ι[0, t] are n-
dimensional chains such that db(t) = α(t) for almost all /. There may appear
some minor regularity problems depending on a particular class of singular
chains in question. (These may be Lipschitz chains, piecewise smooth chains,
piecewise linear chains etc.) However, all such problems disappear with an
obvious approximation of the function d(x) and (or) the cycle z by more
regular objects.

We prove (3.3) by (1) and (2) roughly as follows. We denote by Cm a x = C(RN)
the upper bound of the functional Fill Vol/(Vol)(w+1)/w over all ^-dimensional
submanifolds (or cycles) in R .̂ The Federer-Fleming inequality implies

Cmax^CN< co.

We must show that, in fact, Cmax < Cn. Assume for the moment the existence
of an extremal submanifold V in R ,̂ for which

Fill Vol (V C R") - Cmax Vol V.

(It is not hard to show that an extremal "manifold with singularities" does
exist, but we shall need this fact for our proof.) If the diameter of this extremal
V abides

for some universal constant Dn, then we obtain the proof with the cone
inequality. Otherwise, the manifold V has " very large" diameter, and then we
decompose V into a sum of two "submanifolds" (or rather of two cycles):

such that

(YolV,)(n+l)/n + (VolF 2 ) ( w + 1 ) A < (VolK) ( Λ + 1 ) /\

The existence of such a decomposition clearly contradicts the extremality of
the manifold V, and thus we exclude the possibility of

DiamF>D / ί (VolF) 1 A .

To decompose V we consider the distance function d(x) — dist(x, H) to an
appropriate subset H G R ,̂ and by the coarea formula we find a section
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a(t) — V Π d~\t) of "small" (n — l)-dimensional volume. Then assuming by

induction the inequality (3.3) for n replaced by n — 1 we span the cycle a(t) by

a chain b(t) of small ^-dimensional volume β(t). Thus we decompose V into

the sum

V = [b(t)-b(tj\+[b'(t) + b(t)]9

for b(t) = VΠ d~ι[0, ΐ] and b\t) = V- b(t) = F Π έ/"1!*, oo). A straightfor-

ward calculation (see the analytic lemmas below) shows that this decomposi-

tion (for some choice of t G [0, oo)) does diminish the "weighted volume"

(Vol) ( w + 1 ) / w. Moreover, by such a decomposition we shall prove an isoperimet-

ric inequality for an arbitrary Riemannian manifold X D V, which satisfies an

appropriate "cone inequality" (see Corollary 3.4.C and Appendix 2).

Analytic lemmas

(A,) Let two positive functions a(t) and β(t) in the interval t G [0, To] satisfy

(t)dt, forallTe[09T0],

and

β(t)<ca(tyA"-]\ /ε[0,7Ό],

for some n ~> 2 and a positive constant c. Then

β(t)>t"/(c"-ιn"),

foralltE[0,T0].

The proof is obvious by observing that the equality holds for

c n Jo c n

(A 2 ) Let β0 and βλ be positive numbers such that

Sβ,<2βo<βl9

for some δ in the interval 0 < δ < 1. Then

(β0 + εβo)
(n+])/n + (/?, - β0 + εβo)

(n+W" < (1 - 8')β

where ε is an arbitrary number in the interval ε £ [ 0 , ί « ] , and δf is a positive

constant, which depends only on δ, δ' = δ'(δ) > 0.

Proof. This inequality for βx = 2β0 amounts to the obvious relation

X)/nThe case βλ > 2β0 then follows from the convexity of the function x(n+
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(A3) Let some positive functions a(t), β(t) and β(t) satisfy in the interval
t e [0, η] ,

(ϊ)β(T)>fo

τa(t)dt,
(ii) β(t) is monotone increasing in the interval [0, Tx\

(iii) β(t) < Cn_x[a(t)]n/(n~ι\ for some constant Cn_λ > 0.
Then one of the two following alternatives takes place:

(1) There is a value t0 G [0, Tλ) such that

( 3 4 ) [β(Ό) + fi ( 'o)] ("+ 1 ) /" + [β(Tx) - β(t0) + β (ί

(l

for some positive number δr which depends only on δ — β{Qi)/β{Tλ) such that
δ' ^Oforδ^O.

(2) There is a subinterval [0, To] in the interval [0, Γ,] such that

β(T0)>MTx)9 T0<±Dn[β(Tx)]ι/n,

forDn = 22-2/nn(2n-χ)/nC^Γx

l)/n < An2C^_~λ

X)/n.
Proof. Let To be the upper bound of those values t G [0, Γ,], for which

β(0 < ijS(7\). If the inequality (3.1) fails for all t G [0, Γo), then by Lemma

A2,

β(t)>ε, f o r / ε [ 0 , Γ 0 ) , e = l / ( 2 Λ ) .

Therefore

εβ(t)<Cn_At)lΛ"~l\ for/e[0,Γ0),

and Lemma (A,) with c = ε"1Cw_1 implies

β{t)>εn-ιtn/{cn

niy), forre[0,r0).

Thus we get for all t < Γo,

t < (2-1/nε(1-Λ>/'l/iCli

(!LT1)/n)i8(r)1/#l = {Dnβ{t)x/n < {Dnβ{Tx)
λ/n,

so that

Proof of the inequality (3.3). The inequality (3.3) with « = 1 and C, = i
follows from the cone inequality as DiamF< ^VolF(= { length V) for
connected closed curves V C R .̂ (In fact, (3.3) is true with n — 1 and
^ = 1/(477); see [17].)

Next by induction we assume the inequality (3.4) with n replaced by n — 1
to hold with some constant CΛ_,. We further assume the ̂ -dimensional
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manifold V in question to be almost extremal, that is, the ratio

Fill Vol(FC RN)/(Yo\V)(n+l)/n

to be as close to Cmax as we wish. Take a hyperplane which divides V into two
parts, say Fo on "the left" of H and Vλ on "the right", and consider the
intersection of Vλ with the levels of the function d(x) = dist(x, H). Put

a ( t ) = vx n </-•(/), b(t) = vo+vxn d~][o,t],

a(t) = Vol a(t), j8(0 = Vol6(0.

We span the cycles a(t) by H-dimensional chains £(/) of volumes

and then apply Lemma (A3). As Fis almost extremal, the weighted sum of the
volumes

[Vol(6(0 - b(t))]

for b\t) = V-b(t) can not be "much" smaller than (YoWYn+ι^n, where
"much" depends on how "almost extremal" is close to "extremal". Therefore
either the volume β(0) = Vol Fo is very small, or at least the half of the volume
of Fis contained between the hyperplanes H and d~\T0) on "the right" of H.
As this applies to all hyperplanes parallel to H, we get almost all volume of F
between a pair of such parallel hyperplanes with distance < Dn(YolV)ι/n

between them.

As this conclusion holds for all families of hyperplanes in RN, almost the
whole volume of Fis contained in some ball B(R) in R^ of radius

R<Dn(Yo\V)l/n.

Next we consider the intersection of F with concentric spheres S(R + p),
and using the coarea inequality we find a very small positive p > 0 such that
the intersection

s(R + p) = F Π S(R + p)

has " very small" (n — l)-dimensional volume, that is, the ratio

(Yo\s(R + p))"/(n~l)/Yo\V

is as close to zero as we wish (provided F is sufficiently close to "extremal").
We span the cycle s(R + p) by the cone s from the center of the ball B(R),
and thus divide Finto the sum of two cycles:

V=V + F",

where V is contained in the ball B(R + p), and the volume of V is artibrarily
close to Vol F, while Vol F" is negligibly small compared with vol F.
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Finally, we span V by the cone from the center of the ball, and span the

"small" cycle V" by a chain W" of

VolJF" ^ CN(No\V"fn+λ)/\

according to the Federer-Fleming inequality. As V" is small, the contribution

of Vol W" to the filling volume of Fis nonessential, and thus

Fill Vol V < ^ - j - Vol V < - ^ y (Vol V)(n+ λ)/n.

Hence we get (3.3) with

r = — < -——c ( π ~ 1 ) / π

n + 1 + 1 "-1

and, by induction,

Cn < it".

3.4. Isoperimetric inequalities in Riemannian manifolds. The essential part

of the argument of the previous section is a decomposition process of a cycle

(or a submanifold) in R^ into a sum of "smaller" cycles. This process only

depends on the coarea inequality, and so generalizes to «-dimensional cycles z

in an arbitrary Riemannian manifold X.

We first consider all possible decompositions of a cycle z into a finite sum of

H-dimensional cycles'.

and then we try to minimize the sum

j

over all such decomposition. We introduce the "weight" of z as the lower

bound of the sums Σ over all decompositions of z:

Weight (z) = inf Σ

Now we express the decomposition property of z in

3.4.A. Lemma. Let every (n — \)-dimensional cycle in Xhave

(3.5) FfflVoKC^ίVol)*11"0.

Then for every finite system of distance-decreasing functions d{. X -» R, / =

I," -,q9 (for example, for distance functions to some subsets Hi C X) and for

every 8 > 0 there exists a decomposition of an arbitrary n-dimensional cycle z into
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a finite sum of cycles:

M

z = z + y z

such that the following three conditions are satisfied:

(a) (Vol z ) ( w + 1 ) / Λ ^ Weight(z0) + Σ ^ , (Vol z μ ) ( π + 1 ) / l 1 ,

(b) Weight z o < δ ,

(c) every cycle zμ is "sufficiently round" in the following sense. There is a

decomposition of every zμ into a sum of two chains: zμ — bμ + bμ, such that

(i)Voi(6;)^δVoife;^δVoizμ,
(ii) (Vol db^nAn'l) = (Vol Wμy^n-χ) < δ Vol zμ9

(iii) the oscillation of every function di9 i = I,— -,q9 on the support of bμ is at

most

Dn(Yo\ Vμ)
X/n for Dn < An2φ-χ

λ)/n.

Proof. We start with a decomposition z = ΣJZJ for which the sum

Σy(Vol Zj){n+X)/n is very close to the minimal value = Weight(z). Then take all

those cycles zμ among zj9 which satisfy the "roundness" condition (c), and

denote by z 0 the sum of the remaining cycles zy. The argument in (3.5) allows

one to decompose "non-round" cycles into smaller cycles with substantial

diminishing of the sum of (Volumes) ("+ 1 ) / w. Therefore the cycle z 0 has a

negligibly small contribution to Weight z.

3.4.A'. Remark. If the manifold X is compact (possibly with boundary),

then there is a finite system of distance functions dt on X such that the

"roundness" condition implies

3.4.B. Proposition. Let a compact manifold X satisfy the inequality (3.5).

Then every n-dimensional cycle z can be decomposed into a sum of cycles:

M

Σ
μ=l

with the following three properties:

(a) (Vol z)(n+l)/n > Weight z'o + Σ£Lj (Vol zμf
n+λ)/n,

(b) Fill Vol z'o < δ,

(c) Diam z'μ < Dn(Vol z'^'\

Proof. We start with the decomposition provided by Lemma 3.4.A. Then

we span the boundaries dbμ by "small" chains cμ according to the Sublemma
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below, thus further decomposing cycles z into the sums of cycles:

<

for zμ — b'μ — cμ and z'μ' — bμ + cμ. The cycles zμ have almost the same volumes

and diameters as zμ, while the cycle z'0 = z 0 + Σ μ z '̂ still has arbitrarily small

"weight". Thus by the Sublemma the filling volume of z'o is also small.

3.4.B'. Sublemma. For every compact manifold X there exists a small positive

constant a = α( X) such that every cycle y in X of volume less than a bounds a

chain c in X, which is "small" in the following sense:

for k — dim y and for some constant C — C( X),

(ii) the chain c is contained in the ε-neighborhood of y for ε < C(Vol y)x/k.

Proof. Take a C2-smooth embedding of X into some space R^. By the

Federer-Fleming theorem (see §3.4, Lemma 3.4.A) the cycle y bounds a

"small" chain c in R^, which satisfies the inequalities (i) and (ii) with some

constant C depending only on N and the embedding X -> R^. (If the imbed-

ding is path-isometric, then C depends only on N.) If the volume of y is

sufficiently small, then the chain c in R^ is close t o l C R^, and so its normal

projection to X satisfies (i) and (ii).

3.4.C. Corollary. Let X be a compact manifold such that every k-dimensional

cycle y in X, for k — 1, , n, satisfies the following "cone inequality " :

Fill Vol z < τ-^-r(Diam y)Wo\ y,

for some constant C — C(k) > 0. Then every n-dimensional cycle z in Xsatisfies

(3.6) Fill Vol z ^ CΛ(Vol z ) ( n + λ)/n,

Proof. Assume, by induction, the inequality (3.3) with n replaced by n — 1,

and then fill in the cycles zμ according to the cone inequality.

Additional remarks and corollaries.

(a) The cone condition with C = 1 is satisfied for compact convex subsets X

in complete simply connected manifolds Y of nonpositive sectional curvature.

Thus we obtain the inequality (3.6) with Cn < nn for these manifolds Y. This

result is due to Hoffman-Spruk [45], who have originally proved this inequality

by the method of Michael-Simon.

In fact the cone inequality with C = 1 (and thus the inequality (3.6) with

Cn < nn) also holds for complete simply connected manifolds X of nonpositive

curvature, which have next-to-convex boundary, that is (see [33]), at most one of

the principal curvatures of the boundary is negative. (The boundary is convex

if and only if all principal curvatures are nonnegative.) For example, the
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boundary of every surface (dim X — 2) is next to convex, as well as the

boundary of a Cartesian product of surfaces.

(b) The cone condition with C(k) — k + 1 holds for manifolds without focal

points.

(c) The inequality (3.6) generalizes (see Appendix 2) to complete noncompact

manifolds X, but the cone condition along without additional assumptions on

X is not sufficient for (3.6), as simple examples show.

4. Filling in Banach spaces

We shall prove in this section an isoperimetric (filling) inequality for

^-dimensional cycles in an arbitrary Banach space L. To state and prove such

an inequality we need a notion of an ^-dimensional volume of cycles in L. A

particular choice of a volume may only affect the constant Cn in the isoperi-

metric inequality. However, it is convenient to fix some particular volume. A

choice of the volume depends on a normalization of Haar's measures in the

^-dimensional subspaces of L.

4.1. Normalization of Haar's measure. Let Lo be an ^-dimensional Banach

space whose norm is denoted 11 11 = 11 11L . The Haar measure in L o is uniquely

determined up to a positive multiple. In order to fix a Haar measure one must

prescribe the total measure of some bounded measurable subset in Lo. For

example, one defines the Hausdorff measure in L o by requiring the unit ball

BL0 — (II ̂ 11 L0 ̂  1> x E A)} t 0 n a v e t n e same measure as the Euclidean unit

bafl in R".

The measures mass and mass*. The choice of a measure in L o is equivalent

to fixing a norm in the exterior power Λ"L0; the norm of an w-vector

JC, Λ Aχn in AnL0 is interpreted as the total measure of the solid body

spanned in L o by the vectors xu -,xn. The total measure (volume) of this

body in the Euclidean space R" satisfies Hadamard's inequality

n

No\{xx/\ "/\χn)^ Π Ikl*.

with the equality for the frames of orthogonal vectors JC1? ,xn.

One defines the mass norm in the exterior power Λ"L0 as the upper bound of

these norms || || Λ on Λ "Lo, for which || xλ Λ Λχn \\ Λ < ΠJL λ II Xt II LQ. That

is,
n

mass(x, Λ Aχn) = inf Π Ik'lk'
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where the infimum is taken over the frames (JCJ, -,x'n) which are obtained

from the frame (xl9 ,xn) by unimodular transformations of the space Lo.

The frames of independent vectors x,, ,x/J in Lo for which

mass(x! Λ Aχn) = Π?=1 II JC,-II are said to be (moss) extremal. lϊ(eu ,eΛ)

is an extremal frame of IIWI/ vectors (Ik, 11 = 1), then one introduces the

associated (mass) extremal /°°-norm in Lo:

= max \a\
I00

An elementary argument shows that || JC || /β0 < HJC||L O for all vectors x e Lo.

That is, the unit ball BL is contained in the /°°-ball

We also consider the extremal I1-norm in L o,

Σ «,-*,• - Σ kl,
/' ι = l

and we have B^ C BL C Br. Hence

2n/n\— mass. B,\ < mass, Br < mass, 5,* = 2W,

for an arbitrary ^-dimensional space Lo. Furthermore, massL o = mass/i and so

the space Z1 has the unit ball of the minimal possible mass = 2n/n\. However,

the frame eλ, ,eΛ, which is extremal for massLo, is not extremal (n > 2) for

mass/oo. In fact, for n even, one can take for a mass/00-extremal frame a system

of n great diagonals dj = Σ"=χ^ei9j = 1, ,«, of the cube (ball) 5/ 0 0, such

that these vectors (diagonals) dj are mutually orthogonal in the I1-metric. Thus

and therefore

mass

Σ «,•*,•

= n~k2n for n = 2k = dim

Now for a smooth ^-dimensional submanifold V in any Banach space one

has, with the masses in the tangent spaces Lv — Tυ(V) C L, v G V, a fixed

measure, called mα55 on V. Moreover, one has this mass for all piecewise

smooth submanifolds in L as well as for singular piecewise smooth chains in L

with real, integral or with Zcoefficients.
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This mass obviously satisfies the following inequality for the linear cone over

V from any point x G L:

I
mass(cone) < ——-dist(x, F)mass V.

v ' n + 1
Moreover,

mass(cone) < — — r I f dist(x, v) dv,

for dv = d(mass) on V.

Next we define another measure in Lo, called mass*, as the dual of the mass

in the space L* dual to Lo. Recall that the dual space L* consists of the linear

functional x*\ Lo -> R, and the norm ||x*|| L* for x* G L* is

def i / \ι

| | X * | | L 8 = sup |JC*(X) | .

HxIKl

Then we consider dual frames of independent vectors, xl9- —,xn in L o and

jcf, , x * in L*, for which xf(xj) = δij9 and we put

d e f r / - A * * \ i - i
mass*(x1 Λ Axn) = [massL*(jcf Λ

If ef, -,e* is a mass-extremal frame of unit vectors in Lo, then the dual

vectors e,, 9en in L o also have unit norm so that lk/llLo = 1. These dual

frames (eλ,'—,en) in L o are called mass*-extremal. The /°°-norms in L o

associated to these frames are called mass*-extremal l^-norms. These norms

can be geometrically described as follows. Consider all /°°-norms in Lo which

are no greater than 11 II L o. As every /°°-norm is determined by its ball, which is

a solid body isomorphic to a Euclidean cube, one could equally consider all

such bodies in L o, which contain the unit ball BLQ. Fix any Haar measure

(volume) in L o and take the /°°-norms corresponding to the bodies of minimal

volume. These are exactly the mass*-extremal /°°-norms, as it follows from the

mass-mass* duality. In particular, the mass*-extremal /°°-norms satisfy

II \\r ^11 Iko
Furthermore, if the space Lo is an l°°-space to start with, then the extremal

/°°-norm equals the original norm || || LQ. It follows, now for an arbitrary space

Lo, that every mass*-extremal /°°-norm satisfies

mass£o(£L o) < mass*o(£ r) = m a s s ^ / ^ ) = 2",

and that the measures mass and mass* are related by the following inequalities

massΛ < mass? < « n / 2
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Moreover, if L o is an even dimensional /°°-space, then mass* — nn/1 mass. For

example, the two-dimensional /°° -space, whose unit ball BΓ is the Euclidean

square, has mass*!?,*, = 2 mass 2?/00 = 4. On the other hand, the two-dimen-

sional space whose unit ball is the regular 2fc-gon for k odd, has mass = mass*.

The most interesting space is the "6-gonaΓ space (plane), as the corresponding

unit ball (6-gon) has mass* = 3. Any other 2-dimensional space Lo has

mass*l?Lo > 3, (see below).

The most important properties of the mass* are the compressing property and

the coarea inequality.

Compressing. Take an w-dimensional subspace Lo in a Banach space L.

There exists, by the Hahn-Banach theorem, a linear projection P: L -* Lo

which is distance-decreasing relative to the mass*-extremal /°°-norm in L o .

Therefore this P also is mass*-decreasing (compressing) on all ^-dimensional

subspaces in L. (This property is closely related to Almgren's ellipticity

condition [3].)

The compressing property yields the following generalization of Proposition

2.1. A.

Let X be an arbitrary submanifold in a Banach space, Y a subset in X, and /

a map of Y to some w-dimensional Banach space L o such that / is distance-

decreasing relative to some mass*-extremal /°°-norm in Lo. (If / is distance-

decreasing relative to the norm 11 11L , then it is also distance-decreasing for

every extremal /°°-norm in Lo.) Then the map f extends to a Lipschitz map

X -> L o which is mass*-decreasing on all n-dimensionalsubmanifolds of X.

Proof. We realize L o as a subspace in some L00-space. Then the map /

extends to the distance-decreasing map X -> L00, and the compressing projec-

tion U° -> L o applies.

Coarea inequality. Consider the solid x] Λ Aχn spanned by n indepen-

dent vectors x{, -,xn in some Banach space L. Let hx denote the first height

of this solid, which is the distance from x} to the (n — l)-dimensional space

spanned by the vectors JC2, 9xn.

The linear coarea inequality claims

m a s s * ^ ! Λ Λ J C J ^ A, mass*(jc2 Λ Λx π ),

that is, the ̂ -dimensional mass* of the solid is not less than the product of the

(n - l)-dimensional mass* of the base of the height of the solid.

Proof. We may assume the space L to be equal to the span of the vectors

xl9 -,x»> Then the heights A „ , hn equal the norm of the dual vectors, i.e.,

"/ = \\Xi IIL*>
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and by the definition of mass*
n

mass*(xj Λ ••• Axn) ^ Π hr

We may further assume that the vectors x 2, , xn form a mass*-extremal basis
in the (n — l)-dimensional subspace L' spanned by these vectors. Then we
take a vector x\ in the (one-dimensional) kernel of the above mass*-com-
pressing projection L -> L' such that

mass*(xj Λ χ2 A Aχn) — m a s s ^ Λ x2 A χn).

The new solid x[ A x2 A Aχn has the same first height h\ — hx, while the
heights h • for / ̂  2 are equal to the n — 1 heights of the solid x2A - - Aχn,
because the projection L -> L' is distance-decreasing relative to the extremal
/°°-metric in L. As the basis x 2, ,xn is mass*-extremal, the products of the
heights /Ϊ'2, ,Λ'W of the solid x2 A Λχn equals the mass* of this solid.
Therefore

mass*(jc! Λ Aχn) = mass*(xj Λ χ 2 Λ Λ - O

^ Π K = h\ Π Λί = h\ mass*(jc2 Λ Axn).
i=\ i=2

The "linear" inequality yields the following coarea inequality for the
(n — l)-dimensional levels of each distance-decreasing function d: V ^ R for
an ^-dimensional submanifold Fin some Banach space L:

/

+ 00

mass*d~ λ (/) dt.

- 0 0

This inequality applies, for example, to the distance function d(v) =
dist(ϋ, H) to a fixed subset H G L.

Remark. The definitions of mass and mass* apply to an arbitrary Finsler
manifold V, as it can be isometrically imbedded into the Banach space L°°(V)
(see §1.1). The above properties of mass and mass* hold for all Finsler
manifolds.

Examples. The mass* of the unit ball is an ^-dimensional Banach space Lo

is related to the (n — l)-dimensional mass of the boundary by the inequality

mass*i?r >——τ-mass*92?r ,

which is opposite to the obvious inequality for the mass:

mass Bτ < — — - mass dBτ .
L° n + 1 L°
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In particular, if n — 2, then

mass* BLQ ^ { length dBLo,

(while mass B/Q ^ \ length dBLo). As any such boundary dBίo has length > 6

(see [67]), we get the relation mass*£L o ^ 3 for every two-dimensional Banach

space Lo.

Remark. The coarea inequality generalizes (by induction) to systems of
functions

F=(fι,' ,fk):V^Rk,

where the receiving space R* is equipped with the /°°-norm for which

Dilation F— max D i l a t i o n ( / ) .

Namely, if F is a distance-decreasing map (Dil < 1), then

m a s s * F > / mass*( F~Hx)) dx.
JRk

 v y /

The (hyper-Euclidean) volume. There are several canonical ways to equip

an ^-dimensional Banach space Lo with a Euclidean norm. The most "popular"

norm comes from the canonical embedding of L o into the Hubert space of

functions on the dual ball BL C I J . The vectors of Lo go to linear functions

(functional) on the ball BL*.

We shall use another standard Euclidean norm on L o , namely, the /2-norm 11

II ι2 ^ II II L0 which maximizes the volume of the /2-ball Bμ C BLQ relative to

some fixed Haar measure in L o . The Euclidean volume associated to this

/2-norm is called the (hyper-Euclidean) volume in Lo. This volume clearly

satisfies

mass* ^ Vol < « w / 2

mass.

The equality mass* = Vol holds for L o = R" and also for Lo- /°°. The

equality Vol — nn/2 mass holds only for the ^-dimensional lx-space.

The unit ball BL always has volume > the volume of the unit Euclidean

ball, where the equality is possible only for L o = Rn.

This volume for submanifolds V C L agrees with the one given in §2.

Furthermore, this volume enjoys the same coarea formula as the mass* and

also the following "cone" inequality (compare §3.3) for closed ^-dimensional

submanifolds F i n (finite or infinite dimensional) L00-spaces:

Fill Vol(F C Γ ) ^ constM(Vol F ) D i a m ( F ) .

for const,, = i/J r / 2(cos x)n dx < 1/ \ln + 1 .
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Proof. Suppose for the moment that V is a submanifold in the boundary of

a hemisphere of constant curvature:

Then the geodesic cone C + from the North ρole/?+ G S++ι over Fhas

VolC + = const,, Z)VolF,

for D = Diam SN. As the embedding V ** L°° extends to a distance-decreasing

map C+ -> L°° we get a "cone" in L00 over Fof volume < const,, D Vol F.

Now the distance between a pair of points in the cone C+ 9 cλ = (υλ9 ίλ) and

c2 = (ϋ 2 , ί 2), for ϋ,, ϋ 2 E F and ί, and t2 in the iterval [0, \D\ only depends

on *,, t2 and dist(t>,, t>2). Therefore for any metric in V we can assign this

distance to the pairs of points cx and c2 of the abstract cone as long as

dist(u,, v2) < Z). The abstract cone with this distance goes to L°° D V as

above, and the proof is concluded.

4.2. Isoperimetric inequalities in Banach spaces. We prove in this section an

inequality for the filling mass* in an arbitrary Banach space L and also a

somewhat sharper inequality for the filling volume in L00-spaces.

4.2.A. Theorem. An arbitrary piecewise smooth n-dimensional cycle z in a

Banach space L satisfies

Fill mass*z ^ Q(mass*z) ( w + 1 ) / w ,

Proof. First we observe the following cone inequality for Λ>dimensional

cycles zk\

Fill mass zk < (A: + γγk+χ)/2 ^Dmni zA;)mass*zA:.

Indeed, the mass of the cone over zk from some point in the support of zk is at

most

^ ^ - ( D i a m z J m a s s zk < y^-j Diam zΛ(mass*zΛ),

while mass^+ 1 < (k + l ) ( / c + 1 ) / 2 m a s s λ + 1 (see §4.1).

Next every piecewise smooth cycle z can be approximated by piecewise

linear cycles. Every piecewise linear cycle is contained in a finite dimensional

subspace of L, and we may assume that the space L is finite dimensional to

start with. Then L is isomorphic to the Euclidean space R^ for TV = dim L,

and so the cycles z in L satisfy the Federer-Fleming inequality

Fillmass*z < C(mass*z)v

for some constant C— C(L). (In fact, if one uses the isomorphism L -*RN

provided by the mass-extremal frame in L, then one gets C = C(N).)
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Finally, we invoke the coarea inequality for mass* (see §4.1), and then

observe that our proof of (3.3) (also compare §3.4) extends to space L with the

additional factor (k + i)(*+1)/2 m e v ery dimension k — 1, ,«, which is due

to the new cone inequality.

4.2.B. // the space L is isometric to an {finite or infinite dimensional)

L°°-space, then

Vύ\Vo\z<Cn(Vo\z)(n+l)/n

for

Indeed, the above proof applies with an obvious modification due to the

cone inequality for the volume (see §4.1).

As a corollary we obtain the filling volume inequality of §2.3 for Rieman-

nian manifolds V. Observe that the canonical embedding V C L°°(V) admits

the following simple approximation by imbeddings into finite dimensional

subspaces of L. One takes an ε-net of N points ϋ,, -,vN in V, for a small

positive ε > 0 and a large N, and one maps V to the iV-dimensional space

l°°{v^ -,vN} by sending

υ -+(άist(Ό,Όx),- ,dist(υ, ϋtf)),

for all v E V.

4.3. Filling radius in Banach spaces. First let L be a finite dimensional

Banach space. Then using an isomorphism L^RN and Remark 3.2.A we

obtain

Fill Rad z ^ constL(Vol z) 1 / w ,

for an arbitrary ^-dimensional cycle z in L.

Next the argument of §2.4 applies to the distance function d(x) —

dist(jc, support z), or rather to the levels c Π d~\t) of the "almost minimal"

(n + l)-dimensional chain c which spans z, and now that argument does yield

the inequality

Fill Rad z < (n + l)CΛ(Vol z)λ/\

where Cn — Cn(L) denotes the upper bound of the ratio

FillVolz/(Volz) ( M + 1 ) / w,

over all ^-dimensional cycles z in L. In fact, the analytic Lemma (Aj) of §3.3.

implies the existence of a value t0 < (n + l)Cw(Vol z) 1 / π , for which the volume

of \/n the cycle c Π d~\t0) becomes arbitrary (depending on "almost

minimality" of c) small, and this "residual" small cycle is spanned according
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to Remark 3.2.A. Thus we obtain a chain c', which spans z such that the

following hold:

(i) Vol c' < Fill Vol z + δ,

for an arbitrary small δ > 0,

(ii) the support of c is contained in the ε-neighborhood Uε (support z) for

ε - δ < (n + l ) C ; / ( " + 1 ) ( F i l l Vol z ) 1 / ( w + 1 ) < ( « + l)Cπ(Vol z)X/n.

This argument also applies to mass* (as mass* satisfies the coarea inequal-

ity), and yields the following theorems for finite and infinite dimensional

Banach spaces.

4.3.A. An arbitrary n-dimensional cycle z in a Banach cycle L has

Fill Rad(z C L) < constw(mass*z) ι / '\

forconsin<{n + \)nnHn

k=](k + 1)<*+1)/2.

4.3.B. If the space L is isometric to an U°-space, then

Fill Rad(z C L) < constrt(Vol z)λ/n,

for constn < (n + \)nn^{n + 1) ! .

We obtain as a corollary our main estimate (Main theorem 1.2.A) for the

filling radius of a Riemannian manifold V, and hence the upper bound 0.1.A

for the shortest geodesic in an essential manifold. We get, moreover, the

following relation:

(4.1) FillRad F < const;(Fill V o l F ) 1 / ( " + 1 ) ,

for n = dim V and
V #!/(/!+ 1)

const;<(/i+l)(/iΛ)/(Λ+l)!)

4.3.C. Minimal fillings in Banach spaces. Let F be a closed ^-dimensional

submanifold (or sub-pseudomanifold) in a Banach space L, and let cf , / =

1,2, , be a minimizing sequence of chains which span F, that is, dcι; = F

and Vol c, -> Fill Vol(F C L) for / -> oo. Such a sequence is said to converge,

if there exists a Hausdorff limit (see Appendix 3) of the supports, supp c, C L,

which is a compact subset W in L such that Hausdist (PF, supp ct) -> 0 for

/ ̂  oo. Such a limit JFof a minimizing sequence c, is called a minimal filling, if

no proper subset of JFis a limit of any other minimizing sequence c\ in L.

4.3.C. Lemma. Every (pseudo-) manifold in a finite dimensional space L

admits a minimal filling.

Proof. Take a minimizing sequence of chains cz which have supports in a

fixed bounded neighborhood of F. Then there is a subsequence whose supports

converge to a subset Wo in L. Take for W a minimal compact subset in Wo,

which is the limit of some minimizing sequence.
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Let W be a minimal filling of V which is the limit of a minimizing sequence

cf . We may assume (by passing to a subsequence if necessary) that the

volume-measures on (the supports of) c, weakly converge to a measure, called

the volume, on W. That is, the volume of every open subset Wo in W is the

limit of the intersections of the ε-neighborhoods of Wo with cr Thus

Vol^ 0 = lim Vol[Ue(W0) Π c j .
/-» oo

Using this definition we have

Vol W = FillVol(FcL),

and so Wmay be viewed as a "minimal variety" which spans F.
4.3.C. Theorem. ΓΛe intersection of a minimal filling with a ball has

(4.2) Vol(Bw(R) Π W) >AnR
H'+ι

for all w <ΞW, R< dist(w, F), <wu/ Λn = (Λ + \yn+λC;n, where Cn is the

constant of 4.2. B.

Proof. We must establish the corresponding inequality for approximating

chains ci at some points w, -> w in supp cf .

Let cf (Λ) = c, Π £ „ ( # ) and zt(R) = dct(R) = c, Π dBw.(R). As the se-

quence cz is minimizing, we have for / -+ oo

[Vol c f(Λ) - Fill Vol zf.(Λ)] -> 0,

for every fixed R < dist(w, V). As Fill Vol z^Λ) < Q[Vol z |.(Λ)](/l+1>/;ι, using

the coarea inequality and Lemma (A,) of §3.3 we conclude that the inequality

Vol ct(R) < A'nRn, for a fixed Af

n < An, is possible only if Vol(cf.(Λ)) -^ 0 for

/ -» oo. Then, for some Λr close to Λ, the cycles zt(R') also have volumes -> 0,

and so they can be filled by chains c , which have

and are supported in εΓneighborhoods of zt(R) for εif -> 0 as / -> oo. Then the

limit of the supports of the sequence c, - <:,(#') + c\ is a proper subset of W.

This, contradicts the minimality of W, and so the proof is concluded.

4.3.C". Corollary. Every (pseudo-) manifold V in an arbitrary space L°°

admits a minimal filling Wwhich satisfies the above inequality (4.2).

Proof. Take some approximations Vj to F, which are contained in finite

dimensional subspaces of L°° and take some minimal fillings Wj of V-. The

inequality (4.2) implies the uniform compactness of the sequence W} (see [37]

and [34]), and so some subsequence of Wj admits an abstract Hausdorff limit

(See Appendix 3) W. This W can be sent into the space L°° by a distance-

decreasing map (see §1.1), which extends the embedding V ~> L000
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Remark. The minimal filling WoίV does not solve the Plateau problem, as

the "natural" volume of W may be greater than the weak limit of the volumes

of the minimizing chains. In fact, this W is just a formal device, which

summarizes some important properties of minimizing sequences.

On the other hand, if one uses mass* in place of the volume, then one can

construct an actual mass*-minimizing filling of V by an additional regulariza-

tion of the above procedure.

4.3.C. Let us indicate an application of the inequality (4.1). Recall that (see

§4.1)

V o l w + 1 < ( « + l ) ( w + 1 ) / 2 m a s s n + 1 .

Since the mass satisfies the cone inequality, we obtain the following relation

for the volumes of the cones over V C L°°(V) from the points υ E V:

f

v
Therefore

Vol(coneJ < (n + \fn+X)/1 λ f dist(t>, w) dw.
Jv

dist(v,w)dvdw,

Fill Vol < ni(n + 1) ! (Vol)(

n\ jj dist(ϋ, w)

jj
vxv

and as

) ( / ί + λ)/n

we get

rr 1

Fill Vol < Bn\ jj dist(ϋ, w) dυ dw\

for

Hence

for B'n <(n+ \)2(nn]l(n

Corollary (Compare §1.2). The length of the shortest noncontractible geodesic

γ in an n-dimensional essential manifold V satisfies

Γ - -

Fill Rad V < B'A jj dist(t>, w) dυ, dw

lengthy < 6B'n jj dist(ϋ, w) dυ dw

vxv

for the aboυe constant B'n.
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4.4. Isosystolic inequalities for open manifolds. Let V be a (possibly non-
compact) manifold with boundary. We say that V is essential relative to infinity
if there is a continuous map /of V to some aspherical space K, such that /is
constant outside some compact subset in the interior of V and the map /:
V -> K represents a nonzero w-dimensional homology class in K for n — dim V.

Examples, (a) The complement V = W\C to a closed simply connected
subset C in a closed essential manifold Wis essential relative to infinity.

(b) If a manifold F contains an open subset which is essential relative to
infinity, then V itself is essential relative to infinity.

4.4.A. Theorem. Let V be a complete {as a metric space) Riemannian
manifold. If V is essential relative to infinity, then there exists a closed noncon-
tractible curve γ in V such that

length γ < A[Vol V + B{Yo\ W)n/{n~λ)]V",

for n — dim V and some constants

A<6(n+ \)ni(n+ 1)! , B < (n - \)n

Furthermore, if the boundary dV is empty, then there is a closed geodesic γ in V of

Lengthy < A(VolV)V".

Proof. Take concentric spheres S(R) around a fixed point v E V. As

S(R) dR = YolV< oo,

there are arbitrary large spheres S(R) of arbitrary small {n — l)-dimensional
volume. We smooth such a sphere S(R) and replace Fby the compact region
inside the smoothed sphere. Thus we reduce the problem to the case of a
compact manifold V with boundary.

Next we fill in the boundary 3 V of V by an ^-dimensional chain, which is
interpreted as a pseudo-manifold V with boundary W — 3 V such that

Thus we get a closed pseudomanifold W = V U V which has

Fill Rad W < 6,4(Vol W)W\

for Vol W= VolF+ VolF.
This manifold W admits an essential map f\W-* K which is constant on V\

and the argument of Lemma 1.2.B provides a curve γ' in W of length < 6 Fill
Rad W, whose image under / is not contractible in K. Therefore one of the
segments of γ' inside V with the ends on the boundary 3 V gives a noncontract-
ible loop in K. As the filling V of W respects the metric in W\ this segment
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can be completed to a closed noncontractible curve γ in V of length γ <

lengthy'.

Finally, if the original manifold V has no boundary, then the above curve γ

can not be homotoped to infinity, and so there is a closed geodesic in V of

length < length γ which is homotopic to γ.

Open manifolds with essential ends. A closed connected submanifold H in

V is said to be essential in V if there exists a map of H into an aspherical space

f:H-*K such that the kernel of the homomorphism /„,: ττλ{H) -> πx(K)

contains the kernel of the inclusion homomorphism πx{H) -> πλ(V\ and such

that the image of the fundamental homology class f*[H] C H#(K) is nonzero.

For example, if H is an essential manifold and the fundamental group π}(Ή)

injects into TΓ^K), then H is essential in V.

Let V be a connected open manifold without boundary and let d: V -> R+

be a proper Morse function. We say that V has at least k essential ends if, for

some regular value / 6 R + , there are k disjoint connected noncompact compo-

nents in the set d~x[t, oo) C F, say //,, i = 1, ,/c, such that every Hi has a

boundary component, say Hi C dHi C d~\t) C V, which is an essential sub-

manifold (of codimension one) in V.

This definition does not depend on a particular Morse function d on V.

Furthermore, one can choose, if one wishes, the above value t arbitrary large.

Examples, (a) If Vo is a closed essential manifold, then the product F 0 X R

has two essential ends. The connected sum of /:-copies of Vo X R has 2 k

essential ends.

(b) If V admits a complete metric of constant negative curvature and finite

total volume, then every end of V is essential. That is, the number of essential

ends equals the number of cusps of V. The connected sum of infinitely many

of such manifolds V has infinitely many essential ends.

4.4.B. Let V be an open complete Riemannian manifold with at least k

essential ends. Consider concentric balls B(R) in V around a fixed point v0 E V

and let

liminfjR^VoltfίΛ) = M < oo.

Then the first systole syS] V, that is, the lower bound of the lengths of noncontract-

ible curves in V, satisfies

sys,K<6(/i-

forn = dim VandCn_x = (n - l )""
Proof. Let d — d(v) be a smooth approximation to the distance function

dist(υ, ϋ 0) to a fixed point v0 G V. Then there are arbitrary large values t for

which Vol d~\t) < M — ε for an arbitrary small ε > 0. We have an essential
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component Ht in f~\t) of volume < (M/k) + ε, and we obtain by the
argument of 1.3 a required short curve in Hn which is not contractible in V.

4.4.C. Filling radius of complete noncompact manifolds. If V is a complete

noncompact manifold, we denote by L°°(V) the space of all (not only bounded)
Borel functions on V, and then we have our canonical imbedding V C L°°(V),
that is,

Observe that this space L°°(V) is not, strictly speaking, a metric space, as the
distance between two functions fλ and/2 on V,

def
dist(/ 1 ,/ 2 )= sup \fλ(v) - f2(v)\9

v(ΞV

may be infinite. However, our embedding V C L°°(V) is isometric just the
same.

In order to define the filling radius of V in L°°(F), we allow only those
infinite chains c which are locally finite in L°°(F), i.e., every bounded subset in
L°°(V) intersects only finitely many (supports of) singular simplices of c. Then
we define the filling radius of V C L°°(V) as the lower bound of those ε > 0,
for which there exists a locally finite (n + l)-dimensional (for n — dimK)
chain c in the ε-neighborhood Uε(V) C L°°(F), whose boundary 3c is con-
tained in V and which represents the fundamental class of V in the homology
group Hn(V) with noncompact supports. Geometrically speaking, the condition
Fill Rad V < ε is equivalent to the existence of a pseudomanifold W with
boundary dW = V such that the metric of W extends that of V and such that
disu>, dW = V) < ε for all w G W.

Observe that the filling radius of a noncompact manifold V may be infinite.
For example, the Euclidean space W has Fill Rad Rn = oo for all n = 1,2,
(see §4.5.D for additional examples).

On the other hand, the argument of Theorem 4.4.A extends our main filling
inequality to all complete manifolds V,

(4.3) Fill Rad 1

for all complete manifolds V. In particular, every manifold of finite volume

Vol V < oo also has Fil Rad < oo. Moreover, there exists a filling W of V (for

Vol V < oo) with the boundary dW = V, for which

(4.4) dist(w, dW) -> 0, for w -> oo.

4.5. The filling radius and the injectivity radius. Let X be a complete

Riemannian manifold, whose injectivity radius is everywhere greater than
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Ro > 0. Take n + 2 points JC0, ,*„+1 in X such that

,.,*,.) ^8^R0/n + 2, toτi,j = 0, ,w

and observe that there is a canonical geodesic (Λ + l)-dimensional simplex in

X with the vertices JCO, , J C Λ + 2 Namely, one first joins Λ:0 and xλ by a

minimal geodesic segment Δx(x0, xx) in X Then dist(x, x2) < f 8 for all

x G Δγ(xθ9 xλχ and so there is a geodesic cone, say Δ(x0, x l 5 Λ;2), from x 2 over

Δ J O Q , JCJ). As dist(.x, x3) < 2 for all x G Δ 2 (x 0 , JC19 x 2 ), one can take for Δ 3

the geodesic cone from x4 over Δ 2 and so on.

Now let V be a closed ^-dimensional submanifold in X, whose filling radius

(relative to the induced metric) is at most 8/2. Then we argue as in Lemma

1.2.B, and extend the inclusion map V -* X to a continuous map of a filling

chain c G L°°(V) (which spans Vwithout distance 8/2 from V C L°°(V)) to X

Thus we get

4.5.A. Lemma. //

Fill Rad V < (Inj Rad X)/2(n + 2),

ί/*e submanifold V C X is homologous to zero in X

4.5.B. Corollary. //

Inj Rad X> 2(n + 2)(w

/Λe submanifold V bounds in X

This corollary for F = X reduces to (a non-sharp version of) Berger 9s

isembolic inequality

Inj Rad V > constn(Vol V)X/n.

The argument of Lemma 1.2.B, by which we have just proved the above

Lemma 4.5.A, easily generalizes to a purely homology-theoretic content and

then we obtain an upper bound on Fill Rad V in term of the local homological

invariants of V. Namely, for a given number C > 1, we introduce the following

"radius" Ro = R0(V, C) as the upper bound of the real numbers R > 0 with

the following property. For every pair of concentric balls in V of radii R and

CR, the inclusion homomorphisms on the cohomology groups with Z2-coeffi-

cients,

vanishes for i' = 1, ,« = dim V. This "radius" bounds from below the filling

radius of V and thus the volume of V as follows.
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4.5.C. Theorem. Let V be a complete Riemannian manifold of finite volume,

for which R0(V, C) > 0. Then Vis compact and

VolV> (n2C)-{n+])2[R0(V,C)]n.

4.5.C. Remark. One obtains, by the argument of §4.4.B, the following

more precise result for open complete manifolds V, for which R0(V, C) > 0.

The volume of the concentric balls B(R) in V around a fixed point satisfy for

R -> oo

limmfR-]\ol B(R)>(c(n- l)2)'n2[Ro(V9C)]n~ι.

4.5.D. Geometrically contractible manifolds. The above considerations take

a simpler form with the following definition.

A complete manifold V is said to be geometrically contractible if there exists

a positive function R(p) = Ry(p) for p G [0, oo) such that every ball in V of

radius p is contractible within the concentric ball of radius p + R(ρ).

Examples, (a) The space Rn is geometrically contractible.

(b) Let V be a complete manifold and let the isometry group Is — Is{V) be

co-compact on V, that is, the quotient V/Is be a compact space. Then the

manifold V is geometrically contractible if and only if it is contractible. The

proof is obvious. However, the structure of the relevant "contractibility"

function Rv(p) may be quite complicated. Indeed, if V is the isometric

universal covering of a compact aspherical manifold Fo, then the growth rate

of the (minimal) "contractibility" function Rv(ρ), p -^ oo, reflects the solvabil-

ity degree of the word problem in the fundamental group πλ(V0). In particular

if the word problem in the group πx(V0) is unsolvable, then the function R(p)

grows faster, as p -^ oo, than any recursive function.

(c) Let V be a leaf of a foliation f in a compact manifold W. We equip V

with the Riemannian metric induced from some Riemannian metric in W. If

the manifold V is not geometrically contractible, then there obviously exists

another leaf V of S7, which is contained in the closure of V and is not

topologically contractible. Therefore if all leaves of S7 are topologically contract-

ible, then they also are geometrically contractible.

Now the proof of Theorem 4.5.C also yields the following.

4.5.D'. Theorem. Every complete geometrically contractible manifold V has

FillRadF= oo,

and therefore

V o l F = oo.

as well.
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4.5.E. Geometrically essential manifolds. We say that a complete manifold

X is geometrically aspherical if the universal covering X of X is geometrically

contractible.

Example. Every complete manifold of nonpositive sectional curvature is

geometrically aspherical. A complete manifold V is called geometrically essential

if there exists a proper (uniformly!) Lipschitz map of V into some geometri-

cally aspherical manifold X such that the fundamental class of V goes to a

nonzero homology class of X with noncompact supports, fJ_V] φ 0. If the

class / J F ] is not homologous to an ordinary cycle in X (i.e., with a compact

support), then we say that V is geometrically essential at infinity. For example,

every complete noncompact geometrically aspherical manifold is geometrically

essential at infinity.

Now the argument of Theorem 4.5.C and inequalities (4.3) and (4.4) of

§4.4.C lead to the following.

Geometrical isosystolic inequality. Let V be a complete geometrically essen-

tial manifold of dimension n. Then

sys1F<6(«+ \)nn{rϊ\(yo\V)λ/n.

Furthermore, if V is geometrically essential at infinity and Vol V < oo, then

sys,K = 0.

A counterexample. Let V be the isometric product of the unit circle Sx by a

surface Vo, which is homeomorphic to R2 and has Area Fo < oo. Then

sySjF= 277, no matter how small the volume VolF = 2π Area Fo is. This

happens because the (aspherical) manifold V — Fo X S} is not geometrically

aspherical.

5. Short geodesic in surfaces

Let F b e a surface with a complete Finsler metric. We call by area the mass*

measure on F(see §4.1), and recall the coarea formula

(5.1) Area BΌ(R) > Γlength dBΌ(r) dr,

for balls BV(R) of radius R. The length of the boundary dB(r) is understood as

the one-dimensional Hausdorff measure. In fact, one may assume (using an

appropriate approximation of the function dist(υ, -)) the boundaries dB(r) to

be piecewise smooth for all r, and to be some unions of simple closed curves

for almost all r G [ 0 , oo). We always make such an assumption whenever we

need it.
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The principal isosystolic inequalities for surfaces V are proven below on the

basis of the formula (5.1) alone. Unfortunately, this direct elementary ap-

proach does not generalize to manifolds of dimension > 3.

5.1. The height function and the areas of balls. We denote by sys(F, v) the

length of the shorter noncontractible loop γ in F with the base point o, and by

sys'(F, v) ^ sys(F, v) the length of the shortest loop which is not homologous

to zero mod 2. Observe that the number sys(F, t;) (respectively sys'(F, v)) is

the upper bound of those R > 0 for which the ball Bυ(R/2) is contractible

(homologous to zero) in F, where " homologous to zero" means the vanishing

of the inclusion homomorphism Hx(Bυ(R/2); Z 2 ) -> HX(V\ Z 2 ) .

If a ball B in V has some contractible boundary components, we fill in every

such component of dB by an open 2-cell in V (which is unique, unless V « S 2 ),

and denote by B+ the union of B with these cells.

A loop γ in V at v is said to be minimal if it is not homomorphic to a shorter

loop at υ. We call γ systolic (respectively, homologically systolic) at v if length

γ = sys(F, v) (respectively, length γ = sys'(F, t>)).

A closed curve γ in V is said to be minimal (homologically minimal) if it is

not freely homotopic (not homologous) to a shorter curve. We say γ is

(respectively, homologically) systolic if

def
length γ = sys V — inf sys( F, v),

6K

(respectively, if length γ = sys'(F)).

A complete geodesic γ in F, periodic ( » Sι) or infinite ( « R1), is said to be

straight if the distance between every two points vx and v2 in γ C F equals the

length of the shortest segment of γ between υx and v2.

If F is a compact orientable surface, then the left of every minimal geodesic

γ in F to the universal covering V of F is a straight geodesic γ in V (see [61]).

This is also true for two-sided minimal geodesies in compact non-orientable

surfaces, the "two-sided" condition means the vanishing of the first Stiefel-

Whitney classes on γ, i.e., wx[y] — 0.

Observe that homologically systolic geodesies in F are straight. Moreover the

homology group HX(V,Z) can be generated by (the classes of) homologically

minimal straight geodesies. A particular basis in Hx can be obtained by

induction as follows. We take for γ,, / = 1, ,# = bx(V) — rank HX(V\ the

shortest geodesic in F which is not homologous to any integral combination of

the geodesies γ ioxj — 1, •,/ — 1. We call such a system of geodesies a short

basis in HX{V).

Now let γ be either a closed curve γ: Sx -> F or an infinite curve γ: R -> F.

We define the tension tens γ as the upper bound of those numbers 8 > 0 such
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that there exists a homotopy γ, of γ = γ0, which diminishes the length of γ by
δ. This homotopy of an infinite curve γ is assumed to be compact; it keeps the
map γ: R -> V fixed outside some compact interval in R. Then the difference
δ = length γ0 — length γ, is correctly defined, even if the curve γ = γ0 has
infinite length.

Take a point v E V and say that a curve γ which passes through v is
admissible if either γ is a noncontractible closed curve: γ: Sι -» F, or γ is
infinite, i.e., γ: R1 -> F, where γ(0) = v, and both ends of γ, which are the
restrictions

γ I R+ : R+ -> Fand γ | R_ : R_ -> F,

have infinite length. We define the height h(v) of v as the lower bound of the
tensions of all admissible curves passing through v.

Examples, (a) If Fis homeomorphic to S2, then h(v) = + oo for all v E F.
(b) Let Fbe homeomorphic to R2. Then h(v) = + oo if and only if there are

no straight infinite geodesies in F.

(c) If the fundamental group πλ(V) is nontrivial, then the function h(v) is
finite at every point v in F. In fact, h(v) < sys(F, v) — sys Ffor all V G V.

The following three properties of the height function are immediate from the
definition.

5.1.A. Proposition. // F is a complete nonsimply connected surface, then

(a) every component of the set h~ι(t, oo) for each t E [0, oo) is an open

topological 2-cell in F;

(b) the subset h~ι(0) is the union of minimal closed geodesies in V and of those

infinite geodesies in F, whose lifts to the universal coverings VofV are straight;

(c) the function h(v) is Lipschitz, i.e.,

h(υλ) - h(v2) < 2dist(ϋ,, ϋ 2),

for all pairs of points vx and v2 in V.

Now we slightly refine an argument of Berger [13] and Hebda [42] in order
to get a lower bound on the areas of balls in F. Notice that Hebda restricts
himself at that point (for a reason which is hard to understand) to orientable
surfaces F.

5.I.B. Proposition. The area of every ball BV(R) in a complete surface V

satisfies the inequality

for every R in the interval
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In particular, the area of a nonsimply connected surface V satisfies

Area V ̂  Area Bυ({ sys(F, υ)) ^ ^sys(F, υf ^ i(sysF)2.

PAΌO/. If R < isys(F, v), then the ball BV(R) is contractible in F, and so
the set 1?+ (#) is a topological disk. Thus every admissible curve γ through υ
hits the boundary 32?+ (jR) at a pair of points, which divide this boundary
(which may be assumed a simple closed curve) into two segments of lengths lx

and I2^lx, such that lλ + / 2 = length dB+(R). Clearly the tension of γ
satisfies

and so

length yB+ (R) > 4R - 2h(v).

Therefore

Area BV(R) > fR\ength{Bυr) dr ̂  f* length^ (r) dr > 2(2R - h(υ)f.
J0 Jh(v)/2

Let us indicate some related estimates from below for the area of a ball
BV(R) in V.

5.1.B'. Let the point v lie on the straight {closed or doubly infinite) geodesic γ
of {finite or infinite) length I.

(a) Ify is infinite or a closed homologically minimal geodesic, then

Area BV{R) > 2R2Jor R ^^sys'{V, υ) ^$1.

(b) /// is α closed geodesic, which is homologous to zero, then

Area BV{R) > 2R{1 - R) - \l2, for 1/4 <R< 1/2.

Proof. In eihter case the geodesic γ hits the boundary dBυ{R) at two points
which necessarily lie in one compact of the boundary dBv{R), and the length of
this component is estimated as above.

5.1.B". Corollary. Every straight homologically minimal geodesic γ has

length γ < 2 Area K/sys'(F).

Indeed, the area of V can be estimated from below by the total area of
mutually disjoint balls of radius ίsys'(F) with the centers on γ.

Now let σ be a distance minimizing segment between two points u, and v2 in
V, so that length σ = dist(ϋl9 v2). Take a point v £ σ which divides σ into
segments of lengths lx = dist(t>, υλ) and l2 — dist(υ, v2), and consider a ball
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BV(R) whose radius R > 0 satisfies the following two inequalities:

( 2 ) Λ < H - i * ( ϋ l ) , forι= 1,2.
5.I.C. Proposition. 77iέ? above ball BV(R) has

Area BV(R) ^ 2R2.

Proof. Take the disk B+ and consider the following two possibilities:
(a) None of the end points vx and v2 is contained in B+(R). Then length

(b) One of the end points, say υ,, is in B+ (R). Then d - dist(ul9 92?+(Λ))
> /, - R and

*,(©) > Id - \ length 3Λ+ (Λ).

Now using (2) we have again length dB* (R) > 4R.
5.1.C Corollary (Compare Corollary 5.1.B"). The diameter of the subset

h~][0,t]C Vsatisfies for every t > 0,

Diam /Γ1 [0, t] < t + sys V + Area F/sys F.

5.I.D. Minimal graphs in V. We define the tension of a finite graph (i.e., a
one-dimensional subcomplex) Γ in V as the upper bound of those numbers
δ ^ 0, for which there exists a continuous map /: Γ -» F, homotopic to the
inclusion map /: Γ -> F, whose image has

length/(Γ)< length Γ - δ.

If V is compact, then there exists a map / homotopic to /: Γ «=* F, whose
image Γ' = /(Γ) C Fis a minimal graph, i.e., tens Γr = 0. Every component of
Γ' is either a closed geodesic in F or a finite union of vertices joined by simple
geodesic segments and loops, with exactly three geodesies approaching every
nonisolated vertex. Furthermore, if the original graph Γ contains the one-
skeleton of some cell decomposition of F, then the complement F \ Γ ' is a
topological 2-cell, whose lifts to the universal covering V of F are fundamental
polygons for the deck transformation group on F.

The above arguments imply that a ball BV(R), whose center v is contained in a
connected noncontractϊble graph Γ C F, satisfies

Area Bυ(R) > (2R - hf,

for {h^R<: ^sys(F, v) andh = tension(Γ).
5.2. A sharp isosystolic inequality for surfaces. Let F be a closed surface

with an infinite fundamental group (i.e., F is not homeomorphic to S2 or to
RP 2 ) . Let γ be a closed minimal two-sided geodesic in F.
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5.2.A. Theorem. For every R G [0, ̂ sysF] there exists a ball BV(R) in V
with the center υ on γ C V such that

AreaBυ(R)>3R2.

Proof. It suffices to show that the average length of the boundary of the

disk B+(R) over v G γ is at least 6R:

(length £+ (R)dy^6R.

We show this by applying the following lemma to a lift of γ to a straight (!)

infinite geodesic γ in the universal covering of V.

5.2.A'. Lemma. Let W be a complete simply connected surface, and let w, ,

/ = 1,0,1, , be a double infinite sequence of points in W such that

for all -oo < /, j < oo. Then the average length of the boundary B+ (R) is at
least βR:

N

- 1liminfiV-1 2 lengthdB+ (R) > 6R.
ι = l

Proof. The points w, lie on an infinite straight geodesic γ in W. Each

boundary dB* (R) has two segments of lengths > 2R in the two neighboring

disks dB+_(ίR) and dB++](R). Furthermore there are two segments of 3 5 ^ (R\

say σf and σ/, which lie on the boundary of the union Uf^ B+ (R), on both

sides of γ. As the geodesic γ is straight, the average length of these segments on

either side of γ is at least R, and the lemma follows.

5.2.B. Corollary. Every compact surface with an infinite fundamental group

has

(5.2) Area^ l ( sys ) 2 .

5.2.B'. Remarks. This result for Finsler tori is due to Zaustinsky [78]. In

fact, his inequality for the hyper-Euclidean volume (area) Vol < (2/ v^)mass*

(see §4.1) reduces (5.2) to Loewner's inequality Vol ̂  (\/3"/2)(sys)2 for the

volume (area) of Riemannian metrics on tori (see §§0.3, 5.5). The extremal tori

for which (5.2) becomes an equality are Finsler flat with the regular hexagon

for the unit ball in the universal covering (see [78]).

The proof of Theorem 5.2.A shows that surfaces of genus > 1 have Area >

(I + ε)(sys)2, for ε > 0.01, while every Finsler metric on R P 2 satisfies Area >

{\ + ε')(sys)2. In fact, Zaustinsky's inequality and Pu's theorem (see §§0.3, 5.5)

show ε' > (}/3/π) - {.
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5.3. Isosystolic inequalities for surfaces of large genus -> oo. Let γ,, ,yq,

for q - bx(V) — 2 — χ(F), be a short basis (see §5.1) in a closed surface F.

Let /,, i — 1, -,q, denote the lengths of the geodesies γ,. Observe that /,

equals the homological systole sys'(F). Let the union Γ = U. γ, be covered by

N balls BJ9 j — 1, -,N, in V of radius R < ^sys'F. Then every curve γ, is

homologous to a path of geodesic segments between the centers of these balls

Bj. Therefore bx(V) < M — N + b'o, where M denotes the number of intersec-

tions between the pairs of the balls BJ9 and b'o the number of connected

components of the union U i .

5.3.A. Proposition. The first Betti number bx(V) satisfies

(5.3) bx{V)^{{

for N<32 Area V/(sysf F) 2 , so that

2Area V/ (sysr V)2 >

Proof. Take a maximal system of disjoint balls of a fixed radius f < ̂ sysr V

with the centers in Γ. The area of each ball is at least {R2 (see §5.1.B') and so

the total number N of them is at most 2 Area V/R2. The concentric balls of

radius R cover the set Γ so that

bx(V) ^ ^N(N - 1) - N + 1 = ±(N - \)(N - 2)

Remark. One may take only those balls which lie in the complement of

some (contractible!) ball Bo of radius fsysF. There is such a ball Bo of

area = Ao > U(sys V)2, (see Theorem 5.2.A) and so one sharpens the inequal-

ity (5.3) by substituting

N' = 32(Area V-AQ)/ (sysr V)2 for N.

The following theorem sharpens the inequality (5.3) for bx{V) -> oo.

5.3.B. Theorem. The first Betti number satisfies

(5.4) bx{V)^?^ϊ*A\

where log = log5 and

Λr = 40AreaF/(sys'F) 2.

Therefore.for any given θ > 0,

Area F/(sysr F ) 2 ̂  cons t^Z^F)] 1 - * ,

for some positive constant const θ which depends only on θ.

Proof. A ball B = BV(R\ for v G Γ and R<R0= |sys' F, is said to be

a-admissible for some given a > 1 (which will be specified later on), if

(1) Area 5B < a Area B, where 5B denotes the concentric ball BV(5R),
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and

(2) every larger concentric ball B' = Bυ(R')9 for R < R' < Ro, has a Area

B' < Area 5B'.

Let us estimate from below the area of an admissible ball B = BV(R). Take

the integer r > 0, for which

5 - Γ Λ 0 < Λ < 5 ~r+ιR0,

and observe that

Λ = Area V > ar Area B ^ 2αΓΛ2.

Hence

A >2ar5~2rRl,

r < rQ(a) = (log A - 21og Λ o ) / (log α - 2),

Area B > ^ ( α ) = 2(5-2r

Now we construct a maximal system of disjoint admissible balls B}9- —,BN

by taking for each Bj9j = 1, ,N, an admissible ball of the greatest radius Rj9

which does not intersect the balls B-, foτj' <j.

Observe that the concentric balls 2Bj cover the subset Γ C V, and let us

estimate the number M of double intersection between the balls 22? . If a ball

2Bj meets some ball 2BJk, ίorjk >j and k— 1, —,mj9 then the concentric ball

5Bj contains the balls BJk for k — 1, , rrij. As the ball Bj is admissible,

Area 5,-^α" 1 2 Area 5 Λ ,

we have

v4 = AreaF^ 2 A r e a Bj > a~l Σ MjA(a) > a~]MA(a),
j j= i

Let us take a such that

log a = 2 + /log Λ — 21ogi£0 , for Ro = ^sys' F.

Then a straightforward calculation shows that

which implies the inequality (5.4).

5.3.B'. Remark. The above covering argument also yields the following

combinatorial isosystolic inequality for finite graphs.
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Let a connected graph Γ have p vertices and q^ p edges. Let s — sys Γ be the

length of the shortest (nontrivial) cycle in Γ. Then

for A = 40q/s.
5.3.C. Upper bounds for the lengths /, = length γ/9 for 1' > 1. Proposition

5.1.B" shows that

/,. < 2 Area V/lx = 2 Area F/sys' F,

for / = 1, ,q — bλ(V). In fact, most geodesies γz are much shorter than that.

5.3.C. Proposition. The number qι of the geodesic γ/5 which have

/, = lengthy, >/,

satisfies for every I > 4/j

for some number Nt < 64 Area V/(l}l).

Proof. Let Γ7 be the union of the geodesies γz for which /, > /. Each ball

Bυ(R), for t)GΓ/ and /,/2 < Λ < //2, has

/2 / ^ \

Area ^ ( Λ ) > -̂ - + 2/J Λ - -^ I

Therefore (compare Proposition 5.3.A) the subset Γ7 C V can be covered by

N/ < 64 Area V/(lλl) balls 2?y of radius 1/4. Then every geodesic γ, C Γ7 is

homologous to some combination of geodesies of length < / and a closed path

of geodesic segments between the centers of the balls Bj.

5.3.C". Remark. One may sharpen Proposition 5.3.C by using admissible

balls Bj (compare Theorem 5.3.B).

Now let us estimate the total length of the geodesies γ;.

5.3.D. Proposition. The sum of the lengths ofyi satisfies

L= Σ // <2735(AreaF)3//i5.
1 = 1

Proof. Let W= VX VX V and let disu>, w') = max,= 1 2,3dist(t>,,, υ'v)

for w = (ϋ,, ϋ 2 , υ 3) and w' = (ϋ,, f̂ , ^3) in W.

Then we consider the triples w = (ϋ,, t>2, υ 3) G Ŵ  = F X F X F, for which

the points υv, v — 1,2,3, lie on some geodesic y/5 / = 1, , g, such that each γ,

is divided by these points into three segments of lengths /, which satisfy for

* = 1,2,3

2/ / r + * / , < / , .
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If two such triples w and wf lie on different geodesies of our short basics, then

dist(w, w') > \lx, since none geodesic /, is decomposable (in HX(V)) into

shorter curves. On the other hand, each geodesic γ, supports some triples wμ,

μ = 1, ,m,, such that dist(wμ, wμ') ^ £/„ for μ φ μ' and mi > 12/,//,. Thus

we get at least M = 12L//, triple wy in PΓ, for which dist(w7, wJ') > Hx for

1 ^jΦj'< M. The products of balls of radius R = j^lx around the points t>/,

p = 1,2,3, are disjoint in Wϊorj Φj\ and so

Vol W = (Area F ) 3 > M ( 2 £ 2 ) 3 > L/f/ (2735).

Finally, we show that many geodesies γ, are almost as short as γ,.

5.3.E. Theorem. For every θ > 0 there exists a constant const^ such that the

first m — 1 geodesies γ,, i — 1, ,m - 1, for some m ^ const'Jfc^F)] 1"*, have

(5.5) (lengthy,)2 < Area V/[bλ{V)]x~θ.

Proof. Let us by induction construct a sequence of auxiliary surfaces Vi9

i = 1, ,m — 1, and a sequence of geodesies γ/ C FJ . Take Vλ — V and

γί = γ,. We obtain ^ + 1 by first cutting Vt along the geodesic γ/, and then

attaching two round hemispheres S\ {l\\ with the equators of length l\ — length

γ/, to the manifold FJ\γ/. If the geodesies γ/ is one-sided, then we attach one

hemisphere S\ (2/ ). We take a homologically systolic geodesic in Vi+, for y'i+λ.

We apply Theorem 5.3.B to the surfaces Vi and estimate by induction the

length of γ/ and thus the areas of Vi+ι. A straightforward calculation shows

that the lengths of the first m — 1 geodesies γ/ do satisfy (5.5), and as /, < Γi9

we obtain the inequality (5.5) for /z = length γf .

5.4. Pairs of short loops in surfaces V of negative Euler characteristic. Take

a systolic loop γ in V at a point v0 E V and let γ ' be another loop at vQ, which

does not normalize the cyclic subgroup Z(γ) generated by the (homotopy class

of) loop γ in the group irx(V, v0), that is, [ γ ' ] [ γ ] [ γ T ^ ^ ( ϊ ) Then obviously

there exist (compare [37, p. 76]) two independent systolic loops yx and γ2 at

some point v E γ ' E V such that γ, is freely homotopic to γ. Here "indepen-

dent" means that the subgroup generated by yλ and γ 2 in πλ(V9 v) is a free

group of rank 2.

5.4.A. Theorem. // χ(V) < 0, ίλew /Λere exists a pair of independent systolic

loops yx and y2 at some point v E V such that

length yx = length γ2 = sys(F, ϋ) < /2 Area V.

PAΌ6>/. Start with a systolic geodesic γ and take for y' any minimal geodesic

which intersects γ and does not normalize Z(γ).
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5.4.A'. Corollary. The balls By(R) in the universal covering V of V with the

center ϋ over v satisfy for R> s = sys(F, v)

Indeed, the translates of the ball B^s/2) (which has area ^ \s2\ see §5.1.B/)

under the free (!) subgroup of deck transformations, generated by γ, and γ2,

provide so much area.

Let us sharpen Theorem 5.4.A for surfaces of large genus -> oo.

5.4.B. Theorem. There exist two independent loops of length < ε at some

point v E F, for ε < 6/0 and

l0 =

where θ is an arbitrary positive number, and Cθ is a positive constant which

depends only on θ.

Proof. Let χ ( F ) < 0 and let γ be an arbitrary noncontractible curve in F.

Then there exists a minimal loop γ at some point t; in the set h~\θ) C V (see

§5.1), which is freely homotopic to γ and has a prescribed length / ̂  length γ.

In fact, one can find such a loop γ at some point v on any minimal geodesic γ',

which intersects γ and is independent of γ (in πx(V, v0), v0 E γ Π γ').

Let γ,, / = 1, ,m — 1, be the short loops provided by Theorem 5.3.E, and

let γ, be the corresponding loops of length /0 at some points vt E h~\θ) C V.

Let V be orientable. If there is no loop γ, at any point υi9 which has length

< 3/0 and is independent of yi9 then we conclude that

(a) every loop γ,, i — 1, ,m — 1, is systolic, that is, length γz = sys(F, vt)\

(b) the balls BΌj(l0/2) do not intersect for / = 1, ,m - 1.

Therefore

m - l)/0

2/2

and so

As the right-hand side of the last inequality is positive for bx(V) -> oo, we

arrive at a contradiction, and thus obtain the theorem for orientable surfaces

V. The nonorientable case now follows by passing to the oriented double

covering.

5.5. Conformal isosystolic inequalities. Let Γ be some class (i.e., a family)

of curves γ in a surface V with a Riemannian metric g. One defines

lengtri Γ = inf lengthy γ.
S γGΓ S



FILLING RIEMANNIAN MANIFOLDS 55

Then one considers all those conformal metrics g' = φ2g on F, for which

/
y

for dυ = d(Areag)(t;), and one defines the conformal (or extremal, see [48])
length of Γ as

sup lengthy Γ = sup inf ίφ(υ) dy ,
g' φ \y^Jy I

over the above conformal metrics g' = φ2g, where dy — ί/(lengthg)(t>) on the

curves γ in F.

The conformal length clearly is a conformal invariant of (F, g) and satisfies

the inequality

conf length > length//Area V.

If one enlarges the class Γ, then the conformal length (as well as the ordinary

length) only may diminish. For example, the conformal length of the homology

class of a closed curve γ C F even may be strictly less than the conformal

length of the homotopy class of γ.

The following method is commonly used to obtain an upper bound for the

conformal length of Γ (see [47]).

Let dμ be some measure on Γ of the total mass M < oo. Consider the

"product measure" dμdy on the union f = U Γ γ , and suppose that the

push forward of this measure to V under the map /: Γ -> F, which is " the

union" of the inclusions γ E F, γ E Γ, has a density function of class L2,

called μ^ — μ*(v), relative to the Riemannian measure (area) dυ in F = (F, g),

that is, IJ^dμ dy) — μ^ dυ. Now for any conformal metric g' = φ2g we have

length^Γ^M"1 fdμfφ(υ)dy = M~ι [μ*(υ)φ(v) dv
g Jr Jy Jv

Hence the conformal length satisfies

(5.6) Conf length Γ ^ M

5.5.A. Examples, (a) Let F b e the Cartesian product of the circle Sx - S\l)

of length / by the interval [0, t0]. Let Γ be the class of closed curves which are

homotopic to the A:th multiple kSι of S] = Sι X 0 C S] X [0, t0]. There is a

natural measure dμ on Γ which is supported on the circles kSι X /, t E [0, / 0 ] ,
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that is, dμ = dt. The function μ* for this measure is constant. Namely

μ, = Mkl0/Vo\ V = tokl/lto = k,

and so

conf length Γ < t^^k2 AreaF = kjl/to .

As

conf length Γ > length Γ//AreaF = k{ϊ/ΓQ ,

we get

conf length Γ = A:///^.

(b) Let the surface V be compact and let G be a compact transitive group of
isometries on V. If the class Γ is G-invariant, then

conf length Γ = length Γ/\/Area V.

Proof. Take the normalized Haar measure dμ on the orbit Gγ C Γ of some
curve γ E γ. Then

μ* Ξ const = length γ/Area V,

and so

conf length Γ < length Γ < length γ//Area V,

for all γ G Γ. Hence

conf length Γ = length Γ//Area V.

(c) Theorems of Loewner and Pu. Let g be a Riemannian metric on the torus
T. Then g is conformal to a flat metric g0 on T, which admits a connected
transitive group of isometries. Therefore the homotopy class Γ of any closed
curve γ in T satisfies

lengthg Γ//Area(7Vg) < conf lengthg Γ = conf lengthy Γ

- lengthy Γ//Area(Γ,g0).

Hence the inequality (sys)2/Area < 2/ yfϊ for g follows from this inequality
forg0 (see §0.3).

In the same way one derives Pu's inequality

sys2/Aτea < π/2,

for metrics on RP 2 , as they are conformal to an invariant metric of constant
curvature.
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(d) Let V be a complete locally homogeneous surface of finite area. The
principal example is a surface of constant negative curvature.

Let the curves γ C V of a class Γ lift to the universal covering V of F, such
that the lifted class f of the curves γ in V is invariant under the isometries of
V. Then we conclude as before that

conf length Γ = length Γ//Area V.

For example, the class Γ = Γ(/) of the geodesic segments in Fof length / has

conf length Γ = ///Area V.

Corollary. Let V be a complete surface of constant curvature and finite area.
Let f be a conformal homeomorphism of V onto an arbitrary surface V, and let f:
V -> V' be the induced map between the universal covreings. Then for every / > 0
there exists a pair of points vx andv2 in V such that dist(t>l5 v2) — I and

dist(/(t>,), f(v2)) < //Area F'//Area F .

This simple fact was put by Katok [49] into the framework of the ergodic
theory. Namely, let γ be an infinite geodesic in F, whose points v E γ are
parametrized by the length parameter t.

If the map f is uniformly continuous (for example, if V is compact), then for
almost all geodesies γ,

limsupr1dist[/(ϋ(O)),/(t;(O)] < /(Area F')/Area F .

Proof. Let d(v) — dist(u, γ) and let γ(α) be the levels d~\a), a > 0, which
lie on one side of γ. Take the segments of these curves between two normals to
γ at the points t>(0) and v(t), and let t(t, ε) denote the family of those
segments for which 0 < a < ε. This class f = f (t, ε) carries a natural measure
dμ — da, which projects to a measure on the class Γ in F under f. The erogidic
properties of the geodesic flow on F imply that almost every geodesic γ is
equidistributed in V, and hence the function μ^/tε on F converges, as t -* oo
and ε -• 0, to a constant = (Area F)" 1 . Therefore

lim supr 1 conf length Γ(/, ε) < (Area F ) " 1 / 2 ,

and Katok's theorem follows.
5.5.B. Rigidity theorems of Katok and Michel. Let F be a closed Rieman-

nian manifold. Let Λ̂  denote the number of the free homotopy classes of
curves in V of length < / and let

horn ent F = lim inf Γ] log N{.
/-oo
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Furthermore let BVQ(R) be the concentric balls in the universal covering V
around a fixed point v0 €Ξ V. Put

vol ent F = lim [ i ^ l o g YOIVQB(R)].

Recall (see [24], [56]) that both entropies are equal, horn ent = vol ent, if the
manifold V has negative sectional curvature. Furthermore, if V has constant
sectional curvature -κ2, then obviously

vol ent — (n — l)/c, for n — dim V.

Main conjecture. Let Vo be an ^-dimensional manifold of constant negative
curvature, and let/: V -» Vo be a continuous map of degree d > 0. Then

, x horn ent V I Vol Vo \ι/n

( ' horn ent Vo ^ \ VolF / '

as well as

( 5 . 8 ) * d « t K .

Furthermore, the equality in either of the cases (5.7) and (5.8) would imply that
the manifold V also has constant negative curvature and that the map / is
homotopic to a d-sheeted covering.

Remark. It is more natural to ask for a stronger version of the inequality
(5.8). Namely, the volume entropy of V may be defined relative to the map f,
that is, with the balls BV(R) in the covering which is induced by f from the
universal covering Vo of V, rather than with our balls in the (larger) universal
covering of V. The corresponding improvement of the inequality (5.7) is also
conjectured to be true.

5.5.B'. Theorem (see [49]). The main conjecture is true for dim V = 2.
Remarks, (a) Katok states and proves his theorem (see [49]) for the map /

which is a homeomorphism. Nevertheless, as n = 2, this implies the conjecture
in the form stated above. However, Katok's argument (which is indicated in
Examples 5.5.A) does not seem to imply the stronger version of the conjecture,
which is described in the previous remark.

(b) A nonsharp version of (5.8),

vol ent V ^ I ,VolFo\
1/rt

const „vol ent Vo

for some universal constant,

0 < const,, < 1,

is proven in [32].
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(c) If V is a manifold of negative curvature, then the homotopy entropy horn

ent is expressible in terms of the numbers N[ of closed geodesic in V of length

< / as / -» oo. Therefore (see [21]), this entropy is a spectral invariant of V; it is

determined by the eigenvalues of the Laplace operator on V. As the volume of

V is also a spectral invariant, we conclude the following corollary of the rigidity

part of Katok's theorem, which characterizes metric of constant curvature as

the extremal metrics for the functional (horn ent) /Area.

Let (F, g 0) be a closed surface with a metric g0 of constant negative curvature.

If a metric g of negative curvature on V is isospectral to g0, then g also has

constant curvature. (Compare [41]).

(d) Katok's theorem also implies the following minimality property of the

hyperbolic plane H2 C U°(H2)

Let W C H2 be a compact connected domain with smooth boundary

V = dW. We denote by dist | V the restriction of the hyperbolic distance to W,

and then take another surface with a Riemannian metric (W\ g'), which spans

V=dW such that dist' | V> dist | V (compare §2.2), where dist' = distg, is

defined (like dist in W) as the length of the shortest curve in W between two

points.

Proposition. // W is homeomorphic to W, then Area W > Area W, and the

equality Area W — Area W implies that W is isometric to to W.

Proof. Following Michel (see [59]) we take a compact surface X of constant

curvature such that the universal covering map p: H2 — X -> X is injective on

W C H2. Then we cut from X the image p{W) C X9 and glue in the surface

W. The resulting closed surface X' is homeomorphic to X. As dist' | V ^ dist | V

for V = dW = dW = d(p(W)% we have

vol ent Xf < vol ent X,

and Katok's theorem applies.

(d') It seems unlikely that the homeomorphism between W and W is an

essential condition.

(e) The above argument, together with Pu's theorem in place of Katok's

theorem, yields the following information on the filling volume (area) of the

circle Sι of length 2.

Proposition. Let Vbe a disk with a Riemannian metric whose boundary {with

the induced distance function) is isometric to Sι. Then

Area V>2π,

where the equality implies that V is isometric to the round hemisphere.

Proof. Identify the opposite points on the boundary dV— S\ and apply

Pu's theorem to the resulting projective plane.
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(e') If we could prove the above proposition for surfaces V of genus > 0, we

would get the equality

Fill Vol S 1 = 2ττ.

Now we turn to the following boundary rigidity problem which is studied by

Michel in [59].

Up to what extent a Riemannian metric on a manifold W with boundary is

determined by the restriction of the distance function {on W) to the boundary

V= dWΊ

Michel points out that for many manifolds W, the total volume Vol W is

determined by the restriction dist | dW. Namely, suppose that for every point

v E V — dW and every tangent vector τ E Tυ(V) such that | | τ | | < 1, there

exists a unique point t/ = t/(τ) in V with the following two properties:

(1) grad^distίt;, v') — T for dist = dist | V,

(2) there is no point v" in V different from υ and v' such that

dist(υ, v") + dist(t/, υ") = dist(ϋ, v').

In terms of the ambient manifold W D V = dW these conditions can be

loosely expressed by saying that every two points υ and v' in V can be joined

by at most one geodesic segment inside W.

Now Santalo's formula says (see [68])

VolW = (Vol Sn)~l [dvf dist(t>,f>'(τ))</τ,
JV JBυ{\)

where Sn is the unit sphere of dimension n = dim W— 1, υ' = v'(τ) is the

point provided by the above conditions (1) and (2), and the interior integral is

taken over the unit ball Bυ(\) C Tυ(V).

Theorem (Michel [59]). Let two compact connected (n + lydimensional

Riemannian manifold (W, g) and(W\ g') span the same manifold V,

y=dW= dW and distg,| V = distj V.

Then the manifolds Wand W are isometric in the following three cases'.

(i) n + 1 = 2, and the manifold W admits an injectiυe Riemannian immer-

sion into the hyperbolic plane H2.

(ii) The manifold W admits an injectiυe Riemannian immersion into a convex

subset of the sphere Sn+ι of curvature 4-1.

(iii) The manifold Wadmits a {possibly non-injective) Riemannian immersion

fintoRn+ι.

Proof. In all three cases we have Vol W — Vol W. The equality distg, | V —

dist g I V implies the homeomorphism of the tangent bundles of W and W, and

thus we obtain (i) by the above remark (d).
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The same argument applies to case (ii), but using Berger's isoembolic

inequality (see §0.3) instead of Katok's theorem. For n = 2 one could also use

Pu's theorem (compare (e) above).

Finally, under the assumptions of (iii) we have an isometric immersion

W -> R"+ 1 which extends the immersion f\ F(see §2.1). Then it is not hard to

see that W is isometric to W.

Warning. Without the distance condition distg, | V = dist | V, the ex-

istence of a Riemannian immersion/': W -» Rn+ι such that

does not imply the isometry (or even a mere homeomorphism) between W and

W (see [26]).

Remark. Further rigidity results as well as a more detailed proof of the

above theorem (under slightly different assumptions) can be found in [59].

5.5.C. Let γ be a simple closed two-sided curve in a surface F, and let for

some ε > 0, every noncontractible simple closed curve in the ε-neighborhood

Uε(y) C Vbe homotopic to γ.

Lemma. The conformal length of the homotopy class [γ] satisfies

L[y] — conf length [γ] < ^ε"YArea UE(y) < ^ ε " 1 / A r e a F .

Proof. Use the measure dμ = da on the family of equidistant curves

{dist(ϋ, γ) = a} for 0 < a < ε.

Examples, (a) If γ is a homologically systolic closed geodesic, then the

ε-neighborhoods Uε(y) satisfy the above condition for 0 < ε < \ length γ.

(b) Furthermore, let Fhave constant curvature - 1 . Then

Area Uε - (eε + e~ε) length γ,

and so

(5.9) L [ y ] < 6 length γ, for length γ > 1.

On the other hand, if length γ < 1, then the ε-neighborhood for ε = \ has the

required property by the Kazdan-Margulis-Zassenhaus theorem (see [65], [66]),

and so the inequality (5.9) holds for an arbitrary homologically systolic closed

geodesic in a complete surface of curvature - 1 .

We obtain as a corollary the following improvement of the Blatter theorem

(see §0.3) for surfaces of large genus -> oo.

5.5.C. Theorem. Let V be a closed surface of genus g. Then there exists a

closed curve y in F, which is not homologous to zero and whose free homotopy

class has

conf length [γ] < const log g,

for some constant 0 < const < 1000.
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Proof. The homologically systolic geodesic γ in a surface of constant

curvature -1 has length < log Area, since the ball BV(R) for every t ) E γ has

area « exp R, for large R < ^length γ.

As any metric on V is conformal to a metric of constant curvature, the above

example applies.

5.6. Isosystolic surfaces. A surface F i s said to be isosystolic if sys(F, υ) —

sys(F)foralli) E V.

5.6.A. Example. Let us fix the topological type of V, and consider the

following functional sys Ar on the Riemannian metrics g on V:

sys Ar(g) = Area(F, g)/sys(F, gf.

Then the extremal metrics g, for which the functional sys Ar(g) assume the

minimum, are clearly isosystolic.

The extremal metrics o n R ? 2 have constant curvature by Pu's theorem. Flat

hexagonal tori are also extremal by Loewner's theorem.

One could modify the definition of the extremal metric by considering

Finsler metrics in addition to Riemannian metrics on V. This may lead to

different extremal metrics as Example 5.2.B" shows. However, we discuss

below only Riemannian metrics on V.

5.6.B. Singular metrics. It is unlikely that there are nonsingular isosystolic

(in particular extremal) metrics on surfaces V for χ(V) < 0. However, there

are interesting "singular Riemannian metrics" which are closely related to the

classical extremal metrics of Grόtzsch and Teichmϋller (see [47]). These metrics

have only finitely many singular points, and are flat outside these points. The

metric near each singularity is isometric to a cone.

5.6.B'. Examples. Let F b e the sphere S2 with three holes (a pair of pants).

This V can be decomposed into the union of three cylinders Sx X [0,1]; see

Fig. 1 below.

F I G . 1
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Any two cylinders meet at an edge. These edges form a triplet, which
consists of two vertices a and b joined by three edges.

Now let us equip the cylinders with the product metric of S\2R) X [0, /]
where 2R - the length of the circle, and let the three circles Sι(2R) X 0 meet
across edges of length R. Then we get a singular metric on V with two singular
points a and b. The boundary of this V consists of the three circles S\2R) =
S\2R) X /. Take the double of V. The resulting closed manifold V has genus
2. The metric in V is flat outside the four vertices. If R < 2/, then this metric
is isosystolic with sys V — 2R.

Now let Γ be an arbitrary graph with q edges el9 ,eq. We assign length 2/,
to each edge ei9 thus making et — [0,2/J. Suppose that at every vertex of Γ
there are exactly three edges of Γ. Then Γ hasp — \q vertices Vj,j= 1, •,/?.
Next we take q cylinders Sι(2R) X [0,2/J, and identify triples of the boundary
circles, according to the above (triplet) pattern, as these circles meet at some
vertex Vj of Γ. Thus we get a surface V of the Euler characteristic χ(V) =
-p with 2p singular points, two points over each vertex of Γ. There is a natural
map P\ V -> Γ, whose restriction to every cylinder Sι(2R) X [0,2/J coincides
with the projection onto the edge [0,2/J. This map P is obviously distance-
decreasing. Therefore if 2R < sys Γ < Σ, 2/, , then the surface Fis isosystolic.

It is unclear if every compact orientable surface admits an extremal metric
which is almost everywhere flat as in this example. However, we shall prove
below the existence of some generalized extremal metric on every compact
surface V.

5.6.C. Generalized Riemannian metrics. A metric g on V is called a
generalized Riemannian metric if the following two conditions are satisfied:

(1) g is a length metric, that is, the distance between any two points υλ and t>2

in V equals the length of the shortest path between vι and v2.
(2) There exists a surface of constant curvature, (Vo, g0), and a homotopy

equivalence/: Vo -> V, which is "conformal" in the following sense. Denote by
dist* the pull-back under / of the distance function distg on V. Then the
function dist* on Vo is the limit of a uniformly convergent sequence of metrics,
dist, on Vo, where each metric dist, is given by a Riemannian metric on VQ,
which is conformal to g0, that is, dist, = distg for g, = ψfg0. We further
require the sequence φ, to converge in the ZAnorm to an ίΛfunction φ on V.
We define Area(F, g) = Area(F, g, /, φ) by

Area(F, g) = ί φ2 = lim Area(F0, g,).

5.6.C. Theorem. An arbitrary closed surface V admits a generalized extremal
metric g, at which the functional sys Ar(g) {see Example 5.6. A) assumes the
minimum, denoted Min Ar(F).
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Proof. First let g, be an arbitrary minimizing sequence of Riemannian

metrics on F, that is, sys Ar(gy) -» Min Ar(F) for / -> oo. Let us modify this

sequence g, by making it converge to a generalized metric, but let us keep the

notation g, unchanged.

We normalize the metrics g, (as well as the metrics we shall have later) by the

condition systole = 1. For such metrics Area g = sys Ar g, assign to each

metric g, its conformal type, which is represented by a (normalized) metric g?

of constant curvature. The results of §5.1 show the areas of g? to be uniformly

bounded for i -> oo. It follows (see [19]) that the sequence of metrics gf is

precompact (in the modular space of conformal structures), and so we may

assume (by passing to a subsequence if necessary) that the surfaces (F, g?)

converge to a surface (F o , g 0) of constant curvature. This means that there is a

sequence of metrics g,° on Fo, which C°°-converges to g0 such that each surface

(F o , g,°) is isometric to (F, g,0) for all i = 1, .

Now we replace the sequence of metrics g,, which are isometric to φ2g,°, by

the sequence φ2g0, thus making all metrics of the minimizing sequence confor-

mally equivalent to a fixed metric g0 on Fo.

Next we apply to the sequence g, = φ2g0 the following.

5.6.C". Regularization lemma. Let (F, g) be an arbitrary closed surface with

πx( V) Φ 0. Then for an arbitrary ε > 0 there exists a conformal metric g = ψ2g

on V such that the following hold:

(a) The metrics g and g have a common set of minimal geodesies, and these

geodesies have length- = lengthg. In particular, sys(F, g) = sys(F, g).

(b) The function ψ satisfies

0 < ψ (v) < 1, for all v G F.

/fl particular, Area(F, g) < Area(F, g).

(c) Γλe metric g is e-regular in the sense that its height function satisfies

hg,(v) < ε for all v G V.

Proof. Take a point t? G F where h{v) - hg{v) > ε, and take a function ψ,

0 < ψ < 1, which is very small positive on the ball BΌ(ε/3) and is identically

one outside the ball Bv(ε/2). The metric g' — ψ2g clearly satisfies (a) and (b).

If g' is not ε-regular, we apply the above operation to g', and keep on doing

this until we arrive (necessarily in finitely many steps) at an ε-regular metric.

Observe that the ε-regularity property (c) implies the following:

(c') Every g-ball Bv(R)Jor ε < R < sys(F, g), has

Area-BV(R)>±R2.

(c") Every closed simple curve in (F, g) of diameter d < ^sys(F, g) bounds a

disk in (F, g) of diameter ^ 3(d + ε).
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Proof, (c') follows from Proposition 5.1.B whose proof yields (c") as well.
Now we may assume the metrics g, = φjg0 on Vo to be εz-regular for εf -> 0

as / -> oo. The proprty (c') makes such a sequence of metric spaces (Fo, g,)
precompact in the abstract Hausdorff topology (see Appendix 3), and so we
may assume (passing to a subsequence if necessary) this sequence to converge
to a compact metric space V^ — (V^, g^).

Next we apply the theory of k-regular convergence (see [76]) and use (c")
above to conclude that the subspace ζ C F is, in fact, homeomorphic to F.
The limit metric in this V « V^ is indeed a length metric (see Appendix 3).
Furthermore, the sequence of functions φf = gj/g0 does ZΛconverge to some
φ2. This is an obvious consequence of the convexity of the ZΛnorm (see [48]).
Let us show that the sequence of maps/ is uniformly continuous relative to the
fixed metric g0 on Fo. Take two points t>, and υ2 in some g0 = -all B(p) C B(R)
for a fixed positive R < ^sys(F, g0) and a small p < R. If p/R -> 0, then the
conformal length of the family Γ of the concentric circles S(r) in the annulus
B(R)\B(p) also goes to zero. Indeed, with the measure dμ = length S(r)dr
we get (compare §5.5) conf length Γ < const | log p \~K

The property (c") now implies that

distif^) Jd(v2)) = distft(t?!, v2) < const|log dis t j i^, υ 2 ) | ,

for all pairs of points vx and v2 in Vo and for some constant const > 0, which
depends only on the topology of Vo.

The uniform continuity of the map / allows us to find a subsequence which
converges to a map /: Vo -> V « V^ C X, which clearly is the required homo-
topy equivalence.

Remark. It is not hard to see that the limit metric gM on F » V^ is
uniquely determined by the choice of the metric g0. However, it is unclear
whether this g0 is unique, and whether the manifold (Fo, g0) has a nontrivial
group of isometries.

6. Minimal geometric cycles

Take an arbitrary discrete group Π, and let h be an ^-dimensional homology
def

class of Π: h G Hn(U) = Hn(K(U, 1)), where the homology is understood with

coefficients Z or Z 2 . A geometric cycle, which represents A, by definition is an

Ai-dimensional pseudomanifold V with a piecewise smooth Riemannian metric

and a map /: V -> #(11; 1) such that / J F ] — h.lί h is an integral class, then

[V] is an oriented fundamental class of V. If A is a Z2-class, then Fneed not be

orientable. In either case we do not assume F to be connected.
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We denote by sys(F, v) = sys(F, v; f) the length of the shortest loop γ in V

with the base point v E F, whose image under /is not contractible. We put

sys(F) = sys(F; / ) = inf sys(t;, υ),
v<ΞV

sys Vol(F) = Vol V/ (sys V)\

sys Vol h = inf sys Vol F,
v

over all geometric cycles F which represent h.

We denote by K -* K = #(11; 1), the universal covering of our space #(Π; 1),

and then we have the covering Π-equivariant map /: V -> K. The systole of F

can be expressed in terms of the displacements of the deck isometries π\ V -* F,

77 E Π, as follows:

s y s ( K , / ) = inf dist(tί,ir(t5)),

over all π Φ id in Π and all v E F.

Our estimate 1.3 applies to all geometric cycles Fand shows that

sys Vol h > const n > 0.

Our aim is to sharpen this estimate under some additional assumptions on the

class h.

6.1. A geometric model for the AΓ(Z2; l)-space. We want to construct a

universal metric on the space K = K(Z2; 1) for which the volume of every

homology class h E Hn(K; Z 2 ) » Z 2 equals the systolic volume of Λ. Recall

that Vol h by definition is the lower bound of the volumes of cycles which

represent/?.

Take the L00-space of bounded Borel functions on an infinite compact

connected metric space, and let K be the sphere of radius \ in this L°:

We equip K with the induced length-metric dist(x1? x2) — inf (the lengths of

curves in K between xx and JC2), and then divide K by the involution x -> vox.

6.I.A. Proposition. The quotient space K~ K/{-\, +1} with the induced

metric is the required universal space.

Proof. The space K is obviously aspherical, and so AT is a K(Z2; l)-space. It

is clear that sys,(Jf) > 1, and so sys Vol h < Vol h. To prove the inequality

Vol h we must construct, for every geometric cycle (F, / ) with sys(F, f)> 1, a

distance nonincreasing Z2-equivariant map /: V -> K for the canonical double

covering V of F. Let

δ~(w) = min[dist(ϋ, w), l ] ,
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for all v and w in V. Then we take for I(ϋ) the following function φ~: V -> R:

for the deck involution π on V. The function φ~ G L°° — L°°(V) is contained in

K C L°° for every ύ G F, and the map /: V ^> K clearly is locally isometric.

Remark. The above construction shows that sys,(AΓ) = 1, as the map /:

S 1 -» L°°(Sι) sends the circle S 1 of length 2 isometrically onto a centrally

symmetric curve (of length 2) in the sphere S°°($) = ^ C L°° = L 0 0 ^ 1 ) .

Observe that this map / (and the image curve as well) is nowhere differentia-

ble.

In fact, if a closed curve γ in an arbitrary Banach space L is differentiable at

some point JC0 G γ, then

2 dist(x, x0) < length γ,

for all points x G γ. Indeed, take the linear (or rather affine) projection / of

norm one of L onto the line through the points x and x0. If dist(;c, x0) = \

length γ, then length /(γ) = length γ. If γ were differentiable at JC0, then the

derivative of the projection /1 γ: γ -> R would be zero at JC0, which would make

length /(γ) < length γ. q.e.d.

It follows that every centrally symmetric curve γ in the \-sphere of a finite

dimensional Banach space L has length γ > 2 + εM, for εn > 0 and n — dim L.

(Compare [69].)

6.2. Cubical complexes. The standard 8-cube in a (finite or infinite dimen-

sional) space L00 = L°°(X) by definition is the set of function {ψ(x) \ 0 < ψ(x)

< δ, for all x G X}. A cubical δ-complex is then defined as a metric space K

which is partitoned into (isometric images of) δ-cubes such that any two cubes

meet at a face.

6.2.A. Example. The hyperplanes {φ(x) - mδ) in L°°(X) for x G X and

m = , -1,0, + 1, , partition of the space L°°( X) into δ-cubes.

We agree, whatever the original metric in K was, to use the associated length

metric in AT, which is the greatest metric in K, compatible with the L00 -metrics

in the cubes.

Let K be an arbitrary δ-complex, and ε a number in the interval 0 < ε < ^δ.

Let us construct a map Rε: K -> AT with the following two properties:

(1) Rε is a piecewise linear Lipschitz map with the Lispchitz constant

(^S - ε)"1.

(2) The map Rε retracts the ε-neighborhood Uε(K0) of an arbitrary subcom-

plex Ko C K onto Ko.

The required map obviously exists (and unique) for K equal to the interval

[0, δ]. Using this map which is called rε: [0, δ] -> [0, δ], we have the map Rε of
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the standard cube, φ ) ^ r f ° φ ( 4 and so we get the required map of K by
applying this Rε to every δ-cube of K.

6.2.B. An isoperimetric inequality for δ-complexes. For a given integer

n = 1, , there exist two positive constants μn and C'n such that every singular

n-dimensional cycle z of volume < μnδ
n in an arbitrary 8-complex K bounds a

chain c in K of Vol(c) < Q(Vol z ) M + ι / w , such that c is contained in the

e'-neighborhood of {the support of) z for ε' = Cπ'(Vol z)x/n.

Proof. First let AT be a subcomplex of the above δ-subdivision of the space

L°°. (In fact, only this case is needed for our present purposes.) Then we can

span the cycle z C ^ C L ° ° b y a chain c in L00, which has

Vol c = Fill Vol z < Q(Vol z ) π + 1 / l \

and is ε-close to K for ε < constn(Vol z)ι/n (see §4.2, 4.3). Thus we apply the

map Rε: L°° -» L00, and take the sum

Re(c) + Cylinder(# ε |z),

for the required chain c.

Now for an arbitrary δ-complex K we observe the following obvious "cone

inequality" (compare §4.1), for all A -dimensional cycles z in K of diameter <

8/3:

Fill Vol(z C K) < C(k)(Vo\ z)(Diam z).

With such an inequality the argument of §3.4 yields the isoperimetric inequal-

ity. (See Appendix 2 for a more general isoperimetric inequality.)

6.3. ό-Extensions of geometric cycles. Let Π be an arbitrary group, and let

(V, f) for /: V ^ K— AΓ(Π; 1) be an Ai-dimensional geometric cycle. Take a

subset Vo C V and let Jo = / 0 (F 0 , 8): V -» L$ = L°°(F0), for some 8 > 0, be

the map

Io = v -> φo(w) = min[8,dist(ϋ,w)],

for all v E F and w G Fo.

Observe that for V — Vo the map Io is locally isometric. Furthermore, if Vo is

"sufficiently" dense in V, then / 0 is "almost" locally isometric, where "almost"

depends on how dense Vo is in V.

Next we choose a small positive number ε < f, and apply the map Rε of the

previous section to the standard δ-subdivision of the space L™.

We assign to every point x E L™ the unique minimal δ-cube D x C L™ of

the canonical δ-subdivision of Lξ, which contains JC, and to each point v E V

the cube D(ϋ) = Πx ίor x = Rε ° I0(v). We call α 8-extension of V the union

= tfβ(K,K0,e)= U m(t>),
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and denote by / = 7(F, Fo, ε, δ) the composition map J = Rε° Io: V -

Next we turn to the covering map f: V -* K for the universal covering
K -* K(H; 1). We denote by Fo C V the lift of Fo to F, and assume that
sys(F, f)>28. Then we lift the map 70 to the following Π-equivariant map 70:

70: ϋ -> min[δ,dist(t5, w)].

We observe that the map Rε: L™ -> L£ lifts to the corresponding Λe-map of
Lo, called Rε: Lo *~ . The complex K8(V) lifts to a Π-invariant subcomplex
KB(V) ~ ^δCO °f t n e δ-subdivision of L^, and the map / lifts to a map /:
V->K8(V).

Notice that the map /, as well as J, is Lipschitz with the Lipschitz
constant ^ δ/δ — 2ε.

6.3.A. Lemma. Let the subset Fo be εf-dense in V for some nonnegatiυe

ε' < ε/10. Let v and ϋ' for a pair of points in F, and let D and D ' be some

8-cubes in K8(V), which contain the images J(ϋ) and J(ϋ') respectively. If

dist(i5, ϋ') > mδfor some integer m = 0,1, , then also dist(D, D') ^ mδ.
Proof. If dist(ϋ, ΰ') > δ, then the cubes D and D' do not intersect, and so

the distance between them (i.e., the length of the shortest path in K8(V)
between D and Dr) is at least δ.

Now in the general case we take the shortest (or an almost shortest) path
between D and D', and take a point w on this path, for which dist(D, w) — 8.
This point is contained in some cube D" = D"(υ") for some point ϋ" in V
such that J(ϋ") G D".As

dist(D, D') ^ δ + dist(Dr/, DO,

and

dist(t>", &) > dist(i5, ϋr) - dist(t5, v") > dist(t5, ϋ') - δ,

the proof follows by induction on m.
If the numbers ε and ε' are sufficiently small, then we may assume without

loss of generality that the map J: V ^ K8(V) is an embedding on a sub-
pseudomanifold V = J(V) C K8(V). Thus the pair (F', f'=foj~*) i s also a
geometric cycle which is, in the obvious sense, homotopic to (in fact, close to)
(F, / ) . The cycle V clearly has

V o l F ' < ( δ / δ - 2 ε ) n V o l F .

Furthermore, the map /': V -> #(Π, 1) extends to K8(V) D F', since the
covering map /': V' ^> K equivariantly extends to K8(V) D V'. Thus every
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subpseudomanifold (cycle) F" in K8(V), which is homologous to V, realizes
the class h = / J F ] G Hn(K(U\ 1)).

Now the above lemma implies the following.
6.3.B. Corollary. If the systole of V is an integral multiple of δ, sys(F) = mδ,

then sys(F") ^ sysF. Moreover, if y is the shortest curve in F, whose image in
K(H, 1) represents a given free homotopy class of curves, then the corresponding
shortest curve γ" in F" has

length γ" ^ 8 ent(δ"1 length γ),

where "ent" denotes the entire part of the number δ"1 length γ.
6.3.C. Remark. There is a natural cubical model K of any #(11,1) space

such that

sys Vol Λ = VolΛ,

for an arbitrary homology class h G HJJ[). Namely, let the group Π naturally
act on the space I = Π X [ 0 , l ] . Take the space K of those Borel functions φ:
*-> [0,1], for which

ll<p - φ ° H k = i,

for every element π φ id in Π. This space K has a natural structure of a cubical
complex (for δ = 1), and it is not hard to see that K is aspherical, provided the
group Π is countable. Furthermore, the covering V of every geometric cycle
admits a locally isometric equivariant map into this K as long as sysF> 1.
Therefore the space K = K/]\ is our model.

6.4. Regulation of geometric cycles. A geometric cycle V = (F, / ) is said to
be ε-regular, if every ball Bυ(R) in F, for all v G Fand ε < R < sys F, has

(6.1) Vol BV(R) < (1 + ε)Fi\\Yo\ dBv(R).

6.4.A. Theorem. Every homology class h G i/M(Π) for an arbitrary group Π
can be represented by an ε-regular cycle V such that

(6.2) sys Vol F ^ (1 + ε)sys Vol h,

where ε is an arbitrarily small positive number.
Proof. We start with a cycle Vx for which sys VolFj < (1 + ε^sys Vol h

where ε] is a positive number much smaller than ε. It is convenient to
normalize Vx by the condition sys F, = 1, which makes Vol Vx — sys Vol Vv If
inequality (6.1) is violated for some ball BV(R) in F,, then the volume of this
ball must be quite small:
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To exclude these 'bad" balls, we take, with a finite very dense subset

Fo C F 1 ? a δ-extension Kδ(Vλ\ which is a compact polyhedron, since Fo is

finite. Then we take a (minimizing) sequence of sub-pseudomanifolds (cycles)

V( in Kδ(Vλ\ which are homologous to V{ C Kδ(Vx\ such that the volumes

Vol(F;θ converge to the volume of the homology class [V[] E Hn(Kδ{Vλ)). As

the set Fo is very dense in Vv we may assume

Vol V; < (1 + ε/2)sys Vol A, for all i = 1, .

As the polyhedron Kδ{Vx) is compact, we may assume (by taking a subse-

quence if necessary) that the sequence V{ Hausdorff converges to a compact

subset F " in Kδ(Vλ). We may further assume this F " to be minimal: no proper

subset of F " is the limit of any other minimizing sequence. (Compare §4.3.C.)

As the space kδ{Vλ) satisfies the isoperimetric inequality 6.2.B, the balls

Bυ(R) in F " have

where the volume by definition is a weak limit of volumes of the cycles V{.

Compare Theorem 4.3.C", and so the approximating cycles V{ enjoy the same

inequality for all balls of radius > ε = ε(i) -> 0 as / -> oo.

6.4.B. Corollary. The above "regular representatives" V of h have the balls

BV(R) such that

(6.3) Yo\BΌ(R)>(\-e)An_xR"9

for allv G F, ε ̂  R ^ ^sys(F, ϋ), /Â  constant An_λ of Theorem 4.3.C", α«ί/ α«

arbitrarily small ε < 0.

Indeed the proof of Theorem 4.3.C applies.

6.4.B'. Remark. The estimate (6.3) shows that there is a minimizing se-

quence of cycles Vi9

sys^.= 1, VolF;.^ sysVolA,

which converges in the abstract Hausdorff topology to a generalized minimal

cycle F* (compare §5.6). This F* can be isometrically imbedded into the

cubical model K (see Remark 6.3.C) of our J^(Π; 1) space. The inequality (6.3)

holds for all balls BV(R) in F* for i e [ 0 , l = sysF*]. This amounts to the

same inequality (6.3) for approximating ε-regular cycles V— F(ε) and for

ε -> 0. To simplify notation, we allow ourselves to treat this F* as if it were a

regular (i.e., ε-regular for ε = 0) geometric cycle.

6.4.C. Estimates for Betti numbers. Cover a geometric cycle V = (F, / ) by

balls. Let P denote the nerve of this cover, and let /?: V ̂  P be the map
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associated to a partition of unity attached to this cover. If the balls have radii

< ^sys F, then there is a map g: P -> A^Π, 1) such that the following diagram

commute:

g

(Compare §1.2 and Theorem 5.3.B.) In particular, the homology class of F,

that is, pJiV] E Hn(P\ is sent by the map g to the class h = / J F ] in the

group Hn(K(H;l)).

Now let F* be a regular cycle. By taking a maximal system of α-admissible

balls in F* we obtain, as in the proof of Theorem 5.3.B, an "efficient" cover of

F* by balls of radii < |sys F such that the total number of /c-simplices in the

nerve P of this cover satisfies

(6.4) Nk = Nk(P)<sGxpC]llogs9 k = 0 , 1 , ,/i,

for s — sys Vol h and some universal positive constant C— C(n).

Summarizing the above discussion gives the following.

6.4.C. Theorem. For an arbitrary homology class h E ^ ( ^ ( Π , 1)), there

exists a polyhedron P satisfying inequalities (6.4) and a map g: P -> K(Π, 1)

sending some class h' E Hn(P) to h.

By this theorem one can relate some algebraic invariants of h to the systolic

volume of h.

Let us introduce the following ranks rankΛ(λ; F), for k = 1, ,« — 1,

where F is an arbitrary coefficient field of h is an integral class, and F = Z 2 if

h is a mod 2 homology class. We evaluate the cohomological cup product:

Hk(K(U;l); F) υ H"~k(K(U;\); F),

on the class h, and we take the rank of the resulting bilinear form for our

rank^ h = rank^Λ; F).

6.4.C". Theorem. The above ranks satisfy

rank^ h ^ (sys Vol A)exp[c/log(sys Vol h) J,

for all k = 0, , w and some universal constant C— C(n).

Proof. The class h is the image of W E Hn(P\ h — g^{h'\ and so rank^ h

< rank* h' < rank Hk(P) < Nk(P).

6.4.C". Corollary. The Betti numbers of an arbitrary closed n-dimensional

aspherical manifold Vsatisfy, for all k = 0, ,«,

fiόgs9 j = VolF7(sys,F)\
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Proof. The Poincare duality implies r a n k J F ] = bk(V).

Remark. In the same way as above one can estimate the minimal number

of the generators of the fundamental group πλ(V).

6.4.D. An estimate for the simplicial norm of *. Let * be an ^-dimensional

homology class with real coefficients: h E Hn(K\ R) for K — K(U, 1). Let

c — Σirioi be singular cycles (with real coefficients η) which represent A, and

let

where c runs over all cycles homologous to h. The basic properties of this

simplicial norm \h\\ are discussed in [74] and [32]. We shall need the following

two facts.

(a) Smoothing inequality (see [32, §2.4]). Let the class h be represented by a

geometric cycle (V, / ) , /: V -> K. Let/: V -> K be the covering map. Suppose

we are given a nonnegative Π-invariant function §>( y, y') of two variables y

and yr in V, which has the following three properties:

(1) The function S has its support in some ε-neighborhood (ε < oo) of the

diagonal Δ C V X V.

(2) § is bounded and almost everywhere differentiable.

(3) S is symmetric, that is, S(>>, y') — %{y\ y).

Put

[§]y = \\Dyq/fβ(y, y') dy\ [S] = sup [S]y.
v yes

Then

| |*|| < const n [S] π VolK.

(b) Thurston's inequality (see [74], [32]). // h is the fundamental class of a

compact manifold V of negative curvature, i.e., h = [V]for curvature (V) < -A;2,

then

| |*|| > const; /c"VolF,

for some universal positive constant const; > 0.

Now let F* be a regular cycle which represents A, and let

c / Λ _ [exp[-λdist(>;, y')] - e x p ( - λ ^ 0 ) , for dist < Ro,

^ ^ ^ ^ J O , for dist >R0,
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where λ is a positive number, and Ro — sys F*/2. Then clearly

[ξ>]y < λ / λ / [ / λ - (exp - λ # 0 ) V o l F * ] ,

for

/ λ = I exp(-λdist(j>, y')) dy'.

Inequality (6.3) implies

h>An_^ — j exp—,

and so if

2 Λ [2" + ι VolF*
λ = T~ l θ g ~Λ Ώ^~

then [ξ>]y < 2λ for all y E F*. Finally we apply (a) above to conclude the

following.

6.4.D'. Theorem. The simplicial norm of h has the following upper bound in

terms of the systolic volume ofh:

\\h\\ < 4"(sys Vol Λ)log(£sys Vol A), for B = 2n+ι/An_v

Applying this theorem to the fundamental class h of a compact manifold Fo

of negative curvature < -1 and using (b) above we obtain the following

corollary, which sharpens Theorem 0.2.

6.4.D". Corollary. Let V be a Riemannian manifold homeomorphic to Vo,

and let s = sys Vol F = Vol F/(sys! V)n. Then

for some universal positive constants Cn and C'n. In particular, closed surfaces V

of genus g > 1 have C2^log Cr

2s ^ 4ττ(g — 1). {Compare §5.3.)

6.5. Systems of short curves in aspherical manifolds. Let V be a closed

oriented aspherical Riemannian manifold of dimension n. We want to locate as

many as possible "independent" closed curves in Fof relatively small length.

Let (V*, / ) , /: F* -* F, be a regular geometric cycle, which represents the

fundamental class h = [V]G Hn(V) such that (see §§6.3, 6.4)

(a) Vol V* < Vol F,

(b)sys(F*,/) = sy S l (F),

(c) Vol Bυ(R) > An_λR
n, for all balls in F* of radius R < sys^F) and for

the constant An_ x of Theorem 4.3.C.

By using a sufficiently small δ (see Corollary 6.3.B), we may further assume

the following additional property of this F*:

(d) The map f: V* ^> V does not increase the lengths of the free homotopy

classes of closed curves in F*.
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Take the shortest curve γf in V*9 whose image curve /(γf) in V is not

contractible, and let yx denote the shortest geodesic in V homo topic to /(γf).

First we take the next shortest curve y% in V* such that the (homotopy class of)

corresponding geodesic γ 2 in V is not contained in the normal subgroup N{yx)

of πx{V) spanned by yx. Then we take the shortest curve γ3* for which γ3 is not

contained in the normal subgroup N(yl9 y2) C π,(F), and so on. This process

necessarily stops in finitely many steps, and finally we have some geodesies γ, ,

/ = 1, ,#, which normally span the fundamental group

In particular the (homology classes of) curves γf span the first homology group

HX{V). By the above property (b) we can apply the arguments of §5.3, and

then we get the following upper bounds for If = length γ* and thus for

/,.= length y,<lf.

6.5.A. Theorem. The lengths /, satisfy

(1) /, = sysj V < 2(Vol V/An_ x)
ι/n, for the constant An_ 1 of Theorem 4.3.C".

(2) /, < /, + 2"Vol F / / f - U n _ l 5 1 = 2, -, 9, (com/we §5.3.C).

(3) 77ie number qι of those geodesies yi9 which have length > /, is bounded by

for every I ̂  4/,. {Compare Proposition 5.3.C.)

(4) ΓΛe ίo/α/ /ewgίΛ 6>/ίΛe geodesies γ, w bounded by

2 /, ̂  (200)"/,'-3"(VolF/^J3

{Compare Proposition 5.3.D.)

Next we generalize Theorem 5.3.E as follows. Let /c be the greatest integer

such that for arbitrary elements al9— 9ak in πx(V) the fundamental class

h — [V] does not vanish under the quotient homomorphism of groups: Q:

πx{V) - Π = vλ(V) - Π = ^ ( F ) / ^ , - ,αΛ).

6.5.A'. Theorem. ΓΛe curves yi9for i = 1, ,fc + 1, Aαt e lengths

Proof. Apply (1) above to the (nonzero!) class (^(/i) G //rt(ϋC(Π; 1)).

Some open questions. Let a geometric cycle (V9 f) represent the funda-

mental class of the w-torus Tn. Then one expects that there are some closed

curves y{9- ,γn in V9 whose image curves /(%) in Γ" generate the group

HX{T\ R) « RΛ, such that the lengths /, of γ, satisfy

n

Π /,< const,, VolF.
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The above arguments allow one to assume the cycle V to be regular, and then

the balls BV(R) in Ffor R ^ ^sys(F, / ) have

Yol BΌ(R)>AH_XR".

This solves the problem for n = 2.

Furthermore let n — 3, let yι be the shortest nontrivial (in H}(T3,R)) curve

in V, and let γ2 be the next shortest curve whose image /(γ 2) is independent of

/(γ,) in ̂ , (Γ 3 , R). As Fis regular,

1}U < const Vol F.

A stronger result would be

/,/f < const VolF.

In fact, one can show this to be true, provided the regular cycle V is homotopy

equivalent to Γ3. This is seen by analyzing the balls BV(R) C V and their

boundaries, for some point υ E γ2 and Zί « / 2/5.

6.6. Systems of short based loops in aspherical manifolds. Let V be the

same closed aspherical manifold as in §6.5, and let us try to find a system of

"short" loops Ύ\9'">yg with a common base point υ0 E V such that the

subgroup generated by these loops in πx(V, v0) is as large as possible. We shall

use a regularisation Vg of V, which is somewhat different from V* of §6.5;

namely, we start with some δ-extension K8(V) = K8(V, Vo), for 8 = ΐsys^K)

and a finite ε'-net Vo in V with a very small ε' > 0. We assume without loss of

generality the map / : V -> # δ ( F ) to be isometric (as the numbers ε and ε' of

Lemma 6.3.A may be chosen as small as we wish), and we take a connected

component Vξ of the (almost) minimal cycle in KS(V), which is homologous to

V C Kδ(V). This V* is a "geometric cycle" (see Remark 6.4.B') which repre-

sents some nonzero integral multiple of the fundamental class of V. Further-

more, the balls in this V$ have

(6.5) No\Bv{R)>A'n_,R",

(see the proof of Theorem 6.4.A). Moreover, if some points v0 E V C Kδ(V)

and υξ E Vg C A^δ(F) are contained in the same δ-cube of the complex

Kδ(V), then the corresponding minimal loops γ in V at υ0 and γ* in Vδ at v0

satisfy

length γ < length γ* -h δ,

(see Corollary 6.3.B).

Thus the problem of finding short loops in V is reduced to the correspond-

ing problem in the cycle Vξ, where we are aided by inequality (6.5).
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As the cycle Vg represents a nonzero multiple of the class [V], the image of

the fundamental group πλ(V8) under the map Vg -* Fhas finite index in π}(V)

and so we obtain the following.

6.6.A. Theorem. There exist some loops γ,, -,yq in V with a common base

point v0 E V, which generate a subgroup of finite index in the group πx(V\ such

that the lengths /, ofyt satisfy

(6.6) /, = sys,(F, v0) < 2{Vo\V/A'n_λ)
x/n,

{compare (1) of Theorem 6.5.A), and

(6.7) /,.<3/, +2 f l + 1 VolK// 1

l i "U;_ 1 , i = 29 -9q,

(Compare (2) of Theorem 6.5.A).

Our next goal is to find as many as possible "independent" loops γ, of

lengths /, < constΛ(Vol V)λ/n. Let us agree to say that some loops γ1?- ,γ in

V with a common base point v0 E V are dependent if the subgroup which they

generate in πλ(V, v0) is almost nilpotent, that is, it contains a nilpotent

subgroup of finite index. One might use a different definition with another

class of "small" groups, such as almost abelian or almost solvable groups. Our

choice is motivated by the following version of Margulis' lemma on manifolds

V whose Ricci curvature is bounded below (compare [18]).

Let V be a complete Riemannian manifold, and let Ί\,'—,yq be some

isometries of V, which generate a discrete subgroup Γ in the isometry group of

V. Take a point v0 E V, and let

8 = min dist(ϋ0, ^ ( t ^ ) ) > 0,

8+ = max dist(ϋ0, y^)) > 8.

6.6.B. Theorem (see [32]). There exists a positive constant ε = ε(dimF, C)

> 0 for C = 8+/8 such that the inequality

Slinί Ricci V> -ε

implies that the group Γ is almost nilpotent.

Now let Π be an arbitrary group, and let Δ(Π*) be the (infinite) simplex

spanned by the elements π E Π* = Π\id, i.e., the simplicial complex whose

A>simplices are (k + 1)-tuples (ττo, -,πk) for 77; E Π*, i = 0, ,fc. Let

the group Π act on this complex by conjugation 7r(7ro, -,πk) —

(ππoπ~\- -,ππkπ~ι) for all TΓ E Π, and say that some elements wo, -,πk in Π

are dependent if they generate an almost nilpotent subgroup in Π. Denote the

Π-invariant subcomplex in Δ(Π*) by Q - β(Π*) C Δ(Π*), whose /c-simplices

are spanned by (k + l)-tuples of dependent elements in Π.



7 8 MIKHAEL GROMOV

Let the group Π act freely and isometrically on a Riemannian manifold (or

pseudo-manifold) V. Take a point v ELV and let πo, ,πk be all systolic

isometries:

dist(ϋ,ττ(t;)) = inf dist(ϋ, ττ(t )), ί = 0, ,&.

Thus we assign to each point ϋ E V Π-equivariantly a Λ:-simplex Δ ~ =

(τ7 0 , -,πk) in Δ(Π*), called the systolic simplex at 6. Then by an obvious

partition of unity argument we obtain a continuous Π-equivariant map, called

a: V -> Δ(Π*), which sends V into the union of the systolic simplices Δ - over

all v E V. We obtain, in particular, the following.

6.6.B'. Lemma. Let for every point ϋ E V the systolic (at v) isometries

πo, '-,πk are dependent. Then for every ε > 0 there exists a continuous Π-

equivariant map a: V -» Q sending each point ϋ E V into some systolic simplex

Δ~, C Qfor dist(t3\ ϋ) < ε.

Examples. Suppose that every almost nilpotent subgroup of Π is contained

in a unique maximal almost nilpotent subgroup. The following are such groups:

1. Almost nilpotent groups.

2. Subgroups of the fundamental groups of compact manifolds of negative

curvature.

2'. Subgroups of the fundamental groups of complete manifolds V of

negative curvature, which have

—#cf < Curvature(F) < -κ\, for κx, κ2 > 0,

and V o l F < oo.

3. Free products of groups in the above Examples 1, 2 and 2'.

The complex Q for the above group Π consists of the disjoint union of (finite

or infinite) simplices Δ^, each spanned by a maximal almost nilpotent sub-

group i V c Π for all such i V c Π . If the manifold V in Lemma 6.6.B' is

connected, then the image of a is contained in one such symplex Δ^, and so all

systolic isometries for all points v in V are contained in N. These isometries

generate a normal subgroup in Π, and so there is a nontrivial normal almost

nilpotent subgroup in Π.

The groups Π in the above Examples 2, 2' and 3 do not contain such normal

subgroups, unless they themselves are almost nilpotent. Therefore an isometric

action of such a group Π on a connected manifold V always possesses a system

of independent systolic elements at some point ϋ E V.

Let us apply these considerations to our original problem of locating short

independent loops in essential manifolds V. To be specific, we assume the

group Π to be isomorphic to the fundamental group of a closed manifold Vo of

negative curvature, i.e., Π — TΓ^FQ), and then we consider an ^-dimensional
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Riemannian manifold F, for 2 < n < dim Fo, which admits a map /: V -> Fo

such that the image / J F ] E #W(FO) does not vanish.

6.6.C. Theorem. There exist Wo geodesic loops γ0 and yλ at some point

v E F, whose images /(γ 0) and f(yλ) are independent in the group Π =

πλ(V0, f(v)\ such that

( 6 8 ) lengthγ0 = sys(F, υ; / ) < ^ - i ( V o l K ) 1 / n ,

length γ, ^ 2 length γ0,

for some universal constant A'ή > 0.

Proof. We use a regularisation Vg of V (compare the proof of Theorem

6.6.A), for which we get two independent systolic isometries yx and γ2 of the

covering Vg at some point ϋ E V*. The inequality

Vol

for the balls in Vg shows that

for i = 1,2 and some constant ^ , and so the geodesic loops in F correspond-

ing to these isometries satisfy the estimate (6.8).

6.6.C. Corollary. //

inf Ricci F > -κ2, for K > 0,

then
Vol F > ε>" M , for some ε'n > 0.

Indeed, if the loops yx and γ2 are sufficiently short, then Theorem 6.6.B

applies.

Remark. This corollary can also be proved by the technique of simplicial

norms (see [32]).

Let us give a general criterion for the existence of independent isosystolic

isometries. Denote by Q//][ the homotopy quotient of the action of Π on the

complex Q = Q(U). By taking an aspherical space K with a free action of the

groups Π, and dividing the product Q X K by the diagonal action of Π, we

have
def

e/π = Q x κ/n.
Equivariant maps V -> Q give rise to sections of the projection/?: β / Π -* K/U

— AΓ(Π; 1), and so we come to the following.

6.6.D. Proposition. Let a map f: V^ K— K(U', 1) give a nonzero class

h = / J F ] E Hn(K). If the homomorphism /?*: Hn(Q//U) -> Hn(K) vanishes,

then there exists a system of independent systolic loops γo, -9yk at some point

v <ΞV.
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Recall that by definition

lengthγ, = sys(F, υ\ / ) , / = 0, ••,/:,

and that the subgroup Γ in Π = πx{K, f(v)) generated by the loops

contains no nilpotent subgroups N C Γ, which have finite index in Γ.

6.6.D'. Example. Let Vo be a complete manifold of nonpositive sectional

curvature. Suppose that every noncontractible closed curve in Vo is freely

homotopic to a closed geodesic in Vo. This is true, for instance, if Vo is

compact, or if Vo covers a compact manifold isometrically. Let d — d(V0)

denote the maximum of the dimensions of those geodesically convex subsets U

in the universal covering Vo of Fo, which split isometrically to products

I/=ί/'XR.

Proposition. If d> d, then the homomorphism

/V H(Q//ϊl) - Hn(V0) = Hn(K(H; 1)),

for Π = TT^VQ), vanishes.

Proof. Every almost nilpotent subgroup Γ in Π is almost Abelian. (See

[20].) Moreover, there is a unique maximal Abelian subgroup A C Γ of finite

index such that the union of all flat A -invariant /-dimensional subspaces in Vo

for / = rank A form a convex subset ί / r C F which splits isometrically into the

product Uτ — £/f X R' where the slices u' X R', u' E ί/f, are the A -invariant

flat subspaces. This convex set Uτ is Γ-invariant. If Γ, C Γ2, then l/Γj D UTi

(see [20]).

Let Vo C Vo be the union of the sets UΓ over all almost nilpotent subgroups

Γ C Π. Clearly the set Vo is Π-invariant and dim Vo < d. Let us construct a

continuous Π-equivariant map q: QX Vo -> Vo. We first take the barycenter b

of each simplex (γ o, -,yk) in Q, and then send the pair (b, υ) E Q X Vo for

every t> E Vo to the point w in uτ nearest v, where Γ is the subgroup generated

by the isometries γo, -9yk. We extend this map to the barycentric symplices

(Z?o, -,bk) in Q by induction, by taking the geodesic cone from bk over the

map of the base (Z?o, ,bk_λ).

Obviously the map q admits a Π-equivariant (geodesic) homotopy to the

projection/?: g X VQ -> Vθ9 and so the map

p' e/π = (e x ^0)/π - κ0 = FO/Π

is homotopic to the map

q- (Q X ^o)/Π - Fo/Π,

which sends the ^-dimensional homology of (Q X Fo)/Π for n > d > dim Fo/Π

to zero, q.e.d.



FILLING RIEMANNIAN MANIFOLDS 81

From this proposition we can deduce the following.

6.6.D". Theorem (Compare Theorem 6.6.C and Corollary 6.6.C). Let a closed

n-dimensional Riemannian manifold V admit a continuous map f into the above

manifold Fo such that / J F ] φ 0. If n> d, then there exist geodesic loops

γo, -,yk at some point v E F, whose images are independent in the group

Π = fl-i(K0, f(v)% such that

lengthγ0 = sys(F, v9 f) <Λ' l l '_ 1(VolK) 1 / '\

lengthy < 2 lengthγ0, for i - 1, ,k.

Furthermore, if Inΐ Ricci V ^ -κ 2 , then Vol F > ε > " n .

Remark. The volume estimate V o l F ^ e'nκ~n for locally symmetric mani-

folds V of nonpositive curvature is due to Kazdan-Margulis (see [51]; also see

[31] and [32] for related results).

6.6.E. Freely independent loops. The independence of some elements in a

group Π often implies that some related elements in Π are freely independent.

Recall that a subset IT C Π is said to be freely independent if every k elements

in Π' generate a free subgroup of rank k in Π.

Examples. Let Π be the fundamental group of a compact manifold Fo of

negative curvature, and ττ0 φ id be an arbitrary element in Π. Then there is an

integer m such that the set of the conjugate elements π^^πf1, mi E Π, is freely

independent, provided no two elements mi and πJ9 i Φj = 0, , are depen-

dent. In particular, the normal subgroup in Π generated by the element 7ΓO

W is free.

(Compare [25], [75], [57], [55].)

To see this we consider an arbitrary map a to Vo of a connected surface S

with boundary dS such that dS is sent to the closed geodesic γ 0 which

represents the conjugacy class of ττ0, and such that every component of the

boundary dS goes to either m times γ0 or -m times γ0. If the map of the relative

fundamental "groups",

is injective, then the area of the map a is bounded below:

Area α ^ const qm,

where q denotes the number of the components of the boundary ΘS of S, and

the constant const > 0 depends only on Fo and γ0. Indeed, we may assume

without loss of generality that γ 0 is a simple curve in Fo, and then it admits a

tubular ε-neighborhood Uε for some small ε > 0. The pull-back a~\Uε) C S

contains q components adjacent to the boundary components of S, and each of

them has area at least {em length γ 0.
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Now as Vo has negative curvature, every map α can be homotoped to some

minimal map, for an example, to a harmonic map

Then the Gauss curvature of the induced metric in S is everywhere < -κ 2 , for

-κ2 — sup Curvature(F) < 0,

and by the Gauss-Bonnet theorem

So the above Euler characteristic satisfies the following inequality:

| χ ( S ) | ^ const'#m,

Recall that any relation between some q elements in Π, which are conjugate to

π^n\ can be represented by a map (S, 35) -> (F o , γ 0), where S is a surface of

genus zero, for which | χ(S) \ — q — 1. Thus

\q — \\> const' qm,

and so there is no relations for m > lίconst')"1. q.e.d.

Let us give a sharper (but somewhat weaker) freedom property of the group

Π = ^\(V0). We denote the pinching constant of the manifold F o b y ρ = p(F o ):

inf Curvature Fπ

sup Curvature Vo

6.6.E'. Proposition. There exists a constant C = C(p, dim Fo) > 0 such that

for every two independent elements π0 and *nx in Π the elements *n — ττo

w and

π' = TΓĵ TΓf1 are freely independent for every m > C.

Proof. Let γ and γ ' be the geodesies in the universal covering Fo, which are

invariant under the isometries π and mr respectively. Let δ be the shortest

geodesic segment joining two points x G γ and x ' G γ ' and orthogonal to both

γ and γ'.

Take the two points JC+ and x_ on γ, for which

dist(x, x+ ) = dist(*, χ_) = lm= f dist(%, iro(x)),

and also take the two points x'+ and JC'_ on γ', for which

dist(jc', JC'+ ) = dist(x', x'_ ) = lm.

We denote by X+ and X_ (respectively, X'+ and X'_) the two disjoint

half spaces in Fo, which are bounded by the "hyperplanes" formed by the

geodesies normal to γ (respectively γ'), and the points x+ and x_ respectively.

If there is no intersections between the four halfspaces, then obviously the

isometries TΓ and m' are freely independent (compare [25], [75]). On the other
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hand, if some halfspaces, say X+ and X'+ , do intersect, then by the standard

comparison theorems (see [20]) the geodesic segments ( c, πQx) and

(V, TTjflofl-fjc') must be "close" one to another. This "closeness" is estimated by

sup Curvature Vo and m.

Now by Margulis' Lemma (see [18]) and the lower bound on the curvature

of V09 the "closeness" of these segments implies that the isometries 7r0 and

πλπoiτ{x are dependent. Then the isometries π0 and TΓJ are also dependent, and

so we get a lower bound for m. q.e.d.

We refer the reader to the work of Heintze [43], where one finds the details

of this argument, which is used by Heintze for an analogous problem.

The above proposition allows one to sharpen Theorem 6.6.C by requiring

the loops /(γ,) and/(γ 2 ) (see Theorem 6.6.C) to be freely independent. Thus

we have

6.6.E". Theorem. Let f be a continuous map of a closed Riemannian manifold

V to a closed manifold Vo of negative curvature such that the fundamental class of

V goes to a nonzero class, 0 ^f*[V] E Hn(V0). Then there are two loops γ ' and

y[ at some point v E V, whose f-images are freely independent in the group

Π = irx(V0\ such that

lengthγ^ ^ C sys(F, υ, f) < CΆ^_λ(yo\V)λ/\

lengthγί < lengthy^ + 4sys(F, υ, / ) ,

where the constant C" > 0 depends only on dimF, dimJ^, and the pinching

constant p = p(V0).

Proof. Take γό = γ^ and γ[ = γjγ^γf1 for the loops γ0 and γ, of Theorem

6.6.C.

6.7. Systoles of 2-dimensional polyhedra. The isoperimetric inequality 6.2.B.

applies (trivially) to arbitrary 1-dimensional sub-polyhedra of cubical δ-com-

plexes K:

Any \-dimensionalsub-polyhedron L of K, for which

"bounds" a cone in K of area < Al2, for some universal constant 0 < A < 10.

Therefore the regularization technique of §§6.3-6.6 applies to the following

homotopy Plateau problem:

Find a 2-dimensional subspace in K of least area, which is not contractible to

the \-skeleton ofK. (See Appendix 2 for an ^-dimensional generalization.)

One obtains as before a universal lower bound for the area of such minimal

subspaces, and arrive at the following isosystolic inequalities.
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6.7.A. Theorem. Let V be a compact connected 2-dimensional polyhedron

with apiecewise Riemannian metric. Then the following hold:

(a) s y S l ( F ) ^ f K a r e a F ) 2 ,

for some constant in the interval 0 < B < 100, unless the fundamental group

7Γj(F) is free.

(b) // the fundamental group πx(V) is neither free nor a (nontriυial) free

product, then there are some loops yu- -,yq at some point v E F, which generate

the group ττx{V), such that

/, = length γ, = sys,(K, v) < £(Area F ) ι / 2 ,

/,. ̂  £(Area V)/lλ9 for i = 2, ,q.

6.7.A'. Corollary. Let Fo be a closed manifold of negative curvature, and let

Γ φ Z be a finitely presented group which is not a (nontrivial) free product. Then

the fundamental group Π — π\(V0) contains at most finitely many conjugacy

classes of subgroups, which are isomorphic to Γ.

Proof. Let F b e a two-dimensional polyhedron such that πλ(V) = Γ. Every

injective homomorphism Γ -> Π is induced by a continuous map /: V -> Vo.

According to Thurston (see [74]) one can straighten the map / on all 2-sim-

plices of V and thus obtain a new map g: V -> Vo, which is homotopic to/and

has

Area g < const = const(F, VQ).

The conjugacy class of the subgroup /^(Γ) = g*(T) C Π is uniquely de-

termined by the restriction of g to a set of loops in g*(V% which generate

g*(T). As the systole sys^F) of the polyhedron V with the induced metric is

greater than or equal to sys/f^) > 0, the group g#(Γ) C Π is determined by

some loops in F of lengths < const'(F, Fo). There are at most finitely many of

homotopy classes of such systems of loops in Fo.

Remark. This argument for surface groups Γ is due to Thurston [74].

7. Besikovic' lemma

Take an arbitrary Riemannian metric on the w-dimensional cube C ^ In.

Besikovic9 lemma (see [73], [14], [22], [5], [23]) claims the following lower bound

for the total volume of this metric by the product of the distances dist(i^, Ft)

between the opposite (n — l)-faces (Fi9 F^i — 1, ,w, of the cube:

(7.1) V o l C ^ Π
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The inequality (7.1) sharpens the following classical theorem of Lebesgue

(see [46]):

Let f: C -> K be a continuous map of the n-cube to an arbitrary (n — 1)-

dimensional space K. Then there exists a pair of (opposite) points x E Ft and

x E FJor some i — 1, ,n such that f(x) = /(3c).

Derrick's proof of (7.1) (see [22]) only depends on the compressing property

of m a s s * ^ Vol for Riemannian metrics); that proof generalizes as follows.

Consider an orientable w-dimensional manifold (or pseudomanifold) W with

boundary V — dW. Let this boundary be covered by 2n closed subsets ("faces")

F- and Fiin Ffor i = 1, ,w. We call the manifold W a. "cube" of dimension n

and degree d, and the manifold V a 8 "cube", if there exists a continuous map

of degree d of V to the boundary of the standard cube h: V -> dln « Sn~ι such

that the pullbacks of the faces of the cube Γ equal the "faces" of WD V,

h-\Fi) = F; and A " 1 ^ ) = F? for / = 1, ,/ι.

Observe that any two maps of a "cube" to the cube, which both send the

"faces" F{ and F{ to the respective faces Ft and Fi9 are homotopic relative to

the boundaries. Therefore all such maps have degree = degree ("cube").

Examples, (a) The standard cube is a "cube" of degree 1.

(b) Let Wbea. 4d-gon in the plane with the edges ei9 i = 1, ,4rf, and put

F[

Fί

= U €„
/ΞΞθ(mod4)

= U e,,
/— 1 (mod 4)

F[

F~ί

= U e,,
/Ξ2(mod4)

= U e,
/ = 3 (mod 4)

Then WΊsa 2-dimensional "cube" of degree d.

(c) The product of two "cubes" (W'\ F?9 Ffi of degree d' and (W"\ FJ\ Fj')

of degree d" is a "cube" of degree d'd"\

(w x w"\ F; x w\ F; X W\ F'/ X W, ηf x w).

(d) If a "face" F\ of a cube is a (pseudo)manifold, then it is an (n — 1)-

dimensional "cube" of degree = degree (W). The "faces" of F[ are the

intersections F[ Π F; and Ff Π ^ for i = 2, ,n.

7.1. A lower bound for the volume of a "cube". Let an n-dimensional "cube "

W of degree d be imbedded into some Banach space L: W ^ L. Then the

n-dimensional mass* of this cube is bounded below by the (induced) distances

between the opposite faces:

(7.2)
i=\



86 MIKHAEL GROMOV

In particular, every (n — \)-dimensional θ "cube" V of degree d with an

arbitrary metric has
n

Fill Vol(F) > Fill mass*(F) >\d\ Π d i s t ^ ' , F;).

Proof. Take the following solid (cube) in R":

IS = {(*i,- ,Xn) I 0 < *i < */ = dist(/7, /?)} .

We claim that there is a map h0: W ' -> Iζ sending the "faces" F{ and F[ to the

respective faces of Iζ such that h0 is distance-decreasing relative to the

/°°-norm in Rw:

H(Λ1, , Λ J | | / C O = max |jcf.|.

One can construct such a map by induction on n: if every pair of "faces" F{

and F[, i— 1, ,/i, has been already sent to the pair of the corresponding

faces of the cube Iζ with dilation < 1, then by the "compressing property" of

the /°°-norm, such a map extends to all of W with dilation < 1 (see §§1.1, 4.1).

Here is an obvious direct construction: take the following n functions on W\

xAw) = m i n ^ d i s t ί t ? , F())9 i= 1, * ,«.

The map X(v) — (xx(v),- -9xn(v)) is the required map h0.

The map h0 has degree d and is distance-decreasing. Therefore it is mass*-

decreasing, and so
n

massW > d mass*/0" = d Π 8t,
ι = l

7.I.A. Corollary. The (n — X)-dimensional mass* ofV— dW C L satisfies

"1 Π ^ )•
y = l /

There is another proof of Besikovic' lemma, which is due to Almgren [5] and

depends on the coarea formula; namely, the pullbacks of the distance function

8(w) = dist(w, F[)

are also "cubes":

W(t) = δ~ι(t), t G[0, «! = dist(Fί, F{)]9

which have dimension n — 1 and degree d. The coarea formula implies

*l mass*W(t) dt,(
Jo

and the proof follows by induction.
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Almgren's proof yields the following generalization of Besikovic' lemma.

Take the product of a "cube" W of degree d by an arbitrary closed oriented

manifold (or pseudomanifold) Wo of dimension k. We embed the product

WX Wo into some Banach space L, and denote by msiss* (d[W0]) the lower

bound of the λ -dimensional masses of those λ>dimensional cycles (or sub-pseu-

domanifolds) in W X Wθ9 which go under the projection W X Wo -* Wo to the

d times the fundamental class of Wo.

7.I.B. The (n + k)-dimensional mass* of the product WX Wo C L satisfies

n

(7.3) mass (WX Wo) ^ mass*(d[W0]) Π dist(i? X Wo> ^ X »ό)
/ = 1

Proo/. We construct as before a distance-decreasing map h0: WX Wo -* I£

sending the products F- X Wo and F X Wo in W X Wo to the corresponding

faces of the solid (cube) /Q. The pullbacks h~ι(x) of generic points JC E I£ are

cycles in W X Wo, which project to d[W0] E Hk(W0). By the coarea inequality

we obtain

Wo) > f h-\x))dx

n

inf mass*(/2"1(x)) Π δ, > mass*(d[JΓ0])
, =i

Example. Take a closed surface Wo and consider an arbitrary Riemannian

metric on the product Wo X [0,1]. Then there exists a smooth surface WQ in

Wo X [0,1], which is homologous to Wo X 0 and has

a r e a ( ^ ) ^ Yol(W0 X [0, l])/dist(W0 X 0, Wo X 1).

In fact, one has the strict inequality unless Wo X [0,1] is an isometric product.

7.2. Conformal Besikovic' lemma. The Besikovic' lemma for Riemannian

metrics on a "cube" was sharpened by Derrick [22] with the following classical

notion oίp-distαnce for/? E [1, oo).

For two subsets Wλ and W2 in a Riemannian manifold W and a function

φ ^ 0 on W, we introduce dist^W^, W2) as the lower bound of the integrals

fΎφdy over all curves γ in W joining some points w, and w2 in Wx and W2

respectively. Then we consider those functions φ on W for which jwy
p dv < 1

for a given number p > 1, and we define dist(/7)(H^, W2) to be the upper

bound of &s\φ(Wλ,W2) over all functions φ > 0, for which jwψ
p ^ 1. If

V o l ^ = l,then

dist(^) ^ dist (^, for q

and dist(/7) -> dist as/? -» oo.
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The most interesting/7-distance is dist(π) for n = dim W, as it is a conformal
invariant of W. If one of the sets Wi9 i = 1,2, is discrete (or, more generally,
has conformal capacity zero; see [48]), then d i s t ^ J ^ , W2) — oo. However,
dist(n\Wx, W2) < oo if both sets Wλ and W2 have positive topological dimen-
sions. The proof of these facts is straightforward.

7.2.A. (Bes Conf). The distances dist<w) between the opposite "faces' of an

arbitrary n-dimensional "cube " W of degree d satisfy

Π dist^M"1.
ι = l

Proof. Let φ{> 0, i — 1, ,«, be some functions on W, for which / ^ φ f <

1, and whose distances dist φ between the respective faces F[ and F[ are

δj , ',δi9- ,δ r t . For each / = 1, ,w there exists a (dist φ )-decreasing map ht\

W -* [0, δ j such that A. | / ) ' Ξ O and hi \ F{ = δ ; . The nίaps A, , / = 1, ,«,

send ί ^ o n t o the solid /0" = X,[0, δ j by the map h = (A,,- ,AM) of degree d,

whose Jacobian at every point w G W satisfies

ι = l

Therefore

i

- 2
w , =i

Remark. Inequalities (7.2) and (7.3) also hold if dist, is replaced by dist",
provided mass W is normalized to be one.

7.3. Besikovic' lemma for "simplices". Take a closed manifold V covered
by some subsets ("faces") Fu- -,Fq in V. Suppose that the distances 8j(v) =
dist(ϋ, Fj) for every point v E Fare restricted by some inequalities, that is, we
are given a subset A in the Euclidean space Rq and require the vector
(δj(υ), ,δq(v) ER^to belong to Δ for all v G V. For example, we have used
the covering of 9 "cube" manifolds by In faces F( and F-, i = 1, ,«, such
that

dist(t>, Ff) + dist(ϋ, ^ ) > δi = dist(^r, ̂ ' ) .

Suppose that V is filled in by a manifold PF with boundary dW = F. Then
the map A: PF-> R'7 with the coordinates dist(w, i^): W-* R, 7 = 1, ,#,
expands the volume of W by a factor < (q/n)n/1 for « = dim W. Indeed, the
differential of our map, say A = Aw: Rn -> R̂ , has at every point wG ίf

Jacobian =[Det(Λ*Λ)]1 / 2 11/2
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where Trace A*A = Trace AA* = (sum of the squares of the /2-norms of the

rows of the matrix A) — q. Thus we may estimate the filling volume of V by

the filling volumes of some cycles in the region A C Rq.

There is at least one example (besides the case of the cube) where one gets in

this way a sharp estimate for Fill Vol(F); namely, take the ̂ -dimensional

simplex Δ and let Λ: V -> 3Δ be a map of degree d. We take the pullbacks of

the (n — l)-faces of Δ for Fj9j = 1, ,n + 1 = q, and claim the following.

7.3.A. Simplex inequality. //

nΣ 8j(v) = "l dist{v,Fj)>δ9

7 = 1 7 = 1

for all v E V, then

FillYolV> μnd8\

where μn is the volume of the regular Euclidean n-simplex of the unit hight.

Proof. The region A C R^=n+ι consists of the vectors in Rq with positive

components Xj > 0, for which Σq

J= λ Xj > δ, and so the (multiple) image of the

map h — W -> Rq has a volume greater than d times the volume of the

Euclidean simplex {Xj > 0, Σq

J=] Xj = δ}.

Example. Take a 3d-gon V9 that is, a circle divided into 3d edges el9— -,e3d.

Suppose that for some given metric in V, every point v G V satisfies

dist(ϋ, et) + dist(ϋ, βj) + dist(t), ek) >• δ,

for all triples of edges (ei9ej9ek) which have \i — j \ = \i — k\ = \j — k\ =

l(mod 3). Then

FillVol(F) >dS2/]f3.

Remark. Observe that the filling radius of any θ "simplex" manifold V,

for which Σ1+λSj>δ and d > 0, satisfies

F i l l R a d F > δ / 2 « .

Indeed every "simplex" W with the boundary dW = V contains a point

w E W9 for which

dist(w, Fx) = dist(w, F2) = = dist(w, Fn+ι) = ε,

as an elementary topological argument shows. Then 2nε > δ and so

ε = dist(w,3^) >δ/2n.

7.4. Besikovic' lemmas for closed manifolds. Consider a Riemannian mani-

fold V, and for a homology class a E Hk(V\ Z), denote by Vol a the lower

bound of the volumes of the integral singular cycles which represent α. In the

same way we introduce the volume VolR on the real homology Hk(V\R).
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Observe that VolR a < Vol a for all a E Hk{V\ Z), but the equality may not, in
general, hold. However, Vol = VolR does hold for the homology classes of
codimension one in closed orientable manifolds (see [61] and [37] for addi-
tional information and references).

If the manifold V is compact (with or without boundary), then the function
VolR is a norm on the finite dimensional vector space Hk(V;R). This norm
induces a natural (flat Finsler) metric on the Jacobi variety, Jk(V) =
Hk{V\ R)/Hk(V', Z), and we are interested in the total r-dimensional measure
(volume) of the variety Jk(V) for r — dim/^(F). This is the measure of a
fundamental domain of the lattice Hk(V; Z) C Hk(V\ R), and so it depends on
a particular choice (normalization) of the Haar measure in the Banach space
[Hk(V; R), || || = VolR]. To be specific we shall remain with the mass* in this
space.

The total measure mass* Jk(V) controls the asymptotic behavior of the
number Nk(R) of those integral λ -dimensional homology classes in V which
can be represented by cycles of volume < R. Namely

Nk(R)/Rr -> μl/mass*Jk(V), asfl -> oo,

where r - rank Hk(V\ and where μ* denotes the mass* of the unit ball in the
Banach space Hk{V\ R). Recall that T/r! ^ μ\ < Ύ.

Observe that any upper bound on mass* Jk(V) now gives a lower bound on
the asymptotic number of "small" (in particular, minimal) cycles in V.
Unfortunately, we do not obtain in this way any lower bound on the volume of
any individual λ>dimensional cycle in V, unless k — dim V — 1. However, such
individual estimates are available for the relative 1-dimensional homology of a
"cube", HX(W, F- U F[), by Besikovic's lemma, and also for the first homology
of some essential manifolds (see §6).

We shall establish below the following upper bound for the volumes of the
complementary Jacobi varieties Jk — Jk(V) and Jn_k — Jn_k(V) for a closed
orientable manifold V of dimension n:

(mass*/*) X (mass*/n_J < const*(VolV)\

for r — dim Jk — dim Jn_k and some universal constant const* = const*(«, r).
This inequality is implicit in the work of Blatter [15] and also in [37].

We shall use the method of Blatter which leads to a stronger version of the
above inequality; namely, for the given metric g0 on V we consider all
conformally equivalent metrics g = φ2g0 for which Vol(F, g) = Jvφ

n dv < 1.
Every such metric g gives rise to a norm VolR on homology Hk(V; R), and we
take the upper bound of these norms over all conformal metrics g of volume
< 1. This upper bound is finite (the proof is straightforward), and so it is a
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conformally invariant norm, called the conformal volume, on the homology

Hk(V\ R). We denote by conf* Jk the mass* of the Jacobi variety Jk with this

conformal norm, and claim the following.

7.4.A. Conformal inequality.

(conf*/J X (conf*/w_ k) < const*(«, r).

Proof. Recall that the comass norm of an exterior k-ίoτm ω on Rn is

||ω||= supω{el9'-,ek),

where the supremum is taken over all orthonormal frames of vectors el9- -9ek

in R". Then for differential forms ω on V, one has this norm | |ω | | (ϋ) on every

tangent space TΌ(V), v E V, and defines the Ln~comass norm | |ω | | , to be

fv((\\ω\\(v))p dv ) λ / p for p E [1, oo]. Next, one restricts such an Zy-norm to

closed Λ>forms, and takes the quotient norm on the cohomology Hk(V\ R) =

(Closed forms)/(Exact forms). For/? = oo this norm on Hk(V\ R) is called the

(L^ycomass norm, and according to Federer it is dual to the volume norm on

the homology Hk(V; R) (see [27], [37]). It follows that the Lp-comass norm on

Hk for p — n/k is dual to the conformal volume norm on Hk. In fact, for every

form ω on V one has the conformal (possibly degenerate) metric g =

[I lω | | ^/Ί lω | | 1 / A : (ϋ) ] 2 g o , which has Vol(F, g) = 1, and one observes that the

pointwise norm | |ω | | (u) relative to g equals Hω| | L for all v E V. Thus the

integral of ω over any λ>dimensional chain c in V satisfies

This implies the " h a l f of the duality claim, namely, the inequality

Λ'(*)<| |A' | |L,cσnfVol(A),

for all h' e Hk(V; R) and h e Hk(V; R). To prove the second (nontrivial) half

of the duality statement,

[|Λ'(Λ)|/confVol(A)],

one takes a homology class h E Hk of conf Vol h — 1 and then the conformal

metric g for which VolgΛ = conf Vol h — 1. By Federer's volume-comass

duality for the manifold (V, g), there exists a closed form ω on (F, g), which

represents the class h' and has the L^-comass < | h\h) \ . This establishes the

duality.

Warning. Our L2-norm on λ>forms for n — dim V = 2 k is not, in general,

equal to the L2-norm of the Hodge theory, as the local comass norm || ω \\(v) is

not the /2-norm on the space AkTΌ(V), unless k = 1 or k = n — 1. However,
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the two L2-norms are equivalent, and so the canonical isomorphism of the

space of harmonies λ>forms on V with the ordinary (Hodge) /2-norm onto the

cohomology Hk(V;R) with the L2-comass norm has distortion < const =

const(rt). This constant equals one for n = 2 (as k = 1).

Next we observe the comass inequality for exterior products of forms:

Ik Λω2||Ll<const||ωJ|LJ|ω2||v

for \/p + \/q — 1 and some universal constant const = const(deg ω,, deg ω2).

This follows from the corresponding local inequality:

I k Λ ω2ll(ϋ) < const |k| |(t>)| |ω 2 | | (t>).

Observe that

A ^ (degω t + degω 2 ) !
c o n s t < 71 \U~Λ \7>

(degco,)!(degω2)!

and that const = 1 for deg ω, = 1 and deg ω2 = n — 1.

Now the cup product of two cohomology classes h\ E Hk and h'2 E Hn~k

satisfies

for p — n/k, q = n/(n — k) and const = const(λ;, n — k). Therefore the

Poincare duality map PD: Hk -» Hn_k — (Hn~k)* has norm < const. We

write Hk as the dual to the homology Hk with the conformal volume norm, and

then we have the map

PD: (Hk) -+Hn_k

of norm < const, which sends the dual lattice [Hk(V\ Z)]* C (Hk)* onto the

lattice Hn_k(V\ Z) C Hn_k = Hn_k(V\ R). We take a basis el9 -,e2 in

Hk(V;Z), and then we have the inequality for the dual basis e*,-—,ef in

Hk(V;Z))*:

mass*(ef Λ Λ<?*) > (const)~ rmass*/Λ_A :(F),

since the mass* of the Jacobian equals the mass* of some integral basis.

Finally, by the definition of mass* we have

mass*(e,* Λ Λe*) = [mass(e1 Λ Λe,.)]"1,

and so

As mass < r~r/1 mass*, we obtain the required conformal inequality with

const* < rr/22nr.
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Remarks and corollaries, (a) The constant const* admits a better estimate.
For example, the inequality mass ^ rn/1 mass* may be improved for our
Banach spaces because of their "L^-origin". For example, for k — 1 and n = 2
the conformal norm is Euclidean, and thus we come to Blatter's inequality for
surfaces V of genus g > 1:

(mass* Jλ(V))2 = (Voly,(K))2< 1.

By a theorem of Minkowski every (Euclidean) flat torus of volume < 1 and
dimension 2g possesses a closed geodesic of length <(2/ττ)((g + l) !) I / g «*
2g/(ττe), and thus Blatter proves that every closed surface V of genus g
possesses a nonzero homology class in //,(F, Z) of conformal (extremal) length
< 2g/(ττe). We have seen in §5.5 that Loewner's methods yields a homotopy
class of conformal lengths < ŷ log g.

(b) If n — 2k > 2, then one can easily see that mass > (constn)~r mass* and
thus gets

(conf*Λ)2<(const;) r.

In order to get an upper bound of the mass of some individual Jacobian Jk

for k φ n/2 one needs additional topological nondegeneracy conditions im-
posed on V.

Example. Let W be the Euclidean space with a fixed basis, and let Φ be a
symmetric w-linear form on Rr, which is represented in the given basis by a
homogeneous polynomial of degree m. One assigns to each nonzero monomial
in Φ,

i χ i \ \ Σ ό ,-,... ir ^ o,
7 = 1

the vector with integer components (iλ9- ,/r) E Z r C Rr, and one calls the
Newton polyhedron of Φ (relative to the given basis) the convex hull of those
vectors which correspond to all nonzero monomials in Φ. The form Φ is said to
be nondegenerate relative to a given basis in Rr if the Newton polyhedron
contains a small vector ε with r equal components: ε = (ε, ,ε) G Rr for some
ε > 0. Furthermore, the form Φ is said to be nondegenerate on W if it is
nondegenerate relative to every basis in Rr.

Observe that this definition agrees with the ordinary conception of a
nondegenerate quadratic form for m — 2.

If k is an even number and dim V = n — mk for an integer m, then the cup
product on the cohomology Hk(V; R) defines a symmetric m-ΐorm on Hk(V\ R).
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7.4.B. Proposition. If the cup product form is nondegenerate, then the formal

mass* of the Jacobian Jk satisfies

conf* Jk < const = const(λ;, m, r ) , for r = dim Jk = rank Hk{V).

Proof. We shall establish a more general result; namely, the inequality

s

(7.4) Π (conf* Jkj)
m' ^ const = const(ki9 mi9η)9

i=\

for Σ/=i kimi = « under the following nondegeneracy assumption on the cup

product form on the cohomology groups Hk\ - ,Hk% whose ranks (over R)

are denoted by r,, ,rs respectively.

Take some bases

{e\9 > 9e
ι

rι}inHk\ > , R , < } inHk:

The cup product of some wf elements among the vectors e\,— -,e[ in Hki is

uniquely determined (up to ± sign for kt odd) by the multiplicities of the

entries eιj in this product. In other words, every such product is determined by

a unique integral vector M C ZΓ/ whose component MJ9 j = 1, ,r/5 is the

multiplicity of ej in the given product. We denote this product by Et

M G Hmiki,

and then introduce the Newton polyhedron of the cup product form on the spaces

Hki, i — 1, -,s (this form has degree mt on Hk), as the convex hull of those

vectors M 6 R r with nonnegative integer components

M = (M,, ,M5) G Z r ' θ ΘZ r* C R r , r = r1 + ••• + r s ,

(where each vector Mz has the sum of the components equal m,), for which the

total cup product

Ef4* U \JES

M> E Hn(V\ R) « R

does not vanish.

The cup product form is said to be nondegenerate relative to the bases {eιj} in

Hk,j = 1, ,ry, / = 1, ,5, if the Newton polyhedron contains some positive

multiple of the vector

9' " 9 m i 9 " , w
— — ' •

Rr.

Finally, we say the cup product form is nondegenerate if the above condition is

satisfied for all systems of bases in the groups Hki. We claim that inequality

(7.4) holds under this nondegeneracy condition.
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To show that we take bases {ej, ,e;.) in the integral cohomology groups

Hk'(V, Z) C Hk> = Hk'(V\ R) for i = 1, -,s with the following quasiortho-

gonality property.

mass(ί?ϊ Λ Λej.) ^ const X X |

where each space Hki is equipped with the respective conformal volume norm.

By the elementary geometry of numbers, such a basis exists in every lattice

Hk(V\ Z) C Hki with some universal constant const, = const(r,).

Consider the linear form Σ/= 1 Σy' = i mjj. in variables /,, and let us estimate a

lower bound of the value of this form at {/y} = {Iog||e7(/)||}. By the nonde-

generacy condition this form is a positive combination (with some universal

coefficients) of the forms 2s

i=ιTj.= ι Mjjj., where Mt - (Λ/^ ,Aίyr.) G Z r '

are the multiplicities (exponents) of the "monomials" Et

Mi E Hmiki for which

the cup product E™χ U UEs

Ms is nonzero. Since this product is an integer

(multiple of the fundamental class of F), its absolute value is at least one.

Therefore

exp Σ Σ ^//^sl^jJI ^ const = const(«).

Using this bound we also get some bound on the (universal combination) form

ΣΣ mi log 11 ej. 11 and thus the inequality

s

Π [mass(ej Λ Λ<>; ) ] m ' > const(/:., mi9 η),
i=\

which is equivalent, by the mass-mass* duality, to the inequality (7.4).

This argument, together with the use of integral quasiorthogonal bases, also

shows that the existence of some cohomology classes

h'μι CHk>, ju, = I9" ,mi9i= l , ,s,

with a nonzero cup product,

yields the existence of some nonzero integral homology classes, Hμ E Hk(V; Z),

for which

Π Π C o n f V o l R Λ μ < c o n s t ( ^ , m i 9 η
/ = 1 jLt,— 1

As a corollary we obtain for these classes the following.
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7.4.C. Stable isosystolic inequality (compare [37], [11]).

S mi

Π Π VolR/^const^m^
1=1 μ,= l

This inequality is unsatisfactory for two reasons. First, it is "stable" as it

concerns the real volume VolR rather than the actual volume on the integral

homology. Secondly, the constant depends on η — rank Hk(V).

7.4.C. Generalizations. There is a possible direction for improving the

stable inequality; namely, one may try some nondegeneracy conditions on

higher cohomology (Massey's) products. These reduce to the following opera-

tions on differential forms on F(see [71]):

(1) exterior products ω, Λ co2,

(2) inversion of the exterior differentiation, that is, solving the equation

dx — ω.

To deal with (2), one needs some apriori estimates on relevant norms of

solutions x of the equation dx = ω. In particular, to keep inf̂  | | JC | | L / l lω | | L

over all A:-forms x for which dx = ω, by the comass-volume duality one needs a

bound on the isoperimetric constant in dimension A:, that is, the upper bound of

Fill Vol(z)/Vol(z) over all A>dimensional cycles in F, which are homologous

to zero. We shall approach this problem (see Theorem 7.5.C) in the case of the

one-dimensional homology.

Let us indicate a similar problem where the higher products interract with

the isoperimetric constants (compare [37]). Take a Riemannian manifold V

homeomorphic to S3, and let us introduce the "area" of V as the upper bound

of areas of surfaces Vo homeomorphic to S2, for which there exists a noncon-

tractible map /: V -> Fo decreasing the areas of all surfaces in F.

Denote by Is, the first isoperimetric constant of F. By definition of Is,, all

oriented closed curves S in V have Fill Vol(S C V) < Is,length S. We claim

the following "area" inequality:

("area" K ) 2 ^ I s , V o l F .

Proof. As the map / is area-decreasing, the coarea formula yields the

following relation for the lengths of the pullbacks/" 1 ^), υ0 E Vo,

j

Therefore there is a (generic) point in Fo, whose pullback S is a curve of

length < Vol F/area Fo. Thus curve S bounds an oriented surface A of area <

Is,length S. Since the map / is non-contractible, it has a nonzero Hopf
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invariant and so the map/: A -* Vo is surjective. Hence area A > area Fo, and
then

Remark. One proves in the same way that if all curves S in V have filling
radii < Ro, then any distance-decreasing map V -> Fo is contractible, provided
# 0 < ^Diam Fo. Notice that the number # 0 can be estimated for manifolds of
positive scalar curvature > K > 0; namely, all curves 5 in F « S 3 have

FillRad(5 C V) ^πfi/K

(see [39]).
Jacobians of homogeneous manifolds. If V admits an isometric action of a

compact connected Lie group G, then every closed form ω on V averages to a
G-invariant form ω ~ ω, which has | | ω | | L < | | ω | | L for all /? > 1. Thus the
evaluation of the Z^-norms on cohomology of homogeneous manifolds (G is
transitive) reduces to a purely algebraic (local) problem. Then by duality one
reconstructs relevant norms on homology.

Example (Lawson). Let V be the product of m unit spheres Sk. If k — 1,
then the volume norm on Hk=λ is Euclidean. However, for k ^ 2 this norm is
the /°°-norm relative to the natural basis in Hk(V;Z). Therefore integral
combinations of the basic spheres Sf C V = Sf X X S^ are absolutely
volume-minimizing in their respective homology classes. In fact, these are the
only absolutely minimizing cycles for k > 3.

This example shows that no bound on mass*/^ leads directly to any
interesting information on the number of minimal λ -dimensional subvarieties
in Vϊor k> 2. However, such information can probably be obtained for some
manifolds with large fundamental groups.

For example, let Vo be a compact manifold of nonpositive curvature, and let
/: V -> Vo be a map of positive degree. Let A C πx(V0) be a maximal Abelian
subgroup, Vo -* Vo the covering with πλ{V0) — A, and V ^ V the induced
covering of V. The manifold V carries a λ>dimensional homology class hA for
k = rank A, which goes to a multiple of the generator of the group Hk(V0) — Z.
We realize this class by a minimal sub variety in V9 and denote by M(A) C V
the projection of this variety to V. Now if two such subvarieties M(AX) and
M(A2) in V coincide, then the subgroups Ax and A2 are conjugate in 7η(F0). It
follows that every maximal flat torus in Fo gives rise to a minimal subvariety
in V.

In particular, if Vo is a nonflat locally symmetric space of rank k, then the
number of the flat tori Tk in Vo grows exponentially for Vol(Tk) -> oo.
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Therefore

ent^F = Km infr1 log Ny(t) >0,
r-^oo

where Nv{t) denotes the number of geometrically different minimal subvarie-
ties M — M(A) in Fof volume < t for all subgroups A « Zk in πλ(V0).

Conjecture. // the universal covering Vo of Vo has no isometric Euclidean
factors, then ent^ V > constπ(Vol V)~k/n for n — dim F.

This conjecture is obviously true (by the length-area method of §5.5), if the
map /: V -» Fo is a conformal homeomorphism.

7.5. Counting short geodesies. Let us analyse our bound for mass* Jk for
k — \. First we indicate several geometric interpretations of the mass* of the
Jacobian /, = HX{V\ R)/H}(V; Z), where the vector space HX{V\ R) is equipped
with the VolR-norm. This norm can be evaluated on an element h E Hλ(V\ Z)
as follows. Take the shortest closed geodesic γ = γ(Λ) in F, which is homolo-
gous to h (if there are several such geodesies, we choose one of them). Then

VolRΛ = lim q~x lengthy(qh),
q-* oo

where q- 1,2,... (see [37]).
Next we consider the number N(R) of those geodesies γ = γ(A) for all

h Gi/,(F;Z), for which

lengthγ^Λ.

Then we have as R -> oo

RrN(R) -> μ*[Tor]/mass*/1,

where

r = rank Hλ (F; R), μ* = mass* BHχ,

for the unit ball

and the integer [Tor] > 1 denotes the order of the torsion subgroup in HX(V\ Z)
(compare [37]).

Recall that

¥/r\^μ* < 2 r , for r > 1,

3^ j t t*<4, forr = 2.

Observe furthermore that the closed geodesies γ which correspond to indi-
visible elements h in the group Hι(V; Z) axe prime (i.e., not multiples of shorter
geodesies). The percentage of indivisible elements in H\V; Z) for r >• 2 equals
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(fO))""1 for ξ(r) = 1 + j? + y + , and so the asymptotic number for R -> oo

of the above prime geodesies satisfies R~rNPr(R) -> μ*[Tor]/f(r)mass* /,.

Another geometric invariant of V related to mass*^ is the asymptotic

volume of balls of radius R -» oo in the maximal abelian covering V of V

(whose deck transformation group is Hλ(V\ Z)); namely,

R~r\o\ B(R) -> /^[TorJVolF/mass*/,.

Now we assume the cup product form (of degree n — άϊmV) on the

cohomology H\V;R) to be nondegenerate. This condition implies the ex-

istence of n elements h[9- -,Wn in H\V;R), whose cup product is nonzero.

This is equivalent to the existence of a map onto the n-torus V -> Tn of

nonzero degree. Observe furthermore that these "nondegenerate" manifolds V

have

r = rank Hλ(V\ R) > n = dim V.

If r — n, then the nondegeneracy condition is equivalent to the existence of a

map V -> Γ" of nonzero degree.

In the nondegenerate case we have an upper bound for mass* Jx and thus

asymptotic lower bounds for the geometric quantities N(R), NPr(A) and

Vol B(R) for R -> oo. Our upper bound for mass*/, can be somewhat

sharpened with the "degree" of F, which is defined as the greatest common

divisor of the degrees of all possible maps V -> Tn.

7.5.A. Theorem. If (the cup product form on the one-dimensional cohomology

of) the manifold V is nondegenerate, then

mass*/! < const(deg)~r/"(VolK)r//\

for deg = deg V = "degree" and some universal constant const = const(w, r).

Proof. The only novelty here is the factor (deg)" r / w. It appears since every

cup product of arbitrary integral classes h\, ,h'h in Hλ(V\ Z) is divisible by

"deg" in the group Hn(V\ Z) « Z.

Observe that const(w, n) — 1, since

for one-dimensional cohomology classes.

Also notice that the above theorem extends to all Finsler manifolds V with

mass* V substituted for Vol V. Thus we obtain, for example, the following

lower bound for the mass* of the balls B(R) in the maximal Abelian covering

V of a Finsler manifold V, for which r = rank HX{V\ R) = n — dim V, which

admits a map V -> Tn of nonzero degree, and for which every map V -» Γw has

degree divisible by a number deg = deg V > 1:

lim i Γ w m a s s * £ ( / O ^ μ*[Tor]deg.
R
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This estimate is sharp for flat Finsler tori, for which [Tor] = deg = 1. For
example, an arbitrary Finsler metric on T2 satisfies

lim R~2 mass* B(R) >3,

with the equality for the flat Finsler torus, whose universal covering carries the
norm with the regular hexagon for the unit ball. (Compare §5.2.)

Observe that the numbers [Tor] and [deg] may assume arbitrary large values
for manifolds V of dimension ^ 4 with Abelian fundamental groups.

Example. We start with the torus Tn, and take away an open regular
neighborhood of the 1-skeleton of some triangulation of Tn. The boundary 3
of the resulting manifold V with boundary W — 3 admits, for n >• 4, an
orientation reversing diffeomorphism 3 -> 3 which induces the identity homo-
morphism on the (free) fundamental group of 3. If we glue two copies of V by
this diffeomorphism, we get a manifold F, for which ττx{V) = ττ\(Tn) = Z",
which admits a map V -> Tn of degree 2, and moreover every map V -> Tn has
degree divisible by 2. In the same way one glues d-copies of Tn for any
d = 2 , , and gets a "nondegenerate" manifold V with degF— d and
πx(V) = Z".

The case of r = rank Hλ{V\ R) < n = dim V. Let /0: V-»Jλ= Jλ{V) be a
continuous (Abel's) map, which induces the identity isomorphism

Then we pass to the coverings of V and /, with

Galois groups = if,(F; Z)/Torsion = Hλ(Jλ\Z) « Z r,

and consider the covering map

The map/) is isometric at infinity (see [37]), i.e.,

where

dist(/0(δ1),/o(β2))^VolR(/o(t51)-/o(β2)).

It follows that for every /°°-norm || ||/00 in the space i f^F R) for which
VolR > || ||/00, there exists a distance-decreasing map /: V -> Hλ(V\ R) within
finite distance from^:

S UP ||/o(^) -/(t5) | |< const < oo.
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This is a corollary of the universal (compressing) property of /°°-norms (see
§§2.1, 4.1). The map / is not necessarily invariant under the actions of the
group Z r = HX(V; Z) in the spaces V and HX(V; R). However, one may average
/over the group Ί/ to a Z'"-invariant distance-decreasing map F-> HX(V;R).
Thus one gets a map/: F -> /, homotopic to/0 and distance-decreasing relative
to the (flat Finsler) metric in /, induced by the /°°-norm in HX(V\ R).

We are interested in a mass*-extremal norm in HX(V; R), which is < VolR.
We approximate this extremal norm by strictly smaller /°°-norms, and get in
the limit a map /: V -» Jλ homotopic to /0 which is distance-decreasing relative
to this extremal norm. In particular, the map / is mass*-decreasing on all
r-dimensional submanifolds of V.

If the map /0 has degree d > 0, then we get (for the second time) the
inequality

mass* Jx < d~] mass* V.

Now let r < n, and take the pullback A of a generic point x G F,(F; R)
under the map f0:

A=/ 0 - '(*)CF.

This Δ is an oriented (V is supposed to be oriented) submanfold in V of
dimension n — r, whose homology class [Δ] E Hn_r{V\ Z) is a homotopy
invariant of the manifold V. We generalize the above nondegeneracy condition
to the case n > r by requiring the class [Δ] to be nontrivial, and denote by
deg = deg(F, the metric in V) the lower bound of the masses* of cycles in V
homologous to Δ. If V is a Riemannian manifold (rather than a general Finsler
manifold), then there exists a sub variety Δmin in Fof the least volume, which is
homologous to Δ, and thus

VolΔmin = deg(F).

7.5.B. Theorem. Let V be a Finsler manifold, for which r — rank HX(V\ R)

^ n — dim V. Then the mass* of the Jacobian Jx — JX(V) satisfies

mass* Jx < (deg)"1 mass* V.

Proof. Apply the coarea formula to the mass*-decreasing map/: V -» Jx.
Example. Let V be a closed aspherical 3-dimensional Finsler manifold

whose fundamental group is nilpotent with generators α, b, c and relations
[a, c] = [b, c] = 1 and [a, b] = c. (The element c generates the center of
πx(V).) Denote by γ the shortest geodesic in V, which is homotopic to some
power ck for k Φ 0.

The homology group HX(V\ Z) is freely generated by the classes [a] and [b\
while the class [Δ]CV^SXXR2 is homologous to the lift of c to V.
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Therefore

mass*^ < (lengthy)' mass*F.

This inequality becomes more interesting with the following geometric

interpretation of mass*^ in terms of the volumes of the balls B(R) in the

universal covering V of V.

7.5.C. Theorem (Pansu [62]). / / # -> oo, then

R~4 mass* B(R) -^ v* mass* V/ (mass*^) 2 ,

where v* is a certain geometric invariant of the YolR-norm in the space

HX(V\ R) « R2, which satisfies 0.1 ^ v* ^ 10.

Furthermore, suppose that the minimal geodesic γ ~ ck in V (which is

non-contractible but yet homologous to zero in V) has

Fill Vol(γ C V) < \sx lengthy

for some constant Is! = Is,(F). Then (compare the "area" inequality of

§7.4.C)

Is1 length γ > mass* /,,

so

[mass*^] 2 ^ Isj mass* F, lim ^ - 4 m a s s * 5 ( ^ ) > 0.1/Is,.

Let us prove an analogous relation with the first nonzero eigenvalue \λ —

λj(F) of the Hodge-Laplace operator on 1 -forms on V, assuming V is a

Riemannian manifold. If ω is an exact 2-form on V, then by the Hodge theory

there exists a 1-form / on V such that

Consider the above Abels' map /: V -> /,, and let ω be the pullback of the

normalized area form ω0 on Jλ:

ω = / * ( ω 0 ) , for ί ωo= 1.

The form ω is exact, and the equation dl — ω implies | / κ ω Λ / | = 1.

Now if / is a mass*-decreasing map, then || ω \\ υ < (mass* Jx)~ι for all v E V,

and so | | ω | | L < (VolF) 1 / 2/iϊiass*/!. If we take a one-form /, for which

dl = ω and || /1| L < λ\/2 II ω || L then

1 = h
Jy

and so

Λ / <||<O||Z.2 | |/||L2 < λ! 1 / 2(Vol V)/ (mass* /, f,

lim R-4 Vol B(R) > 0.1λ\/2.
R-*oo
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8. Visual hulls and minimal subvarieties in Riemannian manifolds

Our filling results in §§4-6 are based on a very coarse solution of the
Plateau problem in some Finsler spaces. By the available technique of the
geometric measure theory one can obtain much sharper results for Riemannian
manifolds.

8.1. Visual Volume. Denote by Ex the radial projection of the space R^
onto the unit sphere Sx~

ι around a point x GRN. Then we apply this
projection Ex to an ^-dimensional, for n < N, submanifold V in R ,̂ and
denote by Jac(ιr, x) the (absolute value of) Jacobian of Ex at a point v E V for
v Φ x. We introduce the visual volume of V from x as the normalized total
^-dimensional volume (counted with geometric multiplicity) of the map Ex:
V-+S?-1; namely,

Vis(F; x) = ί Jac(t>; JC) dv/Vol S\

for the unit sphere Sn C R*"1.
This definition generalizes to submanifolds V in an arbitrary complete

simply connected Riemannian manifold X without conjugate points and also to
submanifolds in the standard sphere SN; namely, one takes the radial geodesic
projection of Xonto the unit tangent sphere Sx~

λ C TX(X) for the map Ex.
The visual volume Vis(F; x) is apriori defined for the points x outside V

(and outside the symmetric image of V in case X — SN). However, if V is a
smooth (immersed or embedded) submanifold in X of positive codimension,
then the function Vis(F; x) extends continuously to all interior points of the
manifold V. In particular, if V is a manifold without boundary, and the
embedding (immersion) V ^ X is proper, then the function Vis(F; x) is con-
tinuous on X unless it is everywhere = oo.

Examples. (1) For a linear subspace Rn C R ,̂ the visual volume is identi-
cally 1/2,

Vis(R"; JC) = 1/2, for all x G R*.

(2) For an arbitrary submanifold V C X and every interior point v in V,

Vis(F; υ) > 1/2,

where the equality may hold only if V is contained in an ^-dimensional totally

geodesic submanifold of X through the point v.

(3) If the manifold X has constant sectional curvature, and the submanifold

VCX meets every totally geodesic submanifold in X of dimension = (dim X

— dim V) at at most d points, then
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for all x E X. This happens, for instance, when V is a real algebraic subvariety
in R* of degree < d.

(4) For a closed submanifold V C X and every point υ E F,

Vis(K;ι>)> 1,

where the equality may hold only for boundaries of geodesically convex
(n + l)-dimensional submanifolds W C X. In this case Vis(F, x) — 1 for all
x <ΞW, and also Vis(F, c) < 1 for all points x E X outside tFunless JT = SN.

(5) For an arbitrary properly immersed submanifold V in R^ of finite
volume,

Vis(F; v) > 1, for all vE V.

This is also true if V has sub-Euclidean growth, that is, if the intersections of V
with concentric balls in R" of radius R -* oo satisfy

0.

(6) For an arbitrary submanifold F in R ,̂

Vis(F; x) < σ^fdistίF, JC)]~"VO1F,

where σn is the volume of the unit sphere Sn CRn+x. The equality holds only
for round ^-spheres with center x.

(7) If the manifold X has nonpositive sectional curvature, and F is a flat
totally geodesic submanifold in X, then

Vis(F; x) < 1/2, for all x <Ξ X.

(8) Let Fo be a closed submanifold in X of codimension > 2, and Fε the
boundary of a small ε-neighborhood Uε(V) C X. If ε -> 0, then the functions
Vis(Fε; x) pointwise converge to the characteristic function of Fo, which is one
on Fo and zero outside Fo. This convergence is uniform outside any given
neighborhood Uε(V0) for ε > 0, and the supremums over x of the functions
Vis(Fe; JC) converge to one. The topology of the manifolds F in this example
does not give any nontrivial lower bound for the supremum (over x) of the
function "Vis". However, there are some relations between the topology of
manifolds Fin R^ and supJceR^Vis(F; x). For instance, nontrivial knots in R3

always have this supremum > 2 (see Examples 8.2.B below).
Following the ideas of Paul Levy (see [53, Part III, Chap. V]) we introduce

the following.
8.I.A. Definition. The visual hull of a submanifold F in X is a closed

subset,

ViHull(F) C X,

of those points x G l , for which Vis(F; x) > 1.
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Examples. The visual hull of a closed connected curve V in R^ always

contains the convex hull of F, as any hyperplane in R^, which intersects the

convex hull, meets the curve at least twice. In fact, the visual hull is strictly

greater than the convex hull unless the curve is a plane convex curve.

The visual hulls of the above manifolds Fe do not necessarily contain the

respective convex hulls. In fact, if ε -» 0, these visual hulls converge to the

manifold Fo.

8.I.B. Theorem. Every closed submanifold V C X bounds inside the visual

hull, that is, the inclusion map V -* F/Ήull(F) sends the fundamental class

[V] G Hn(V), n = dim F, to zero.

Proof. Take a submanifold Y in the complement X\V of dim Y —

N — n - 1 for TV = dim X, and consider the family of maps Ey: V -> S*~! to

the tangent spheres at the points y G Y C X. This family defines a map E of

the product KX 7 t o the unit sphere SN~] C R^, and the degree deg E equals

the linking number between the manifolds V and Y.

If V does not bound inside some larger set U D V in X (the relevant U is the

visual hull of F), then there is a submanifold (or at least a pseudomanifold) Y

in X outside U such that

linking number ( F , Y) Φ 0.

Thus the theorem is reduced to

8.1.B'. Proposition. The condition deg J ^ ^ O implies the existence of a point

y G Y for which the volume of the map Ey {that is, the integrated Jacobian of this

map) satisfies

for the unit sphere S " C R " + 1 .

Proof. For dim F = 1 the proof is trivial, as every curve Ey(V) in SN~ι of

length < 2ττ is contained in an open hemisphere and therefore can be

canonically contracted to some point in this hemisphere. This shows that the

map E is contractible, and so deg E = 0.

Next we look at another simple case; namely, we assume dim V — N — 2,

and suppose for simplicity's sake that the maps Ey are imbeddings. Since

deg E φ 0, there is a point j>0 G 7 for which the image of the map Ey\

V -> SN~ι divides the range sphere SN~ι into two parts of equal volumes. Then

the classical isoperimetric inequality for SN~ι implies

;„ ^vois"- 2 .

Observe that this proof works with minor modifications for maps Ey which

are not necessarily imbeddings, but yet only for dim F = N — 2.

Now the general case of the proposition reduces to the following facts.
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Fact 1. Let V and Y be closed manifolds (or pseudomanifolds), and E a

continuous map of the product V X Y to a closed Riemannian manifold S. If

deg E ¥= 0, then there exists an n-dimensional, n = dim V9 minimal subvariety M

in S, whose volume is not greater than the volumes of the restricted maps Ey\

V -> Sfor Ey = E\VXy=yandally G Y.

This is a corollary of the Almgren-Morse theory (see [5]).

Fact 2. An arbitrary n-dimensional minimal subvariety M in the unit sphere

SN~λhas

See [52].

Unfortunately, both Facts have long and difficult proofs, as they depend on

the regularity theorems of Almgren and Allard (see [6], [2]). A direct elemen-

tary proof of Proposition 8.1.B' is yet to be found.

Theorem 8.1.B generalizes the following result of Bombieri and Simon,

which is the solution of Gehring's linking problem. (See [16].)

8.I.C. Theorem. The filling radius of a closed n-dimensional submanifold

V C R^ admits the following (sharp!) upper bound

Fill Rad(F C R") <[Vol(K)/Vol Sn]λ/\

with the equality for round n-spheres in Rn+ι C R .̂

Proof. Theorem 8.1.B implies Theorem 8.1.C, as the visual hull of V is

contained in the ε-neighborhoods of Ffor ε = [Vol(F)/Vol Sn]λ/n where Sn is

the unit sphere.

8.2. Singularities of minimal varieties and the visual volume. Bombieri and

Simon have proved their theorem by analyzing a minimal filling W of V. A

slight modification of their method provides additional geometric information

concerning minimal fillings of V.

Recall that the (upper) density of an (n + l)-dimensional subvariety W in

R^ at a point v G Wis

lim sup [Vol(W Π BZ(p))/Vol 5 π + 1 ( p ) ] ,
p->0

where B^(p) is the Euclidean ball at w of radius p, and Bn+\p) is the p-ball in

Rπ + 1.

If W is a minimal subvariety in R^ with boundary, then all interior points

have density at least one:

and the boundary points have

Όemw(W)> 1/2, w G dW.
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Furthermore, the singular points in the interior have density > 1 + ε for some

universal positive number ε = ε(N) > 0, and the boundary singular points

have density > 1/2 + ε. These are deep theorems of Allard (see [2], [52]).

8.2.A. Theorem. Let V be a smooth n-dimensional submanifold in R^, and W

a minimal (n + \)-dimensional variety with boundary dW'= V. Then for every

interior point w E W,

(8.1)

and for every boundary point v E V9

(8.2) D e n s ^ H O < Vis(F, υ ) - { .

Remark. As any submanifold V bounds at least one minimal variety (for

example, the variety of least volume), Theorem 8.2.A indeed sharpens Theorem

8.1.BforΛΓ=R ; v.

Proof. We prove (8.1) and (8.2) by applying the first variation formula to

the radial field Z = Zw in RN. The word "radial" means that Z is invariant

under rotations of R^ around the fixed point w. The field Z which we need is a

product of the standard field x — w, for x E R^, by a positive function such

that the following two conditions are satisfied:

(a) The restriction of Z to any linear subspace R"+ 1 C R ^ through w has

zero divergence.

(b) The flux of Z through any ^-sphere in every R"J~] around the point w

equals one.

Observe that the radial field Z which satisfies (a) and (b) is unique. This Z

on every subspace RnJ~ι equals the gradient of the fundamental solution of the

Laplace operator on RnJ~ \ and so the field Z has a singularity at the point w.

Observe furthermore that the divergence of Z on every (n + l)-dimensional

submanifold W C Rw + 1 is nonnegative; the volume of W may only increase

under the flow in R^ generated by Z. Moreover, the divergence of Z on the

cone from w over the submanifold V C R^ is zero. The flux of Z through V in

this cone is exactly the visual volume Vis(K, w), provided that the radial

projection Ew: V -» S^~ι is almost everywhere injective. Otherwise, this flux

may be only less than the visual volume.

Take the normal projection Z of the field Z on the minimal variety W at all

regular points of W. This new field Z has nonnegative divergence on W (it

expands the volume of W\ while the flux of Z through V is not greater than

the corresponding flux of Z in the cone, which in turn is not greater than

Vis(K, w). (Compare [16], [52].) Therefore the visual volume may be only

greater than the flux of Z through intersections of W with infinitesimally small

spheres S"~ι(ε),ε -* 0. The limit of the latter flux as ε -> 0 equals the density
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Densw(W), and thus the proof is complete for interior points of W. The

analysis of boundary points is essentially the same.

We refer to [52] for basic properties of minimal varieties, which are neces-

sary to justify the above arguments.

Observe that Bombieri and Simon use another radial field to estimate a

lower bound of the volume of F, rather than the visual volume.

8.2.B. Examples. By the results of Allard mentioned above, Theorem 8.2.A

implies that there are no singularities on minimal varieties W in R^, whose

boundary W — V satisfies

(8.3) ε,

for all x GRN and some universal number ε = ε(N) > 0. In particular, any

closed manifold V in R^ which satisfies (8.3) bounds a smooth manifold, and so

all characteristic numbers of V vanish.

If W is a parametrized minimal surface (dim W = 2), then the only possible

singularities are double points and branched points. Therefore one may take

ε = 1. In particular, a simple closed curve V in R3, for which Vis(F, x) < 2 for

all x E R3, bounds an imbedded minimal disk, and so the curve is unknotted.

This result is sharp. If the trefoil knot V below converges to the doubly

covered circle, then sup x e R3 Vis(F; JC) -> 2.

F I G . 2

The author does not know any elementary proof of the above facts, and

whether the inequality supx Vis(F; x) < const for a large "const" imposes any

topological restrictions on V. Such restriction does not appear for simply

connected submanifolds of high codimension. In fact, every closed simply

connected manifold V of dim V >• 4 can be obtained by a surgery in codimen-

sions > 2 from a disjoint union of some standard manifolds (compare [38]). A

natural geometric realization of this surgery in the space R^, for any given
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N > 2 dim V, imbedds V into R^ with sup Vis(F; Λ:) < const for some univer-

sal constant const = const(w). This argument also yields open properly im-

bedded submanifolds V in R^ of finite volume, for which supx Vis(F; x) <

const = const(w).

8.3. Minimal varieties in the hyperbolic space HN. Theorem 8.2.A gener-

alizes to the hyperbolic space (of constant curvature -1) and also to sub varie-

ties in a hemisphere in SN. Furthermore, let V be a smooth closed H-dimen-

sional submanifold in the ideal boundary dHN = SN~ι of the hyperbolic space

HN. Then one may consider complete minimal varieties W in HN

9 whose ideal

boundary dW C dHN equals V\ namely, one takes a geodesic cone from a point

x G HN over V C 3i7, and requires W to be asymptotic to this cone.

To understand these minimal varieties we take the convex hull of V in HN,

ConvHull(F) CHN,

and observe that this hull is contained in some ε-neighborhood (for ε < oo!) of

any (asymptotic) geodesic cone over V. In fact, this hull exponentially ap-

proaches the cone at infinity as it is clearly seen in the projectiυe model of HN.

The convex hull of V even has finite volume for TV > 2 dim V + 2.

The radial projection on the unit tangent spheres Ex\ HN -» S^~\ for

x G HN

9 extends to the boundary SN~ι — dHN, and so one has the visual

volume Vis(F; x), x G HN, defined for submanifolds V C SN~X = dHN. The

function Vis(F; c) is an eigenfunction (in x) of the Laplace operator on HN,

and if points x in the convex hull of V approach infinity, then Vis(F; JC) -> 1

(see [72]).

We say that a complete (i.e., closed in HN as a subset) subvariety W in HN

spans V in θi/^, if the closure of the projective image of W in the unit ball BN

spans the image of V in SN~λ = dBN, that is, the fundamental class of V

vanishes in the (spectral) homology of this closure.

If such a spanning subvariety W in HN is a minimal variety of dimension

n + 1, then it is contained in the convex hull Conv Hull(F) C HN. Every such

W probably satisfies inequality (8.1). We shall now prove this inequality for a

special class of minimal varieties W.

Take the intersection of W with the ball of radius R around some point

w G W, and divide the volume of this intersection by the volume of the

hyperbolic (w + l)-ball. Denote this ratio by

DensJJF; R) = Yol(W Π Bf(R))/Vol B£+l(R).

If W is a minimal variety, then the function Dens^JF; R) is monotone

nondecreasing in R. (See [52].)
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Now we require W to satisfy the following two conditions:

(1) lim inf Rx log DensJJΓ; R) < oo
R

for some point w E W. This is equivalent to

(8.4) lim inf Rx log No\(W Π B%(R)) < oo,

for all points w E W.
(2) W is asymptotically volume-minimizing. That is, for every point w E W

and every ε > 0 there is a number Ro > 0 such that the intersection W Π
B^(R), for every R> Ro, has a volume smaller than 1 + ε times the volume of
any other variety which spans the boundary of the intersection d(W Π

(Probably, all minimal varieties which span V satisfy (1) and (2).)
Example (Anderson). Let us project the manifold V C dHN on the sphere

S£~\R) C HN around a point w E Conf Hull V C HN, and let us span this
projection by a volume minimizing variety W(R) in the ball B*(R) C //Λ We
compare this variety W(i£) with the geodesic cone from the point w over V and
get

Όensw(W(R)'9 R) < Dens^ίCone) = Vis(K; w).

Therefore for every point w' E W(R) within distance p from w and for every
Rf ^R- ρ,we get

Densw,(ϊF(/0; Λ') < exp(«p)Vis(F; w).

This gives a uniform bound for the volumes of the intersections W(R) Π
^ ( Λ ' ) for any fixed ball B^(R') in HN and for Λ ^ oo. Thus some subse-
quence of the varieties W(R), R -» oo, converges (in the flat topology) to a
minimal variety W C Conv Hull(F) C HN, which spans F C dHN and satis-
fies the conditions (1) and (2).

Now we claim the following version of Theorem 8.2.A.
8.3.A. Theorem. If a minimal variety W in HN spans a manifold V C dHN,

and satisfies the above conditions (1) and (2), then

for all points w E W and all real numbers R > 0.
Proof. Denote by V(R) C S"~\R) the projection of V on the sphere

S£~\R) C HN, and let us replace the intersection of W with the ball B^(R)
by the union of the cone over V(R) from w and the cylinder of the normal
projection of the boundary d(W Π B^(R)) = W Π S%(R) on the manifold
V(R). This operation gives a new variety with the same boundary as the
intersection W Π B^(R), and according to (2) the volume of this new variety
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may be only slightly smaller than the volume of W Π B^(R) for large R. As
the convex hull of V exponentially narrows around the cone over V for
R -» oo, we can estimate the volume of the new variety by (the volume of the
cone) 4- (an exponentially small factor) X (the ^-dimensional volume of the
boundary of W Π BN{R)). Next we use the coarea inequality,

£ f
and then the property (1) implies

lim Densw( JΓ, R) < Vis(F, w).
R-+oo

Remarks, (a) Using the normal projection of W on the cone over V one can
see that

lim Dens^ W, R) = Vis(K, w),
R^oo

for all w GW.
(b) The apriori estimates of Allard [2] seem to imply not only the absence of

singularities of W at the points w G W, for which the density

Όens(W) = lim ΌQΠSJW, R)

is close to one, but also a universal bound on the extrinsic curvature of W at
the points w, for which the density Densw(JΓ, 1) is close to one. If such
universal bound exists, then the extrinsic curvature in our case must be
necessarily close to zero, and thus the induced curvature in W is close to - 1 .
This would make ^ homeomorphic to Rw+1, provided irx(V) — 0 and

sup Vis(F; x) < 1 + ε,
xGHN

for some universal ε = ε(N) > 0. In fact, by such a universal bound for the
extrinsic curvature one can prove that the closure of the projective image of W
is a smooth ball with dW = V, provided that supx Vis(F; x) < 1 4- ε, and that
there is no assumption on the fundamental group πx(V). In particular, the
manifolds V in SN~ι = dHN with small visual volumes would be (proven to
be) smooth spheres.

In a special case, namely for circles in S3, one does not need any apriori
estimates to get W diffeomorphic to a disk, as one always can span the circles

V(R) C SΪ(R) = dBt(R) C H4

by disks. These disks are nonsingular for large R if supx Vis(F, x) < 2.
Example. The trefoil knot V in S3 can not be spanned by any embedded

disk in B4, and so the visual volume of this V from some points w G H4 is
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greater than 2. One can express this property of the trefoil knot V C S3 by
using the conformal geometry of the unit sphere S3. Namely there is a
conformal transformation of S3 which makes the length of V greater than 4π.
(Compare [54].)

Questions. What is the asymptotic behavior of minimal varieties in spaces
X of nonpositive curvature? It seems that the asymptotic Plateau's problem is
solvable in manifolds X, whose sectional curvature is pinched between -1 and
-4, if one takes for V C dX the radial projection to infinity of a smooth
submanifold in a tangent sphere Sx C TX(X). What is the situation in sym-
metric spaces XΊ See Berkeley's thesis (1981) by M. Anderson for beautiful
results in this direction.

8.4. On the volume of visual hulls. Let V be an w-dimensional submanifold
in R ,̂ and let U CRN be an arbitrary measurable subset of the total JV-dimen-
sional measure μ. Let us estimate the integral

f Vis(F; u)du.
Ju

For a fixed point ϋ E F w e treat the Jacobian of the map Ex: V -> Sx~
ι as

the function of JC,

J(x) — Jac(υ; x)

There is a unique number t > 0 for which the pullback J~ι[ t, oo) satisfies

Vo\j-\t) = μ = Volt/.

Denote this pullback by U' — ί/'(ι>, μ) C R and observe that

IΌ=[j(u)du<[ J(u')du' = ΓΌ.

The integral /' is, in fact, a unique function of μ, which can be explicitly
calculated. We need only the following crude estimate for Γυ by the integral of
the function [dist(υ, x)]~n = δ(x) > J(x) over the ball B = B?(R) for which
Vol B = μ = Vol U' = Vol U:

(8.5) I'Ό < fδ(x) dx = (N- n)

for C = N(N-"^"(N - n)-\Vol S

N

Then

(8.6) ί Vis(F; u)du = (Vol Sn)~X f Iv dv < C'(Vol Sn)~lμ(N-"
J11 * V
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We apply (8.6) to U = Vi Hull(F). We have, by definition,

Vis(F, u)>\, for u E U = Vi Hull(F),

and therefore

f Vis(V;u)du>VolU=μ.Ju

Thus we obtain the following estimate for the volume μ = Vol(Vi Hull V):

(8.7) μ<C"(VolV)N/n

9

for

C" = (C')N/n(VolSnyN/n

= NN<N-nVnXN - n)~N/n{\o\ SN-χfN~n)/n(Yo\ SnyN/\

The visual hull of a closed hypersurface V in Rw+1 contains the region

W C R""1 bounded by F, and then (8.7) yields the ordinary isoperimetric

inequality

Vo\W<C"(Vo\V)(n+])/".

One can improve this constant C" = Cπ" by explicitly evaluating the integral

ΓΌ, but this only makes the inequality sharp for n — 1. (See [68], [7], [63] for

variations and generalizations of this argument.)

9. Distortion of maps and submanifolds

If one wants to apply the results of the previous section (in particular, the

Bombieri-Simon estimate for Fill RadίFCR^)) to an abstract (not em-

bedded) Riemannian manifold F, one should decide whether V admits a map /

into some space RN which does not distort the metric very much. Recall that

the dilation (Lipschitz constant) of /is

Dil / = sup[dist( /(v , ) , /(υ 2 ))/dist( v,, v2)],

over all pairs of points υλ and v2 Ψ vx in V. The distortion of a homeomor-

phism/of Fonto a submanifold in R^ is defined as the product

Distor(/) = (di l/)(di l/" 1 ) .

Furthermore, every submanifold V C R^ carries two natural metrics: the

first is induced from R^ and the second corresponds to the Riemmanian

structure induced from RN. The distance in the second metric is the lower
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bound of the lengths of curves in V, which join given points in V. The
distortion of Fis defined as the distortion of the identity map V -> V relative to
this pair of metrics.

Examples. (1) Every closed curve in R^ has distortion > π/2, where the
equality holds only for circles. (See [37].) This implies the inequality distor(F)
> T7-/2 for those compact (possibly with boundary) submanifolds V C R ,̂
which either have πλ(V) Φ 0 or admit a fixed point free involution preserving
the induced Riemannian structure.

(2) Let JC, y, and z be orthonormal coordinates in R3. Let V be the closed
surface in R3, which is the union of the disk {x2 + y2 = 1, z = 0} and the
cone from the point (0,0,10) G R3 over the circle {x2 + y2 = 1, z = 0}. A
straightforward calculation shows that

distor V < m/2 - 10"10.

(3) If a compact submanifold V in R^ has distortion < 7r/2γ/ϊ, then V is
contractible (see the Appendix by Pansu in [37]). Therefore every map of a
non-contractible Riemannian manifold into R^ has distortion > ττ/2}/2 > 1.

(4) The argument in [37], when applied to submanifolds V in the hyperbolic
space HN, bounds the distortion of V C HN from below roughly by

e x p [ F i l l R a d ( F C ^ ) ] .

If V is an abstract Riemannian manifold with large filling radius Rf — Fill
Rad V\ then any map V -» HN has distortion roughly greater than Λ'/log Rr.
It follows that every map R" -> HN has infinite distortion for n^2.

Conversely, there is no map Hn -> R ,̂ n >• 2, of finite distortion. Indeed, the
hyperbolic space Hn has exponential growth, while the Euclidean space R^ has
polynomial growth. It is unclear, however, whether there are maps of finite
distortion of the hyperbolic plane H2 into the infinite dimensional Hubert
space R00.

(5) An ^-dimensional manifold of any given topological type can be realized
as a submanifold V in R^ for large N such that

distor V< \Oθ{n .

This is proven by induction with some triangulation of V.
The dimension N may depend on the topology of V. What happens in low

codimensions is not clear.
Question. Does every isotopy class of knots in R3 have a representative V

in R3 with distortion < 100? Is it so for all torus knots Tp q for/?, q -* oo?
9.1. Distortion and spectrum. The geometry of a Riemannian manifold V

may impose stronger restrictions on the distortion of maps V -> RN than the
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topology of V. In particular, the first eigenvalue of the Laplace operator (on
functions) on V, called λx = λx(V), controls the distortion of maps/: V -> R^
as follows. Denote

IntJ 2 = if Γdistίϋ,,^)]2*,,*,,
JJVXV

for the Riemannian distance function on V.
9.1.A. Proposition. The distortion of an arbitrary map f of a closed n-

dimensional Riemannian manifold V into R^ is bounded from below as follows:

(9.1) [άisioτ(f)]2>[\x{V)ln\d2]/[2n(yo\vf\.

Proof. We assume without the loss of generality the map / to be distance-
decreasing and then estimate an upper bound of the square average dilation of
/, which is

(9.2)

We denote the coordinate functions V -+ R of /by /•, i — 1, , JV, and further
assume that fyfiv) dv — 0 for = 1, -,N. Then

2

1=1 J γ

N

As the map / has Dil / < 1, we get

I l|g«d>S(«>)ll

and so

Combining this inequality with (9.2) gives (9.1).
Let us indicate a specific example of a manifold V, for which the right-hand

side of (9.1) becomes arbitrary large. We start with a combinatorial argument
which is closely related to the " type-cotype" considerations in the geometric
theory of Banach spaces (see [70]). These ideas were explained to the author by
V. Milman.

Take the unit cube in R̂ , and denote the zero and the one-dimensional
skeletons of this cube by K° and Kx D K° respectively. Notice that K°
consists of 2d vertices and Kx had dld~λ edges. We define a "Riemannian"
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metric in Kx by taking the lengths of the shortest curves in K] between pairs of
points. Then

Diameter^ 1) = Diameter(Λ:0) = d,

that is, the square of the Euclidean diameter = {d of the unit cube.
We want to evaluate the combinatorial first eigenvalue of K°,

ι κ°
where the first sum is taken over the pairs of points x and y in K° with
dist(;c, y) — 1, and the infimum over the functions /(JC), x E K°, satisfying

For a function/ = /(x), let

P

denote the sum of the pairs of points in K°, for which dist(x, y) = p. Let us
prove by induction that

(9-3) Σ<Σ
d 1

This is straightforward for d = 2, as the sum of the squares of the two
diagonals of a quadrilateral is not more than the sum of the squares of the four
sides. Next we apply the inequality Σl < Σ? to (l9d— l)-subrectangulars
(which have sides of length 1 and d — 1) in the ̂ -dimensional cube. Then by
summing over all dld~x such rectangulars we get

d d d

(9.4) Σ+Σ^Σ
1 d-\ d

Finally, we observe that the inequality Σp

p < Σf for some integer p in the
interval 1 <p < d yields

(95)

as there are exactly d\2d~ι/p\(d — p)\ pairs of points x and y in K° with
άist(x,y) =p.

In particular, the inductive assumption Σd

dZ\ < Σf"1 gives Σd

d-λ ̂  (d - l)Σf,
and using (9.4) we prove (9.3) for all d.

Observe that for any distance-decreasing map F: K° ->• R ,̂ inequality (9.3)
implies the existence of a pair of points x and j> in A'0 with dist(x, y) = d such
that dist(F(x), F(y)) < {d = dist(x, y)/ Jd.
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Now if ΣxGKof(x) = 0, then by using the same argument as in the proof of

the above Proposition (A), and summing up inequality (9.5) overp — 1, ,rf,

we get

(9-6) 2 f2(x)<\ί.
x(=K °

which means that the combinatorial eigenvalue λ, = λ,(ΛΓ°) is > 2. In fact,

one may have equality in (9.6) only for linear projections of K° CRd on R,

and thus

= 2 fora l l</=2,3, .

The quantity Int d2 for K° is

Σ y ΓdistίJC x )V = y D2—

The role of dimension n now is played by the number d, as every vertex in

K] has d adjacent edges. Thus we get for the second time (and, in fact, for the

same reason) a lower bound for the distortion of the maps K° -*RN for

arbitrarily large N:

(distor)2 ^ (λ, Int </2)/ (2rf2 w ) =

The geometry of the finite space KQ can be "transplanted" to a closed

surface of genus d2d~λ — 2d + 1 as follows. We assign a small 2-sphere to each

point in K°, and join some spheres by narrow tubes (handles) of unit length,

which correspond to the edges of the 1-skeleton Kι. In this way we get a

surface whose every map to R^ has distortion ^ {d /2, but it is difficult to

control the eigenvalue \x since the geometry becomes complicated when d

edges of Kx come to one vertex.

9.2. Iterated cubical graphs. We want to modify the complex Kλ in order to

have only three edges at every vertex.

Start with an arbitrary graph (X9 A% that is, a 1-dimensional simplicial

complex with the set X of vertices and the set A of edges. For a function

/ = f(x), x E X, and a subset X' C X, we write

A = y f(*

We denote by Df the function on A which assigns the difference/(x,) — f{Xj)

to each edge a = (xi9 c ) between some vertices xt and xJm The inverse first
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eigenvalue of X, denoted by A(X) = λ~^(Xχ is the smallest number Λ > 0 for
which the inequality

\\j\\\χ)^A\\Df\\\A)

holds for all those functions/: X -» R, whose average value is zero, i.e.,

q-X 2 fix) = 0,
x<ΞX

for q — #(X) — the number of vertices.

Observe that every function/on X with the average value/satisfies

(9.7) \\f-f\\\x)<A(X)\M\2(X),

(9.8) MlV) =II/-/||V) +II/IIV) =y-ff(x) + if2

<A(x)\\Df\\2 + qf\
Next we assume that the graph (X, A) has degree d, that is, every vertex

x G X has d adjacent edges, and we compose (X, A) with another graph (7, B)
for which # ( 7 ) = d as follows.

First we take q isomorphic copies of the graph (7, B) labelled by the vertices
x 6 l , call them (Y(x), B(x)), and take the disjoint union of these copies:

(7*, B*) = {YXX,BXX)=

Then we attach to the graph (7*, B*) some additional edges, called a* for all
a E A; namely, for every edge a EL A joining some vertices x and I ' i n l w e
choose some points y = }>(#) G 7 = 7(x) and yf — y\ά) EY— 7(V), and
join these pairs (y, y') by the edges a*. We require every point y G Y(x) for
all x G X to have exactly one edge a* attached to it. If we assume the graph
(7, B) to admit a transitive group of automorphisms, then the resulting
composed graph (7*, B* U ̂ 4*) is uniquely determined (up to an isomorphism).

Let us estimate the number Λ(7*) in terms of A(X) and Λ(7). Take an
arbitrary function F = F(y*) = F{y, x) on 7* = 7 X X such that

Σ
y*<ΞY*

and put

Take an edge α G ̂ 4 between some vertices x and x' in X, and write
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where

P(a) = F(y(a),x)-F(y'(a),x'),

Q(a) = d-1 Σ (F(y,x)-F(y(a),x)),
yeY(x)

Then

(fix) -f'(x)Ϋ < 2[p2(a) + (Q(a) + R(a))2],

ί ΣΣ (F(y,x)-F(z,x))2]

2(A(Y)\\DF\\2(B(x))

\\2(^ {2 + SA(Y))\\DF\\2(B* U A*).

Next, for every x E X,

\\F\\2(Y(x)) < A(Y)\\DF\\2(B(x)) + df\x),

and then

*z A(Y)\\DF\\\B*) + dA(X)\\Df\\\A)

< (A(y) + 2dA(X) + 8Λ(X)A(Y))\\DF\\\B* U A*).

In the following we shall have Λ( Y) < 2. Then

||F||2(Y*) < (2 + Λ(X)(2J + 16)||Z)F||2(5* U A*)9

and so

(9.9) Λ ( Y * ) ^ ( 2 J + 16)Λ(JT) + 2.

Now we apply the above consideration to the one-skeletons of the d-dimen-

sional cubes, which are studied in the previous section; namely, we take

d0 = 3, dλ — 23~ι — 4, and, in general, di+ι = 2di~x. Then we take for (X, A)

the 1-skeleton of the ^-dimensional cube, and for (Y, B) the 1-skeleton of

(dk_x - l)-dimensional cube. Thus the composed graph (Y*, A* U B*) has

degree dk_x, and we take it for the new space X. The corresponding new Y is

the 1-skeleton of the (dk_2 ~~ l)-dimensional cube, and this descending process

is carried over until we arrive at a graph of degree three, which is called the

k-iterated cubical graph (Xk, Ak).
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As we know that the number Λ for cubes is \, the above inequality for the

composed graphs leads to the following bound for A(Xk).

The first (cubical) graph has certain degree d — dk. the first composition

process increases Λ by a factor < 20d. The new degree satisfies dk_x < log dk,

as long as dk > 1000. Therefore the second composition process makes Λ less

than

we have Λ less than

(20ί/) (20 log d)(20 log log d)\,

and so on. In particular, as k -» oo,

for every fixed positive ε.

The number of the vertices in our graph is the product

= 2d*dkdk_r-d^ ΐoτdι=4.

We need only the asymptotic relation

which holds for every fixed ε > 0.

Finally, we measure the distance in Xk between pairs of points by the length

of the shortest paths of edges. We estimate a lower bound of the quantity

Intd2 = ΣΣdist2(x, y) as follows. For the 1-skeleton of the d-dimensional

cube, Int d2 is 22d~2d(d — 1). The first composition increases this number by a

factor > d2, as each vertex "divides" into d copies and the distances grow up.

The further compositions may only increase Int d2 and so

lntd2(Xk)>22d-2d\d- 1).

Thus the relevant ratio

\λ\nid2/(#Xkf

is greater than d]~ε for every positive ε and large k.

Now as the graph (Xk9 Ak) (unlike the original cubical graph) has fixed

degree = 3, we can control the geometry of surfaces obtained from the union

of spheres U χ e A , S2 by attaching handles "along" the edges a G Ak.

We enumerate the relevant properties of such surfaces in the final

9.2.A. Proposition-Example. There exists a sequence of closed surfaces Vd

for some sequence of numbers d — dk-+ oo with the following list of properties:

(1) The surfaces Vd have locally bounded geometry, their sectional curvatures

are pinched between + 1 and - 1 , and their injectivity radii are everywhere greater
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than one. {In fact, one even can make the sectional curvature arbitrarily close and

probably equal to -1.)

(2) The genus of Vd is about 2dd, that is, the genus is pinched between 2ddι~ε

and2ddι+ε for any fixed ε > 0 and d -> oo.

(3) The total area of Vd is about 2dd in the same sense.

(4) The first eigenvalue of the Laplace operator on Vd is about d'K

(5) The integral

= if dist(υ l9 v2) dvλdv2

is about 22dd\

(6) The filling radii of the surfaces Vd are < const. Moreover, each Vd bounds

a handle-body Bd D Vd such that the inclusion Vd -> Bd is isometric {in particular,

the boundary dBd = Vd C Bd is totally geodesic in Bd), and the distances

dist(6, Vd) are uniformly bounded for all b E Bd and all d—dk. {This handle-body

is obtained by a three-dimensional thickening of the graph {Xk, Ak).)

9.3. On the Ramsey-Dvoretzki-Milman phenomenon. The properties of the

above "cubical" spaces illustrate the following general heuristic principle,

called Ramsey's phenomenon: "If a function / on a large space X has small

oscillation, then the function / has very small oscillation on many subspaces of

X, and also has very small average oscillation relative to many measures on X "

Examples of Ramsey's phenomenon. We start with the classical

9.3.A. Ramsey's theorem. Let Δ be an infinite dimensional simplex with

countably many vertices, and let X — Xk{Δ) be the set of the barycenters of the

k-dimensional faces of Δ. Let f be an arbitrary map of X into a finite set. Then

there exists an infinite dimensional face A ' c A such that the map f is constant on

the subset X' — Xk{Δ') C X (See [30] for more combinatorial examples.)

9.3.A'. Milman's theorem. Let f be a uniformly continuous function {for

example, a Lipschitz function with dilation < const < oo) on the unit sphere in

the infinite dimensional Hilbert space f: S°° -> R. Let K be an arbitrary compact

subset in S™, and let ε > 0 be any given positive number. Then there exists an

isometry Is: K -> S°° such that the composed function f ° Is: K -> R is ε-constant,

that is, f o Is sends K to an ε-interval in R.

This is one of many generalizations of the famous theorem of Dvoretzki (see

[29] for further information).

9.3.B. Wirtinger's inequality. The unit sphere Sn has the first eigenvalue

λ 1(5# l) = /ι. Therefore if a function /: S" -+ R has [fs. Hgrad f{s)\\2 ds]/Vo\ S"

= D, then
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for

, f(s)ds)/YolS".

In particular, if D i l / ^ 1 and n is large, then the function f is close to the

average value A on a subset in Sn of almost full measure.

There are close relations between the theorems of Milman and of Wirtinger.

In fact, if a function/on Sn is ε-constant (i.e., Dil / ^ ε) on a subset U C SN of

almost full measure, mesn U > (1 — δ)Vol Sn, then by integral geometry there

is a /:-dimensional equator Sk C S" for any given k < n such that

(9.10) mesk(U Π Sk) > (1 - δ)Vol Sk.

If we further assume Dil f< 1, and let n -> oo, then ε and δ converge to zero

by Wirtingers' inequality. Then inequality (9.10) for any fixed k makes the

function / almost constant on the whole equator Sk. As any uniformly

continuous function can be approximated by Lipschitz functions, and every

compact subset in S00 can be "approximated" by spheres Sk C S°°, we obtain

the implication (9.3.B) =» (9.3.A').

This argument is due to Milman [60] who originally used more powerful

Levy's isoperimetric inequality instead of Wirtinger's. (See [60], [53], [35], [40].)

Also observe that Milman's theorem generalizes the following simple classi-

cal fact: An arbitrary n-dimensional linear space of functions on a probability

space K contains a function f0 ^ 0, for which

(Analogous relations hold among all norms || || LP.)

If AT is a subset in Sn~ι C Rπ, and the relevant space consists of linear

functions, then (9.1) implies Milman's theorem for a normal linear projection

/: K -> R C R", as there is some rotation Is of Sn such that the composition

/ o Is becomes L2-close on K to a constant.

Let us give a simple proof of the following Riemannian version of Milman's

theorem.

9.3.C. Theorem. Let V be a closed Riemannian manifold of dimension n, let

X be an arbitrary Riemannian manifold, and let f: V -> X be a Lipschitz map

which sends V onto an m-dimensional subset of X for some m < n. Then for any

given number / > 0 there exists a geodesic segment Ko in V (possibly with self

intersections) of length I whose image has

length f(K0)
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Proof. The map / is almost everywhere differentiable, and the differential
D = DJ: Tυ(V) -> TX(X% x = f(v), has rank < m. Therefore the average of
IID(s)\\2 over the unit sphere Sn~ι C TV(V) satisfies

n~λ < — sup \\Ds\\ < -

It follows that the average of ||Z>(.s)||2 over the Liouville measure on the unit
tangent bundle S(V) of V is also bounded by f(Dil/) 2 . As the Liouville
measure is invariant under the geodesic flow, we get the same bound for the
average AvrK] I{K) of the integrals

= rΊ\\D{sk)(dk,

g
Av{κ] I(K) < ̂ (Dil / ) 2 , and obviously

where sk denotes the unit tangent vector to the geodesic segment K, and K runs
over all segments of length /. Thus we have a segment Ko for which I(K0)

v{κ]

length f(K0)< ψ(K0)

9.3.C. Remark and corollaries, (a) If V = Sn and X - R, then we apply
Milman's theorem for K - Sι C Sn C S00 by letting n -> oo. In fact, the
general case of Milman's theorem can also be derived along these lines (see
below).

(b) The above proof also applies to those noncompact manifolds V which
admit on averaging operator on bounded functions on V. Such manifolds are,
for instance, complete manifolds V of subexponential growth which means that
balls around a fixed point υ E V have

lim R-χ(logVolB(R)) -> 0.

For example, the above theorem holds for V = R". However, the theorem is
false for the hyperbolic space Hn for n >• 10, as the distance function/ = f(v)
= dist(i), v0) to a fixed point has oscillation > 1/3 on every geodesic segment
in H" of length / ̂  100.

Now let V be a complete Riemannian manifold of arbitrary dimension
(> n\ and let a locally compact group G act isometrically on V. Let Gv,
υ E F, denote the isotropy subgroup of a point υ, and let the (linear) action of
Gc on the tangent space TV(V) has no nontrivial invariant subspaces of
dimension < n for all points v E V. Let /: K -̂  I be a Lispchitz map of V
onto an m-dimensional subset in a Riemannian manifold X.
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9.3.C". Theorem. Let K C V be a piecewise smooth one-dimensional subcom-

plex in V of total length I such that every two points in K can be joined by a curve

of length < /0 < / in K. Then in the following two cases there exists an isometry

g E G of V such that

length(/o g)(K) < /(Dil f){m~/n ,

(1) The group G is amenable. For example, G is an extension of a compact

group by a solvable group.

(2) The function f is invariant under a discrete subgroup Γ C G for which the

quotient V/T has subexponential growth.

Proof. As the invariant subspaces of the action Gv on Tυ have dimensions

>• n, by linear algebra one gets the following bound for the average of

II D(gs)\\2 over the group Gv with the normalized Haar measure, where D is the

differential of / a t v E F, and s is a vector in the unit sphere Sv C TV(V):

f \\D(gs)\\2dg^^ sup \\D(s)\\2.
n

Conditions (1) and (2) allow one to average the above inequality over the

group G, so that one gets a translate Ko = gK for some g E G, for which the

restriction f\ Ko has

(compare Theorem 9.3.C). Thus

length f(K0)< ψ(K0) < /Dil ffn~/n~,

as well as

Corollary. Let V, X and f satisfy the assumption of Theorem 9.3.C", and let

K' C V be a finite subset which contains q + 1 points: K' — (t>0, ,vq). Then

for some translate K'o = gK'

O s c / | K'o < Dil /(Diam K'){qm/n .

Proof. Apply the theorem to the union of minimal geodesic segments

between v0 and vt, i = 1, ,q.

Theorem 9.3.C" and the above corollary are most interesting when applied

to sequences of G-manifolds (F, G)n for n -> oo. However, some infinite

dimensional (n -> oo) results can be obtained directly as the following analysis

shows.
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Let L be a Banach space, and let Lλ and L2 be linear subspaces in L. We say

that Lλ and L2 are δ-orthogonal if the restrictions to Lλ and L 2 of an arbitrary

linear functional a: L -» R satisfy

For example, orthogonal subspaces in a Hubert space L are δ-orthogonal for

a l l δ ^ 1 - 1/VT.

A family of linear operators {A}, A: L -* L, is called δ-nonrecurrent, if for

every finite dimensional subspace Lx in L there exists an operator A G {A}

such that the image L2 = ALλ is δ-orthogonal to Lj.

Examples, (a) Let A be a unitary (i.e., isometric) operator on a Hubert

space L. If v4 has continuous spectrum (i.e., there is no invariant finite

dimensional subspaces), then the powers {Ad}, d — 1, , of A form a

δ-nonrecurrent family for every δ < 1 — 1/ y/2 .

(b) Let L be the /'-space of functions/: Z -> R, || / 1 | = (Σ, |/( ι) Π V / \ and

let 4̂ be the shift operator

Λ:/(/W(/+l).

Then the family {Ad}, d = 1, , is δ-nonrecurrent for every δ < 1 - 2ι~Vp.

A family of operators is said to be nonrecurrent if it is δ-nonrecurrent for

some positive δ > 0.

We assign to a family of operators {̂ 4} on L the following set G = G{A) of

affine maps g of L into itself: G — {g: x -> Λx + j>} for all 4̂ E {̂ 4} and all

9.3.D. Theorem. Lei {A} be a nonrecurrent family of uniformly bounded

operators (i.e., \\A\\ < const < oo for all A E {̂ 4}) on a Banach space L. Let f:

L -» R be a uniformly continuous function, and let K C L be an arbitrary

compact subset. Then for every ε > 0 there exists a transformation g: L -> L in

G{A} such that the function f is ε-constant on the image Ko — g(K), i.e.,

Osc f\K0<ε.

Proof. We assume without loss of generality that the set K is finite,

K= {vo,- ,vq}, and we put x,f = (υ, - uo)/||t? f. - ϋ o | | , i = 1, 9 ?.

As the family {̂ 4} is nonrecurrent and uniformly bounded, for every ε' > 0

there exist some operators Aj C {A}, j — 1, ,n, such that every linear

functional a: L -> R satisfies

(9.12) \la(Aj{xt))<A\al

for all/ = 1, -,q.
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Let L' — L'(ε') be the span of the vectors A^x^j — 1, ,Λ, / = 1, ,g.
The restriction of the function / to the finite dimensional space U can be
approximated by Lipschitz functions whose dilations can be controlled by the
chosen precision of the approximation and the modulus of continuity of /.
Thus we may assume the function/to be Lipschitz on U such that the dilation
dil fL' is independent of ε'.

Let gJυ: x -> AjX + t>, fory = 1, ,w and υ E ZΛ Denote by K the union
of the straight segments [υ0, υj over i = 1, ,#, and let A"(y, υ) = g^A") C
ZΛ Then we restrict the function/to the set K(j, υ), and denote by ϊ(j\ v) the
integral of 11 D(f\ K(j\ v) \\ over K(j\ v). According to (9.12) the average value
of ϊ(j, v) over/ = 1, ,« and over v E L' is bounded by ε'(Dil / ) length K.
Therefore there is some set K(j0, υ0) for which ϊ(jo,vo)< ε'(Dil / ) length K.
By choosing ε' < ε/(Dil | / ) length K, we obtain

Appendix 1. Slicing and mapping invariants of Riemannian manifolds

Let us define the diameter of a map /: X -> Y between two metric spaces as
follows:

Diam/= sup [d i s t^ , x2) — dist(f(xx), f(x2)].

For example, if / is constant, then Diam / = Diam X. If /: X -» X is the
identity map, then Diam / = 0.

(A) Lemma. // Diam/= δ < oo, then there exists a continuous map Q\
Y -> L°°( X\ such that the distance between the composed map Q ° /: X -* L°
α«J //ẑ  canonical imbedding I: X -> L°°(X) ^wfl/̂  δ/2, /.^.,

dist(ρ o /(JC), /(x)) = δ/2, for all x (EX.

Proof. Send every point j> G 7to the following function Qy(x) E L°

β,(*) = δ / 2 + inf [dist(x,xθ + dist(j,/(xθ]

Recall that a continuous map /: X -> 7 is said to be k-degenerate if it factors:
f — f'° f", through a λ -dimensional polyhedron /: for some continuous maps
/': K -» 7 and//r: X -> ̂ . Then we introduce the k-diameter of Jf:

Diam^ X = inf Diam /,

over all metric spaces 7and all A:-degenerate maps/: X -» 7
Example. If F is a connected w-dimensional polyhedron, then

Diam V = Diam0 V > Ό'mmλ V^ > Diamrt_! F ^ Diamrt F = 0.
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There is an alternative definition of these diameters Diam^, with another

notion of a diameter for maps/: X -> Y; namely, take the pullbacks/"^y) c X

and put

Diam'/ = sup Diam f~\y).

Then define

Diam^ X = inf Diam'/,

over all A -dimensional polyhedra K and all continuous maps /: X -> K. It is

clear that

Diam'/< Diam /, Diarn'̂  X < Diam^ X,

and that every locally compact ^-dimensional metric space X has

Diam'^XX), forA:<«,

Diam'̂  X = 0, for /: > n.

(B) Lemma. Let V be an n-dimensional polyhedron with a complete piecewise

Riemannian metric. Then

Diam; F = Diam^ F, for all k = 0,....

Proof. Indeed, if/: F -> A îs a continuous map, for which Diam' f< 8 < oo,

then there exists a (sufficiently large) metric in K, relative to which

D i a m / < δ .

Next we introduce the /c-radius RadA(F C X) of an embedding /: V (Z X SLS

a lower bound of those ε > 0, for which there exists a k-degenerate map /:

F -» X within distance ε from /, i.e.,

dist(/(υ), I(v)) < ε for all v E F,

(compare Corollary 3. LA' and Examples 3. LA"). We define, in particular,

Rad* F = R a d ^ F C U°{V)),

for the canonical embedding F C L°°(F).

Example. Let F be a complete Riemannian manifold. Then

Rad^ F ^ Fill Rad F, for all k < dim F.

(C) Question. Does the following inequality hold with some universal

constant const = const(«), for n — dim F?
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(D) Proposition. Let V be a complete Riemannian manifold or a piecewise

Riemannian polyhedron. Then

Rad* V = iDiam* V = \Ό'mmf

k V,

forallk = 0,-'

Proof. The inequality Rad^ > ^Diam^ follows from the obvious inequality

Diam/^2dist(/,/),

for the canonical embedding /: V C L°°(V) and an arbitrary map f: V-*
V°°(V). The inequality Rad^ < ^Diam^ follows from Lemma (A).

(E t ) Examples. Let V be a connected surface of genus zero with an arbitrary

complete Riemannian metric. Then

! V = iDiamΊ V< (Area F ) 1 / 2 .

(Thus we obtain the positive answer to the above question (C) for surfaces V of
genus zero.)

Proof. We start with the following factorization of an arbitrary proper map
/: X -> Y between locally compact metric spaces. First we partition the space X
into connected components of the pullbacks/"^ y) C A f̂or all y E Y. Denote

Ϋ = X/ (the partition),

and consider the quotient map /: X -> Ϋ. The new pullbacks f~\y)CXaxe
exactly the connected components of the pullbacks f~ι(y). Then there is a
unique map f:Ϋ-*Y such that / = / ° /.

(E'j) Definition. The map /: X ->• Ϋ is called the connected map associated
to/.

(E'ί) Lemma. Lei X be a connected n-dimensional manifold such that the

intersection index between every two homology classes of dimensions one and

n — 1 is zero, i.e., Hλ{X) Π Hn_λ{X) — 0. Then, for an arbitrary Morse

function f: X -> R, the corresponding space Y — R is contractible. As this space Y

is one-dimensional, it is called the tree of the function f.

Proof. As the map /: X -* Ϋ is connected, every simple closed curve (a
cycle) in the graph Ϋ lifts to a closed curve in X. Such a lift necessarily has a
nonzero intersection with a pullback f~\y) C X for somej? E Ϋ.

Now we consider the distance function/(ϋ) = dist(ϋ, υ0) to a fixed point υ0

in our surface V. Take the associated connected map /: V -* Ϋ = R, and let us
show that

δ(j ) = D i a m / - 1 ^ ) < 2(AreaF)1 / 2, for all j? E 7.

Since V has genus zero, the space Ϋ is a tree. (Strictly speaking, Lemma (E',')
does not apply, as / is not a Morse function. However, one can approximate /
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by a Morse function, and then (E',') does apply.) Therefore for every positive
number p < j8(y) there exists a point j p E Ϋ such that/( j>) — f(yp) = p, and
the pullback C = /~ι(>0 in V is contained in the closed p-neighborhood of
Cp — f~\yp). Thus, the curve C which is a component of the level f~\t) for
* = f(y)\ is preceded by the curves Cp, for which/| Cp = t — p and DiamCp

^ δ( j ) - 2p. As length Cp>2 DiamCp > 8(y) — 2p, according to the coarea
formula the union of these curves, V8 = U 0 < p < δ / 2 Cp> for δ = δ(y) = DiamC
satisfies

Area F ̂  Area Fδ ̂  f8/2 2p Jp = δ 2/4.
Jo

Thus we obtained the required estimate for the \-degenerate map f: V -> Ϋ:

Diam7<2(AreaF) 1 / 2 .

Remark. The above argument also applies to complete surfaces V of
positive genus g < oo, but the conclusion is weaker:

g + l)(AreaF) 1 / 2.

(E2) Let V be a complete Riemannian manifold such that every simple closed
curve C C V has

FillRad(CC F) < p o < oo.

Then

Proof. It suffices to show that every connected component Vt of the level
f~\t) of the function/(υ) = dist(ϋ, v0) has Diamί; ^ 6p0 for all / E [0, oo].
To see this, we join a pair of points vx and v2 in Vt by a curve γ in Vn and let yι

and γ2 be minimal segments between v0 and the points vλ and t>2 respectively.
Then the closed curve C = y{ ° γ ° γ 2

! has Fill Rad C > ^dist(υl9 ϋ2). Indeed
any filling S of C contains a point t> for which

dist(ϋ,γ) = d i s t ^ ^ ) = dist(ϋ,γ2) = p.

Thus by the triangle inequality we have p > ^dist(t»!, v2), and as p >
Fill Rad C the proof is concluded.

(E'2) Corollary. Let V be a complete 3-dimensional manifold of positive scalar
curvature so that

Scal(F)^σ2>0.

If the intersection index on the homology of V vanishes, i.e., if Hλ(V) Π H2(V)
— 0 {compare Lemma E"), then

773/2
Rad, F = 2-Diam', F < .
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Proof. Indeed,

τr/2
FillRad(CC K) < ,

for all closed curves C in the above manifold F(see [39]).

Question. Let V be a complete ^-dimensional manifold of positive scalar
curvature > σ2 > 0. Is it true that

RadΛ_ 2F<constw/σ,

or at least that

Fill R a d F ^ const π/σ?

Using the present state of knowledge even one can not exclude the possibility
of the manifold Vbeing geometrically contractible (see §4.5.D).

(E 3 ) Let V be a complete geometrically contractible manifold of dimension n\

for instance, V=Ίtn. Then

Radn_, ^ F i l l R a d F = oo,

(see Theorem 4.5.D'). Therefore for every continuous map /: V -> W~x, there
exists a connected component Vy of the pullback f~\y) C V of some point
y GRn~\ which has arbitrarily large diameter. This is seen by passing to the
associated connected map/: V -> Ϋ = Rn~\

(E 4 ) Let V be a complete manifold whose Ricci curvature is bounded from

below by -1:

Ricci V> - 1 .

Then there exists a positive number ε = ε(n) > 0 for n = dim V such that the

inequality

Vol Bυ(\) < 8n ^ ε"

for all unit balls Bv(l) in V implies the inequality

Rad r t _,F< const,, δ,

for some universal constant const n ^ 0.

In fact, there is a map/of Fto some (n — l)-dimensional subcomplex of the
nerve of certain covering of V by small balls such that

Diam'/^ const,, δ,

(see [32]).
(Er

4) Corollary. Let the sectional curvature of Vbe bounded, i.e., \ Curv V \ <

1. // the injectivity radius of V is "small" everywhere, i.e., if Inj Rad V< δ ^

ε(n), then

, F < const; δ.
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In fact, as shown in [37], the small injective radius condition implies that V

is close, in the Hausdorff metric, to a certain (n — l)-dimensional space. This

leads (see Appendix 3) to an alternative proof of the implication

(Inj Rad -» 0) => ( R a d ^ -> 0).

Question. Is the assumption R i c c i F > -1 essential for the conclusion of

the proposition (E4)?

(E 5 ) Let V be a complete connected Riemannian manifold, and let φ: V -> V

be an arbitrary continuous map. If the intersection HX{V) Π Hn_x{V) is zero for

n = dim V {compare (E")), then in the following three cases there exists a point

v0 E: Vo for which

dist( ϋ 0 , φ ( ϋ 0 ) ) < 2 Rad x V = Diam', V.

(1) Vis compact.

(2) V is connected at infinity, and the map f is onto.

(3) The map f is proper, and the canonical {continuous) extension of φ to the

space of ends of V, φ^: End K -> End κ , has no fixed points.

Proof. According to Lemma (E") we have a continuous connected map / of

V onto a tree Y such that D i a m ' / < δ where one may take δ as close to

Diam' V as one wishes. Then one has the following set-valued map Φ = / o / -1

Y -> Y. This map is obviously closed (i.e., its graph in Y X Y is closed), and

every set Φ(^) C Y for all y E Y is contractible as the map / is connected.

Therefore under the assumptions (l)-(3) there exists a "fixed" point y0 E Y

for which Φ{y0) 3 y0. This means that the image f(V0) C V for the level

Vo = / - 1 ( y 0 ) intersects Vo. Then some point v0 E F h a s / ( υ 0 ) in Vo, and so

dist(υ 0, f{v0)) < DiamF 0 < δ.

(Er

5) Corollaries, (a) Let V be homeomorphic to S2. Then every continuous

map ψ: V-+ V admits a point v0 E V for which

d i s t ( t ; 0 , φ ( υ 0 ) ) ^ 2 ( A r e a F ) 1 / 2 .

(This generalizes a result by Berger; see [13].)

(a') The conclusion of {a) holds if V is homeomorphic to R2 and the map φ is

onto.

(b) Let V be homeomorphic to S3, and let the scalar curvature of V be positive

and > a2. Then every continuous map φ: V -> V admits a point v0for which

dist(t;0, φ(υ0)) < πβjϊ/σ.

(br) The conclusion of{b) holds if V is homeomorphic to S2 X R1, the map ψ is

proper and interchanges the two ends of V.



132 MIKHAEL GROMOV

(F) Volumes of maps. Let V be an ^-dimensional Riemannian manifold,
and let/: V -> P be a continuous map into a (n — m)-dimensional space P. Let
the pullbacks (slices) f~\p)CP have finite m-dimensional Hausdorff mea-
sure, i.e.,

for every point p E P. Put

Volm/= sup No\mf-\p).
pep

We want to express a lower bound of this volume Volw /in terms of geometric
invariants of the manifold F.

(Fj) Let P be the real line, i.e., let P — R. Suppose that the manifold V is
compact, and consider the Levi mean of /, that is, the value p0 E R for which
Vol f~X-aε, p0) = ^VolF. If F is isometric to the unit sphere S", then the
classical isoperimetric inequality implies that

Furthermore, if Fis the unit ball in R", then

Volw_1 /" ' (p 0 ) > Vol(unit ball in R""1).

(F() If the manifold V is closed, and Ricci F > -(« — 1),

/or Z) = Diam V {see [35]).
(F") Suppose that Fis an orientable closed manifold, and let the function/:

F -> R be smooth. Then the pullbacks/"^/?) C Fof the regular valuesp of/
form a family of submanifolds, and are continuous in/7 relative to the flat norm
in the space of integral cycles. Indeed, any two cycles/"^ ?,) a n d / " 1 ^ ) in F
bounds the chain f~ι[p\,p2] whose volume becomes arbitrary small for
\P\ ~Pil"* 0. Then by the Almgren-Morse theory (compare Fact 1 of §8.1)
there exists an (n — l)-dimensional minimal sub variety Fo in F, for which

Now the volume of a minimal subvariety Fo in F can be bounded from
below by various invariants of F. For example, if Ricci V> -(n — 1), then
(compare (F[))
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Another estimate is possible for manifolds F, which have sectional curvature
κ2 and the injectivity radius ^ π/2/c, namely,

for the unit sphere S"~ \
(F{") Let Vbe complete, and letf: V -> R be a smooth proper function. Then

Volrt_! / > const*(Fill Rad V)n~x,

for some universal constant const* > 0.
Proof. Take a discrete set of regular values , p_λ9 po, -,/?,, in R

such that the regions f~ι[pi9 pi+λ] have a (uniformly) small volume. Then we
fill in each manifold V( =f~\Pi) C F(see §4.3) by a chain c;, which is ε-close
to Vt for ε » Fill Rad^ < comin_λ(yo\n_λf)

n~\ and whose ^-dimensional
volume is small so that

Vol c, « Fill Vol Vt < Q_,(Voln_1 / ) n / ( A i " 1 } .

Thus we decompose F into the following sum of π-dimensional cycles: V —
Σ!°oo^ for

Each cycle z\ has

Vol z, < Vol c, + Vol ci+λ ^ I Q . ^ V o l ^ , / ) w / ( w ~ 1 } ,

and is filled by a chain c\ within distance ε' from zi for ε' = Fill Rad zz <
constM(Vol z,)1/". So we get a filling of F within distance ε + ε' from F.

(F2) Let us generalize (F") and (F2") to maps / of V into an (m — n)-
dimensional manifold P.

(F2) Suppose that the manifold Fis closed and orientable, and let the map/:
F -» P be smooth. We look again at the family of cycles f~\p) in F for the
regular values p in P. In order to apply the Almgren-Morse theory we need the
continuity (in p) of this family relative to the flat norm. It is likely that the
condition Volm / < 00 alone implies this continuity. In any case, the continuity
is obvious for all "decent" maps /. For example, the family {f~ι(p)} is
continuous if / is a generic C°°-map or a real analytic map. To show this we
must join any pair of cycles f~\px) and f~\p2) by an (m + l)-dimensional
chain c = c(px, p2) in F such that Volm+,(c) -> 0 as dist(/?1? p2) -> 0. One
gets such a chain by joining the points pλ and p2 by a generic short line
segment γ with c — f~\y).

Now the Almgren-Morse theory yields an m-dimensional minimal subvariety
Vo in V, which has Vol Vo < Volm /. The volume of Vo has a lower bound:

VolV0>VolSm/2κm

9
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provided Khas sectional curvature < κ2 and the injectivity radius > π/2κ. So
we have

Volmf>±VolSm/κm,

for real analytic and generic C°°-maps/: V -» P.
(¥2) Let /: V -> P be a smooth proper map. Suppose that for every δ > 0

there exists a smooth triangulation of P9 whose simplices Δ are transversal to /
and their pullbacks have

for every λ>dimensional simplex Δ and all k — 1, ,n — m. This property is
obviously satisfied by real analytic maps and generic C°°-maps/.

Now we take the pullbacks/" 1^) of all vertices of our triangulation, and
fill them in by some (m 4- l)-dimensional chains cf as in (F"'). If two vertices,
say Pi and pj in P, are joined by an edge Δ1 = Δ1^ in P, then we consider the
(m + l)-dimensional cycle

zιJ = ct+Γ\ύl)-cJ,

whose volume is roughly equal (δ is small!) to

Vol(c,. - cj) < Fill Vol/- ' ( Λ ) + Fill Vo l/- ' ( Λ ) ^ Cm(Yolmf)(m+n/m.

Then we fill each cycle z/y by a "small" (compare (F"')) chain c/y. Next we
consider 2-symplices Δ2 = &ijk in P. The sum of the pullback/"ι(Δ2) with the
chains c/y , cik and cjk is a cycle, say ziJk9 which then is filled in by a "small"
chain cijk. We continue this process up to dimension n — m — dim P, and thus
we get a filling of the manifold V within a controlled distance from V.
Therefore

(A.I) Fill Rad V < const*(Volm f)X/m

for above maps f: V -» P.

Remarks, (a) Most of the conditions which we have imposed on the space
P and the map / appear redundent. Some of these conditions will be removed
in Appendix 2.

(b) The most unsatisfactory feature of inequality (A.I) is dependence on the
constant n — dimF rather than m — dim/"^/?). Notice that the Almgren-
Morse theory does provide lower bounds of Volm /, which are independent of
n. Unfortunately this theory does not fully apply (unlike the above filling
argument) to non-Riemannian manifolds. However, some purely Riemannian
problems require for their solution certain "slicing inequalities" like (A.I) with
const = const(m) for Finsler manifolds.
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Examples. Let Fo be a complete properly imbedded submanifold of dimen-
sion m in an (n + l)-dimensional Banach space L. We consider the intersec-
tions Fo with the balls BX(R) of a fixed radius R in L, and want to find lower
bounds for the following two volumes:

= Vlm{R, Vo) = sup Volm(F0 Π BX(R)),

Vlm_x{R) = Vlm_{(R,V0) = sup Volm_,(F0 n dBx(R)),

for the boundary spheres dBx(R).
In particular we are interested in imbeddings into finite dimensional l°°-

spaces, Fo C /°°, as these imbeddings approximate for dim /°° -» oo the canoni-
cal imbedding Fo C L°°(F).

Question. Suppose that Fill Rad(F0 C L) > R. Is it true that

(A.2) Vlm(R)> const Λm,

(A.3) F / ^ t f ) ^ const'*"1"1,

for some universal positive constants const = const(m) and const' = const'(ra)
(compare the question in (E'4))?

One gets the positive answer to the above question for L = R"+1 (only!) by
applying the Almgren-Morse theory as follows. Let P be an (n — m)-
dimensional pseudomanifold in L with boundary 9P, such that this boundary
has nonzero linking with Vo and such that dist(t;, p) > R for all pairs of points
(υ, p) E Vo X dP. Then we assign, to each point p E P, a relative cycle Ĵ , in
the ball B0(R) by moving the intersection Bp(R) Π Fo to B0(R) by the vector
-/? E L. Thus we "slice" the ball B0(R) C L into (« — m)-dimensional family
of relative ra-dimensional cycles Vp C (B0(R), dB0(R)), and then the
Almgren-Morse theory gives a minimal relative cycle Vmin C B0(R), which has

for the m-dimensional Euclidean ball Bm(R) of radius R. This proves (A.2)
with const = Vol Bm(X), and the same argument yields (A.3) with const' =
Vol Sm~\\), provided the submanifold Vo is C00-generic or real analytic.

(G) Further questions. Let V be a closed Riemannian manifold of dimen-
sion n. Does there exist a closed (possibly contractible) geodesic γ in F, which
has

length γ < const „(Vol F ) 1 A ?

The positive answer may be expected for surfaces F homeomorphic to S2, as
one is aided by conformal mappings V -> S2.
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The second question is due to Berger [11]. Let F b e a 2-essential manifold of

dimension n, that is, let V admit a map into the infinite dimensional complex

protective space /: V -> C P 0 0 such that fJ_V] Φ 0. Does the second systole of

V satisfy

s y s 2 F < c o n s t w ( V o l F ) 2 / M ,

for some universal constant const „?

Observe that the argument of §1.2 yields some information on another

systolic invariant of V. Denote by a(V) the lower bound of the numbers ε > 0,

for which there exists a surface Vo with a Riemannian metric such that:

(1) Vo is homeomorphic to S2,

( 2 ) R a d 1 F 0 < ε ,

(3) there exists a noncontractible distance-decreasing map of Vo to V. (If we

had used AreaK0 in place of R a d ^ , we would get a "spherical 2-systole" of

V.)

Denote the length of the shortest geodesic in F b y / = l(V), and let R be the

filling radius of V.

Proposition. If the manifold V is 2-essential, and I > 6R, then

a(V) ^2R^ constw(VolF)1 A,

and therefore

min(/(F), a(V)) ^ const;(VolF) 1 / w .

Proof. We subdivide a filling W of V into small simplices, and then retract

the 1-skeleton of W to V as in §1.2.B. Since I > 6R, the boundary of every

2-simplex (as it is retracted to V) of W can be homotoped in V to a point by a

family of curves of length < /. Thus we get a map of the 2-skeleton of W to V.

The boundary of every 3-simplex Δ of W is "sliced" into curves of length < /

in V. Therefore every such boundary ΘΔ admits a metric, for which Rad, 8Δ <

2R and our (retraction) map 3Δ -> V is distance-decreasing. Finally, as the

manifold Kis 2-essential, the map 3Δ0 -> Fis noncontractible on the boundary

Vo = 3Δ0 of some 3-simplex Δ o .

Appendix 2. Filling inequalities in Finsler spaces

(A) On the topology of spanning chains. Our proof of the isoperimetric

inequality for ^-dimensional cycles in a Banach space L (see §§3.3, 4.2) applies

to cycles z with arbitrary coefficients. However, the filling volume may depend

on the chosen coefficient field. Nevertheless, the filling volume with integral

coefficients of a connected oriented manifold V, dim V — n > 2, provides a
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universal upper bound for all other filling volumes of V. Moreover, we have the

following.

(A') Proposition. Consider an arbitrary smooth map f: V ^ X of the above

manifold V into a Finsler manifold X. If the manifold X is contractible (X = L,

for instance), then for every number ε > 0 there exists a cone F over f (that is, a

map F: V X [0,1] -* X, for which F\VX0=fandF\VX\= const.), such

that Vol F < (1 + ε)Fill Vol / J F ] , where fm[V] is the image of the fundamental

cycle of V in some triangulation of F, and the volume of the map F is counted with

geometric multiplicity.

Proof. We assume without loss of generality that the cycle/JF] in X is the

fundamental class of an oriented sub-pseudomanifold F^ in X. We span F^ by

an oriented pseudomanifold WJ^C X) with boundary dW^(— F#) such that

* < ( l + ε)FillVolF*.

Then we consider a cylinder (map) h: V^ X [0,1] -> W^ with the following

three properties:

( a ) Λ | K # X 0 = Id.

(b) The map h λ — h \ F* X 1 sends the pseudomanifold V^ — V^ X 1 onto

an ^-dimensional subcomplex W in W^, i.e., hλ\ V+^>W for dim W — n —

dim K*, and such that the map hx is homologous to zero, A J F J = 0.

(c) The map h is injective on the interior V^ X (0,1) C Vx X [0,1], and so

Vol A < Vol ^

As dim W — n ^ 2, we can attach some 2-handles to W such that the

resulting complex W" — W + (the handles) also has dimension n and πx(W")

— 0. Then there exists by the obstruction theory a homotopy of the map hx to

t h e ( « - l)-skeletonof W"\

h'\ V* X [1,2] -* W", forA'l KΦX 1 = * ! ,

and such that the image A*(F5|e X 2) has dimension < n — 1. Finally, we

contract this image to a point x E l b y a cone A": V^ X [2,3] of zero

(n + l)-dimensional volume, and take the composed homotopy h o A' o A" for

the cone F.

(A") Remark. Proposition 2.2.A is an immediate corollary of Proposition

(A')

(A'") The proposition (A') does not apply (in fact it is false) for V - Sλ

and also for nonorientable manifolds V of dimension n > 2. However, our

proof of the isoperimetric inequality in §§3.3 and 4.2 is consistent with the

argument in [36], and so it implies the following.

Theorem. Let W be an arbitrary (n + \)-dimensionalpolyhedron n > 1, and

let V be an n-dimensional subpolyhedron in W. Then an arbitrary piecewise
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smooth map /: V -> L of V into a Banach space extends to a piecewise smooth
map F: W -> L, such that

VolF<n2"(Volff+l)/\

where the (n + \)-dimensional volume of F (as well as the n-dimensional volume
of f) is counted with geometric multiplicity.

As this theorem is not used in the sequel, we leave the proof to the reader.
(B) Contraction invariants of metric spaces. The results of the previous

section show that there is little interraction between the volume and the
topology of the filling "manifold" W. However, the topology of W becomes
more relevant if we take into account the filling radius as well as the filling
volume.

Recall that a continuous map between two metric spaces is said to be
k-contractible if it is homotopic to a /r-degenerate map (see Appendix 1). For
an arbitrary compact subspace V in a metric space X we define the contractibil-
ity radius Cont* Rad(F C X) to be the lower bound of the numbers ε > 0, for
which the inclusion map of V into its ε-neighborhood Uε(V) D V is a λ>con-
tractible map. Using the canonical embedding V C L°°(V) we can define the
contractibility radius of a (non-embedded) metric space Fas follows:

def

Cont*RadF = Cont*Rad(F C L°°V).

The following properties of this radius are immediate from the definition.
(a) oo > Cont0 Rad(F) > Contj Rad V > > contπ Rad V = 0, for n =

dimK.
(b) Cont* Rad V < Rad* V, for all k = 0,1,....
(c) If V is a closed ^-dimensional manifold, then

ContM_! Rad V > Fill Rad V.

Furthermore, by the obstruction theory (compare (A)) one obtains the equality

Contw_, Rad V = Fill Rad V,

for simply connected manifolds V. But if πx(V) Φ 0, then an upper bound of
the radius Contw_! RadF cannot be obtained by using the filling radius or
(and) the filling volume. However, we shall see below how a minor modifica-
tion of our filling technique of §3.4 yields the following.

(Bx) Theorem. An arbitrary compact n-dimensional polyhedron V with a
piecewise Riemannian (or Finsler) metric has

Cont#l_1RadK< constπ(VolF)1/n,

for some universal constant const n > 0.
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Next we say that an ^-dimensional polyhedron Fis "essential" if there exists
a continuous map / of V into some K(Π, l)-space such that / is not (n — 1)-
contractible. Observe that every essential manifold V is also "essential", but
the converse is hardly true.

(Bj) Isosystolic inequality for polyhedra (compare §6.7). Every compact
"essential" polyhedron has

sys! V < 6constw(Vol V)λ/n.

Indeed, as in §1.2 one obtains the inequality

A polyhedron W is said to be k-contractible if the identity map is /c-contract-
ible. If Vis a subpolyhedron in a space X, then we call a polyhedron Win X a.
k-contrαction of V if W is /c-contractible and contains V, i.e.,

vcwcx.
We denote the upper bound supw(= ̂ dist( w, V) by Rad W — Rad( W, V).

Finally, we denote by Cont^jF, for an ^-dimensional polyhedron V with
an arbitrary metric, the lower bound of those ε > 0, for which there exists a
^-contraction W oί the canonical imbedding V C L°°(K), that is,

VC WCL°°(V),

such that dim W' — n + 1, Rad W < ε, and the (n + l)-dimensional volume of
W satisfies

Theorem (Bj) can be strengthened (see (C) below) as follows.
(B2) Theorem. // Vsatisfies the assumptions of Theorem (Bx), then

Corollary. Let f be a piecewise real analytic (for instance piecewise
linear) map of V onto a (m — n)-dimensionalpolyhedron P. Then

Cont „_, Rad V < const;' Volm /.

In particular, if V is an n-dimensional manifold, then
Fill Rad F < const; Vol/.

(Compare (F) in App. 1.)
Proof. The argument of (F^) in Appendix 1 goes along with the following

lemmas

(B3) Let A be a k-contractible space, and B a (k — \)-contractible subspace

in A. Then every (k — \)-contracting homotopy of B, that is, a homotopy h:

B X [0,1] -> B, for which h \ B X 0 = Id and the map h\BX I is (k - 1)-

degenerate, extends to a k-contracting homotopy of A.
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The proof is straightforward.
(B^) Let f: W ^> P be a continuous map between polyhedra such that the

pullback of every k-dimensional simplex in P is a (k + m — \)-contractible

subpolyhedron in Wfor all k — 0, ,« — m — dim P. Then the polyhedron W is

(n — \)-contractible.

Proof. Use the previous lemma and the induction by skeletons of the
polyhedron P.

(B4) Example. Let V be a closed essential manifold, and let /: V -> Rn~m

be a real analytic or generic C°°-map. Then there is a connected component Fo

of the pullback of some point/? G P:

F 0 C / - ' ( / > ) c K ,

which has

(A.4)

for some universal positive constant δ — 8(n) > 0.
Proof. Apply Corollary (B'2) to the associated connected map /: V -> P =

Rw~m, and use appropriate piecewise linear structures in Fand in P. (Compare
(E,) and (E\) of Appendix 1.)

Observe that (A.4) for m = n reduces to the isosystolic inequality Vol V >

It is unclear if inequality (A.4) holds with a constant 8 = 8(m) > 0.
(C) The proof of Theorem (B2). We slightly generalize the above defini-

tions by considering singular polyhedra V in X, which are maps /: V -» X.
Then a ^-contraction of V by definition is an extension of / to a map of a
A:-contractible polyhedron F: W -* X for W D V, where F | V - f. We denote
by VolF= VolMF, for n — dimF, the volume of the map / counted with
geometric multiplicity. The same notation applies to all other singular poly-
hedra in question. We put Rad W — swpw(ΞWάis\,(f(V), w), and then define the
(total) contraction radius of F, ContM_j(F^ X), as the smallest ε for which
there exists an (n — l)-contraction W of F such that the quantities Rad W and
(Volw+, W)ι/(n+1) are bounded from above by ε.

Observe that these modifications are not needed for polyhedra in spaces X
of large dimension (> 2n + 2), as all maps can be made injective by small
perturbations.

Now we proceed with the proof of Theorem (B2) by indicating the required
modification of the argument in §3.4.

(C j) Every singular n-dimensionalpolyhedron V in R^ has

Con\n_x{V-*ΈLN) < CN(No\V)λ/n.

Indeed, the Federer-Fleming proof (see §3.2) applies.
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(C\) Let Xbe a compact (possibly with boundary) Finsler manifold. Then

there exist positive constants ε = ε(X) > 0 and C = C(X) > 0 such that every

singular polyhedron Fin Xof dimension n and Vol V < ε satisfies

C α n t ^ ί K C X) ^ C(VolF) 1 7 \

Proof. Imbed X to R^, contract V by some polyhedron W in R^ according

to (C,) and then normally project this W to X C R .̂

(C2) Decomposition of polyhedra. Let a singular polyhedron F in some

space X be decomposed into the union of two subpolyhedra, i.e. V — V[ U V{9

such that the intersection VQ—V[C\ V{ has dimension n — 1 for n = dim F.

Let JF0 be a (/i - 2)-contraction of FQ in X We put Vx = F{ U JF0 and

F2 = F,' U fF0, and we say that Fis decomposed into the "sum": V-VXW2.

(C2) // Wx is an (n — \)-contraction of Vx, and W2 is an (n — X)-contraction

of F2, then the union Wx U W2 -+ X is an (n — \ycontraction of V.

This is immediate from (B3).

Remark. The above "sum" by no means is an associate operation. How-

ever, we shall omit brackets, and we even shall write ΣVt for finite "sums"

vt+v2+ ....
(C3) Let X be a compact Finsler manifold. Suppose that every (n — 1)-

dimenional singular polyhedron V in X of volume < (δ n _ 1 )"~ 1 for some fixed

number 8n_x > 0, admits an(n — 2)-contraction W such that

(A.5) VolJF ^ Cn_x(VolV')n/(n~ι\

for some fixed constant Cn_x. Then there exist two positive constants δ > 0 and

D > 0 depending only on 8n_x and Cn_x such that every n-dimensional singular

polyhedron V in X of volume < δn admits a "sum " decomposition, V — Σμ Vμ +

ΣvVp9 with the following three properties:

(1) Σμ(VolVμY
n+l)/n + Σ,(VolF,) ( π + 1 ) / w

(2) Every singular polyhedron Vμ is D-round, i.e.,

where the diameter of a singular polyhedron by definition is the diameter of its

image in X.

(3) Σ ^ V o l F , , ) ^ 1 ^ " < ε, where ε > 0 is an arbitrarily chosen small positive

number.

Proof. We introduce (compare §3.4) the weighted volume, Weight F, as the

lower bound of the sums Σl (Vol^.) ( l f + 1 ) / / l o v e r a 1 1 f i n i t e "sum" decomposi-

tions, V=ΣiVi. Then we take some decomposition F - Σ, Vi9 for which the

sum Σ/(Voll )
( π 4 ' 1 ) / l 1 is very close to Weight V. Then "almost all" polyhedra Vt

are "essentially round"; namely, a polyhedron Vμ -> X is called ε-essentially
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D-round if there is a ball B = BX(R) in X of radius R < \D(Vo\Vμ)
x/n such

that the volume of the part of Vμ in B satisfies

Yol(BΠVμ)>(\- f)volFμ.

Now if some polyhedron Vi (whose volume is small compared to δ^Γ/) is not
"round", then it can be decomposed further with a substantial decrease of its
weighted volume. This is done as in Lemma 3.4.A by intersecting this Vt with
some level of a distance function d: X -* R, and then by using a small
(n — 2)-contraction W[ of this intersection. It follows that no ε-essentially
D-round polyhedra Vv among Vi9 for some constant D = D(Cn_λ9 δ^lj) and for
ε -* 0 as Σ,(Vol J/.)^ 1)/" approaches Weight F, have Σ,(Vol Vjn+l)/n -> 0.

Next every essentially round polyhedron Vt can be made round: intersect Vt

by the boundary of some small ball 2?, which contains almost all of Vi9 and
then (n — 2)-contract this intersection according to (CΊ). Thus Vi is decom-
posed into a round part (in B) and a negligible term which then goes to the
sum Σv Vv. (Compare §3.4.) q.e.d.

Lemma (C3) allows one to derive the isoperimetric inequality for contractions
in X from an appropriate "cone inequality". But this is not so useful as in the
case of filling chains, since the filling radius is not controlled any more by the
filling volume. However, one can use Lemma (C3) in the following less
straightforward way in order to control the distances of the polyhedra Vμ and
Vμ from Fand thus to estimate Cont^.^F -> X).

We say that a Finsler manifold X satisfies inequality Isrt = IsM(C, δ"1), if
every ^-dimensional polyhedron V-* X oί volume ^ δ" can be (n — 1)-
contracted by a polyhedron W which has

(IsJ V o l ^ ^ C ( V o l F ) ( n + 1 ) A .

We say that X satisfies the inequality Contrw = ContrM(C, δ"1), if the above V
has

(ContrJ Qmt l l _ I (K)<C(Vol) I / "

This amounts (up to an irrelevant descrepency between C and C 1 / ( " + 1 ) ) to the
existence of a W which satisfies Isπ as well as the inequality

(Rad J Rad W < C(vol V)λ/n

Finally, the manifold X is said to satisfy Conert = Conert(C, δ"1, D), for D ̂  1,
if inequality ContrM only holds for those polyhedra F of volume < δ", which
are d-round:

DiamF<D(VolF) 1 / w .
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Lemmas (C3) and (Cj) show that (Isw_j + Conew) => Isw for compact mani-
folds X. More explicitly,

provided the constant Dn is sufficiently large, i.e., Dn ^ Δ = Δ(π, CΛ_,, δ^lj),
and then the constants Cn and δ̂ "1 depend only onQ_,, δM~i 1? Cπ and δ"1.

Next by induction we conclude that the inequalities Cone^ for k — 1, ,«,
imply the inequalities Is^, i.e.,

Σ Cone^=> 2 Is*,
k=\ k=\

with obvious rule for constants: each constant Dk must be sufficiently large
compared to the constants Ci and δ^1 of Cone, for i < k, and then the
constants of Σ" \sk depend only on n, the constants Ck and δ^1 of Σk Cone^.

(C4) Theorem. The cone inequalities imply the contraction inequalities, i.e.,

n n

2 Cone^ => 2 Contr^,
1 1

for an arbitrary complete Finsler manifold X.
Proof. Let V be a compact ^-dimensional singular polyhedron in X, whose

volume is small compared to the constants Ck and δ^1 in 2n

k=ι Conefc. Take a
compact submanifold Y C X with smooth boundary which contains the p-
neighborhood of the image of V in X such that p > C(Wo\V)λ/n for some
constant C which is sufficiently large compared to the constants in Ck and δ^
in Σ^Cone^

Let us introduce a new metric in the interior of Y by multiplying the original
Finsler metric by the following function/ = f(y), y E Int 7:

The new length of each curve γ in Ϋ — Int Y by definition is the integral

fyfdy.
The function log/(>>) is Lipschitz relative to the new metric with the

Lipschitz constant Dil log/< ρ~ι. It follows that every cone inequality ConeA:

= Cone^Q, δk\ Dk) in X yields the cone inequality in Ϋ — (7, new metric);
namely, Cone^Q, Sk\ Dk) holds in 7with the new metric for

Ck = ΛCk9 Dk = (plogDk)/δk.

Furthermore, the same cone inequality holds in the compact region Ϋε =
f-\\, ε~ι) in 7 provided the number ε > 0 is sufficiently small. Indeed, the



144 MIKHAEL GROMOV

normal projection of the set Ϋ — Ϋe to the hypersurface f~\ε~ι) in Ϋ is

distance-decreasing in the new metric.

Now the cone inequalities in ΫE imply the isoperimetric inequalities. In

particular we get an (n — l)-contraction W of V in Ϋ, which has a controlled

volume, and this contraction has, relative to the old metric,

Rad W^ sup dist(j>, V) = p.
y<ΞY

Therefore for some choice of p = C(Vol V)λ/n with a large controlled constant

C, we get the required bound on ContM_ λ V.

( Q ) Additional remarks and corollaries. The above localization trick (old

metric) -> (new metric) also works in the context of §3.4. and so we extend the

results of that section to complete noncompact manifolds. In fact, our argument

equally applies to arbitrary polyhedra X with complete piecewise Finsler

metrics.

(C5) The conclusion of the proof of Theorem (B2). We approximate the

canonical imbedding V C L°°(V) by some imbedding into a finite dimensional

subspace L in L°°(V). As every Banach space satisfies the cone inequalities,

Theorem (C4) applies.

Appendix 3. Hausdorff Convergence

Let A be a subspace in a metric space X. We denote the function dA(x) —

dist(^4, x) by dΛ G L°°(X). The Hausdorff distance between subspaces A and

B in X is

d i s t ^ Λ , B)= ώst(dA9 dB) =\\dΛ - </JLoo.

For two abstract metric spaces A and B we then define the (abstract)

Hausdorff distance Haus dist(yl, B) by first considering all possible metrics

spaces X = (A U B, p) whose metric p agrees with the given metrics in A and

B, and then by putting

Haus dist(yl, B) = inf d i s t ^ Λ , B).
x

This Hausdorff distance is, in fact, a metric on the set of the isometry classes of

compact metric spaces (see [7]).

A family of metric spaces {Aμ}, μ E M, admits a Hausdorff convergent

subsequence if and only if the spaces Aμ are uniformly compact, i.e., if and only

if the diameters of Aμ are uniformly bounded:

Diam Aμ < const < 00 for all μ G M,
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and there exists a function N(ε), for 0 < ε < oo, such that every space A

admits a cover by at most N(ε) balls of radius ε. This condition is satisfied, for

example, if every space Aμ is provided with a measure such that every ε-ball BE

in each space Aμ satisfies

mes Bε > constεmes Aμ,

for all ε > 0 (see [37] for the proofs and further properties of the Hausdorff

distance).

Notice finally that abstract Hausdorff convergence Ai -> A^ can be reduced

to the ordinary Hausdorff convergence of subsets; namely, there are some

isometric imbeddings of the spaces At and A into a compact metric space X

such that dist^Λ,, A^) -» 0 for i -> oo. Also observe that a limit of length

spaces, for which dist(α, b) — inf(lengths of curves between a and ft), is also a

length space.

References

[1] R. D. M. Accola, Differential and extremal lengths on Riemannian surfaces, Proc. Nat. Acad.

Sci. U.S.A. 46 (1960) 540-543.

[2] W. K. Allard, On the first variation of a varifold, Ann. of Math. (2) 95 (1972) 417-491.

[3] F. J. Almgren, Jr., Existence and regularity almost everywhere of solutions to elliptic variational

problems among surfaces of varying topological type and singularity structure, Ann. of

Math. (2) 87 (1968) 321-391.

[4] , An isoperimetric inequality, Proc. Amer. Math. Soc. 15 (1964) 284-285.

[5] , The homotopy groups of the integral cycle groups, Topology 1 (1962) 257-299.

[6] , Existence and regularity almost everywhere of solutions to elliptic variational problems

with constraints, Mem. Amer. Math. Soc. No. 4, 1976, 165.

[7] T. F. Banchoff & W. F. Pohl, A generalization of the isoperimetric inequality, J. Differential

Geometry 6 (1971) 175-192.

[8] M. Berger, Lectures on geodesies in Riemannian geometry, Tata Institute, Bombay, 1965.

[9] , Du cote de chez Pu, Ann. Sci. Ecole Norm. Sup. 4 (1972) 1-44.

[10] , A Γ ombre de Loewner, Ann. Sci. Ecole Norm. Sup. 4 (1972) 241-260.

[11] , Isosystolic and isembolic inequalities, preprint.

[12] , Une borne inferieure pour le volume d'une variete riemannienne en fonction du rayon

dΊnjectivite, Ann. Inst. Fourier (Grenoble) 30 (1980) 259-265.

[13] , Aire des disques et rayon dΊnjectivite dans les varietes riemanniennes, C. R. Acad.

Sci. Paris (1981).

[14] A. S. Besikowic, On two problems of Loewner, J. London Math. Soc. 27 (1952) 141-144.

[15] C. Blatter, ϊίber Extremallangen auf geschlossenen Flάchen, Comment. Math. Helv. 35 (1961)

153-168.

[16] E. Bombieri, An introduction to minimal currents and parametric variational problems,

preprint, Institute for Advanced Study, Princeton.

[17] Y. D. Burago & V. A. Zalgaller, Geometric inequalities, Nauka, 1980, (Russian).

[18] P. Buser & H. Karcher, Gromov's almost flat manifolds, Asterisque 81 (1981) Soc. Math.

France.

[19] C. Chabauty, Limite d 'ensembles et geometrie des nombres, Bull. Soc. Math. France 78 (1950)

143-151.



146 MIKHAEL GROMOV

[20] J. Cheeger & D. G. Ebin, Comparison theorems in Riemannian geometry, North Holland,

Amsterdam, 1975.

[21] Y. Colin de Verdiere, Spectre du Laplacien et longueurs des geodesiques periodiques, Com-

positio Math. 27(1973) 159-184.

[22] W. R. Derrick, A weighted volume diameter inequality for n-cubes, J. Math. Mech. 18 (1968)

453-472.

[23] , A υolume-diameter inequality for n-cubes, J. Analyse Math. 22 (1969) 1-36.

[24] E. I. Dinaburg, On the relation among various entropy characteristics of dynamical systems,

Math. USSR-Izv. 5 (1971) 337-378.

[25] P. Eberlein, Some properties of the fundamental groups of a Fuchsian manifold, Invent. Math.

19(1973)5-13.

[26] Ja. M. Eliashberg, Singularities of folding type, Izv. Akad. Nauk USSR, Ser. Mat. 34 (1970)

1110-1126.

[27] H. Federer, Real flat chains, cochains and variational problems, Indiana Univ. Math. J. 24

(1974)351-407.

[28] H. Federer & W. H. Fleming, Normal and integral currents, Ann. of Math. 72 (1960)

458-520.

[29] T. Figiel, J. Lindenstrauss & V. D. Milman, The dimension of almost spherical sections of

convex bodies, Acta Math. 139 (1977) 53-94.

[30] R. L. Graham, B. L. Rothschild & J. H. Spencer, Ramsey theory, John Wiley, New York,

1980.

[31] M. Gromov, Manifolds of negative curvature, J. Differential Geometry 13 (1978) 223-230.

[32] , Volume and bounded cohomology, Publ. Math., 56 (1983) 213-307.

[33] , Hyperbolic manifolds groups and actions, Annals Math. Studies, No. 97, Princeton

University Press, Princeton, 1981, 183-215.

[34] , Groups of polynomial growth and expanding maps, Publ. Math. 53 (1981) 53-78.

[35] , Paul Levy isoperimetric inequality, preprint.

[36] M. Gromov & Ja. M. Eliashberg, Constructions of non-singular isoperimetric films, Proc.

MIAN, USSR 66 (1971) 18-33.

[37] M. Gromov, J. Lafontaine & P. Pansu, Structures metriques pour les varietes riemanniennes,

Cedic/ Fernand Nathan, Paris, 1981.

[38] M. Gromov & H. B. Lawson, Jr., The classification of simply connected manifolds of positive

scalar curvature, Ann. of Math. I l l (1980) 423-434.

[39] , Positive scalar curvature and the Dirac operator on complete Riemannian manifolds,

preprint, State University of New York at Stony Brook, 1982.

[40] M. Gromov & V. D. Milman, A topological application of the isoperimetric inequality, Amer. J.

Math, to appear.

[41] V. W. Guillemin & D. A. Kazhdan, Some inverse spectral results for negatively curved

n-manifolds, Proc. Sympos. Pure Math. Vol. 36, Amer. Math. Soc, 1980, 153-181.

[42] J. J. Hebda, Some lower bounds for the area of surfaces, Invent. Math. 65 (1982) 485-491.

[43] E. Heintze, Mannigfaltigkeiten negativer Kriimmung, preprint, University of Bonn, 1976.

[44] J. Hersch, Sur la frequence fondamentale d'une membrane vibrante: evaluations par defaut et

principe du maximum, Z. Angew. Math. Phys. 11 (19670) 387-413.

[45] D. A. Hoffman & J. Spruck, A Sobolev inequality for Riemannian submanifolds, Proc.

Sympos. Pure Math. Vol. 27, Amer. Math. Soc, 1975, 139-143.

[46] W. Hurewicz & H. Wallman, Dimension theory, Princeton University Press, Princeton, 1948.

[47] J. A. Jenkins, On the existence of certain general extremal metrics, Ann. of Math. 66 (1957)

440-453.

[48] , Univalent functions and conformal mappings, Springer, Berlin, 1958.

[49] A. B. Katok, Entropy and closed geodesies, Technical Report, University of Maryland, 1981.

[50] M. L. Katz, Jr., The filling radius of two points homogeneous spaces, preprint, 1982.



FILLING RIEMANNIAN MANIFOLDS 147

[51] D. A. Kazhdan & G. A. Margulis, A proof of Selberg"s Hypothesis, Mat. Sb. 75 (117) (1968)

163-168.

[52] H. B. Lawson, Jr., Minimal varieties, Proc. Sympos. Pure Math. Vol. 27, Part 1, Amer. Math.

Soc, 1975, 143-177.

[53] P. Levy, Problemes concrets a"analyse fonctionnelle, Paris, 1951.

[54] P. Li & S. T. Yau, A new conformal invariant and its applications to the Willmore conjecture

and the first eigenvalue for compact surfaces, Invent. Math. 69 (1982) 269-291.

[55] A. Lubotzky, Group representations, p-adic analytic groups and lattices in S12(C), preprint,

1982.

[56] A. Manning, Topological entropy for geodesic flows, Ann. of Math. 110 (1979), 567-573.

[57] G. A. Margulis, Quotient groups of discrete subgroups and measure theory, Functional Anal.

Appl. 12(1978)295-305.

[58] J. H. Michael & L. M. Simon, Sobolev and mean value inequalities on generalized submani-

folds ofR", Comm. Pure Appl. Math. 26 (1973) 361-379.

[59] R. Michel, Sur la rigidite imposee par la longueur des geodesiques, Invent. Math. 65 (1981)

71-85.

[60] V. D. Milman, A new proof of the theorem of A. Dvoretzky on sections of convex bodies,

Functional Anal. Appl. 5 (1971) 28-37.

[61] M. Morse, A fundamental class of geodesies on any closed surface of genus greater than one,

Trans. Amer. Math. Soc. 26 (1924) 25-60.

[62] P. Pansu, Croissance des boules et des geodesiques fermee dans les subvarietes, Ergodic Theory

and Dynamical Systems, to appear.

[63] , Une inegalite isoperimetrique sur le groupe d Ήeisenberg de dimension 3, C. R. Acad.

Sci. Paris, to appear.

[64] P. M. Pu, Some inequalities in certain nonorientable Riemannian manifolds, Pacific J. Math. 2

(1952)55-71.

[65] M. S. Raghunathan, Discrete subgroups of Lie groups, Springer, Berlin, 1972.

[66] B. Randol, Cylinders in Riemann surfaces, Comment. Math. Helv. 54 (1979) 1-5.

[67] Yu. G. Reshetnyak, An extremal problem from the theory of convex curves, Uspechy. Mat.

Nauk8(1953) 125-126.

[68] L. A. Santalό, Introduction to integral geometry, Hermann, Paris, 1953.

[69] J. J. Schaffer, inner diameter, perimeter and girth of spheres, Math. Ann. 173 (1967) 59-82.

[70] L. Schwartz, Geometry and probability in Banach spaces, Bull. Amer. Math. Soc. 4 (1981)

135-143.

[71] D. Sullivan, Infinitesimal calculations in topology, Publ. Math. 50 (1978) 269-331.

[72] , Discrete conformal groups and measurable dynamics, Bull. Amer. Math. Soc. 6 (1982)

57-74.

[73] O. Teichmuller, Unterschungen uber konforme und quasikonforme Abbildung, Deutsch. Math.

3(1938)621-678.

[74] W. P. Thurston, Geometry and topology of'3-manifolds, Princeton, 1978.

[75] J. L. Tits, Free subgroups of linear groups, J. Algebra 20 (1972) 250-270.

[76] P. A. White, Regular convergence, Bull. Amer. Math. Soc. 60 (1954) 431-443.

[77] P. Yang & S. T. Yau, Eigenvalues of the Laplacian of compact Riemann surfaces and minimal

submanifolds, Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat. 7 (1980) 55-63.

[78] E. M. Zaustinsky, Loewner's Riemannian approximation of Finsler spaces, preprint, State

University of New York at Stony Brook, 1976.

INSTITUTE DES HAUTES ETUDES SCIENTIFIQUES






