
SINGULARITIES, EXPANDERS AND TOPOLOGY OF MAPS.
PART 2: FROM COMBINATORICS TO TOPOLOGY VIA

ALGEBRAIC ISOPERIMETRY

Mikhail Gromov

Abstract. We find lower bounds on the topology of the fibers F−1(y) ⊂ X of
continuous maps F : X → Y in terms of combinatorial invariants of certain polyhedra
and/or of the cohomology algebras H∗(X). Our exposition is conceptually related
to but essentially independent of Part 1 of the paper.
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1 Definitions, Problems and Selected Inequalities

The simplest measure of the fiber-wise complexity of a continuous map between
equidimensional topological spaces, F : X → Y , is the maximal cardinality of a
fiber, supy∈Y |F−1(y)|. The problem we address is that of evaluating the cardinality
of X over Y , defined as

inf
F∈F

sup
y∈Y

∣∣F−1(y)
∣∣ for a given class F of maps F : X → Y .

When X is a polyhedron, it is better to deal with the maximal number of closed
cells in X intersected by a fiber, since the latter may only increase under uniform
limits of maps.

Next, we extend the setting to maps from k-dimensional X to (k+l)-dimensional
Y with a distinguished family of l-dimensional subspaces A ⊂ Y where we search
for an A0 which is intersected by a maximal number of k-cells of X mapped to Y .

Finally, we establish lower bounds on the (co)homologies of fibers of continuous
maps rather than on their cardinalities.

Acknowledgments. The final version of this paper owes very much to the anony-
mous referee who, besides indicating a multitude of minor errors, pointed out several
significant mistakes in the original draft and who has made a variety of useful sug-
gestions. Also I want to thank Miriam Hercberg for her help in proofreading the
paper.



418 M. GROMOV GAFA 

1.1 Δ-Inequalities for the multiplicities of maps of the n-skeleton of the
N-simplex to Rn. Let X be a finite simplicial polyhedron, where the set of the
k-faces (simplices) Δk in X is denoted by {Δk} = {Δk}(X) and |{Δk}| denotes the
cardinality of this set.

Let F : X → Rn be a continuous (e.g. face-wise affine) map and let A be an
affine subspace in Rn. Denote by ∣∣A �F {Δk}

∣∣
the number of the closed k-faces Δk of X such that the image F (Δk) ⊂ Rn inter-
sect A.

We want to identify and/or construct polyhedra X of “sufficient combinatorial
complexity”, for which

every continuous (or, at least, every face-wise affine) map F from X
to Rn admits an (n − k)-dimensional affine subspace A0 = An−k

0 ⊂ Rn

(which depends on F ), such that the ratio
|A0 �F {Δk}|
|{Δk}|

is “reasonably large”.
A particular case of interest is where k = n, where A = a are points in Rn and

where the first result (I am aware of) of this kind (apart from Tverberg’s theorem,
see 2.8), due to Imre Barany [Ba], concerns affine maps of the N -simplex X = ΔN

to Rn, where, observe, the number of the n-faces is |{Δn}| =
(
N+1
n+1

)
.

Barany’s affine Δ-inequality.

Let F : ΔN → Rn be an affine map. Then there exists a point a0 =
a0(F ) ∈ Rn such that the number M0 of the closed n-faces Δn of the
simplex ΔN for which the image F (Δn) ⊂ Rn contains a0 is bounded
from below by

M0 =
∣∣a0 �F {Δn}

∣∣ ≥ baff(n) ·
∣∣{Δn}

∣∣ · (1−O(1/N)
)
,

for
baff(n) ≥ 1/(n + 1)n+1. [Δ → Rn]aff

Equivalently,
given a probability measure μ on Rn, there exists a point a0 ∈ Rn such
that the convex hull of μ-randomly chosen n + 1 points in Rn contains
a0 with probability ≥ 1/(n + 1)n+1.

The true value of baff is known only for n = 1, where it is, obviously, 1/2, and
for n = 2, where the lower bound baff(2) ≥ 2/9 is due to Boros and Furedi [BorF],
while the examples constructed in [BuMN] show that baff(2) ≤ 2/9; moreover it is
shown in [BuMN] that baff(n) � e−n for large n.

Barany’s bound baff(n) ≥ 1/(n + 1)n+1 was improved by a polynomial factor
in [W] (also see [DeHST]), but an exponential lower bound, baff(n) ≥ βn for some
β > 0, remains problematic. (I am indebted to Janoch Pach who introduced me to
the combinatorial results around the Barany inequality.)



GAFA COMBINATORICS TO TOPOLOGY VIA ALGEBRAIC ISOPERIMETRY 419

Topological Δ-inequality.
Let F : ΔN → Rn be a continuous map. Then there exists a point
a0 ∈ Rn, such that the number M0 of the closed n-faces Δn of the simplex
ΔN for which the image F (Δn) ⊂ Rn contains a0 is bounded from below
by

M0 =
∣∣a0 �F {Δn}

∣∣ ≥ btop(n) ·
∣∣{Δn}

∣∣ · (1−O(1/N)
)
,

for
btop(n) ≥ 2n

(n + 1)(n + 1)!
∼ en/(n + 1)n+1. [Δ → Rn]top

(Strangely, this is stronger than the present day bound on baff obtained by the
traditional combinatorial techniques. A priori, the constant btop which serves all
continuous maps may be only smaller than the constant baff responsible only for the
face-wise affine maps. The two constants happen to be equal for n = 1, 2, but it is
unknown if btop(n) < baff(n) for any n ≥ 3.)

The proof of the topological Δ-inequality depends on “combinatorial filling” in
the semisimplicial spaces of cycles of measurable chain complexes (see 2.1–2.6) which
is similar to, but formally independent of, the filling techniques in the Riemannian
geometry.

Interestingly enough this quite formal “combinatorial filling” yields lower bounds
on the waists of Riemannian and (some sub-Riemannian) spaces under less restrictive
assumptions than those required by the known geometric arguments (see 1.3, 2.7).

The (more or less standard) geometric ideas motivating our general constructions
are presented in section 3 which includes:
• A separate proof of the inequality [Δ → R2]aff , which contains in a nutshell

the idea of our general argument;
• Basic definitions of the Riemannian geometry and a brief overview of the

isoperimetric/filling techniques aimed at non-experts;
• Basics on isoperimetry in graphs and cardinalities of graphs over graphs.

1.2 (n − k)-Planes crossing many k-simplices in Rn. Denote by baff(n, k),
where n ≥ k, the maximal number, such that

every probability measure μ in Rn, admits an (n− k)-dimensional affine
subspace A0 = An−k

0 (μ) such that the μ-probability of the convex hull of
k + 1 points in Rn to meet A0 is bounded from below by

μ⊗(k+1)(A0 � {Δk}
)
≥ baff(n, k) .

It is obvious that baff(n, 1) = 1/2 for all n, that baff(n, k) is monotone increasing
in n and that baff(n, n) equals the (optimal) Barany constant baff(n).

It is also not hard to see that if μ is round, i.e. spherically symmetric, e.g. the
Gaussian measure dy

(
exp ‖y‖−2/

∫
exp ‖y‖−2dy

)
, and μ({0}) = 0 (no atom at the

origin), then
μ⊗(k+1)(A � {Δk}

)
≤ 2−k

for all An−k ⊂ Rn. (In fact, every μ with a continuous density function satisfies this
inequality for all A, where the equality holds if and only if the radial projection of
μ from some point a ∈ A is symmetric in a [WW].)
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Thus,
baff(n, k) ≤ 2−k for all n ≥ k .

On the other hand, it is shown by Bukh, Matoušek and Nivasch [BuMN] that
if k = 2, then

baff(n, k) ≥ 1
4

(
1− 1

(2n− 1)2

)
.

Our result in this regard applies to all n and k but it is not so sharp.

[k � n − k]-Inequalities.

There exists a universal positive constant Baff ≤ 2, such that if n ≥
λ · (k + 1)2 for some λ ≥ 1, then

baff(n, k) ≥ 1
2k

(
1− Baff

λ

)
. [n 	 k2]aff

There exists a strictly positive function, βaff(ε) > 0 for ε > 0, such that
if n ≥ (1 + ε) · k, then

baff(n, k) ≥ βaff(ε)k+1. [n 	 k]aff
In other words, baff((1 + ε)k, k) may decay at most exponentially in k for ev-

ery given ε > 0 (the behavior of the exponent for ε → 0 remains unclear) and
baff(λk2, k)/2−k−1 converges to 1 for λ →∞ (which is, essentially, sharp).

In fact, more precise inequalities for n ≥ 2k − 1 easily follow from the Radon
theorem and for k + 1 ≤ n ≤ 2k − 2 from the Tverberg theorem (see 2.8).
Remarks and Questions. (a) The inequality [n 	 k2]aff says that an affine
projection of μ onto a k-dimensional subspace is similar in some respect to a round
measure. In fact, a recent theorem by Klartag [Kl] says (among other things) that

Given a probability measure μ with a continuous density function on Rn

and a number k � n, there exists a surjective affine map P = Pμ : Rn →
Rk such that the pushforward measure P∗(μ) is ε-round (in the natural
sense) where ε → 0 for n →∞.

This provides an alternative proof of a version of [n 	 k2]aff .
(b) Is there a topological version of, say, [n 	 k2]aff?
It is even unclear if the constant btop(n, k) corresponding to intersections of affine

planes An−k ⊂ Rn with curve-linear simplicial spans of (k + 1)-tuples of points in
(Rn, μ) becomes any greater than btop(k, k) = btop(k) no matter how large n is
compared to k.

(c) Is there a “good” asymptotic lower bound on 2−k−1 − baff(n, k) for n →∞?
(Some bound of this kind follows from [WW].)

1.3 Riemannian and sub-Riemannian waist inequalities. Let Sm ⊂ Rm+1

be the round Euclidean sphere and let Δ(Sm) be the simplex on the vertex set Sm,
i.e. the i-faces of Δ(Sm) are represented by (i + 1)-tuples of points in Sm.

Take the barycenters in Rm+1 ⊃ Sm of (n + 1)-tuples of points in Sm and
then radially project these back to Sm. Thus, we obtain, for each n ≤ m, a
map from (the geometric realization of) the n-skeleton of Δ(Sm), into Sm, say
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Bn :
⋃

Δn(Δ(Sm)) → Sm, which is defined almost everywhere for the spherical mea-
sure ds on Sm (or, rather for the Cartesian product of the power measure ds⊗(n+1)

times the measure on the simplex Δn).
Denote by subvol�Δn(W ), W ⊂ Sm, the probability that the convex geodesic

n-simplex Δn spanned by an (n + 1)-tuple of points in Sm (i,e, the Bn-image of
an n-face of the simplex Δ(Sm)) intersect W , where the probability refers to the
normalized spherical measure.

Let voli denote the i-dimensional Hausdorff measure in Sm and observe that
subvol�Δn(W ) ≤ 2n+1 volm−n(W )/ volm−n(Sn) for all closed subsets W ⊂ Sm, with
the equality for subsets which meet every Δn at (at most) one point by the Crofton–
Wendel formula (see 2.7).

The inequality [Δ→ Rn]top (trivially) implies such inequality for the n-skeleton
of the simplex spanned by Sm. For instance, if we apply [Δ → Rn]top to the
composition of Bn with a continuous map f : Sm → Rn, we conclude to the following

Spherical waist inequality.

Let f : Sm → Rn be a continuous map. Then there exists a point a0 ∈ Rn,
such that
subvol�Δn

(
f−1(a0)

)
≥ s�(n) ≥ btop(n) ≥ 2n/(n + 1)(n + 1)! . [subvol�]

Therefore (see 2.7)
the (m− n)-dimensional Hausdorff measure of f−1(a0) is bounded from
below by

volm−n

(
f−1(a0)

)/
vol(Sm−n) ≥ sHau(n, m)

for
sHau(n, m) ≥ 2n+1s�(n) ≥ 2n+2n/(n + 1)(n + 1)! . [Sm → Rn]

Remark. It is shown in [Gr6] that sMin(n, m) = 1 where the Hausdorff measure is
substituted by the Minkowski volume [Gr6].

Also supa volm−n(f−1(a))/ vol(Sm−n) ≥ 1 for the Hausdorff volm−n if one as-
sumes that the fibers f−1(a) ⊂ Sm of f are rectifiable Z2-cycles continuous in
a ∈ Rn with respect to the flat topology (e.g. if f is a generic smooth map) by an old
(unpublished) theorem of Almgren (see [Pi]).

It seems plausible that Almgren’s method, combined with the geometric consid-
erations in 3.4, and with the argument in 5.7 of [Gr7] for the special case m−n = 1,
[Gr6] would yield a sharp estimate of s�ε(n) where one counts intersections of W
with ε-simplices for a small, yet positive ε. This would imply that sHau(n, m) = 1
(compare with the last remark in 3.4).

On the other hand the true value of s�(n) (for n, m − n 
= 1) remains unclear
even hypothetically.

Contact waist inequality. Let m = 2l + 1 and let the sphere Sm ⊂ Cl+1 be
endowed with the standard contact structure, i.e. the tangent (m− 1)-plane field H
(sub-bundle of the tangent bundle of the sphere) which is normal to the Hopfian
circles (the orbits of the multiplications by complex numbers z with ‖z‖ = 1), and
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let the CC-distance be defined by the minimal length of curves between pairs of
points where the curves are required to be tangent to H.

Let n ≤ l and let f : Sm → Rn be a continuous map. Then there exists
a point a0 ∈ Rn, such that

volCC
m−n+1

(
f−1(a0)

)
≥ ε(m) > 0 , [CC]

where volCC
m−n+1 denotes the (m−n+1)-dimensional Hausdorff measure

for the CC-distance in Sm.

In fact, the above proof for the Riemannian Sm extends to a class of Carnot–
Caratheodory spaces which includes the contact S2l+1 (see 2.7).
Remarks. (a) The inequality [CC] is qualitatively stronger than its Riemannian
counterpart for maps Sm → Rn. For instance, the bound volCC

m−n+1(W ) ≥ 2
√

ε for a
smooth (m−n)-dimensional submanifold W ⊂ Sm with volm−n(W ) ≤ 1/

√
ε implies

that W cannot be approximately ε-tangent to H outside a subset Wε ⊂ W with
volm−n(Wε) <

√
ε.

(b) If n = 1, then [CC] follows from the Pansu–Varopoulos isoperimetric inequal-
ity and if f is a generic smooth map, then it follows for all n and m from Robert
Young’s filling inequality (see [Y] ).

(c) A version of [CC] applies to balls in the Heisenberg group H2l+1 and provides a
lower bound on the growth of lattices Γ ⊂ H2l+1 over Zn (see 2.7, where this relative
growth characterizes the growth of pullbacks of points in Zn under Lipschitz maps
Γ → Zn).

1.4 Locally bounded 2-polyhedra with large cardinalities over R2. We
shall prove (see 2.11–2.14) counterparts to [Δ → Rn]top for several classes of n-
polyhedra smaller than the full n-skeleton of the N -simplex, but all of them have
local combinatorial degrees growing with N .

Below is the only instance known to me of a (restricted version) of such inequality
where degloc(X) ≤ const.

There exists, for every positive integer N , a 2-dimensional simplicial polyhedron
XN with N vertices, where the local degrees, i.e. the numbers of faces adjacent to
each vertex in every XN , are bounded by a constant, say ≤ 1000, such that the
following holds.

Let F : XN → R2 be a continuous map which is at most k-to-1 on each
face and where the image of every 1-simplex is nowhere dense in R2

(this is, probably, redundant). Then there exists a point a0 ∈ R2, which
is contained in the F -images of at least M simplices of X for

M =
∣∣a0 �F {Δ2}

∣∣ ≥ 0.001k−2N . [XN → R2]
Moreover, one can make these XN simply connected for infinitely many N .

This inequality for the 2-skeleta of co-compact quotients Q of certain Bruhat–
Tits buildings is derived (see 2.10) from Garland’s vanishing theorem [G]; then the
simply connected XN come the same way as in 1.6(d) (see 2.10, 4.3).
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It remains unclear if such an inequality ever holds for locally bounded 2-polyhedra
with a constant independent of k and/or if there are similar families of n-dimensional
polyhedra for n > 2.

On the other hand, it is shown in [Fox et al] that randomly iterated (see 2.14) and
related n-dimensional polyhedra XN with N vertices and Nn ≥ const(n)N faces of
dimension n satisfy

sup
a∈Rn

∣∣a �F {Δn}
∣∣ ≥ εN

for all face-wise affine maps XN → Rn, where ε = ε(n) > 0 and where the lower
bound on this ε may be as good as that for the full simplex ΔN−1.

(This inequality fails to be true for face-wise injective continuous maps of random
polyhedra X(N) to Rn; moreover, a significant amount of X(N) admit face-wise
injective continuous maps F where supa∈Rn |a �F | ≤ const = const(n, Nn/N).)

Conclude by noticing that n-polyhedra with large “cardinality over Rn” need to
have “significant local topological complexity”. For example, we shall see in 2.9 that

every smooth n-dimensional manifold X admits a smooth generic map
F : X → Rn, where

sup
y∈Rn

∣∣F−1(y)
∣∣ ≤ 4n .

1.5 Separation inequalities in the N-torus for the homological μA-mass.
When it comes to maps F : X → Y with dim(Y ) < dim(X) we measure the
“topological size” of the fibers F−1(y) ⊂ X by their (C̆ech) (co)homology with
coefficients in a (finite) field F as follows.

Given a subset in a topological space, X1 ⊂ X, denote by
rest∗/X1

: H∗(X) → H∗(X1)
the restriction cohomology homomorphism. If A ⊂ H∗(X) is a linear subspace, then

A|X1 denotes the image rest∗/X0
(A)

and
μA(X1) =def A ∩Ker(rest∗/(X\X0)) ,

that is the kernel of the restriction of A to the complement X \X0.
The ranks of the F-linear spaces A|X1 and μA(X1), denoted |A|X1|F and |μA(X1)|F,

are, obviously, monotone under inclusions of subsets,
X2 ⊃ X1 ⇒ |A|X2|F ≥ |A|X1|F and

∣∣μA(X2)
∣∣
F
≥

∣∣μA(X1)
∣∣
F
, (1)

and are thought of as “cohomology masses of subsets in X measured with A”.
If A = Hn = Hn(X) ⊂ H∗(X) for some n = 1, 2, . . . , then every open subset

X1 ⊂ X with boundary denoted ∂X1 satisfies
|A|X1|F ≤

∣∣μA(X1)
∣∣
F

+ |A|∂X1|F . (2)
Indeed, by the excision property of Hn (or by the additivity relation (3) in 4.1), the
span of the kernels K1,K2 ⊂ Hn of the restriction homomorphisms of Hn to X1
and to X2 = X \X1 equals the kernel K∂ of the restriction to ∂X1 = ∂X2,

K1 + K2 = K∂ ;
therefore,

|A|X1|F = |Hn/K1|F ≤ |Hn/K∂ |F + |K2|F = |A|∂X1|F +
∣∣μA(X1)

∣∣
F
.
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(This inequality was erroneously stated for all A in the first draft of this paper as
was pointed out to me by the referee.)

If two open subsets X1, X2 ⊂ X cover X, then, obviously,
|A|X1|F +

∣∣μA(X2)
∣∣
F
≥ |A|X|F = |A|F =def rankF(A) . (3)

Let A = Hn and let W = X \ (X1 ∪X2) be the complementary region (“wall”)
between two disjoint open subsets X1, X2⊂X. Then (1)–(3) imply that

|A|F ≤ |A|W |F +
∣∣μA(X1)

∣∣
F

+
∣∣μA(X2)

∣∣
F
. (4)

Notice, finally (we shall not use it anywhere), that if A ⊂ Hn(X; F), then∣∣μA(X1)
∣∣
F
≤ |A|X1|F +

∣∣Hn−1(∂X1; F)
∣∣
F

(5)
by the exactness of the cohomology sequence of the pair (X1, ∂X1).

Multiplicative separation inequality in the N-torus.

Let X1, X2 ⊂ TN be non-intersecting (closed or open) subsets and let
A1 = Hn1(TN ; F), A2 = Hn2(Tn; F) for ni ≤ N/2, i = 1, 2, and some
field F. Then ∣∣μA1(X1)

∣∣
F
·
∣∣μA2(X2)

∣∣
F
≤ c · |A1|F · |A2|F , [×]

for c = n1n2/N
2, where, observe, |Ai = ∧niF|F =

(
N
ni

)
, i = 1, 2.

This is shown in 4.8 by reducing [×], by the standard ordering argument in the
Grassmann algebra ∧∗F = H∗(TN ; F) (see 4.6) to the special case of X1 and X2
being monomial subsets, i.e. unions of coordinate subtori in TN where [×] amounts
to a combinatorial inequality due to Matsumoto and Tokushige [MatT1]. (I would
not have been able to trace such a result in the literature if not for the landmark –
Kruskal–Katona theorem that was pointed out to me by Noga Alon.)

In fact, most (all?) inequalities for the extremal set systems (see [Fr]) can be
equivalently reformulated in terms of monomial subsets in TN . We shall see in
4.8–4.9 that some of them extend to all (non-monomial) subsets in TN (i.e. these
inequalities are invariant under all automorphisms of TN , not only under permuta-
tions of coordinates); but such extension remains problematic for the majority of
these combinatorial inequalities.

Let A1 = A2 = A = Hn(TN ) and let W = TN \ (X1 ∪ X2) be the com-
plementary region (“wall”) between two disjoint open subsets X1, X2⊂TN . Let
ai = |μA(Xi)|F/|A|F, i = 1, 2, and w = |A|W |F/|A|F.

Then, [×] reduces to
a1a2 ≤ c = n2/N2

and (4) above implies that
w ≥ 1− a1 − a2 .

Thus, we obtain the following:

Cohomology equipartition inequality in the N-torus.

Let X1, X2 ⊂ TN be disjoint open subsets and W = TN \ (X1 ∪X2). If
X1 and X2 have equal |μHn |F-masses for some n < N/2, i.e.∣∣μA(X1)

∣∣
F

=
∣∣μA(X2)

∣∣
F
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for A = Hn(TN ) = Hn(TN ; F), then∣∣Hn(TN )|W
∣∣
F
≥

(
1− 2n

N

) (
N

n

)
.

Consequently (see 4.8, 4.9), the maximum of the |Hn|F-masses of the
fibers of every continuous function F : TN → R is bounded from below
by

sup
y∈R

∣∣Hn(TN )|F−1(y)
∣∣
F
≥

(
1− 2n

N

) (
N

n

)

for every n < N/2.
Remark. This is stronger than the maximal fiber inequality for maps TN → R

from [Gr8] (where the N -torus is treated as the product of smaller tori); but it
remains unclear how far this improvement is from the sharp inequality. Also the
corresponding strengthening of the maximal fiber inequality for maps TN → Rk for
k > 1 remains problematic.

About the proof. The reader who is interested exclusively in the above results need
look only into 4.1, 4.5, 4.6, 4.8 and 4.9.

1.6 |A|F-Isoperimetry and homology expanders. Let X be a locally com-
pact topological space and A ⊂ H∗(X; F) a linear subspace. We are concerned
with bounds on the A-masses of compact subsets by A-masses of their boundary
by analogy with the geometric isoperimetric inequalities; moreover, we wish to have
spaces X with “strong cohomological isoperimetry” and with “simplest possible” lo-
cal and global geometry/topology. Here is an instance of a family of such spaces X.
(See 4.10 for the construction of these X.)

Simply connected 6-manifolds cohomology expanders.
There exists an infinite family {X} of smooth closed 6-dimensional sim-
ply connected submanifolds X = X6 ⊂ R7, with distinguished subspaces
A ⊂ H2(X) = H2(X; F) for a given field F with the ranks |A|F → ∞
and such that
(A) Each X in the family has ‖ curv(X)‖ ≤ 1 and

vol(X) ≤ const ·|A|F for some const ≤ 1020,

where ‖ curv(X)‖ stands for the norm of the second fundamental (cur-
vature) form (shape operator) of X ⊂ R7;
(B) The A-mass of every open subset X0 ⊂ X with smooth boundary in
each manifold X in the family is bounded by the minimum of the masses
of X0 and its complement by

|A|∂X0|F ≥ λ min
(
|A|X0|F, |A|X \X0|F

)
for some λ ≥ 10−10.

Remarks and Questions. (a) The essential feature of these X which ensures
(B) is a high non-degeneracy of the �-product (pairing) on A ⊂ H2(X) that is
implemented using (graph) expanders associated to arithmetic groups (see 4.3). (It
remains unclear, in general, which algebras A can be realized by cohomologies of
n-dimensional Riemannian manifolds of locally 1-bounded geometries and vol ≤
const · rank(A).)
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(b) The property (B) implies that generic smooth maps of X to open surfaces Y
have “deep” critical sets Σ ⊂ Y (see [Gr8]).

This contrasts with the 5-dimensional case: the Smale–Barden theorem implies
that every simply connected 5-manifold admits a generic map to R2 where every
point in R2 can be moved to infinity by a path that meets Σ at ≤ 100 points. (The
case of simply connected 4-manifolds remains unresolved.)

(c) It is plausible in view of [Su] (see the last Remark in 4.10) that there are
families satisfying (A) and (B) with A = H2(X).

(d) Are there families satisfying (A) and (B) where the rank |A|F assumes all
positive integer values? (Our construction depends on the Margulis theorem on
cofiniteness of normal subgroups in lattices in semisimple Lie groups; this, being
ineffective, delivers a family {(X, A)} with an infinite but, a priori, very rare set of
ranks |A|F.)

(e) Are there similar families of k-connected n-manifold X for k ≥ 2 and n ≥
2k + 2, with A ⊂ Hk+1(X)?

About the Proof. The construction of the above 6-manifolds, which is presented
in 4.10, depends on the S�-construction in 2.1 and on the construction of simply
connected expanders in 4.3, while the proof of (A) and (B) uses the reduction of the
topological isoperimetry to that in (cohomology) algebras (see 4.8) accompanied by
a derivation of the algebraic isoperimetry in graph algebras from the combinatorial
one in graphs (see 4.1, 4.5, 4.7).

2 Filling Profiles, Random Cones in Spaces of Cycles and Lower
Bounds on Multiplicities of Maps

This section contains the proofs of the topological Barany inequality and of related
results stated in 1.1–1.4.

2.1 Semisimplicial spaces and S�-construction. Let Δ(V ) denote the sim-
plex on the vertex set V and observe that the correspondence V � Δ(V ) establishes
an equivalence between the category F of maps between finite sets V and the cate-
gory of simplicial maps between simplices Δ.

A semi-simplicial structure S on a topological space X is given by distinguishing,
for every finite set V , a set S(V ) of continuous maps σ of Δ = Δ(V ) to X, which
are called (singular) simplices in X and/or semisimplicial maps Δ → X, where the
following two conditions are satisfied.

Functoriality. If a map σ : Δ1 → X is a singular simplex and s : Δ2 → Δ1 is
a simplicial map, then the composed map σ ◦ s : Δ2 → X is also a singular simplex.

Cellularity. The images of the interiors of the singular simplices make a cel-
lular decomposition of X. More precisely, there exists, for every x ∈ X, a singular
cell-simplex σx : Δx → X, such that σx is a topological embedding on the interior
int(Δx) = Δx \ ∂Δx and x ∈ σx(int(Δx)). Furthermore, every singular simplex
σ : Δ → X with σ(int(Δ)) � x decomposes, σ = σx ◦ s for some simplicial map
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s : Δ → Δx. In particular every singular cell-simplex σx is unique up to a simplicial
automorphisms of Δx (which correspond to permutations of the vertices of Δx).

Thus, every X = (X, S) defines a contravariant functor S = S(X) from
the category D of simplices, or, equivalently, from the category F of
finite sets, to the category of sets (where the cellularity can be expressed
in terms of some “sheaf-like” properties of this functor).

X(D, S)-space. Conversely (and more generally [EZ], [Mi]), let D be a small
category of topological spaces (e.g. of simplices Δ = Δ{0, 1, . . . , i} and simplicial
maps between them), let S be a contravariant functor from D to the category of
sets. Define a topological space X = X(D,S) ‘glued of Δ ∈ D according to S” as
follows.

Call s ∈ S(Δ) degenerate if there exists a non-injective map ϕ of some Δ onto Δ′

such that s ∈ S(ϕ) and let SΔ ⊂ S(Δ) be the set of “cells”, i.e. of non-degenerate s.
Let X∗ be the union of these “cells”, i.e. the disjoint union of the copies of spaces

Δ in D indexed by points in SΔ; ∐
Δ∈D, s∈SΔ

Δs .

Join two points in X∗ with an arrow,
X∗ ⊃ Δ1

s1
� x1 �→ x2 ∈ Δ2

s2
⊂ X∗

if there exist
a space Δ ∈ D and points x ∈ Δ and s ∈ S(Δ);
an injective (face) morphism F : Δ → Δ1 and a surjective morphism (projec-
tion) P : Δ → Δ2 in D, such that F (x) = x1, P (x) = x2, T (F )(s1) = s and
S(P )(s2) = s.

Let X = X(D,S) be the quotient space of X∗

If D is a small category of simplices and simplicial maps and M is the category
of sets, then the resulting “new object” X is a semisimplicial complex, where the
functor S ′ = S(X) may be non-equal S but X ′ associated to S ′ is canonically
isomorphic to X.

Encouragement. Category theory is intimidating for many mathematicians
including the present author: the category theoretic definitions and constructions
have a flavor of magic incantations with an obscure meaning. But the magic of
category theory works amazingly well for you, if you first generate “syntactically
acceptable” sentences in the category-theoretic language and then decipher their
meaning.

A particular construction we use is that of a new mathematical object NMO as
a contravariant functor S from a small simple category D, such as the category of
finite sets, to another “sufficiently soft”, i.e. allowing many morphisms, category M,
e.g. the category of sets, of measure spaces or of linear spaces.

One may think of an object D in D as a “measuring rod”, where S(D) represents
a measurement/observation of NMO by means of D and where the functoriality rule
ensures that different measurements are mutually coherent. Thus, NMO emerges
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as the totality of the results of coherent measurements/observations. (This is, ap-
parently, how your brain forms concepts of “objects” in the external world.)

In what follows, we introduce further categorical constructions of topological
spaces which will not be used until section 4.10.

Start by observing that since the category of simplices is equivalent to the cat-
egory F of finite sets, the “gluing pattern” defined via S can be described in the
language of F .

Indeed, let R be a commutative topological semigroup with zero. Then the
Cartesian power V � RV is a covariant functor from the category F of finite sets V
to the category of topological spaces (semigroups), where every contravariant functor
S from F to the category of sets defines a contravariant functor, say SR, from the
categoryR of Cartesian powers RV , and continuous maps (homomorphisms) induced
by maps V1 → V2; thus we get

X(S, R)-space. This is a topological space X = X(S, R) = X(R,SR) with a
distinguished point 0 ∈ X associated to each functor S from F to the category of
sets.

Since this X is functorial in R, every automorphism group G of R acts on X and
we “projectivize” by letting P/G(X) = P/GX(S, R) = (X \ {0})/G. In particular,
if we take R = R+, G = R×+ and identify the quotients (Ri+1

+ \ {0})/R×+ with the
i-simplices, we obtain

X(S)-space: a semisimplicial space X(S) = P/R
×
+
X(S, R+) associated to each

functor S from the category F of finite sets to the category of sets.
If R is a topological space with a marked point r0 ∈ R (rather than a semigroup),

then the Cartesian power V � RV is covariantly functorial on injections in F . Thus
we arrive at the following constructions of spaces (which will be used in 4.8).

S-construction. Let R = (R, r0) be a marked topological space. Then every
semisimplicial complex S, where all cell-simplices Δ → S are injective on the faces
of Δ (e.g. a simplicial complex), canonically (covariantly functorially in R) defines
(via the functor S associated to S) a marked topological space X = S(R).

S�-construction. Take the simplex Δ = Δ(V ) on the vertex set V and radially
project points from the barycenters of the faces of Δ to the boundaries of these faces.
Eventually, each s ∈ Δ ends up at the barycenter of some face and we denote by
V (s) ⊂ V the set of the vertices of this face. For example V (barycenter) = V and
V (v) = v for the vertices v of Δ.

Let R be a marked topological space, let RV (s) ⊂ RV , s ∈ Δ, be the coordinate
subspace corresponding to V (s) ⊂ V and observe that

DR : V � Δ(V ) 	 R =
⋃

s∈Δ(V )

s×RV (s) ⊂ Δ(V )×RV

makes a covariant functor from the category of finite sets V and injective maps to
the category of topological spaces. Then the S-construction applies to Δ(V ) 	 R
instead of R and delivers
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a topological space X� = S�(R) associated to each simplicial space S and
every marked space R.

In simple words, if W denotes the vertex set of S, then X� ⊂ S ×RW is defined
by the condition

X� ∩
(
Δ(V )×RW

)
=

⋃
s∈Δ(V )

s×RV (s) ⊂ Δ(V )×RV ⊂ Δ(V )×RW

for all V ⊂ W corresponding to the faces Δ(V ) ⊂ S.
Notice that

(a) There is a natural embedding e : S ⊂ X� defined by the marking in R.
(b) There is a natural map ρ : X� → S, defined by the projections Δ×RV ⊃ Δ	R

→ Δ, such that ρ ◦ e = id, and where each fiber ρ−1(s) ⊂ X� is a Cartesian
power Rd(s) = s×Rd(s) ⊂ S ×Rd(s) for d(s) ≤ dim(S) + 1.

(c) There is a natural map ϕ : X� → X = S(R), defined by the projections
Δ×RV ⊃ Δ 	 R → RV , which sends e(S) ⊂ X� = S�(R) to the marked point
in X.

(d) If dim(S) = 1 and dim(R) > 0 then
dim(X�) = dim(X) = 2 dim(R) ,

the map ϕ is one-to-one away from S and the induced cohomology homomor-
phism ϕ∗ is bijective on H i for i ≥ 2.

(e) If R is a triangulated space, there is a triangulation of X�, where the degrees
degloc(X�) of X� at the vertices (unlike the degrees of vertices in X = S(R))
are bounded by(

dim(S) + dim(R)
)
!
(
1 + degloc(S)

)
· (1 + degloc(R)

)1+dim(S)
,

and for which ρ becomes a simplicial map, where the numbers NΔ(X�, s) of
simplices in X� intersected by the ρ-pull backs of the points s ∈ S are bounded
by the number of simplices in R by

NΔ(X�, s) ≤
(
dim(S) + dim(R)

)
! ·NΔ(R) .

Therefore, the total number of simplices in the triangulated X� is bounded by
NΔ(X�) ≤

(
dim(S) + dim(R)

)
!NΔ(S) ·NΔ(R) .

2.2 Spaces clnsms of n-cycles in chain complexes, quasitransversality and
the intersection homomorphism F ∗◦ �n. Let C∗ be a complex of Abelian
groups, ∂i : Ci → Ci+1, i = 0, 1, 2, . . ., where Ci = 0 for i < 0, and recall the
definition of the semisimplicial space of n-cycles in C∗ (these will be cocycles in the
topological applications).

Let D∗(k, n) = {δi : Di(k, n) → Di+1(k, n)} be the the chain (not cochain) com-
plex C∗(Δk) of the standard k-simplex over the integers, where the usual (decreasing)
grading is reversed and shifted, such that Di(k, n) = Cn−i(Δk) with δi = ∂n−i and
where the complex D∗(k, n) is infinitely extended for i < n− k and i > n by zeros.

The space of n-(co)cycles in C∗ denoted clnsms = clnsms(C
∗), is defined as the

semisimplicial space corresponding to the functor S : Δk → Hom(D∗(k, n), C∗).
In simple words, the vertices in clnsms are (co)cycles c ∈ cln = ker ∂n, the edges

in clnsms are (n− 1)-chains c12 “joining” pairs of (co)homologous cocycles c1 and c2
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in cln, which means ∂n−1(c12) = c1 − c2, the 2-simplices in clnsms are “filling trian-
gles of (semi)-triangulated 1-spheres”, i.e. (n− 2)-chains c123 such that ∂n−2c123 =
±c12 ± c13 ± c23 with certain ± signs depending on orientations, etc.
Example. If Ci = 0 for i 
= 0 then clnsms equals the usual semisimplicial pre-
sentation of Eilenberg–MacLane space K(H0, n), since the (co)homology group
H0 = H0(C∗) equals C∗ in this case.

More generally one has the following algebraic version of the

Dold–Thom–Almgren Theorem (see [A1]). The space clnsms(C
∗) is canonically

(and functorially) homotopy equivalent to the Cartesian product of the Eilenberg–
MacLane spaces associated with the (co)homology H∗ = ker ∂∗/ im ∂∗−1 of C∗,

clnsms(C
∗) � ×jK(Hj , n− j) .

Thus, the connected components of clnsms correspond to elements g ∈ Hn =
K(Hn, 0) and they are all canonically homotopy equivalent.

The subproduct K(H0, n) × K(Hn, 0) is called the fundamental cofactor
fndn ⊂ clnsms, where clnsms canonically retract on fndn.

The connected g-components of fndn, g ∈ Hn = K(Hn, 0) are copies of K(H0, n);
the n-dimensional homology of K(H0, n) is canonically isomorphic to H0.

If C∗ is a complex of F-moduli over a unitary ring (e.g. a field) F and H0 = F,
then an h ∈ Hn(fndn) ⊂ Hn(clnsms) is called the g fundamental class, g ∈ Hn, if its
restriction to the connected g-component of fndn equals 1 ∈ F = Hn(K(H0, n); F).

If a chain homomorphism between chain complexes, φ : C∗1 → C∗2 , is an isomor-
phism on H0, then it sends the fundamental g-class of clnsms(C

∗
1 ) ⊃ fndn, g ∈ Hn,

to the φ∗(g)-fundamental class of clnsms(C
∗
2 ) by the functoriality of the Dold–Thom–

Almgren isomorphism.
If X is a topological space, the above applies to the singular (co)chain complex

of X with coefficients in some F, where the corresponding spaces of cycles and
cocycles are denoted cl∗(X) and cl∗(X). If X comes as a cell complex (e.g. as a
simplicial complex), then (co)cycles are understood in the cellular (co)chain complex
of X.

If Y is an oriented F-homology manifold of dimension n (e.g. just a mani-
fold) then the Poincaré duality assigns, to each i-dimensional F-cycle c in Y , an
(n − i)-dimensional F-cocycle, denoted �nc. (This equally applies to the singular
(co)homology and to the homology/cohomology associated to triangulations and the
dual cell partitions of Y .)

The image �n[Y ]◦∈Hn(cln(Y ) of the fundamental homology class [Y ]◦∈Hn(Y ; F)
equals the [Y ]◦-fundamental class ∈ Hn(fndn(Y ); F) ⊂ Hn(cln(Y ); F), for [Y ]◦ de-
noting the fundamental cohomology class of Y that is the Poincaré dual to [Y ]◦.
This implies

Non-vanishing of �.

If F : X → Y is a continuous map, where X is a non-empty topological
space, then the image F ∗(�n[Y ]◦) ∈ Hn(cln(X)) of �n [Y ]◦ is non-zero.
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Let X be a cellular (e.g. simplicial) space (complex) and let us recall Poincaré’s
description of the composed homomorphism F ∗◦ �n. for continuous maps F : X→Y .

A continuous map of an i-simplex to Y , say s : Δi → Y , is called quasitransversal
to F : X → Y if every closed j-face Δj of Δi (mapped by s to Y ) and every (n− j)-
cell σn−j of X (mapped by F to Y ) intersect in Y (if at all) only at their interior
points. If Δj and σn−j are oriented, there is a well-defined F-valued intersection
number, denoted Δj�σn−j ∈ F.

Quasitransversal F-intersections of cells in X with the faces of i-simplices making
singular i-cycles c in Y define i-cycles in cln−i

sms(C
∗(X));

the resulting “intersection homomorphism” Hi(Y ) → Hi(cln−i
sms(X)) equals

F ∗◦ �n. In particular this “intersection homomorphism” does not vanish
on the fundamental homology class of Y .

Observe that if Y is a smooth manifold and the maps F and s are face-wise
smooth and face-wise transversal, then they are quasitransversal, and if F is a metric
ring with ‖1‖ = 1, then

the F-intersection “number” is bounded by the actual number of the in-
tersection points,

‖Δj�σn−j‖F ≤
∣∣s(Δj) ∩ F (σn−j)

∣∣ .

2.3 Filling norms ‖∂−1‖fil in metric and measurable chain complexes.
A norm in an Abelian group A is a function a �→ ‖a‖ = ‖a‖A with the values
0 ≤ ‖a‖ ≤= +∞ such that ‖a‖ = ‖ − a‖ and where ‖a − a′‖ satisfies the triangle
inequality. (Thus, the norms correspond to invariant metrics on A where the values
0 and +∞ are allowed.)

The norm of a homomorphism between normed groups, ∂ : A → B, is the
following function in α ∈ [0,∞),

‖∂‖(α) =def sup
‖a‖A=α

‖∂(a)‖B/‖a‖A .

The filling norm of a b ∈ B is
‖b‖fil =def inf

a∈∂−1(b)
‖a‖A .

Thus, ‖b‖fil < ∞ if and only if b ∈ ∂(A) ⊂ B.
If A′ ⊂ A is a subgroup in a normed group A and C ⊂ A is an A′-coset in A,

then the (minimal) norm ‖[a/A′]‖ of an a ∈ C modulo A′ or the quotient norm ‖C‖
is defined as the infimum of the A-norms of all a′ ∈ C.

Metric complexes and their systoles. A metric complex C∗= {∂i:Ci→Ci+1}
is a complex of Abelian groups with norms. This norm passes to the quotient norms
on (co)homology H i = ker ∂i/ im ∂i−1, where we define the i-systole of C∗ by

systi = inf
h 	=0

‖h‖ for h ∈ H i .

Observe that ‖b‖fil < ∞ for all i-cocycles b ∈ ker ∂i with ‖b‖ < systi.
Define the (i + 1)-filling profile of C∗ also called the inverse filling norm of ∂i,

as the following function in β ≥ 0,∥∥(∂i)−1∥∥ =
∥∥(∂i)−1∥∥

fil(β) = sup
‖b‖=β

‖b‖fil/‖b‖ for b ∈ im ∂i ⊂ Ci+1 .
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Measurable complexes. Let X be a cell (e.g. simplicial) complex where each
i-cell σ is assigned a weight denoted ‖σ‖ = ‖σ‖i and where the set Σi of i-cells
is endowed with a measure (e.g. these may be unitary (atomic) measures, where
each sigma has measure 1 or probability measures where the total mass of all i-cells
equals 1).

Then the group Ci = C∗(X; F), where F is a normed Abelian group, of measur-
able F-valued i-cochains c, that are measurable F-valued functions on the (oriented)
i-cells σ in X, is given the L1-norm,

‖c‖i =
∫

Σi

‖c(σ)‖F · ‖σ‖idσ .

An X with measures | . . . |i on all Σi is called a measurable cell complex if the
coboundary homomorphisms ∂i : Ci → Ci+1 send measurable cochains (with arbi-
trary coefficients) to measurable ones and a(lmost) e(verywhere) vanishing of a c
implies a.e. vanishing of ∂ic.

The notation ‖ . . . ‖fil applied to X refers in this context to C∗(X; F), and
systi(X; F) signifies systi(C∗). Observe that

syst0(X; F) = inf
0 	=f∈F

‖f‖F ,

e.g. syst0(X; Z) = 1, while syst0(X; R) = 0.

Measurable simplex Δ = Δ(V ). Every contravariant functor T from the
category of finite sets to the category of measure spaces defines a measurable semi-
simplicial complex X(T ).

For instance, the Cartesian power functor F � V F for a given probability space
V defines “measurable semi-simplex” on the vertex set V , where the measurable
simplex Δ = Δ(V ) is obtained by removing the diagonals from V F (which does not
change anything if V contains no atom.)

In other words, the set Σi = σi(Δ) = Σi(V ) of i-faces of Δ equals the Cartesian
power of V minus the diagonals divided by the permutation group,

Σi = (V i+1 \Diag)/Π(i + 1)
and Σi is endowed with the probability measure denoted dσ = dσi on Σi that is
induced from the normalized measure (dv)i+1 on V i+1 \ Diag (where removing the
diagonals is unnecessary if V has no atoms).

F-valued i-cochains on Δ can be represented by measurable functions c : V i+1→F

that are antisymmetric under permutations of coordinates. Such a representation is
“almost unique”, it depends on a choice of an orientation on the (i + 1)-element set
I = Ii+1 indexing the coordinates. An orientation on a finite set I is an order on I
up to an even permutation from Aut(I). Changing orientation switches c ↔ −c.

The coboundary ∂i(c) : V i+2 → F of a c : V i+1 → F is defined with the lifts c̃j

of c to V i+2 by the i + 2 coordinate projections V i+2 → V i+1 as the sum
∂i(c) =

∑
j=1,...,i+2

±c̃j (±)

where the ±-signs are taken according to orientations. It follows, in particular, that∥∥∂i(c)
∥∥ ≤ (i + 2)‖c‖ .
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Riemannian Δε-complex. Every measurable simplicial complex X with the
vertex set V can be realized as a subcomplex in Δ(V ) but the measures on the sets
Xi ⊂ Σi(V ) of i-simplices for i > 0 do not necessarily come from the (Cartesian
power) measures on Σi(V ). Here is a representative example.

Let Ṽ be a complete simply connected Riemannian manifold of constant cur-
vature and Δi

ε(Ṽ ) ⊂ Σi(Ṽ ) be the set of regular convex i-simplices in Ṽ with the
edge length ε. This set carries a unique, up to scaling, measure invariant under the
isometry group iso(Ṽ ) but it is infinite unless the curvature of Ṽ is positive, i.e.
Ṽ is a round sphere. But if we divide Δi

ε(Ṽ ) by a discrete subgroup Γ ⊂ iso(Ṽ ) of
finite covolume the measure becomes finite and can be normalized to a probability
measure. Thus we obtain a measurable semi-simplicial (simplicial if the action of Γ
on Ṽ is free) complex, with the vertex set V = Ṽ /Γ, where the set of i-simplices
equals Δi

ε(Ṽ )/Γ.
Our objective is evaluation of the filling profiles, i.e. of norms of the inverse to

the (co)boundary operators in measurable complexes, and related invariants, where
we follow the lead (unfortunately, not far) of geometric measure theory (see 3.3–3.5).

On cocycles in metric complexes. If C∗ is a metric complex then the set
cln = ker ∂n ⊂ Cn of n-cocycles inherits the norm topology from the space Cn of
n-cochains, where, observe, cln serves as the set of vertices for clnsms.

Let the spaces of cochains Ci be contractible and locally contractible for all i ≤ n.
Then the identity map from cln to itself continuously extends to a map from clnsms

to cln, and if ‖(∂i)−1‖fil(β) is bounded for all i ≤ n, then this map (obviously) is a
weak homotopy equivalence.
Example. Let C∗ = C∗(Δ(V ); Zp = Z/pZ) for the measurable simplex Δ(V ). If
the probability space V has no atoms, then the above applies and the space of n
cocycles with the norm topology (as well as clnsms) is weakly homotopy equivalent
to K(Zp, n).

2.4 Compounded filling profiles Φn
i of metric complexes and contrac-

tions in spaces of cycles. Let (C∗, ∂) = (∂i : Ci → Ci+1), i = −1, 0, 1, . . . , where
C−1 = 0, be a (co)chain complex with a given a norm/metric structure. If σ ⊂ clnsms

is a k-cell-simplex represented by a non-zero homomorphism σ : D∗(k, n) → C∗, let
‖σ‖ denote the norm on the σ-image of the generator in Dn−k(k) = Ck(Δk) = Z.

Let
fli(C∗; β) = fli(β) = sup

‖c‖=β
‖c‖fil for c ∈ im ∂i.

Thus, fli(β) = β · ‖(∂i)−1‖fil(β) for βi+1 < systi+1(C∗), i = −1, 0, 1, . . . , and
fli(β) =∞ for β ≥ systi+1(C∗), where systi+1(C∗) is the infimum of the norms of
non-zero (co)homology classes in H i+1 = ker ∂i+1/ im ∂i. Observe that fl−1(β) = 0
if β < syst0 = infc 	=0 ‖c‖, c ∈ C0.

Define, for every n = 0, 1, . . . , the following (non-linear) operator from (i + 1)-
tuples of (one variable) functions fn−j−1(βn−j), j = 0, 1, . . . , i ≤ n, to functions Φi

in the i + 1 variables, βn, . . . , βn−i,{
fn−1(βn), . . . , fn−i−1(βn−i)

}
�→ Φi(βn, . . . , βn−i) ,
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where we start with Φ0(βn) =def fn−1(βn) and then, by induction on i, let
Φi(βn, . . . , βn−i) = fn−i−1

(
βn−i + (i + 1)Φi−1(βn, . . . , βn−i−1)

)
for i ≥ 0 .

Example. If fn−i−1(βn−i) = cn−i · βn−i, then
Φi(βn, 0, . . . , 0) = (i + 1)!

∏
j=0,...,i

cn−j .

Let Φn
i (C∗; βn, . . . , βn−i) denote the function obtained with the “filling functions”

fn−j−1 = fln−j−1(C∗; βn−j).

Filling/contraction inequality.
Let B = Bi ⊂ clnsms(C

∗) be an i-dimensional closed semi-simplicial sub-
set that is contained in a single connected component of clnsms. Let βn−j

denote the suprema of ‖σj‖ over all j-cells σj in B and let β◦n be the
infimum of ‖σ0‖ over all vertices in the connected component of clnsms

containing B. If the function Φi = Φn
i (C∗; βn−j) satisfies

Φi(βn + β◦n, βn−1, . . . , βn−i) < ∞ ,

or, equivalently, if
(i + 1)Φi−1(βn + β◦n, βn−1, . . . , βn−i+1) + βn−i < systn−i(C

∗) ,

then B is contractible in X.
Proof. Contract B in clnsms to (the cocycle in cln ⊂ clnsms corresponding to) a vertex
σ0◦ with ‖σ0◦‖ = β◦n (we may assume such vertex exists) by mapping a cone over B
to clnsms by the usual induction on skeleta Bj ⊂ B, j ≤ i, as follows.

Step 0. Make cone(B0) → clnsms by joining all points (vertices) σ0
1, σ

0
2, σ

0
3, . . .

in B0, that are n-cocycles in C∗, with σ0◦ by edges σ1
1, σ

1
2, σ

1
3, . . . ∈ clnsms that are

(n− 1)-cochains in C∗, such that ∂i−1(σ1
l ) = σ0

l − σ0◦, l = 1, 2, 3, . . . , and such that
these cochains σ1

l are norm minimizing, i.e.
‖σ1

l ‖ = ‖σ0
l − σ0

◦‖fil ≤ fln−1
(
‖σ0

l − σ0
◦‖

)
≤ Φ0(βn + β◦n) ,

where such ε-minimizing (n−1)-cochains exist by the definition of ‖ . . . ‖fil and where
we eventually send ε → 0 and pretend that ‖σ1

l ‖ are minimizing to start with.

Step 1. Extend the above cone/map to cone(B1) ⊃ B1 ∪ cone(B0) by filling-in
all triangles. Every such triangle σ2 may have (at most) one “old” edge σ1 in B1

of norm ≤ bn−1 and two σ1
l -edges issuing from the apex β◦n of cone(B0) that have

norms ≤ Φ0(C∗; βn + β◦n). We take every such σ2 (i.e. a cochain in Cn−2 that has
the coboundary of the form ∂n−2(σ2) = ±σ1±σ1

l1
∓σ1

l2
) with minimal possible norm

(up to ε → 0), i.e. (ignoring the ε) with the norms
‖σ2‖ ≤ fln−2

(
βn−1 + 2Φ0(βn + β◦n)

)
≤ Φ1(βn + β◦n, bn−1)

for all these σ2.

Step j. Extension of the cone/map to cone(Bj) ⊃ Bj∪cone(Bj−1) needs filling-
in (semi)triangulated i-“spheres” by j + 1-simplices σj+1. Every such “sphere” has
(at most) one “old” face σj in Bj and j+1 faces σj

l in cone(Bj−1); thus, the minimal
such filling σj+1, regarded as a cochain in Cn−j−1, satisfies

∂(σj+1) = ±σj ∓
∑

l=1,...,j+1

±σj
l
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and, by minimality, has

‖σj+1‖ ≤ fln−j−1

(
‖σi‖+

∑
l=1,...,j+1

‖σj
l ‖

)

≤ fln−j−1
(
βn−j + (j + 1)Φj−1(βn + β◦n, . . . , βn−j+1)

)
= Φj(βn + β◦n, . . . , βn−j) .

Such σj+1 exists, provided fln−j−1
(∥∥± σi ±

∑
l=1,...,j+1±σj

l

∥∥)
<∞. If Φi < ∞,

this is the case for all j ≤ i and the construction does deliver the required cone(Bi). �

2.5 Lower bounds on multiplicities of maps of polyhedra to manifolds.
Let X be a finite (or, more generally, measurable) cell complex, F be a unitary
metric ring, and C∗ a F-cochain complex of X with the the norm corresponding to
that of F. Let Y be an oriented n-dimensional F-homology manifold and F : X → Y
be a continuous map. Let c be a singular cycle representing the fundamental class
[Y ]◦ ∈ Hn(Y ; F) that is quasitransversal to F , i.e. the F -images of i-cells do not
intersect (the images of ) the (n−i−1)-faces of the (singular) simplices constituting c.

Let m◦
n = ‖F ∗([Y ]◦)‖ for the fundamental cohomology class [Y ]◦ ∈ Hn(Y ; F)

and the quotient norm on the homology of C∗ and let

mi = mi(F, c) = sup
Δn−i

∫
Σi

‖σi � Δn−i‖Fdσi,

where the integral is taken over the space Σi of i-cells in X and supremum is taken
over all (n− i)-faces Δn−i of the singular n-simplices constituting c.

Then
Φn(mn + m◦

n,mn−1, . . . ,m0) =∞ ;
equivalently,

Φn−1(mn + m◦
n,mn−1, . . . ,m1) + m0 ≥ syst0(X; F) .

Indeed, the homology class F ∗(�n [Y ]◦) ∈ Hn(clnsms(C
∗); F) is non-zero by non-

vanishing of � (see 2.2) and the above filling/contraction inequality applies.
Let us specialize to smooth manifolds Y and a generic piecewise smooth map F

of an n-dimensional measurable simplicial complex X to Y . If c is represented by a
sufficiently fine generic smooth triangulation of Y , then

mn ≤ M�
n = M�

n (F ) =def sup
y

∫
Σn

∣∣F−1(y) ∩ σ
∣∣dσ ,

where Σn is the (measure) space of n cells σ in X, where the supremum is taken
over “generic” points in Y , i.e. away from the image of the (n − 1)-skeleton of X
and where F is transversal to y. Furthermore, mi for i < n are bounded by the
“normalized compounded degrees” Di of the i-faces at j-faces in X, j < i, defined
as follows.

Denote by di(Δj), j ≤ i, the the measure of the i-faces adjacent to a given j-face
Δj in X and let dij = supΔj di(Δj). (If the measures on the sets of j-simplices have
no atoms then dij = 0.) Let Di be the supremum of those sums dij1 +dij2 + · · ·+dijk

,
where (n− j1) + (n− j2) + · · ·+ (n− jk) ≤ n.
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Then mi ≤ Di for i = n− 1, . . . , 1 and we conclude with the

Generic syst0-inequality.

(n + 1)Φn−1(M�
n + m◦

n, Dn−1, . . . , D1) + m0 ≥ syst0(X; F)
where this m0 equals the supremum of the masses of atoms (if there are
any) in the 0-skeleton of X.

Observe that m◦
n = 0 if Y is an open manifold, e.g. Y = Rn (where homology is

taken with infinite support and the cohomology with compact supports) and that
Di are usually much smaller than M�

n ; thus, a bound on m from below would follow
from an upper bound on ‖(∂i)−1‖fil and on systi in C∗.

2.6 Random cones, bound ‖∂−1‖rand ≤ 1 in Δ(V ) and the proof of the
topological Δ-inequality. Let V be a probability space and Δ(V ) denote the
(measurable) simplex Δ(V ) on the vertex set V . The cone from a vertex v ∈ V
over an (i + 1)-cocycle b, say with Z2 = Z/2Z coefficients, makes an i-cochain cv

with ∂i(c) = b, where, obviously,
∫
V ‖cv‖dv ≤ 1 if V has no atoms or if it consists

of finitely many equal atoms.
This shows that
‖(∂i)−1‖fil ≤ 1, which concludes the proof of the topological Δ-inequality
[Δ → Rn]top from 1.1. (See the end of this section for details.)

Let us proceed more formally and spell out the definitions that are also useful
for similar constructions in more general polyhedra.

Given a homomorphism ∂ : A → B between normed Abelian groups (see 2.3),
define a contraction or a cone as a homomorphism δ : B → A, such that ∂ ◦ δ(b) = b
for all b ∈ ∂(A) ⊂ B.

A random contraction (cone) in B is a family of contractions parametrized by
a probability space, say δp, p ∈ P , where the norm, denoted ‖δp‖(β), is defined, at
each β ≥ 0, as the expectation of ‖δp‖(β), that is

∫
P ‖δp‖(β)dp (where ‖δ‖(β) is

defined according to 2.3).
The randomized contraction profile of ∂ is

‖∂−1‖rand(β) =def inf
δp

‖δp‖(β) ,

where the infimum is taken over all random contractions on B. Clearly, this bounds
the filling profile of ∂,

‖∂−1‖rand(β) ≥ ‖∂−1‖fil(β) .

Represent F-valued i-cochains on Δ by measurable functions c : V i+1 → F which
are antisymmetric under permutations of coordinates and where the coboundary
∂i(c) : V i+2 → F of c : V i+1 → F is defined with the lifts c̃j of c to V i+2 by the i + 2
coordinate projections V i+2 → V i+1 as the sum

∂i(c) =
∑

j=1,...,i+2

±c̃j (±)

where the ±-signs are taken according to orientations.
Notice that if F = Z2 = Z/2Z, then one does not need orientation: Z2-cochains

(unambiguously) are symmetric (i.e. Π(i + 1)-invariant) functions c : V i+1 → Z2.
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Every such c equals the indicator (characteristic) that is a Π(i + 1)-invariant subset
in V i+1 of measure |S| = ‖c‖.

The coboundary operator for F = Z2 can be be described in terms of the pullbacks
S̃j ⊂ V i+2, j = 1, 2, . . . , i + 1, of the support S = supp(c) ⊂ V i+1 under the
coordinate projections V i+2 → V i+1: the support supp(∂i(c)) ⊂ V i+2 equals the
subset S̃odd ⊂ ∪jS̃j of the points covered by odd number m of S̃j . In other words,

∂i(c)(σ) = 1
2

(
1− (−1)m(σ)) ,

where m(σ), σ ∈ V i+2, is the multiplicity (function) of the family {S̃j}, that is the
number of S̃j containing σ, and where, observe,∫

V i+2

m(σ)dσ = (i + 2)|S| = (i + 2)‖c‖ .

Interior product and random cones. Given two non-intersecting oriented
faces σ and σ′ in Δ = Δ(V ) of dimensions k < i and k′ = i − k − 1, denote by
σ ∨ σ′ the i-face spanned by the two of them. Then define σ ∧ c ∈ Ci−k−1(Δ; F) for
all c ∈ Ci(Δ; F) by (σ ∧ c)(σ′) = c(σ ∨ σ′) with the agreement (σ ∧ c)(σ′) = 0 if σ′

intersect σ.
Observe that ∫

Σk

‖σ ∧ c‖dσ = ‖c‖ (‖ ∧rand ‖ = 1)

for all c, provided V has no atoms.
If k = 0 and σ = v ∈ V , then the homomorphism c �→ v ∧ c is, obviously, a cone,

that is
∂i−1(v ∧ c) = c for all cocycles c ∈ ker ∂i ⊂ Ci(Δ; F) ,

and the above formula shows that the corresponding random cone has norm 1. It
follows that if V has no atoms, then every cocycle (coboundary) b satisfies

‖b‖fil ≤ inf
v∈V

‖v ∧ b‖ ≤
∫

V
‖σ ∧ b‖dv = 1 .

In other words,
the norms of the random and, hence, of the filling inversions of ∂i are
bounded by 1: ∥∥(∂i)−1∥∥

fil ≤ ‖(∂
i)−1‖rand ≤ 1

for all V without atoms.
This can be slightly sharpened for the finite probability spaces V made of N atoms
of equal weights (= 1/N). Indeed, since (v∧c)(σ′) = 0 whenever one of the i vertices
of σ′ equals v,

the norm of the random cone over every c equals (N−i)
N ‖c‖; therefore∥∥(∂i−1)−1

fil

∥∥ ≤ (N − i)/N
for all i = 0, 1, 2, . . . .

Sharp bound on ‖(∂0)−1‖fil over Z2. Exact 1-cochains b with Z2-coefficients
on Δ(V ) correspond to partitions of V into two subsets, say V = V+ ∪ V− where
b equals the coboundary of either of the two characteristic functions, of V+ and/or
of V−.
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If V has no atoms, then ‖b‖ = 2|V+| · |V−| ≤ 1/2;, in general, if there are atoms,
‖b‖ ≥ 2|V+| · |V−|. In any case,

‖b‖fil = min
(
|V+|, |V−|

)
≤ 1

2
and ‖b‖fil ≤

1−
√

1− 2‖b‖
2

for ‖b‖ ≤ 1
2

.

In other words, ∥∥(∂0)−1∥∥
fil(β) ≤ 1−

√
max(0, 1− 2β)

2β
.

Thus, ‖(∂0)−1‖fil(β) < 1 for β < 1/2 and if V has no atoms, ‖(∂0)−1‖fil(β) → 1/2
for β → 0.

If i ≥ 0, evaluation of ‖(∂i)−1‖fil(β) remains problematic for most β ∈ [0, 1]. It
is not even clear at which β the function ‖(∂i)−1‖fil(β) equals one. (We show in 3.7
that ‖(∂1)−1‖fil(β) < 1 for β < 1/81.)
Proof of [Δ → Rn]top from 1.1. Since the simplex Δ(V ) has systi = ∞ for i > 0,
the above bounds imply that the complex C∗ = C∗(Δ(V ); Z2) has fli(β) ≤ β for all
i > 0 and fl0(β) ≤

(
1 −

√
max(0, 1− 2β)

)
/2 by the definition of fli in 2.4. Then

an obvious computation for Φi = Φn
i (C∗; βn, . . . , βn−i) (see 2.4) shows that

(n + 1)Φn−1(βn, 0, . . . , 0) < 1 = syst0
(
Δ(V ); Z2

)
for βn <

2n

(n + 1)(n + 1)!
(with equal weights assigned to all v ∈ V for finite V ) and these bounds on fli and
Φ obviously pass to the n-skeleton X of Δ(V ).

If V has no atoms, the “compounded degrees” Di are zero (see 2.4). If |V |=N<∞,
the normalized degrees of the i-faces of X at the j-faces are

(
N−j−1

i−j

)(
N

i+1

)−1
=

O(N−j−1); hence, the “normalized compounded degrees” Di (see 2.5) are O(N−1)
for i < n. Therefore,

(n + 1)Φn−1(βn, Dn−1, . . . , D1) < 1
if

βn ≤
2n

(n + 1)(n + 1)!
− ε(N) for some ε(N) = O(N−1) .

Then the “generic syst0-relation” in 2.5 implies that generic piecewise smooth
maps F : ΔN = Δ(V ) → Rn satisfy

M�
n (F ) ≥ 2n

(n + 1)(n + 1)!
−O(N−1) ,

where, clearly,

max
y∈Rn

∣∣F−1(y)
∣∣ ≥ M�

n (F )
(

N + 1
n + 1

)
≥ 2n

(n + 1)(n + 1)!

(
N + 1
n + 1

)(
1−O(N−1)

)
. �

Finally, returning to the notation in 1.1, we conclude
Let V be a probability space without atoms, ∪Δn(V ) be the geomet-
ric realization of the n-skeleton of the Δ(V ) on the vertex set V and
F : ∪Δn(V ) → Rn a measurable map which is continuous on each n-
face Δn ⊂ {Δn}(V ). Then there exists a point a0 ∈ Rn for which the
probability that the n-face of ∪Δn(V ) contains a0 is bounded from below
by ∣∣a0 �F {Δn}

∣∣ ≥ 2n

(n + 1)(n + 1)!
. [a0 � {Δn}]
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Questions. (a) Can 2n/(n + 1)(n + 1)! be replaced by const−n, at least for face-
wise affine maps F? (An optimist’s suggestion would be const ∼ e = 2.71 . . . for
large n.)

(b) Is there an LG-invariant (see 4.13.A) version of the above inequalities with
some algebraic rank(c) instead of ‖c‖ for cochains c ∈ C∗(Δ(V )) =

∧∗(C0(V ))?

2.7 Crofton–Wendel formula, waist inequalities and relative growth of
infinite groups. Given a (polish) topological space V with a Borel probability
measure μ, define a {Δn}-structure on V as a Borel map from the geometric re-
alization of the n-skeleton of Δ(V ) to V , denoted Bn : ∪Δn(V ) → V , such that
Bn is continuous on almost every Δn ⊂ ∪Δn(V ) and equals the identity map on
V ⊂ ∪Δn(V ).

Given a closed subset W ⊂ V , let |W �Bn Δn| denote the cardinality of the
intersection of B−1

n (W ) ⊂ ∪Δn(V ) with a face Δn ⊂ ∪Δn(V ), set

vol�Δn(W ) =
∫

V n+1

|W �Bn Δn|dμ⊗(n+1)

and let

subvol�Δn(W ) =
∣∣W �Bn {Δn}

∣∣ =
∫

V n+1

min
(
1, |W �Bn Δn|

)
dμ⊗(n+1)

be the probability of an n-face in ∪Δn(V ) meeting B−1
n (W ), where, clearly,

subvol�Δn(W ) ≤ vol�Δn(W ) .

Examples. (a) Let V be the unit m-sphere Sm ⊂ Rn+1 and Bn the barycenter
map (see 1.3). Then, by the Fubini–Crofton formula,

volΔn(W ) ≤ δn(m) volm−n(W )/ vol(Sm−n) ,

where volm−n denotes the (m−n)-dimensional Hausdorff measure and where δn(m) =
volΔn(Sm−n). (If W is an (m−n)-dimensional rectifiable set, then, clearly, volΔn(W )
= δn(m) volm−n(W )/ vol(Sm−n). (There are counterexamples for non-rectifiable sets
going back to Besicovitch which were pointed out to me by Larry Guth, see 13.2.5
in [BurZ] and 3.3 in [F].)

Since the spherical measure is ±-symmetric, the convex hulls of all 2n+1

tuples (±si, i = 0, . . . , n) have equal expectations of their volumes, and since∑
± voln(conv(±si)) = vol(Sn), the expected volume δn+1

n of each conv(±si) equals
2−n−1 vol(Sn); thus, δn(m) = 2−n, because a generic equatorial sphere Sn in Sm

meets Sn−m at two points.
This and the above [a0 � {Δn}] imply the spherical waist inequality from 1.3.

Every continuous map f : Sm → Rn admits a point a0 ∈ Rn, such that

volm−n

(
f−1(a0)

)
≥ 2n+2 · n · vol(Sn−m)

(n + 1)(n + 1)!
.

Remark. The relation δn+1
n = 2−n−1 vol(Sn) (which smells three hundred years

old) is called Wendel’s formula with the reference to [We], where the author, who
attributes this to R.E. Machol and L.J. Savage, adds the following observation.

Let a ±-symmetric probability measure (say, with measurable density) on Sn be
given.
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Then the probability P (N) of conv(s0, . . . , sN ) for N ≥ n being contained in
a hemisphere in Sn equals PDn(N + 1)/2N+1 for the Pascale–Descartes number
PDn(N + 1), i.e. the number of the complementary components to N + 1 equators
in general position in Sn.

Indeed, P (N) equals the probability of the hemispheres hem(si) ⊂ Sn with
centers s0, . . . , sN ∈ Sn having a non-empty intersection. Since, generically, among
2N+1 intersections

⋂
i=0,...,N hem(±si) there are (exactly) PDn(N + 1) non-empty

ones, the proof follows.
(Notice that PD1(N) = 2N , PDn(N) = 2N+1 for N ≤ n+1, and PDn(N +1) =

PDn(N) + PDn−1(N); thus PDn(N + 1) = 2
∑

i=0,...,n

(
N
i

)
for N ≥ n.)

(b) Let V be an m-dimensional Riemannian manifold and Λ = (λ1, . . . , λk),
1 ≥ k ≥ m − 1, be a k-tuple of smooth 1-forms on V . Denote by H ⊂ T (V ) the
kernel of Λ and by Ω :

∧2(H) → H⊥ =def T (V )/H the differential dΛ = (dλi)
restricted to H and factored to H⊥.

Say that a linear subspace S = Sv ⊂ Hv ⊂ Tv(V ), is Ω-regular if the linear
forms λi(v) : Tv(V ) → R are linearly independent and the linear map ΩS : Hv →
Hom(S, H⊥

v ) defined by Ω is surjective.
If Λ is generic, then the forms λi are linearly independent away from a (k − 1)-

dimensional subset in Σ0 ⊂ V and if, furthermore n ≤ (m − k)/(k + 1) then Ω-
regularity fails for n-dimensional subspaces S = Sv ⊂ Hv, v ∈ V \ Σ0 only away
from a codimension 1 subset in the space of all S = Sv. Moreover (and this is what
we need for the present purpose),

every generic Λ admits an Ω-regular and Ω-isotropic n-dimensional sub-
space S0 ⊂ Hv0 at some point v0 ∈ V , provided n ≤ (m − k)/(k + 1),
where Ω-isotropic signifies that Ω vanishes on

∧2(S0).
Denote by | . . . |CC the metric defined via the lengths of shortest paths

P : [0, 1] → V between v0 = P (O), v1 = P (1) ∈ V which are tangent to H, i.e.
such that Λ ◦D(P ) = 0.

If m− k ≥ 2, this is a true metric for generic Λ and if k ≤ (m− k)(m− k− 1)/2
then the Hausdorff dimension of (V, | . . . |CC) equals m + k (see [Gr4] and references
therein).

If, furthermore, n ≤ (m − k)/(k + 1) and V is (n − 1)-connected, then, by
local (folded) h-principle (see [Gr4]) there exists a Λ-adapted {Δn}-structure, Bn :
∪Δn(V ) → V , i.e. where the map Bn is smooth on almost all (for the Riemannian
measure on V ) n-faces Δn ⊂ ∪Δn(V ), tangent to H on almost all Δn and such that

vol�Δn(W ) ≤ const(V, Λ) volCC
m−n+k(W ) ,

where volCC
m−n+k denotes the (m− n + k)-dimensional Hausdorff measure associated

to the metric | . . . |CC .
In fact, we need Bn below only on a small neighborhood U ⊂ V , and the existence

of such Bn in a neighborhood of a point v0, where there is an Ω regular S0 ⊂ Hv0 .
This follows (as in [Gr4]) by combining the Poenaru pleating lemma (see [Gr2]) and
the microflexibility of sheaves of solutions of infinitesimally invertible differential
equations (see (a) below).
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Thus, we conclude,
Let Λ be a smooth k-tuple of 1-forms on an m-dimensional Riemannian
manifold V which admits an Ω-isotropic and Ω-regular n-dimensional
subspace S0 ⊂ Hv0 (e.g. Λ is generic and n ≤ (nm− k)/(k + 1)). Then
every continuous map f : V → Rn for n ≤ l admits a point a0 ∈ Rn,
such that

volCC
m−n+k

(
f−1(a0)

)
≥ ε(V, Λ) > 0 . [CC]m−n+k

This applies, in particular, to the standard contact form on V = Sm=2l+1 (where
k = 1), and yields the bound

volCC
m−n+1

(
f−1(a0)

)
≥ ε(m) > 0

claimed in 1.3.
Remarks. (a) Infinitesimal invertibility in the present case amounts to an algebraic
non-degeneracy condition on (partial derivatives of) Λ which generalizes the Ω-
regularity; this condition is satisfied by many non-Ω-regular Λ, but its verification
may require a lengthy (albeit algorithmic) computation in certain cases.

The implication infinitesimal invertibility ⇒ microflexibility is based on a local-
ized version of the Nash implicit function theorem [Gr2] with a heavy analytic proof.
Possibly, our application of this to lower bounds on CC-measures can be obtained
with the formal (approximate) implicit function theorem with a purely algebraic
(and trivial) proof.

(b) Take an adapted {Δn}-structure B0
n on the sphere S2n+1 with the stan-

dard U(n + 1)-invariant contact structure; assume for the moment B0
n is U(n + 1)-

equivariant and embed S2n+1 = S2l+1 ∩ Cn+1 ⊂ S2l+1 for some l ≥ n. Then B0
n

uniquely extends to an U(l +1)-equivariant structure Bn on S2l+1 ⊃ S2n+1 adapted
to the U(l + 1)-invariant contact structure on S2l+1.

An U(n + 1)-equivariant structure B0
n on S2n+1 is not hard to construct; but

even if B0
n, is not equivariant, a U(l + 1)-equivariant extension makes sense as a

“random {Δn}-structure”, i.e. a family of {Δn}-structures parametrized by a prob-
ability space – the group U(l + 1) with the normalized Haar measure in the present
case.

If we use such an “induced from S2n+1” structure Bn on S2l+1 (“random” is OK),
then the above constant ε(m) can be expressed as ε(n)c(m − n) for a “standard”
constant c(m − n), similar to vol(Sm−n) in the Riemannian case. But this still
remains far from the unknown sharp constant.

(c) The local h-principle provides a similar inequality in a wider range of k and l,
which does not, however, cover what can be expected by the obvious estimate for the
CC-Hausdorff dimensions of smooth submanifolds W ⊂ V (see [Gr4] for the related
discussion).

(d) Question. Can the space cycles in a Riemannian (or sub-Riemannian)
manifold V be approximated by the space of cocycles in some measurable complex
C∗ε constructed with suitable ε-small simplices in V ?

We want such an approximation to be sharp (unlike the one we used above), such
that the full measure geometric portrait of V , including the Plateau problem, would
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emerge from C∗ε in the limit for ε → 0. In particular, we would like to obtain sharp
filling/waist inequalities in V by an argument similar to that in the above Examples
(a) and (b).

Relative growth of discrete metric spaces. Let X and Y be metric spaces
where X is discrete and let φ : X → Y be an L-Lipschitz map. Consider all subsets
B ⊂ X, such that diamX(B) ≤ R and diamY (φ(B)) ≤ r and let |Y \φX; r, R| denote
the supremum of the cardinalities of all these B ⊂ X. Set

|Y \X; L, rR| = inf
φ
|Y \φX; r, R| ,

where the infimum is taken over all L-Lipschitz maps φ.

Let X◦ be a finitely generated nilpotent group with a word metric, such
that its tangent cone at infinity, which is a nilpotent Lie group with a
CC-metric, say X∞, has dimension m and which satisfies [CC]m−n+k.
Then there exist positive constants C1 and C2 depending on X◦, such
that

|Rn\X; L, r, R) ≥ C2R
m−n+k for all r ≥ C1L .

Sketch of the Proof. Assume for simplicity’s sake that X◦ admits a dilation and,
thus, cocompactly embeds into X∞. Extend a given Lipschitz map φ◦ : X◦ → Rn to
a piecewise affine map φ : X∞ → Rn (for some X◦-invariant triangulation of X∞)
and let φR : X∞ → Rn equal the composition of φ with the self-homothety (for the
CC-metric) of X∞ which scales the R-ball B(R) ⊂ X∞ around the origin to the
unit ball.

Then [CC]m−n+k, applied to φR on the unit ball, provides the following lower
bound on the growth of the Riemannian (m − n)-volumes (for a left-invariant Rie-
mannian metric on X∞) of the intersections of the fibers of φ with the Riemannian
R-balls B(R) ⊂ X∞,

sup
y∈Rn

volm−n

(
φ−1(y) ∩B(R)

)
≥ const Rm−n+k for large R ,

which trivially implies the corresponding lower bound on |Rn\X◦; L, r, R|.
Example. If X◦ ⊂ X∞ = H2l+1 is a lattice in the Heisenberg group, then
|Rn\X; L, r, R) ∼ Rs, where s = 2l + 1− n for n > l and s = 2l + 2− n for n ≤ l.

Remarks. (a) The above scaling/discretization argument is standard, and filling
in the details is straightforward.

(b) Since we need here only piecewise affine maps, we can prove it with Robert
Young’s filling inequality instead of [Δ → Rn]. (This is definitely so for the
Heisenberg and similar groups, but I am not certain if the general conditions in
[Y] are identical to ours.)

(c) The geometry of Rn enters (essentially) only via the bound on the asymptotic
dimension (see [Gr3]) of Rn by n, but the role of the geometry of Y (e.g. of Rn)
becomes prominent if we look at the asymptotic of |Y \X; L, r, R|, when r also tends
to infinity.
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(d) Let X be a discrete cocompact group acting on symmetric space of dimension
m of non-positive curvature. Then the hyperspherical waist inequality (see 3.5)
implies that |Rn\X◦; L, r, R) ∼ Rm−n for n ≥ m − rank(X) and |Rn\X◦; L, r, R) ∼
(1 + ε)R for n < m− rank(X).

(e) Questions:

(1) Can |R\X◦; L, r, R| be evaluated in terms of the Følner function of
the group X◦?

(2) Do the groups of exponential growth have |R\X◦; L, r, R| exponen-
tially growing in R?

(3) Does (d) extend to polycyclic groups?
The role of the rank for an ambient solvable Lie group X may possibly be re-

placed by distortion features of Abelian and/or nilpotent subgroups in X. For exam-
ple, the presence of undistorted Abelian subgroup of rank p makes |Rn\X◦; L, r, R|
� Rp for n = dim(X) − p; one wonders if all upper bounds on |Rn\X◦; L, r, R| are
of similar origin.

What can be said of pairs of groups X, Y with slowly growing |Y \X; L, r, R| for
R →∞?

2.8 Randomized Radon–Tverberg theorem. Recall (see 1.2) that
baff(n, k) =def inf

μ
sup
An−k

μ⊗(k+1)(An−k � {Δk}
)

where μ runs over all probability measures on Rn and An−k over all (n − k)-
dimensional affine subspaces in Rn and where μ⊗(k+1)(A � {Δk}) denotes the prob-
ability that the convex span of a (k + 1)-tuple of points in Rn intersects A.

Take q ≥ 2, let N = Nq = (n+1)(q−1)+1, let P be a decomposition (partition)
of N − k − 1 into the sum

N − k − 1 = m1 + n2 + n3 · · ·+ nq ,

let Ni = n1+n2+· · ·+ni for n1 = k+1+m1 and denote by �P (μ) the μ⊗N measure of
N -tuples (y1, . . . , yN ) ∈ (Rn)N such that the convex hull Δ = Δ(y1, . . . , yk+1) ∈ Rn

intersects the affine span
A = A(yk+2, . . . , yn1) +

⋂
i=1,...,q−1

A(yNi+1, . . . , yNi+1) ,

where A( . . . ) ⊂ Rn denotes the affine span of points ( . . . ) in Rn.
Denote by �q (μ) the sum of �P (μ) over all decompositions (partitions) P of

the number N − k− 1 into q summands, N − k− 1 = m1 +
∑

i=2,...,q ni and observe
that, for all q = 2, 3, . . . ,

baff(n, k) ≥ r(n, k, q) =def
1

|{P}q|
inf
μ

�q (μ) ,

where |{P}q| for q ≥ 3 denotes the number of partitions P and where we agree that
|{P}2| = 1, which is admissible since different partitions n + 2 = N2 = m1 + n2
amount to the same A = A(yk+2, . . . , yN2).
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At this point we recall Tverberg’s theorem [Ma1,2],
every Nq-tuple Y of points in Rn for Nq = (n+1)(q−1)+1 in Rn can be
partitioned into q disjoint subtuples of cardinalities ni, for i = 1, 2, . . . , q,
and

∑
ni = Nq, such that their convex hulls have a common point in Rn.

Now, let us order the points in Y , say Y = {y1, . . . , yNq}, such that the Tver-
berg partition agrees with this order, i.e. our subtuples are (y1, . . . , yn1), . . . ,
(yNq−1+1, . . . , yNq). for Ni = n1 + · · · + ni, and let us suppose that the first sub-
tuple contains at least k + 1 points, i.e. n1 = k + 1 + m1 for m1 ≥ 0. Then
the convex hull Δ ∈ Rn of the first k + 1 points y1, . . . , yk+1 intersects the above
affine space A which is the sum of the affine span of m1-subtuple (yk+2, . . . , yn1)
for n1 = k + 1 + m1 with the intersection of affine spans of the ni-subtuples
(yNi−1+1, . . . .yNi) for Ni = n1 + n2 + · · ·+ ni and i = 2, . . . , q.

It follows by averaging over all ordered Nq-tuples of points in Rn that
�q (μ)
|{P}q|

≥ r(n, k, q) ≥ r0(n, k, q) =def
1

|{P}| min
P∈{P}q

∑
i

(
ni

k+1

)
( Nq

k+1

) ,

where {P}q for q ≥ 3 denotes the set of partitions P of Nq − k − 1 into a sum
Nq−k−1 = m1 +n2 + · · ·+nq and where we agree that |{P}2| = 1 and that

(
a
b

)
= 0

for a < b.
It remains to estimate r0(n, k, q) from below, where a non-trivial bound is pos-

sible if and only if one of ni is necessarily ≥ k + 1, i.e. if N/q ≥ k + 1 for
N = Nq = (n + 1)(q − 1) + 1, for which it is sufficient to have

q ≥ n + 1
n− k

.

Furthermore, if ni ≥ k + 1, then(
ni

k+1

)
(

N
k+1

) ≥
(

ni − k − 1
N − k − 1

)k+1

, for all N ≥ ni ,

which we combine with the Hölder inequality,
1

Nk+1

∑
i

nk+1
i ≥ 1

qk
, for N =

∑
i

ni ,

and where we recall that |{P}2| = 1 and observe that |{P}q| ≤ (Nq − k − 1)q−1 for
q ≥ 3.

If q = 2, where Tverberg’s theorem goes back to Radon, the above implies that,
for each k,

baff(n, k) ≥ r0(n, k, 2) , where 2kr0(n, k, 2) → 1 for n →∞ ,
and where the rate of convergence, which was specified in 1.2, follows by a trivial
computation.

If (n− k)/(n+1) ≥ ε0 > 0 we take q0 = [ε−1
0 ] + 1, where [ . . . ] denotes the entire

part of a number. A rough evaluation shows that, for each ε0 > 0 (being kept fixed)
and large n →∞,

baff(n, k) ≥ r0(n, k, q0) � 1/qγ0k
0 ,

where γ0 ≈ ε−1
0 will do. This implies the bound stated in 1.2. (We do not attempt

to be more precise as our r0(n, k, q) are far from the true lower bounds on r(n, k, q)
anyway.)
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Questions. Let Φ be a formula involving convex hulls, affine spans and inter-
sections of subsets and let us apply Φ to a system S of subsets Ys, s ∈ S, in an
N -tuple Y of points in Rn where the result is denoted ΦS(Ys) ⊂ Rn. When can one
meaningfully evaluate the range the expectation E of the cardinality |ΦS(Ys)| with
respect to the measure μ⊗N , where μ is a probability measure on Rn?

Is the range EΦ ⊂ R+ of possible values E for all probability measures μ on Rn

effectively computable?
(The example of r(n, k, q) indicates that it is worthwhile considering several

Φ simultaneously, e.g. by looking at sums
∑

S |ΦS(Ys)| over suitable systems S of
subsets in Y .)

2.9 Open questions on multiple points of maps. a. Can one significantly
improve the above lower bounds on baff(n, k) for (1− ε)n ≤ k ≤ n in order to make
them stronger (rather than weaker) than the present-day bounds on baff(n, n)?

Something can be done modulo the Sierksma conjecture according to which the
number Taff(q, n) of Tverberg’s partitions is bounded from below by

Taff(q, n) =
(
(q − 1)!

)n
,

but this barely brings the bound to Barany’s k−k for n = k.
Notice that the established lower bounds on the Tverberg numbers Taff(q, n) go

via their topological counterparts Ttop(q, n) which concern intersections of images
of faces of an (N − 1)-simplex ΔN−1 continuously (rather than affinely as for Taff)
mapped to Rn, i.e. where the convex hulls of ni-tuples of points y1, . . . , yni ∈ Rn are
replaced by (images of) continuous maps of (ni−1)-simplices to Rn (which are faces
of ΔN−1) with their vertices sent to y1, . . . , yni .

For example, it is shown in [Hel] (where references to earlier papers can be found)
that if q is a power of a prime number, q = pr, then

Taff ≥ Ttop(q, n) ≥ 1
(q − 1)!

(
q

r + 1

)[N−1
2 ]

.

b. The (known) proofs of the non-vanishing Ttop and of lower bounds Ttop are
based on the Borsuk–Ulam theorem for free Zq-actions (see[BaSS], [S]). For example,
(see [BB])

every continuous map f of a convex body X ⊂ Rn+1 to Rn admits a
pair of non-intersecting (i.e. non-equal parallel) supporting hyper-planes
T1, T2 ⊂ Rn+1 such that the images f(T1 ∩X) and f(T2 ∩X) intersect.

(If ∂X is smooth strictly convex, this is the usual Borsuk–Ulam and the general
case follows by approximation.)

This, applied to the convex simplex Xn+1
Δ ⊂ Rn+1, yields the topological Radon

(Bajmóczy–Barany) theorem: Ttop(2, n) ≥ 1.
c. The topological Tverberg theorem, whenever available, implies the van Kam-

pen–Floris theorem (classical for q = 2):
Let n = qk/(q − 1) be an integer, let N ≥ Nnq = (n + 2)(q − 1) and let f be a

continuous map of the k-skeleton X = ΔN,k of the N -simplex to Rn. Then there
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are at least
M ≥ m(q, n)(N + 1)!(q!)−1((k + 1)!

)−q

disjoint q-tuples of points xij ∈ X, i = 1, . . . , q, j = 1, . . . ,M , such that f(xij) =
f(xi′j) for all i, i′ = 1, . . . , q and j = 1, . . . ,M , where

m(q, n) ≥ t(q, n) =
Ttop(q, n)

(Nqn + 1)!(q!)−1((k + 1)!)−q
[V KF ]q

(and thus M ∼ N q(k+1) for N →∞).
Indeed, extend f to a map F : ΔN → Rn+1 ⊃ Rn, where F−1(Rn) = ΔN,k, and

observe that every q-tuple of disjoint faces in ΔN which meet in Rn+1 under F yields
a q-tuple of disjoint k-faces meeting in Rn.

Sometimes, e.g. for q = 2 where Ttop(2, n) = 1, one has a strict inequality
m(q, n) > t(q, n), as follows from Ramsey theorem, but it is unclear what happens
in general.

It also seems unknown, for any q = 6, 10, . . . which is not a prime power, whether
every compact k-dimensional topological space X, where n = qk/(q−1) is an integer,
admits a (q − 1)-to-1 map to Rn.

d. What are relations between the Barany numbers baff(n, k)?
It is obvious that baff(n+1, k) ≥ baff(n, k) and baff(n+1, k +1) ≤ baff(n, k). Also

baff(n, k1 + k2) ≥ baff(n, k1)baff(n− k1, k2)
(

(k1 + 1)(k2 + 1)
k1 + k2 + 1

)−1

,

since if k2 + 1 convex simplices Δk1
i ⊂ Rn, i = 0, . . . , k2, meet An−k1 ⊂ Rn at some

points ai and if the convex hull Δk2 ⊂ An−k1 of ai meets An−k1−k2 ⊂ An−k1 , then
the convex hull Δk1+k2 ⊂ Rn of k1 + k2 + 1 (out of total (k1 + 1)(k2 + 1)) vertices
of some Δk1

i also meets An−k1−k2 by the Caratheodory theorem.
But this seems very weak. For example, starting from baff(n, 1) = 1/2 this yields

by induction the mere baff(n, n) � 2−n2
, and if we depart from the above (derived

from Radon’s theorem) inequality baff(n, k) ≥ 2−n−1, for n ≥ 2k − 1, we arrive at
something like baff(n, n) ≤ (10n)−n or (10n)−10n. Probably, there should be stronger
inequalities between baff(n, k) that would at least match the (known) lower bounds
for baff(n) = baff(n, n).

e. Are there smaller k-polyhedra X than the full k-skeleton ΔN,k that have many
q-multiple points under continuous (or, at least affine) maps to Rn with q(n−k) ≤ n?

One would like to have families of such polyhedra X(N) where the number
|Σk(X(N))| of k faces →∞ such that the number Mq of q-multiple points satisfies
a lower bound similar to [V KF ]q, i.e. where Mq ≥ const ·|Σk(X(N))|q, where
const > 0 is independent of N or, if it decays, then slowly with |Σk(X(N))|, and,
ideally, one wishes to have all X(N) of uniformly bounded local degrees.

One knows, that expanders X1 on N -vertices do have ∼ N2 crossings in the
plane.

Also, one knows that every λ-expander X1
N on N -vertices contains “many” (ran-

domly chosen) topological copies of the full bipartite (3 + 3)-graph X33, where,
moreover, each has about (log(N))c edges in X1 and these copies approximately
uniformly, up-to (log(N))c-factor, cover X1.
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This can be combined, via the standard averaging argument with Skopenkov’s
theorem [Sk] saying that

every continuous map (X33)n → R2n has a double point.
But what comes out of it for maps (X1

N )n → R2n is only M2 ≥ (log(N))−C)N2

(if not less, I did not check it carefully, but the referee pointed out that M2 ≥
(log(N))−C)Nn), rather than ∼ N2n double points.

It seems not hard to prove qualitatively optimal lower bounds on q-self-intersec-
tions of spherical buildings for q = pr. But can one do this for “thinner” polyhedra
than spherical buildings? For example, let X be the k-skeleton of a compact quotient
of a Bruhat–Tits building or of a symmetric space of non-compact type with rankR ≥
k+1 (as in the concluding examples in 2.10). Do maps of such X to R2k have “many”
double points?

f. Apparently, the existence of many double points for maps Xk → R2k as well of
highly multiple points for maps Xk → Rk is due to the presence of many connected
components in X \ Σ(X), where Σ(X) is the set of (singular) points where X fails
to be a manifold. For example, if Xk is a manifold, then it embeds into R2k by the
Whitney theorem and

Every smooth k-manifold X admits a smooth nap F : X → Rk, where
supy∈Rk |F−1(y)| ≤ 4k.

Sketch of the proof. Let F ′ : X → Rk−1 be a generic smooth map and let us
construct a function f0 : X → R, such that F = F ′ ⊕ f0 : X → Rk = Rk−1 ⊕ R has
the required property.

Shrink each connected component of every fiber of F ′ to a point, where, observe,
each fiber (F ′)−1(y), y ∈ Rk−1, is a possibly disconnected graph. Thus, we obtain
a (stratified (k − 1)-dimensional) space X and a factorization of the map F ′ into
F ′1 : X → X and F ′2 : X → Rk−1, where F ′1 has connected fibers, i.e. where the
F ′1-pullbacks of the points x ∈ X are connected (graphs), while F ′2 has finite fibers.

Let f0 : X → R be a generic function, let f1 = f2 ◦ F ′1 : X → R and slightly
perturb f1 to the desired f0 : X → R as follows.

The fibers Xx = (F ′1)−1(x) are connected graphs with loops, where each Xx

can be subdivided such that the resulting graph has no loops and contains at most
l = l(x) ≤ 4k edges. We design f0 such that every graph Xx is sent by f0 into
a small neighborhood of f2(x) ∈ R with multiplicity ≤ l. The images of different
components of the fibers of F ′ do not meet in R unless the points f2(x) do and a
counting of parameters (+ the usual general position argument) shows that these
f2(xi) do not meet in R unless

∑
i l(xi) ≤ 4k; then f0 serves our purpose.

There are (in principle) computable obstructions (e.g. characteristic classes) for
the existence of low multiplicity smooth generic maps; for example, complex pro-
jective spaces of even complex dimension k, probably, admit no maps into R2k of
multiplicity less than 4k or something like that. (A similar but apparently easier
question is obstructing maps with a bound on the ranks of their local rings expressing
the multiplicity of the analytic continuations of real analytic F .) But if X is stably
parallelizable, then there is no apparent obstruction for maps of multiplicities 4.
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If X0 admits a map of multiplicity m and X is obtained from X0 by a surgery
adding handles of dimensions ≤ n − l, then X admits a map of multiplicity ≤
m + n/(n − l) which opens a way for constructing maps of low multiplicity with
some cobordism theory.

Finally, does every closed manifold of dimension k admit a map of multiplicity
≤ 4 into an open k-manifold?

2.10 l2-Filling bounds and maps of 2-polyhedra to R2. Let

‖c‖l2 =
(∫

Σi

‖c‖2
F
dσ

)1/2

for measurable F-cochains c on the set Σn of i-cells of a measurable complex X and
let ‖c‖l2

fil and ‖(∂i−1)−1‖l2
fil be defined with this norm as was done in 2.3 with the

l1-norm ‖c‖ = ‖c‖l1 =
∫
Σi
‖c‖Fdσ, where ‖(∂i)−1‖l2

fil(β) as well as ‖(∂i)−1‖fil(β) are
true norms independent of β > 0 if F = R.

Let X be a measurable cell complex where the spaces of cells (Σi, dσi) are prob-
ability spaces and let F = R. Let Y be an oriented surface and F : X → Y be a
continuous map. Let c2 be a singular cycle which represents the fundamental class
[Y ]◦ ∈ H2(Y ; R) and which is quasitransversal (see 2.2) to F . Recall the supre-
mum of the integrated intersection numbers of 1-cells in X with 1-faces of singular
2-simplices of c2,

m1 = m1(F, c) = sup
Δ1

∫
Σ1

‖σ1 � Δ1‖dσ1,

let

ml2
2 = ml2

2 (F, c) = sup
Δ0

(∫
Σ2

‖σ2 � Δ0‖2dσ2
)1/2

,

where the supremum is taken over all vertices Δ0 of the singular 2-simplices consti-
tuting c and let

M2 = ml2
2 + ‖F ∗[Y ]◦‖l2

for the fundamental cohomology class [Y ]◦ ∈ H2(Y ; R) of Y .

Let H1(X; R) = 0 and set
M1 = m1 + 2M2 ·

∥∥(∂1)−1∥∥l2
fil.

Then
3M1 ·

∥∥(∂0
Z
)−1∥∥

fil(M1) ≥ 1 ,

where ‖(∂0
Z
)−1‖fil denotes the filling norm in C∗(X; Z)).

Proof. Observe that
the filling norm of every 2-coboundary b ∈ ∂1(C1(X; Z)), call it ‖b‖Z

fil,
equals the filling norm ‖b‖R

fil of this b in the ambient C2(X; R)⊃C2(X; Z).
In simple words you can find a Z-(co)filling of b with the l1-norm just as
small as for any (co)filling in C1(X; R).

Indeed, let b = ∂1(c) for some c ∈ C1(X; R) and let �c ⊂ C1(X; R) consist of
the cochains c′ ∈ c + ∂0(C0(X; R)), i.e. d = c− c′ ∈ ∂0(C0(X; R)), such that

1. If c takes an integer value at a 1-cell σ1, i.e. c(σ1) ∈ Z, then
d(σ1) = c′(σ1)− c(σ1) = 0 .
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2. If c(σ1) is not an integer, then c′(σ1) ∈ (n, n + 1) for the minimal integer
interval (n, n + 1) ⊂ R containing c(σ1) ∈ R. Equivalently,

α− < d(σ1) < α+ ,

where
−1 < α− = n− c(σ1) < 0 and 0 < α+ = 1 + α− = n + 1− c(σ1) < 1 .

Notice that �c is a convex subset in C1(X; R), since 1 and 2 are convex in-
equalities imposed on coboundaries d of real 0-cochains (where the coboundary
operator ∂0, being linear, preserves convexity). Furthermore, if ∂1c ∈ C2(X; Z),
then

all extremal points cextr of �c are integer, i.e. cextr(σ1) ∈ Z for all σ1.
Indeed, if ∂1c is an integer, then there exists a map, say φ from the 1-skeleton of

X to the circle S1 = R/Z with the following properties:
• The map φ is locally affine on each 1-cell σ1.
•• The value c(σ1) equals the integral

∫
σ1 φ∗(ds) for all 1-cells σ1 in X, where

ds is the canonical 1-form on the circle. Consequently, the length of φ(σ1)
counted with multiplicity equals |c(σ1)|.

Moreover, this φ = φc is unique up to rotations of S1 and adding exact 1-
cochains d = ∂0f to c corresponds to homotopies of φ issuing from moving the
points φ(σ0) ∈ S1 for the 0-cells σ0 of X.

If c is non-integer (modulo constants), then there are (at least) two 0-cells in
X which are sent by φ to different points in S1; this allows an obvious homotopy
bringing these points together, thus, showing that such a c cannot be an extremal
point in �c.

It follows that the infimum of the l1 norm of c′ on �c equals that on �c∩C1(X; Z);
hence, every real cochain c with ∂1c ∈ C2(X; Z) can be replaced by an integer cochain
c′ with the same coboundary and the same (up to an arbitrarily small error) l1-norm.
Thus, as we claimed,

the complexes C∗(X; Z) and C∗(X; R) ⊂ C∗(X; Z) have equal norms
‖b‖fil for all b ∈ ∂1(C1(X; Z)) ⊂ C2(X; Z) ⊂ C2(X; R).

Finally, since our norms are defined with a probability measure, the l1-norm in
C1(X; Z) ⊂ C1(X; R) is bounded by the l2-norm, and 2.5 applies (with the use of
only the first two steps in the definition of the compounded profile in 2.4).

Corollary. Let X be a finite 2-dimensional complex where ‖(∂i)−1‖l2
fil ≤ Ci for

i = 0, 1, let Y be an open surface and F : X → Y a generic piecewise smooth generic
map, which is (at most) k-to-one on every 2-cell in X.

Then there exists a point y ∈ Y such that the number |F−1(y) � Σ2| of
open 2-cells σ2 in X such that F (σ2) � y is bounded from below by the
number N2 of all 2-cells in X for large N2 as follows:∣∣F−1(y) � Σ2

∣∣/N2 ≥
(
4k(3C0 + 6C0C1)

)−2 + o(1) ,

provided the numbers of 1- and 2-cells in X adjacent to the vertices (i.e.
the degrees d of the vertices) are uniformly O(1).
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Indeed, take a sufficiently fine generic triangulation of Y and observe that if
|F−1(y) � Σ2|/N2 < ε, then ml2

2 ≤ kε1/2, while ‖F ∗[Y ]◦‖l2 and m1 = o(n1). Then
the inequality 3M1 · ‖(∂0

Z
)−1‖fil(M1) ≥ 1 applies, since ‖(∂0

Z
)−1‖fil is estimated by

‖(∂0)−1‖l2
fil according to the

Mazia–Cheeger inequality.

sup
β≥0

∥∥(∂0
Z
)−1∥∥

fil(β) ≤ 2 sup
0≤β≤1

∥∥(∂0
Z2

)−1∥∥
fil(β) ≤ 4

(
‖(∂0)−1‖l2

fil

)2
.

Indeed, the l1-norm of a function c : Σ0 → Z, (i.e. c ∈ C0(X; Z)) with given
‖∂0(c)‖ can be bounded by adding up the Z2-bounds for the characteristic func-
tions of the levels c−1(−∞, n] and c−1[n,∞) for those c, where the dσ0 measures of
c−1(−∞,−1] and of c−1[1,∞) are ≤ 1/2.

The second inequality, ‖(∂0
Z2

)−1‖fil ≤ 2(‖(∂0)−1‖l2
fil)

2, is (trivially) obtained by
applying the l2-estimate to functions c(1 − ‖c‖) + (c − 1)‖c‖, where 0-cochains
c ∈ C0(X, Z2) are regarded as functions c : Σ0 → {0, 1} ⊂ R.
Concluding examples of polyhedra with l2-bounds on ∂−1. The bounds
on ‖(∂i)−1‖l2

fil are available for many polyhedra X, which may have a given number
N of vertices and all local degrees d bounded by a constant independent of N . This
suffices for the inequality [XN → R2] from 1.4. modulo a specification of C0, C1
and d, where the known examples of such X are obtained as follows.

Let G be a locally compact group such that H i(G; H) = 0 for 0 < i < n for
all Hilbert (space) G-modules H and let Γ ⊂ G be a lattice. Let Γ act freely and
discretely on a contractible n-dimensional locally finite simplicial polyhedron. Then
the quotient space X = X̃/Γ has H i(X; R) = 0 and ‖(∂i−1)‖l2

fil ≤ Ci(X̃) < ∞ for
0 < i < dim X.

The simplest instances of such G are (semi)simple p-adic Lie groups G acting
on Bruhat–Tits buildings X̃ according to the Garland vanishing theorem (see [G],
[Bo]). The congruence subgroups Γi of p-adic arithmetic groups ([G], [BoH]) pro-
vide Xi = X/Γi with pni const(X̃) vertices. (I owe the reference [BoH]) to Akshay
Venkatesh.) Moreover, Garland’s argument delivers specific values of the constants
Ci(X̃) and then one can trivially arrange XN with any number N of vertices and
slightly greater Ci.

Remark. One does not know if there are comparable l1-bounds on (∂i)−1 for
i ≥ 1, nor do such bounds seem in sight for complexes with Z2-coefficients. On
the other hand, some lp-estimates with p < 2 seem to be available. This, for
i = 1, would allow an improvement of the above lower bound on |F−1(y) � Σ2|
by |F−1(y) � Σ2|/N2 � k−2+ε with ε > 0.

Finally, to make some XN simply connected (as was promised in 1.4), we at-
tache discs to XN along non-contractible curves and observe with Margulis’ normal
subgroup theorem (see [M2] and 4.3) that the universal coverings of the resulting
spaces are compact (as well as simply connected).

2.11 Isoperimetry in cubes. The random cone construction applies to many
measurable polyhedra besides the simplex Δ(V ), where an individual filling (e.g. a
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contraction) can be averaged, e.g. over a compact group of symmetries of X. Thus,
one obtains lower bounds on the maximal cardinalities of fibers of maps of such X
to Euclidean spaces as in the case of Δ(V ).
Example: Product inequality for ‖∂−1‖fil. Let X0 be a measurable cellular
space and let X = X0×Δ(V ) for the simplex Δ(V ) spanned by a probability space
V without atoms or made of finitely many equal atoms.

Each cocycle b ∈ Ci+1(X) splits into b = b0 + b∗, where b0 equals the restriction
of b to Σi(X0)×V , where Σi(X0) denotes the set of i-faces in X0, and b∗ =def b− b0.

The contractions of Δ(V ) to the vertices v ∈ V define cochains cv ∈ Ci(X) such
that ∂(cv) = b− bv for the restrictions bv = |(X0 × v) ∈ Ci+1(X0 = X0 × v), where∫

V
‖bv‖dv = ‖b0‖

and ∫
V

cvdv ≤ ‖b∗‖ .

by the averaging in Δ(V ) (see 2.6).
On the other hand

‖b‖fil ≤ inf
v∈V

(
‖bv‖fil + ‖cv‖

)
≤

∫
V

(
‖bv‖fil + ‖cv‖

)
dv ;

therefore,

‖b‖fil ≤ ‖b∗‖+
∫

V
‖bv‖fildv ≤ ‖b‖ ·max

(
1, ‖(∂i

X0
)−1‖fil

)
.

Example: Isoperimetry in the cube. Let X = [−1, 1]N be the N -cube with
the uniform probability measures on the sets of its faces. Then

∥∥(∂i
X)−1∥∥

fil ≤
‖Σi(X)‖

2‖Σi−1(X)‖ =

(
N
i

)
2
(

N
i−1

) =
N − i + 1

2i
.

Proof. This follows from the above, since the number ‖Σi(X)‖ of i-faces in X equals(
N
i

)
, where the additional 1/2 factor is due to the equality ‖(∂1)−1‖rand = 1/2 for

the 1-simplex [−1, 1].

Corollary. Let F : X → Rn be a continuous map and let |y �F Σn|, y ∈ Rn,
denote the number the n-faces σ of X, such that F (σ) � y. Then

max
y∈Rn

|y �F Σn| ≥ 2N−n

(
N

n

)(
(n + 1)!

∏
i=1,...,n

N − i + 1
2i

)−1

= 2N/(n + 1)!

where, observe, the number |Σn(X)| of all n-faces in the N -cube equals 2N−n
(
N
n

)
.

Let us improve this to

max
y∈Rn

|y �F Σn| ≥ 2N−n −
(

N

n

)

as follows.
Finely triangulate the (N − 1)-sphere S = SN−1 = ∂([−1, 1]N ), denote the

triangulated sphere by by S� and approximate F |S = S� by a generic facewise
affine map, say f : S� → Rn. It is clear that



452 M. GROMOV GAFA 

(a) maxy |y �f Σn| ≤ maxy |y �F Σn|;
(b) the fibers f−1(y) ⊂ S�, y ∈ Rn, are (N −1−n)-dimensional pseudomanifolds;
(c) the intersection of each fiber f−1(y) in S with the (n−1)-skeleton of the cubical

decomposition of S = S� = (∂[−1, 1]N ) is a finite set of cardinality ≤ n.
Take the (diamond) decomposition (triangulation) S� of S into 2N simplices of

dimension N − 1 corresponding to the 2N coordinate “octants” of RN ⊃ [−1, 1]N

and observe that S� is the combinatorial dual to the cubical decomposition S�.
Approximate the identity map S� → S� by a simplicial map, say a : S� → S�

(where each vertex x of S� goes to the vertex s = s(x) of S� such that the star
of s in the barycentric subdivision of S� contains x) and observe that the images
c(y) = a(f−1(y)) ⊂ S�, y ∈ Rn make a family of (N − n− 1)-dimensional piecewise
linear Z2-cycles in S = S�, where we identify Z2-cycles with their supports.

Take a point x ∈ f−1(y), let Δx be a closed simplex of S� containing x and
consider the following possibilities.

(0) The simplex Δx does not intersect the n-skeleton Sn
� ⊂ S�. Then a(Δx) is a

simplex in S� of dimension < N − n− 1.
(1) Δx does not intersect the (n−1)-skeleton Sn−1

� and it intersects a single n-cube
�n which is also intersected by the fiber f−1(y). Then a(Δx) is a face of the
(N − n− 1)-simplex in S� which is dual to �n.

(2) Δx is neither (0) nor (1). Then the dimension of the simplex a(Δx) may be
≥ N − n− 1.

In this latter case Δx must lie close to a cubical cell � = �m, m < n, of S�
with a(Δx) being a face of the dual (N −m − 1)-simplex Δ = ΔN−m−1 of S�. If
there are k such Δ = ΔN−mi−1 , then there is a fiber f−1(y′) for some y′ ∈ Rn close
to y, and points xi ∈ f−1(y′), such that a(xi) are contained in the interiors of the
cubical cells �mi of S�; thus, k ≤ n− 1. Moreover, the genericity of f implies that
the dimensions mi satisfy ∑

i=1,...,k

(n−mi) ≤ n .

Therefore, one has the following (1) + (2)-relation:
Every cycle c(y) = a(f−1(y)) ⊂ S� consists of at most M(F ; y) sim-
plices of S� of dimension N − n− 1 of type (1) and of k-intersections of
(N − n− 1)-equators of the sphere S = S� with the simplices ΔN−mi−1

from (2).
The spherical volumes of these equatorial (inter)sections are bounded by

volN−n−1(SN−n−1 ∩ΔN−mi−1) ≤ (n−mi + 1)−12−(N−n)
(

N −mi

N − n

)

with the normalization vol(SN−n−1) = 1. In fact, the volumes of the l-codimen-
sional sections Q of any convex spherical polyhedron P ⊂ SL are bounded by
(l + 1)−1 volL−l P

L−l, for PL−l denoting the (L − l)-skeleton of P , since a generic
l-equator intersecting P meets PL−l at at least l + 1 points while meeting Q at at
most one point. (This bound is sharp as far as general P are concerned but it is
very crude for regular simplices, where a better inequality must be known.)
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It follows that the spherical (N − n− 1)-volumes of c(y) are bounded by

volN−n−1(c(y)) ≤ 2−(N−n)M(F ; y) +
∑

i=1,...,k

(n−mi + 1)−12−(N−n)
(

N −mi

N − n

)
,

which implies with the above bound on n−mi that

vol(c(y)) ≤ 2−(N−n)
(

M(F ; y) +
(

N

N − n

))
.

On the other hand, by Almgren’s waist inequality (see 3.3, 3.4)
max
y∈Rn

vol(c(y)) ≥ 1

and the proof follows.
Remarks. (a) The bound ‖(∂1

X)−1‖fil(β) ≤ N/2 is non-sharp except for β = 1/2N .
The sharp bound is provided by the the Harper inequality which is a special case of
the Shannon inequality for the entropies of measures on product spaces (see [Gr7]
and references therein).

(b) If n is close to N/2, then the inequality maxy∈Rn M(F ; y) ≥ 2N−n −
(
N
n

)
is

far from being sharp; here a better result is desirable.
(c) The (1)+(2)-relation remains valid for arbitrary families of (N−n−1)-cycles

c(y) in S parametrized by m-dimensional spaces Y (instead of Rn), where S(= S�)
is a triangulated (Riemannian) (N − 1)-space. One is concerned here with a lower
bound on the maximal cardinality M�

n (c(y)) of the intersection of c(y) with the n-
skeleton of the combinatorial dual S⊥ (instead of S�). The (2)-term in this case is
about m

(
N
n

)
and the issuing lower bound on M�

n (c(y)) in terms of maxy vol(c′(y))
is similar to the above. (This, with a rougher constant, is proven in [Gu1].)

Question. When is a family of F-cycles c(y) with maxy vol(c(y)) ≤ V0 homotopic
to family c′(y) with M�

n (c′(y)) ≤ M0 = M0(V0) for a given function M0(V )? This is
(almost) fully resolved in [Gu2] for F = Z2 (where an essential point is to have the
function M0(V ) independent of the dimension of Y � y).

(d) The simplicial approximation c′ of an individual generic cycle c has no (2)-
term in it. In particular, if F : [−1, 1]N → Rn is a smooth generic ±-symmetric
(i.e. F (−x) = −F (x)) map, then the symmetric simplicial approximation c′ of c =
F−1(0) is a cycle with volN−n(c′) ≤ 2N−n|0 � Σn| in the (N − 1)-sphere (where
|0 �F Σn| stands for the cardinality of the intersection of F−1(0) with the n-skeleton
of the sphere ∂[−1, 1]N ). Since the corresponding cycles c/± and c′/± ∼ c/± in the
projective space RPN−1 = SN−1/± are non-homologous to zero, every n-equator
Sn ⊂ SN−n−1 meets c′ and volN−n(c′) ≥ 1 by Crofton’s formula.

This yields

The Barany–Lovasz inequality. The cardinality |0 �F {�n}| of the set
of the closed n-faces of the N -cube [−1, 1]N which intersect the zero set of a ±-
symmetric continuous (e.g. linear) map F : [−1, 1]N → Rn satisfies∣∣0 �F {�n}

∣∣ ≥ 2N−n.

(See [BaL] for further variations and applications of this argument.)
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This inequality can also be derived (see [BaL]) from the following three combi-
natorial properties of the n-skeleton �N,n of the cubical complex [−1, 1]N and the
±-involution on �N,n.

1. Σn is made of K = 2N−n
(
N
n

)
cells of dimension n and the involution has no

fixed point in �N,n.
2. �N,n contains an (n − 1)-acyclic ±-invariant subcomplex S with (at most)

L = 2
(
N
n

)
cells of dimension n, where “(n−1)-acyclic” means that H i(S; Z2) =

0 for i = 1, . . . , n− 1.
An example of S ⊂ �N,n is the “folding locus” of a generic linear projection

P : [−1, 1]N → Rn+1. In fact, such a P is one-to-one over the boundary of its
image, say SP = ∂(P ([−1, 1])) ⊂ Rn+1, and S is defined as P−1(SP ). Clearly, SP

is a convex polyhedral n-sphere with a single pair of ±-opposite n-faces for each
sub-product of n out of N segments [−1, 1] in [−1, 1]N . This makes

(
N
n

)
such pairs

of faces in SP , and, hence, in S.
3. The group G of cellular automorphisms g of Σn which commute with ± is

transitive on the set of n-cells of �N,n.
It follows from 2 and 3 that

�N,n is covered by ±-symmetric (n−1)-acyclic subcomplexes Sg = g(S),
each having (at most) L cells, such that the number of Sg which contain
an n-cell of �N,n is independent of this cell.

Every generic ±-symmetric map F : �N,n → Rn has zeros in the interiors of at
least 2 cells of each Sg by the Borsuk–Ulam theorem; hence F−1(0) meets at least
2K/L = 2N−n cells in �N,n .

2.12 Filling with subdivided cones. Let X be a measurable cell complex,
where the sets Σn = Σn(X) of n-cells σ in X are probability spaces, where all
closed cells are embedded into X and where the face maps Σn → Σn−1 are measure
preserving.

Let Z = Xn−1 × [0, 1], where Xn−1 ⊂ X denotes the (n− 1)-skeleton of X, and
let Z ′ be a measurable cellular subdivision of Z. Denote by Σ′n = Σn(Z ′) the set of
n cells in Z ′ and observe that every cell σ′ ∈ Σ′n is contained in σ× [0, 1] for a unique
σ = σ(σ′) ∈ Σn−1 = Σn−1(X). This gives us a map, say r : Σ′n → Σn−1 = Σn−1(X)
with finite r−1(σ) ⊂ Σ′. Let dσ′ be the measure on Σ′ defined by∫

Σ′n
φ(σ′)dσ′ =

∫
Σn−1

( ∑
σ′∈r−1(σ)

φ(σ′)
)
dσ .

Let P be a probability space and R = {Rp} : Z ′×P → Xn ⊂ X, be a cellular map
such that the corresponding map on the sets of n-cells, denoted Rn : Σn−1×P → Σn,
is measurable.

Given b ∈ Cn(X; F) for a given field F, define
cp(σ) =

∑
σ′⊂σ×[0,1]

b
(
A(σ′)

)
∈ Cn−1(X; F) ,

and observe that the family δ of homomorphisms δp : b �→ cp, p ∈ P , makes a random
contraction (cone) for ∂n−1 : Cn−1(X) → Cn(X) (see 2.6 ) if
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• the map Rp sends every cell of Z = Z × 0 × p onto itself with F-degree 1 for
almost all p ∈ P ;

•• the homology homomorphism induced by Rp(Z × 1 × p) ⊂ X on the bound-
ary ∂(σ) ⊂ Xn−1 of each n-cell σ in X vanishes on the fundamental class
[∂(σ)] ∈ Hn−1(∂(σ); F) for almost all p ∈ P (e.g. Hn−1(Rp(Z × 1 × p); F) = 0
for (almost) all p ∈ P ).

Denote by |dRn|(σ) the the Radon–Nikodym derivative of Rn, which is defined
by the condition ∫

Σ′n×P
ϕ
(
Rn(σ′)

)
dσ′dp =

∫
Σn

|dRn|(σ)ϕ(σ)dσ

for all functions ϕ : Σn → R, and observe that∫
P
‖cp‖dp ≤

∫
Σn

|dRn|(σ)‖b(σ)‖Fdσ ≤ ‖b‖ sup
σ∈Σn

|dRn|(σ) .

Therefore (see 2.6)∥∥(∂n−1)−1∥∥
fil ≤

∥∥(∂n−1)−1∥∥
rand ≤ ‖δ‖ ≤ sup

σ∈Σn

|dRn|(σ) .

Let us exclude |dRn| from the bound on ‖(∂n−1)−1‖fil in a presence of symmetry
of X as follows.

Let G be a group of measurable automorphisms of X with the finite set O of
ergodic components o ⊂ Σn.

Denote by m′
o(σ × [0, 1]), for o ∈ O and σ ∈ Σn−1, the number of n-cells σ′ in

‖Z ′‖, such that h(σ′) ∈ o, and let
m′

o = sup
σ∈Σn−1

m′
o

(
σ × [0, 1]

)
.

If the function |dRn| is in L1(Σn) (i.e.
∫
Σn
|dRn|(σ)dσ < ∞) and the

coefficient field F is finite, then∥∥(∂n−1)−1∥∥
fil ≤ M = sup

o∈O
|o|−1m′

o .

Proof. It suffices to show that

inf
g∈G

∫
Σn

|dRn|(g(σ))‖b(σ)‖Fdσ ≤M ,

or, equivalently, that

inf
g∈G

∫
Σn

|dRn|(σ)
∥∥b(g(σ))

∥∥
F
dσ ≤M

where, recall, ‖b‖ =
∫
Σn
‖b(σ)‖Fdσ.

Let B ⊂ L2(Σn) be the closed convex hull of the orbit G(b) ⊂ L2(Σn) and
let b0 ∈ B be the (unique!) vector minimizing the L2-norm on B. Clearly, b0 is
G-invariant, i.e. b0(σ) = b0(o) for o � σ,

‖b‖ = ‖b0‖ =
∑
o∈O

b0(o)|o|

and

inf
g∈G

∫
Σn

|dRn|(σ)
∥∥b(g(σ))

∥∥
F
dσ ≤

∫
Σn

|dRn|(σ)bo(σ)dσ =
∑
o∈O

b0(o)
∫

o
|dRn|(σ)dσ .
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Finally,∑
o∈O

b0(o)
∫

o
|dRn|(σ)dσ ≤

∑
o∈O

b0(o)m′
o ≤

(
sup
o∈O

|o|−1m′
o

) ∑
o∈O

b0(o)|o| = M‖b0‖ ,

and the proof follows.

2.13 Colored polyhedra and spherical buildings. Let V be a probability
space, let P be a finite measurable partition of V , which may be regarded as the
quotient map P : V → V/P called a V/P -coloring of V . Let P� : Δ(V ) → Δ(V/P )
be the simplicial map induced by this map.

Let X = Δn
col(V/P ) ⊂ Δ(V ) be the union of the n-faces of the simplex Δ(V ) on

which the map P is injective. This X is called the full V/P -colored polyhedron; it is
a measurable subcomplex in Δ(V ) and we normalize the induced measures on the
sets of faces of X to probability measures.

If card(V/P ) ≥ n + 1 then X is nonempty and it is (n − 1) connected. Indeed,
a full ({1, . . . , i + 1}-colored space X(i + 1) equals the union of the cones from the
(i + 1)-colored vertices over the full ({1, . . . , i}-colored X(i) ⊂ X(i + 1). Since these
cones intersect over X(i), the (i− 1)-connectedness of X(i) implies i-connectedness
of X(i + 1) by (the trivial part of) Freudenthal’s suspension theorem.

Thus, the cone Z over the (n − 1)-skeleton Xn−1 = Δn−1
col (V/P ) ⊂ X admits

a map R0 : Z → X which equals the identity on the base of the cone, that is
Xn−1 ⊂ Z, and which is simplicial with respect to some subdivision Z ′ of Z.

Such a contraction can be implemented by induction on skeletons of Xn−1 where
one extends maps from subdivided boundaries of simplices Δi, i = 1, . . . , n, to
further subdivided Δi. Since every finite set V0 of vertices of X is contained in a full
colored subpolyhedron X0 = X0(V0) with at most |V0|+n− 1 vertices, and since all
these X0 are all (n− 1)-connected, such extensions take place within subpolyhedra
in X of uniformly bounded size. It follows that each n-simplex in Z contains at
most κn simplices of Z ′ for some universal constant κn (which is � nn by a rough
estimate).

If V is a finite set, then such R0 is measurable and if both spaces V and V/P
have all atoms of equal weight, then the automorphism group G of X is transitive on
the n-faces of X and we conclude (see 2.6) that the filling norm of (∂n−1)−1 in the
complex C∗(X; Z2) is bounded by κn. Then an obvious arrangement of a measurable
family of contractions deliverers the same bound for infinite V if all atoms in V/P
have equal weights. It follows that

every measurable map F : X → Rn (where X = Δn
col(V/P ) is a full

colored n-dimensional simplicial space) which is continuous on the n-
simplices, admits a point y ∈ Rn, such that the (probability) measure m
of the set of the n-faces in X which intersect F−1(y) ⊂ X satisfies

m ≥ c(n) ≥
( ∏

i=1,...,n

κi(i + 1)
)−1

.

Remarks. (a) If V is a finite space with N equal atoms, one has an additional
−O(N−1) term as in estimates for Φn−1 in 2.5.
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(b) If the number of colors is significantly greater than n, then the [Δ → Rn]-
inequality (see 1.1) gives a better lower bound on m. Also, the contraction/averaging
argument delivers a bound on m without direct use of automorphisms of V/P (which
allows a similar bound for X = Δcol(V/P ) where V/P may have atoms of different
weights), but the resulting lower bound on c(n) remains poor.

(c) The (n− 1)-connectedness of X is (essentially) equivalent to the color exten-
sion property proven in [I].

Let {S•} be a collection of connected simplicial complexes (polyhedra) S•.
A (measurable) {S•}-connected space X is a (measurable) simplicial complex

with a distinguished family of subcomplexes S, called apartments in X, such that
every S is isomorphic to some S• ∈ {S•}, and such that every two simplices of X
lie in a common apartment.

Let X be an {S•}-connected space, such that
all S• ∈ {S•} (and, hence, all apartments in X) are (n− 1)-connected;
if apartments Si ∈ X have an n-simplex in X in common, then the
intersection ∩iSi is (n− 2)-connected;
every simplex of X is a face of an n-simplex in X.

Then, clearly, X is (n − 1)-connected: the cone Z over the (n − 1)-skeleton
Xn−1 ⊂ X admits a map R0 : Z → X which equals the identity on the base of the
cone and which is simplicial with respect to some subdivision Z ′ of Z. Moreover, as
in the full colored case, each n-simplex in Z contains at most κ(N•) simplices of Z ′

for N• denoting the supremum of the numbers of simplices in S• ∈ {S•} and some
universal function κ(N•) which is < ∞ for N• < ∞.

The classical examples are spherical Tits’ buildings X over locally compacts
fields K, where there is a single S• which is a triangulated n-sphere, where the inter-
section of k ≥ 2 different apartments with an n-simplex in common is contractible
and where every X admits a compact automorphism group which is transitive on
the set of n-simplices of X.

For instance, the complex of flags of projective subspaces in KPn+1 makes such a
building, where each S is the subcomplex of flags of intersections of n+1 hyperplanes
in KPn+1 in general position. (The corresponding S• is isomorphic to the barycentric
subdivision of the boundary of the (n + 1)-simplex.)

The inverse filling norms of C∗(X; Z2) for classical n-dimensional build-
ings X are bounded, as in the full colored case, by∥∥(∂i)−1∥∥

fil ≤ κ•(n)

for some universal function κ•, since N• is bounded by the order of a reflection
(Weyl) group W with |W | ≤ constn. Consequently,

every measurable map F : X → Rn which is continuous on the n-
simplices admits a point y ∈ Rn, such that the (probability) measure
m of the set of the n-faces in X which intersect F−1(y) ⊂ X satisfies

m ≥ const(n) ≥
(
κ•(n)n+1(n + 1)!

)−1
.
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L2-Remark. There are sharp bounds on the inverse filling L2-norms in the L2-
cochain complexes of classical n-dimensional buildings X for all n. These bounds for
n = 2 provide better estimates than the multiplicities m of maps F of 2-dimensional
buildings X to R2 under the assumption of injectivity of F on the 2-simplices of X
(as in 2.10).

On measurable algebraic polyhedra. Classical spherical buildings are in-
stances of simplicial algebraic polyhedra defined as follows.

Start with an algebraic variety V (defined over some field or ring, e.g. over Z)
and take an n-dimensional subcomplex X in the simplex Δ(V ), such that the sets
of ordered i-faces Σord

i (X) ⊂ Σord
i (Δ(V )) = Xi+1 are algebraic subvarieties.

If the codimensions of Σord
i (X) ⊂ Xi+1 are small compared to dim(V ) and n,

then the set of points of X over a “sufficiently large” field K is likely to be (n− 1)-
connected (possibly, with a mild genericity assumption on Σord

i (X)). If K is locally
compact, then X can be given a rather canonical measure structure (e.g. by an
embedding of V to a projective space); then the inverse filling norms are, probably,
bounded by the above argument.

An example of such X, closely related to the flag complex, is where V is the
Euclidean N -sphere, and Σi(X) consists of the (i+1)-tuples of mutually orthogonal
vectors in this V = SN ⊂ RN+1.

If n = 1, i.e. X is an algebraic graph, then the most attractive case is where
the dimension of the edge set Σ1(X) ⊂ V × V equals the dimension of V . Here
the connected components of X make a partition of the space of X(K) of K-points
of V , which is, typically, non-measurable for infinite locally compact fields K with
apparently interesting dynamical/arithmetical properties.

For instance, if K is a finite field, and Σ1(X) has several (more than 2) irreducible
components, then, typically, X(K) is an expander graph. In general, the foliation
must have some Kazhdan-T -like properties.
Question. Is there a similar class of “small” n-dimensional algebraic polyhedra
for n ≥ 2, incorporating quotients of Bruhat–Tits buildings by arithmetic groups
(as in 2.10)?

2.14 Random polyhedra. Let X be an n-dimensional cell complex and let
Xran(N) denote the union of N randomly chosen closed n-cells in X.

Assume that the numbers of cells of dimensions n− 1 and n in X satisfy∣∣Σn−1(X)
∣∣ = Nn−1 ≤ N ≤ Nn/2 =

∣∣Σn(X)
∣∣/2 .

Then the number of cochains in Cn−1(X; Z2) is much smaller than the number of
N -tuples of cells in Σn(X),

2Nn−1 �
(

Nn

N

)
.

It follows that the norms of the coboundaries of Z2-cochains c ∈ Cn−1(X; Z2)
with respect to the uniform probability measure on the sets Σn−1(X) and Σn(X)
do not change much for large N as we pass from X to Xran(N), for a fixed θ =
1 − Nn−1/N > 0 and N → ∞. Namely, they satisfy the following combinatorial
sampling inequality (probably, several hundred years old).
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There exists a universal strictly positive monotone increasing function
α(t), t > 0, such that α(t) → 1 for t → ∞ and such that the cobound-
aries b = ∂n−1(c) of all cochains c ∈ Cn−1(Xran; Z2) = Cn−1(X; Z2) for
Xran = Xran(N = (1 + θ)Nn−1) satisfy

‖b‖Xran ≥ α
(
θ · ‖b‖X

)
‖b‖X

with probability P (θ), where

1− P (θ) ≤ 1
/(

1 + α(θ)
)Nn−1 . [CSI]

Therefore, there exists a universal continuous function γ(β), β ≥ 0, such that
γ(β) → 0 for β → 0 and such that

the filling norms ‖b‖ranfil of all cocycles b in Cn(Xran; Z2) are bounded,
with probability P (θ) ≥ 1 − 1/(1 + α(θ))Nn−1, in terms of the inverse
filling norm in X, that is∥∥(∂n−1

X )−1∥∥
fil = sup

b∈∂n−1Cn−1(X);Z2)
‖b‖fil/‖b‖ ,

as follows:
‖b‖ranfil ≤ γ(‖b‖)

∥∥(∂n−1
X )−1∥∥

fil .

Remarks. (a) This inequality shows that the maps F : Xran → Rn for polyhedra X
from sections 2.11–2.13, satisfy roughly the same lower bonds on their multiplicities
m = maxy∈Rn |F−1(y)| as X themselves.

What remains unclear, however, is if this remains true for all (non-random)
subpolyhedra X ′ ⊂ X with “many” cells, i.e. where |Σi(X ′)|/|Σi(X)| ≥ const > 0
for |Σ0(X| → ∞. (This is known for a face-wise affine map under the name of the
“second selection lemma”, see [Ma1]. Such X ′ may have large inverse filling norms
(e.g. they may be disconnected), but apparently, they decompose into “few” clusters
with high connectivity and “good” filling properties.

(b) A sharper version of [CSI] with a control on α(θ) for small θ and on lo-
cal degrees is used in the Kolmogorov–Brazdin–Pinsker theorem [P], [KoB] on the
existence of graph expanders (see 4.3).

(c) How small an n-polyhedron on N0 vertices having all inverse filling norms
bounded by a constant independent of N0 as N0 → ∞ may be is unclear. For
example, one has the following:

n-Expander question. Are there simplicial n-polyhedra on N0-vertices, for
arbitrary large N0 with ‖(∂i

X)−1‖fil ≤ const, i = 0, 1, 2, . . . , n − 1, and with the
n-degrees of the vertices, i.e. the numbers of n faces adjacent to all vertices also
bounded by a constant or, at least, with the numbers of n-simplices bounded by
const ·N?

The difficulty in constructing random n-polyhedra for n ≥ 2 is due to the
fact that the space of n-polyhedra X on N0-vertices conditioned by the inequal-
ity degn(X) ≤ const at all vertices does not seem to have, for n ≥ 2, a “good
parametrization/approximation” by a product probability space (in the spirit of the
approximation of the microcanonical measure of a free particle system by the Gauss–
Gibbs measure). The absence of a “good parametrization/approximation” makes
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evaluation of the expectations of invariants of such random polyhedra unapproach-
able by the straightforward large deviation analysis (but no lower bound of any
specific invariant measuring the efficiency of such parametrizations/approximations
of subsets in binary spaces seems to be known). Probably, one can precisely state
(and eventually prove) non-existence of a “good” theory of “random n-dimensional
polyhedra of bounded degrees” for n ≥ 2 (or, at least, for n ≥ 5).

The presence of a “good parametrization/approximation” becomes, apparently,
less likely (and the problem becomes more intriguing) with the additional condition-
ing on the topology of X, e.g. by requiring that fundamental group of X (or even
H1(X)) be trivial, since the triviality of a finitely presented group (the fundamental
group π1(X) in the present case) is algorithmically unsolvable. Yet, this does not
(?) rule out a rough evaluation of the asymptotics, for N → ∞, of the number of
connected simply connected 2-polyhedra on N -vertices with all vertices with 2-degree
≤ const or with the number of the 2-faces ≤ const ·N . (See [Gr5].)

The π1-problem seems more approachable with a bound on the (normalized)
Dehn function δ(r), of Xran that is the minimal function, such that every minimal
(area) disk D in X of area ≤ r has

area(D) ≤ δ(r) length(∂D) .

The inequality δ(r) ≤ const, say in the range r 	 log N , makes π1 infinite
hyperbolic in many/most (?) cases (see [O] and references therein). Alternative
conditions are δ(r) ≤ const ·r for r ≤ R(N), say for R(N) = const ·N or bounds on
the minimal Lipschitz constants of maps of the unit disk into X bounding curves
of length ≤ r. But (approximate) counting numbers of polyhedra satisfying such
conditions remains an open problem.

(d) One may try to diminish the n-degree of the n-skeleton of a polyhedron by
“blowing up” the (n−1) skeleton, i.e. removing a small neighborhood of this skeleton
and gluing in something of smaller degree by elaborating on the construction of
iterated cubical graphs [Gr1] and/or on the zig-zag product in [HoLW]. But, this
does not seem work well for n ≥ 2.

Alternatively, one may try an induction on n, where a “random n-polyhedron” is
obtained by attaching cones to randomly chosen (n− 1)-cycles in a random (n− 1)-
polyhedron. But, again, it seems too hard to reconcile “small degree” with a bound
on the inverse filling norm, except, possibly, for n = 2.

Randomly iterated polyhedra. One can obtain a variety of classes of random
polyhedra by successively adding simplices of various dimensions. Here is an instance
of such a class mentioned in 1.4.

Given a polyhedron X on a vertex set V of cardinality N , choose R1 pairs
of disjoint faces in X and let X+(N ; R1) be the polyhedron, where the simplices
correspond to the unions of the vertices in these pairs.

Iterate this (+)-construction n times starting with X = V and denote by
Xn(N ; R1, R2, . . . , Rn) the n-skeleton of the resulting polyhedron (of dimension
2n − 1). These Xn(N ; Ri) are called graph-iterated n-polyhedra, since each step
amounts to taking a graph on the barycenters of the simplices of the preceding
polyhedron.
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If R1 ≥ const1(n)N and Ri ≥ consti(n)Ri−1, for i = 2, . . . , n, then, according
to Naor and Pach (see 1.4), these graphs are expanders and the proportion of the
iterated n-polyhedra XN = Xn(N ; Ri) which fail to satisfy the inequality

sup
a∈Rn

∣∣a �F {Δn}
∣∣ ≥ εN

for all face-wise affine maps XN → Rn, tends to zero for N → ∞; moreover, this
remains true for random iterated polyhedra with uniformly (in N) bounded degrees.

3 Appendices to Section 2

The material presented in this section is, formally speaking, unnecessary for our
main results.

Section 3.1 contains notation, standard definitions and elementary properties of
finite graphs which pertain to our main topics.

In section 3.2 we prove the Barany–Boros–Furedi inequality baff ≥ 2/9 in the
plane by specializing our general argument to this case.

Sections 3.3–3.5 present basics on Plateau’s problem with an emphasis on isoperi-
metric/filling inequalities, combinatorial and topological versions of which are estab-
lished in other sections of our paper.

Sections 3.6–3.8 contain a few remarks concerning the norms of coboundary
operators which lead to some combinatorial problems which are left untouched in
the main body of the paper.

3.1 Isoperimetry with �∂-boundary and cardinality of graphs over graphs.

A. Cardinality |X/FY |. Consider some class F of continuous maps
F : X → Y and recall the F-cardinality of X over Y , now denoted

|X/FY | = inf
F∈F

sup
y∈Y

∣∣F−1(y)
∣∣ .

If F equals the class of all proper continuous maps we write |X/Y | = |X/contY |.
Let X and Y be graphs, regarded as 1-dimensional topological spaces with the

natural combinatorial structure where all vertices have valencies 
= 2. Then every
continuous map X → Y can be straightened on the edges (except for loops) without
increasing the cardinality of the fibers; the cardinality |X/Y | = |X/contY | equals
this cardinality for the class consisting of the maps that are locally one-to-one on
the edges (and two-to-one on the loops). In particular, |X/R| can be evaluated
within the class of functions F : X → R that are affine on the edges of X with an
exception for the loops that may be present in X.

Thus one sees that |X/Y | ≤ Nedg(X) if there are no loops; if there are loops (not
counted as edges), then |X/Y | ≤ Nedg + 2Nloop.

This bound can be improved roughly by the factor of 1/2 by interchanging the
values of functions F at the pairs of vertices x1 and x2 in so far as this diminishes
maxy |F−1(y)|.

The N -cliques, i.e. the full graphs X = X(N) on N vertices, (the 1-skeleta of the
(N − 1)-simplices), provide examples, where this bound is sharp, since, obviously,
|X(N)R| equals 1

2Nedg
(
1 + 1

N−1

)
for even N and 1

2Nedg
(
1 + 1

N

)
for odd N .
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Furthermore (exercise (a) on page 215 in [Ma1]),
if a graph X on N vertices has Nedg(X) ≥ ε

(
N
2

)
, then |X/R| ≥

1
2ε2

(
N
2

)
−O(ε3) for ε → 0.

Indeed, think of our graph mapped to R as a subset of measure ε/2 in the (right
lower) triangle under the diagonal of the unit square, Z ⊂ Δ2 ⊂ [0, 1] × [0, 1].
Consider the rectangulars �y = [y, 1]× [0, y] ⊂ Δ2, observe that

max
y

area(Z ∩�y) ≥
∫ 1

0
area(Z ∩�y)dy ≥ ε2 −O(ε3) ,

and discretize this back to combinatorial language.
The extremal set Z = Z(ε) for this inequality in Δ2 is, approximately (but

not sharply) equals the
√

2ε-band around the diagonal side of Δ. (Probably, the
extremal Z(ε) can be explicitly determined.) It follows, that

if the N -clique is covered by subgraphs X1, X2, . . . , Xk, then

max
i
|Xi/R| ≥ 1 + δ(k)

2k2

(
N

2

)
−O(1/k2) ,

for some strictly positive δ(k) (whose value, I guess, is unknown).

B. Edge isoperimetric profile and the max-cardinality of the fibers.

Given a subset X0 of vertices in X, denote by
−→
∂ X0 the set of edges issuing from

(the vertices in) X0 and landing outside X0, i.e.
−→
∂ equals the set of the edges [x0, x1],

where x0 ∈ X0 and x1 ∈ vert(X) \X0.
Assign probability measures with atoms of equal weights to the sets of vertices

and edges of X, denote them | . . . |vr, and | . . . |ed, and observe that each subset X0
in the vertex set of X, which has X0 the smallest measure among all vertex sets X ′

0
with ∂X ′

0 = ∂X0 (if X is connected, there are a most two such subsets), satisfies

|X0|vr/|
−→
∂ X0|ed ≤

∥∥(∂0)−1∥∥
fil

(
|−→∂ X0|ed

)
for the Z2-filling norm defined in 2.3.

Profile ‖−→
∂ ‖e/v(r) for graphs. It is often convenient to encode ‖(∂0)−1‖fil

into a function of r = |X0|vr (rather than of |−→∂ X0)|ed). We do this by introducing
‖−→∂ ‖e/v(r) which is the maximal function, such that all X0 satisfy

|−→∂ X0|ed ≥ |X0|vr‖
−→
∂ ‖e/v

(
|X0|vr

)
.

Observe that the (trivial) bound on ‖(∂0)−1‖fil for Δ(V ) from 2.6 translates to
the (equally obvious) inequality ‖−→∂ ‖e/v(r) ≥ 2(1− r) for cliques, i.e. the full graphs
on their vertex sets.

Similarly, full colored graphs have ‖−→∂ ‖e/v(r) ≥ 2(1− r) where a graph is called
full colored if the the vertex set is divided into several subsets with the edges between
all pairs of vertices in different subsets.

Lower bounds on |X/Y | with ‖−→
∂ ‖e/v. If F : X → R+ ⊂ R is a proper

continuous map, which is injective on the vertex set of X, then the number of vertices
in the sublevels F−1(−∞, y), y ∈ R assumes all values 0, 1, 2, . . . , Nvr(X); hence,

sup
y∈R

∣∣F−1(y)
∣∣ ≥ Ned(X) sup

0≤r≤1
r · ‖−→∂ ‖e/v(r) .
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To remove “injective”, let |F−1(y)|ed denote the number of edges in X that
intersect the level F−1(y) ⊂ X and observe that this number (unlike |F−1(y)|) is
semicontinuous: if Fi → F , and yi → y, then lim sup |F−1

i (yi)|ed ≤ |F−1(y)|ed.
Clearly, supy |F−1(y)| ≥ Ned supr r · ‖−→∂ ‖e/v(r) for all continuous maps F .

This generalizes to maps F : X → Y for all trees Y as follows.
An open subset in a topological tree, Y0 ⊂ Y , is called a multibranch at y ∈ Y

if y is the only boundary point of Y0. Connected mutibranches are called branches
at y.[

1
3
, 2

3

]
-Inequality.

Every continuous map F of a finite graph X with Ned edges to a locally
finite tree Y satisfies

N−1
ed sup

y∈R

∣∣F−1(y)
∣∣
ed
≥ inf

1/3≤r≤2/3
r · ‖−→∂ ‖e/v(r) .

Proof. Because of semicontinuity, one may assume that F is injective on the vertex
set and that no vertex of X lands at a vertex of Y (provided Nvr(Y ) ≥ 2). Then it
suffices to find a 1

3 -centrum point yc ∈ Y such that the number of vertices from X
landing in some multibranch Yc ⊂ Y at yc satisfies

1
3 ≤ Nvr

(
F−1(Yc)

)/
Nvr(X) ≤ 2

3 .
[1

3 , 2
3

]
To obtain yc, let y0 ∈ Y be an arbitrary point that is not an image of a vertex

from X and such that no multibranch at y0 satisfies
[1

3 , 2
3

]
. Then there exists a

branch at y0, say B0 ⊂ Y , such that Nvr(F−1(B0)) > 2
3Nvr(X), since every finite

set I of numbers 0 ≤ mi ≤ 2/3, i ∈ I, with
∑

i mi ≥ 1 contains a subset J ⊂ I such
that

∑
j∈J mj ∈

[1
3 , 2

3

]
.

Let E = E(y) ⊂ Y be the edge of B0 adjacent to y and let y1 ∈ E be either a
non-vertex point in B0, such that the interval (y0, y1) contains a single F -image of
an X-vertex, or y1 be the vertex of Y with no F -images of X-vertices in (y0, y1].
If y1 ∈ B0 ⊂ Y still violates

[1
3 , 2

3

]
, go to y2, etc., and thus, arrive at the desired

y = yc (provided Nvr(X) ≥ 2).
Remarks. (a) A similar argument shows that

N−1
ed sup

y∈R

∣∣F−1(y)
∣∣
ed
≥ sup

ε≤α≤1
inf

α
3
≤r≤α

3

r · ‖−→∂ ‖e/v(r) , for ε = 2/Nvr(X) .

(b) The difference between |F−1(y)| and |F−1(y)|ed is seen in the example of the
clique X(N) mapped onto the tree YM made of M =

(
N
2

)
copies of [0, 1] joined at 0,

such that the F−1(0) equals the vertex set of X(N) and where each edge of X(N)
folds in an edge of YM . Here, |F−1(0)| = N and |F−1(y)| ≤ 2 for the other points
y ∈ YM , while |F−1(0)|ed =

(
N
2

)
.

C. Cardinalities of trees over R. A binary rooted tree Xd of depth d has
|Xd/R| = d for d = 1, 2 and |Xd+2/R| = |Xd/R|+ 1 for d + 2 ≥ 3.

To see that |Xd+2/R| ≥ |Xd/R|+ 1, take a simple path in X mapping onto the
full image of f and observe that the complement of every path in Xd contains a
subtree of depth d − 2. Conversely, the forest complementary to a longest path P
in Xd maps to P with cardinality |Xd−1/R|.
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A similar estimate holds for trees over trees.

The cardinality of the binary tree X = Xd+δ over Y = Xd satisfies
|X/Y | ≥ 1

2δ − log2(δ).

Indeed, if a graph Y has (at most) N vertices of degrees ≥ 2 and if an X contains
M disjoint subgraphs Xi with Xi/R ≥ δ0, then |X/Y | ≥ min(M/N, δ0).

This applies to X = Xd+δ which contains M ≥ 2d0 disjoint binary trees of depth
d + δ − d0 for every d0 ≤ d + δ, e.g. for d0 = d + log2(δ), while the number N of
3-valent vertices in Y = Xd is ≤ 2d.
Problem. Determine |X/Y | for given trees X and Y .

An upper bound on the cardinality of graphs over trees. The |X/trees|-
and d|X/trees|-inequalities provide lower bounds on the cardinality of a graph X
over trees by the isoperimetric profile of X and thus, by the supremum of the
isoperimetric profiles of all subgraphs X ′ ⊂ X. Here is an opposite (standard and
obvious) inequality.

Let the vertex set V ′ of every subgraph X ′ of X be partitioned into two subsets
V ′1 and V ′2 of cardinalities N ′

1 and N ′
2 = N ′ − N ′

1 for N ′ = card(V ′), such that
N ′1 ≥ N ′

2 ≥ C ·N ′ for some constant C and such that the number of edges between
V ′1 and V ′2 is bounded by J(N ′) for some real function J vanishing for N ′ < 1. Then
there exists a map f of X onto subtree Y in a binary tree Yd of depth d ≤ C ·log2(N),
such that the vertices of X go to the leaves of Y and the f -pullbacks of all points
y ⊂ Y have cardinalities ≤ C ·kN ·

∑
i=1,2,... J

(
1− 1

C

)i, where N denotes the number
of vertices in X.
Remarks and Questions. It seems little is known about the cardinality of
graphs over graphs, either for distinguished examples, e.g. for cliques over trees, or
for classes of graphs, e.g. for expanders over expanders and/or for random graphs
with given numbers of edges and vertices.

For example, let X and Y be graphs on N vertices, all having the valences
(degrees) of all vertices bounded by d (say, by d = 3), where Y is a λ-expander, i.e.
‖(∂0)−1‖fil ≤ 1/λ (say with λ = 0.1).

Is then |X/Y | ≤ const(log N)α? Does an opposite inequality hold true for ran-
dom graphs X in the above class?

D. Graphs in the circle. Let X0 be an N -point set in the circle S1, take two
points y1, y2 ∈ S1 \X0, consider the two segments in S1 joining these points, take
the segment which contains M ≤ N/2 points from X0 and let |y1 − y2|X0 = M/N .
It is obvious that

if every pair of points in y1, y2 ∈ Y ⊂ S1 \X0 satisfies |y1 − y2|X0 < 1/3
then Y is contained in open segment S = SY ⊂ S1 with less than N/3
points from X0 in this S.

Let X0 ⊂ S1 serve as the vertex set of a graph X, where every edge e is imple-
mented by one of the two segments in S1 between the end vertices of e in S1. Let
Ne(y), y ∈ S1 \ X0, be the number of the segments corresponding to the edges of
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X which contain y, and let ν(y) = Ne(y)/Ned, for Ned denoting the number of all
edges in X.

Take two points y1, y2 ∈ Y ⊂ S1 \ X0, let S1 and S2 be the two segments
between them in S1 and observe that the number of edges in X between the vertex
sets X0 ∩ S1 and X0 ∩ S2 equals ν(y1) + ν(y2). Then, according to the definition of
the profile ‖−→∂ ‖e/v(r) of X in B,

‖−→∂ ‖e/v

(
|y1 − y2|X0

)
≤ ν(y1) + ν(y2)

|y1 − y2|X0

.i

Corollary. If
ε < r

2‖
−→
∂ ‖e/v(r) for all 1

3 ≤ r ≤ 1
2 ,

then the set of the points y ∈ S1 \ X0 for which ν(y) ≤ ε is contained in an open
segment S ⊂ S1 with < N/3 of the points from X0 in S.

Example. Let X be the full graph on N vertices (the N -clique). Since ‖−→∂ ‖e/v(r) =
2(1− r) for this X, the set of the points y ∈ S1 \X0 which are covered by < 2

9

(
N
2

)
edges is contained in a segment in S1 with less than one third of the points from X0
in it.

3.2 Barany–Boros–Furedi inequality for cliques in the plane. The ab-
stract proof of the [Δ→ Rn]-inequality, when applied to an affine map of the (N−1)-
simplex to the plane, simplifies as follows. (See [Fox et al] for a more straightforward
argument.)

Let X be a simplicial 2-complex with the vertex set X0 of cardinality Nvr in the
plane, where no three points lie on a line, where the edges making the 1-skeleton X1

of X are realized by straight segments between these vertices, and the 2-simplices
of X are the Euclidean triangles. We write X0 ⊂ R2 and denote by X1 ⊂ R2 the
union of these segments corresponding to the edges in X (where some segments may
intersect in R2). Let ‖−→∂ ‖e/v(r), 0 ≤ r ≤ 1, be the isoperimetric profile of the graph
X1 defined in B of the previous section.

1. If, for a given m, every point z ∈ R2 \ X1 admits a straight ray
Ry ⊂ R2 issuing from z and intersecting < m segments in X1, then

inf
1
3
≤r≤ 1

2

r · ‖−→∂ ‖e/v(r) ≤
(
m + deg(X1)

)/
Ned(X) ,

(1
3

)

where deg(X1) denotes the maximum of degrees (valences) of the vertices
in the 1-skeleton of X.

Proof. Radially project X1 from a point z to a large round circle S1 ⊂ R2 surround-
ing X1 in the plane, assume

(1
3

)
does not hold for this z and apply the corollary from

D above. Thus we obtain a unique non-empty segment S = S(z) ⊂ S1 containing
all points covered by less than m edges of X projected to S1.

Let D be the disk in the plane bounded by S1 and let ΓF ⊂ D × S1 be the
closure of the set of the pairs (z ∈ D \X1, s ∈ S(z)) (that we regard as the graph
of the interval valued map D → S1 = ∂D. Observe that this graph is a piecewise
linear subset in D × S1).
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The presence of the extra deg-summand in
(1

3

)
guarantees that the intersection

of ΓF with the circle z×S1 for every z ∈ D is a non-empty segment that is not equal
to all of z × S1. Thus the projection ΓF → D is a homotopy equivalence, hence ΓF

is contractible.
On the other hand, the map z �→ (z, s = z) for y ∈ ∂D = S1 sends S1 to ΓF ,

where the composition of this map with the projection ΓF → S1 is the identity map.
Since the circle is non-contractible, this is impossible and so

(1
3

)
does hold. (This is

similar to the reduction of the Brower fixed point theorem in D to non-contractibility
of S1.)

2. Let a point z ∈ R2 \X1 be contained in at most cNΔ2 triangles corresponding
to the 2-simplices of X. Then, by an obvious counting/averaging argument, there is
a point x0 = x0(z) ∈ X0 ⊂ R2 such that y is contained in at most cNδ2(x0) triangles
having x0 as a vertex, where Nδ2(x0) denotes the number of the 2-simplices in X
adjacent to x0.

3. If X = X2(N) is made of all
(
N
3

)
simplices spanned by the vertices in X0,

then
(	) the ray issuing from z to ∞ that continues the segment [x0, z] ⊂ R2

meets as many segments as there are triangles containing z and
having x0 as one of its vertices.

By combining 1–3 with the (obvious) inequality ‖−→∂ ‖e/v(r) ≥ 2(1 − r) for the
N -cliques, we conclude with the

Boros–Furedi inequality.
Given a set X0 ⊂ R2 of N points in general position, there exists a point
y ∈ R2 that is contained in at least 2

9

(
N
3

)
−O(N2) open triangles convexly

spanned by triples of points in X0.
Remarks. (a) Our argument gives a poorer evaluation of the O(N)-term than the
original proof by Boros–Furedi.

(b) The seemingly trivial property (	) creates problems when it comes to similar
inequalities for general polyhedra X, since the natural counterparts to (	) are hard
to verify and/or achieve in most cases.

3.3 Filling-in geometric cycles via the local-to-global variational princi-
ple. Let X be a metric space and

C∗ =
(
C∗(X, F, ∂∗)

)
=

(
{∂i : Ci → Ci−1}i=0,1,...,n=dim(X)

)
be the complex of Lipschitz singular chains: an i-chain is a finite sum c =

∑
j fjσj ,

where every σj : Δi → X is a Lipschitz map of the standard i-simplex to X and
fi ∈ F. (A map between metric spaces, say f : A → B, is called Lipschitz if
distB(f(a1, f(a2))) ≤ const ·distA(a1, a2) for all a1, a2 ∈ A.)

The union of the images of the maps σj is called the support of c. We shall often
make no distinction between chains and their supports regarding chains as subsets
in X.

If F comes with a norm (e.g. F equals R, Z, or Z2 = Z/2Z), then each chain
c ∈ Ci is given the i-volume norm, voli(c) = ‖c‖voli =

∑
i ‖fj‖ voli(σj) where this
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volume is understood as the i-dimensional Hausdorff measure of Δi in the metric
induced by the map (σj) from X. (If the map is not one-to-one, this metric may
vanish at some pairs of points, but the Hausdorff measure is well defined all the
same.)

The corresponding minimal norm on the homology Hi(X) = Ker ∂i/ Im ∂i+1, that
is the infimum of the volumes of the cycles c ∈ Ker ∂i+1 representing an h ∈ Hi(X),
is called the volume or the mass norm,

voli(h) = inf
[c]=h

voli(c) .

One can show (see [Wen]) that if X is a compact locally contractible space, then
this norm does not vanish: infh 	=0 voli(h) > 0, for h 
= 0.

The i-th F-systole of X is
systi(X) = inf

h 	=0
voli(h) , where h ∈ Hi(X) .

Define the filling volume of an i-cycle b in X, denoted filvoli+1(b), as the infimum
of the (i + 1)-volumes of the chains c ∈ Ci+1 “filling in” b, i.e. with ∂i+1(c) = b.

Observe that the supremum of those β for which the filling volume is finite for
all b with voli(b) ≤ β equals systi(X) and that the filling norm from 2.3 is related
to the filling volume by

‖∂−1
i+1‖fil(β) = β−1 sup

‖b‖=β
filvoli+1(b) .

Evaluation of ‖∂−1
i+1‖fil via ‖∂−1

i+1‖rand for round spheres. Let X be the
unit Euclidean sphere, X = Sn ⊂ Rn+1 with the O(n + 1)-invariant i-volumes nor-
malized so that the equatorial spheres Si ⊂ Sn have volume 1 for all i = 0, 1, 2, . . . , n.

Let b be an i-cycle in Sn and s ∈ Sn a point such that −s is not in (the support
of) b. Then there is a unique distance minimizing geodesic (ark of a great circle)
in Sn between s and every point in b and the geodesic cone c = cs(b) from s over b
made of all these geodesics fills in b.

If, for instance, b equals an equatorial i-sphere Si ⊂ Sn, then such a cone cs

equals an (i + 1)-hemisphere with the boundary equal to our Si, where, observe,
voli+1(cs) = 1

2 vol(b). Consequently, the average of voli+1(cs) over Sn equals 1
2 vol(b)

as well.
Since the orthogonal group O(n + 1) is transitive on the set of tangent i-planes

in Sn, the average of the (i + 1)-volumes of the s-cones cs(b) over every i-chain b
also equals 1

2 vol(b). Thus,
‖∂−1

i+1‖rand(β) = 1/2 for all i = 1, 2, . . . , n− 1 and β ≥ 0 .

This averaging argument is similar to the one used in 2.6 for simplices and it
suffers the same drawback of not being sharp: the inequality ‖∂−1

i+1‖fil(β) ≤ 1/2 in
the range 0 < β ≤ 1 (i.e. for cycles of volume ≤ 1) is sharp only for β = 1. (It would
be interesting to link the two averagings by the moment map S2n+1 → Δn.)

But unlike the combinatorial case, the sharp bound in Sn is available for all
β ≤ 1. In fact, as everybody would guess,
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if X is either Rn or Sn, then the round (umbilical) i-spheres of volume β
(filled in by flat (i + 1)-discs) have maximal filling volumes among all
i-cycles b in X, with vol(b) = β.

Remarks. (a) The idea of “filling” goes back to Federer and Fleming, [F],
[FF], [BurZ], who used among other things an averaging (similar to the above case
of Sn) combined with “cutting and pasting” also used in related contexts, [Gr1], [K],
[Wen], [Y].

The spherical case was reduced to Rn+1 ⊃ Sn by Bruce Kleiner (private commu-
nication). In fact, a slight modification of Almgren’s argument applies to manifolds
of non-negative curvature and related spaces.

(b) X = Sn, Kleiner’s result leaves open the sharp bound on ‖∂−1
i+1‖fil(β) for

β > 1 that may depend on n (if n > i + 1) and on the coefficient field F in a rather
complicated manner. Also, the “filling extremality” of the round i-spheres remains
unproven in the hyperbolic n-spaces for 2 ≤ i ≤ n− 2.

Local-to-global variational principle: ‖ . . . ‖fil ≤ ‖ . . . ‖loc
fil . Let (C∗, ∂∗)

be a normed chain complex, h ∈ Hi(C∗) a homology class and let B = Bi(h) ⊂ Ci be
the space of i-cycles in the class of h with the filling metric distB(b1, b2) = ‖b1−b2‖fil.
Define the supremum norm of the “downstream gradient” of the function b �→ ‖b‖
on B as follows,

‖ ↓ b‖sup = lim sup
‖c‖→0

‖b‖ − ‖b + ∂i+1(c)‖
‖c‖ for c ∈ Ci+1 \ {0} .

Observe that this norm on smooth submanifolds Y representing cycles b in Rie-
mannian manifolds X equals the supremum of the norm of the mean curvatures
of Y , denoted ‖M‖(Y ) = supy ‖My(Y )‖. (We define M at the end of this section.)

Let m(β) = inf‖b‖=β ‖ ↓ b‖sup, and suppose that there exists, for some β, an
extremal cycle b supported on a smooth submanifold Yβ with voli(Y ) = β and such
that filvoli+1(b) = β‖∂−1

i+1‖fil(β).
Then, for infinitesimally small ε > 0,

filvol(β0) ≤ filvol(β)− ε‖M‖(Yβ) + ε + o(ε) ,

where filvol(β) stands for β‖∂−1
i+1‖fil(β). Therefore,

if, for each 0 ≤ β ≤ β0 there is a unique smooth extremal cycle Yβ and
if we have a lower bound on ‖M‖(Yβ) in terms of β, then we can bound
filvol(β) from above.

Comparison of Y with a model space. To see the explicit relation between
filvol and ‖M‖ geometrically, look at a “model” Xmod = S × (0, R), R ∈ (0,∞),
where S is an i-dimensional Riemannian manifold and where Xmod is given a Rie-
mannian metric which is uniquely defined by the following conditions.
• The segments x× (0, R) in Xmod are geodesics isometrically parametrized by

r ∈ (0, R) and which are normal to S(r) = Y × r ⊂ Xmod for all r ∈ (0, R).
• The induced metric on each S(r) = Ymod × r equals the original metric on S

times a constant c(r) which is monotone increasing in r and tends to zero with
r → 0.
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An archetypical example of this is the punctured Euclidean space Ri+1 \ 0 rep-
resented in the polar coordinates as Si × (0,∞). Also a round sphere punctured
at two opposite points is such a model space. Conversely, if the isometry group is
transitive on the (one point) completion of a model space, then it is isometric to a
sphere, to a Euclidean space or to a hyperbolic space (of constant curvature).

Now suppose that the norms of the mean curvatures of our extremal submanifolds
Yβ ⊂ X satisfy

‖M‖(Yβ) ≥ mmod(r) =def ‖M‖(S(r)), [M ≥Mmod]
where r = r(β) < R satisfies voli(S(r)) = β.

Then, obviously,
if r(β) < R, then every i-cycle b in X with voli(b) ≤ β satisfies

filvoli+1(b) ≤ f(r) = voli+1
(
S × [0, r]

)
, [fil ≤ filmod]

where, observe, voli+1(S × [0, r]) = filvoli+1(S(r)) if we add the R = 0 point to
Xmod.

Of course, one cannot, in general, guarantee the existence and uniqueness of
smooth extremal Yβ , but the above inequality holds just the same by the following
theorem of Almgren [A2].

Let Y ⊂ X be a closed subset and Uε(Y ) ⊂ X be the ε-neighbourhood of Y , i.e.
the set of points within distance ≤ ε from Y , where dist(x, Y ) =def infy∈Y dist(x, y).

Given a subset Z ⊂ Y , let U⊥Y
ε (Z) ⊂ Uε(Y ) denote the set of the points

x ∈ Uε(Y ) such that distX(x,Z) = distX(x, Y ).
Let By(Y, δ) ⊂ Y denote the δ-ball in Y around x, i.e. the intersection of Y with

By(X, δ) ⊂ X. Say that Y is i-coregular in Y at a point y0 ⊂ Y if y0 admits a
neighborhood Y0 ⊂ Y such that all y ∈ Y0 satisfy

ε−(n−i)δ−i voln
(
U⊥Y

ε (By(Y, δ))
)
≤ const0 for 0 < δ ≤ ε ≤ ε0 ,

where ε0 > 0, and const0 < ∞ are constants depending on y0 but not on y ∈ Y0,
ε and δ.

For example, if Y ⊂ X is a smooth i-submanifold with a boundary, then all
interior points of Y are i-coregular, while the boundary points of Y are not coregular
in Y . However, all boundary points are (i− 1)-coregular in Y (as well as in ∂(Y )).

A closed i-dimensional subset Y in X is called quasiregular, if it is a C2-smooth
submanifold in the complement of a closed subset of zero i-dimensional Hausdorff
measure and if all points of Y are i-coregular in Y .

Denote by ‖M‖(Y ) the supremum of the norm of the mean curvature over the
subset reg(Y ) ⊂ Y of all C2-regular points of Y .

Almgren Filling Theorem. Let X be a closed Riemannian manifold and Xmod =
S × R be a model manifold, such that all compact quasiregular subsets Y ⊂ X of
volume β ≤ β0 satisfy the above [M ≥ Mmod] for a given β0. Then every i-cycle b
in X with voli(b) ≤ β satisfies [fil ≤ filmod].

Idea of the proof. Almgren shows [A2] that, for every β, there is a compact
quasiregular subset Y = Yβ ⊂ X which is extremal in the following sense. There
exists, for every ε ≥ 0, a cycle bε, in X, such that
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• voli(bε) → β for ε → 0.
• filvoli+1(bε) → filvoli+1(β) = β‖∂−1‖fil(β).
• The part of bε which does not belong to reg(Y ) has the i-volume ≤ ε. (In fact,

one can make Bε with the support entirely contained in the ε-neighborhood
Uε(Y ).)

• The complement to the support of bε in reg(Y ) has voli(Reg(Y )\supp(bε)) ≤ ε.
(This is a minor technicality.)

If voli(Y ) = β, then the above “model argument” directly (and obviously) ap-
plies; otherwise, if vol(Y ) < β, one may additionally assume that the mean curvature
function of the model, i.e. ‖M‖(S(r)), is monotone increasing, which is the case in
our examples.

If ‖M‖(S(r)) is non-monotone, one has to “unfold” bε by a slight perturbation
in order to bring the measure of its support close to β. (This is needed, for example,
if Y is a manifold where the cycle is represented by a finite covering of Y .)
Remarks. (a) The condition [M ≥ Mmod] is needed only for the extremal
subsets Y , and these have many additional properties, e.g. if i = n − 1 they have
constant mean curvature on reg(Y ).

Moreover, one does not even need [M ≥ Mmod] for all extremal Y but only
where, a priori, the above sequence bε violates the filling inequality [fil ≤ filmod], i.e.
lim supε→0 filvol(bε) > f(r) = filvoli+1(S(r)) = voli+1(S × [0, r]), which eventually
is proven to hold anyway.

(b) The proof of regularity in Almgren’s theorem is purely local (albeit quite
difficult) and does not need the compactness of Y , but the existence of extremal Y
does.

However, it is not hard to see that the filling conclusion holds for complete
non-compact manifolds with a mild condition at infinity which is satisfied for most
examples; moreover, this is also true for some non-complete manifolds if they are
not very pathological at the completion points.

For example, let Σ ⊂ X be a k-dimensional submanifold. If one slightly expands
or contracts the metric near Σ in the directions normal to Σ, the resulting metric
on X becomes singular at Σ but the Almgren theorem still delivers extremal cycles
in X, with the quasi-irregularity condition satisfied at the points in X \ Σ.

(c) Almgren’s local-to-global principle originates from “isoperimetric ideas” of
Max Dehn in combinatorial group theory and of Paul Levy in convexity. It is
frequently used but rarely stated explicitly; yet, see [A2] and references therein.

Definitions of Φ, of M and of the sectional curvature. Let Y be a
smooth submanifold in a Riemannian manifold X, where the Riemannian metric,
that is a quadratic form on the tangent bundle T (X), is denoted by g = gx(τ),
τ ∈ Tx(X). Let T⊥(Y ) ⊂ T (X)|Y denote the normal bundle of Y in X and let
ν : Y → T⊥(Y ) be a normal vector field along Y .

Extend ν to a vector field ν̃ in a neighborhood of Y in X and take the (Lie)
ν̃-derivative ν̃(g).
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This ν̃(g) is a quadratic form on the tangent bundle of (a neighborhood in) X.
What is significant, albeit obvious, is that the restriction of ν̃(g) to T (Y ) ⊂ T (X),
which is a quadratic form on T (Y ), does not depend on all of ν̃, but only on ν itself.
We denote this restriction by Φν .

It easy to see that the map ν �→ Φν is linear:
Φν1+ν2 = Φν1 + Φν2 ,

and that Φν , on each tangent space Tx(Y ), x ∈ Y , depends only on the vector
ν(x) ∈ T⊥x (Y ).

The resulting field on Y of linear maps from T⊥y (Y ), y ∈ Y , to the space of
quadratic forms on Ty(Y ) given by ν → Φν is called the second fundamental form
or the extrinsic curvature (form) of Y in X, denoted Φν = Φν(τ) = Φν(τ |Y ⊂ X).

Two i-submanifolds in X with a common tangent space T i
x ⊂ Tx(X) at some

point x ∈ X have equal second fundamental forms on T i
x for all vectors νx ∈ Tx(X)

normal to T i
x, if and only if these submanifolds are second-order tangent at x, where,

observe, the order of tangency does not depend on the Riemannian metric on X.
Thus, Φ fully and faithfully encodes the second-order infinitesimal information on
Y in X at each point x ∈ Y . It follows, that Φ is determined by its restrictions to
curves Z in Y .

More generally, let Z be a submanifold in Y ⊂ X, and ν a vector normal to
Z in X which is canonically decomposed as ν = ν1 + ν2, where ν1 is normal to Y
and ν2 is tangent to Y and normal to Z in Y . Then the second fundamental form
Φν(τ |Z ⊂ X) of Z in X satisfies

Φν(τ |Z ⊂ X) = Φν1(τ |Y ⊂ X) + Φν2(τ |Z ⊂ Y )
for all vectors τ tangent to Z. In particular Φ(τ, |Y ⊂ X), can be reconstructed
from Φ(τ |Z ⊂ X) for all geodesic lines Z in Y as these have Φ(τ |Z ⊂ Y ) = 0.

The mean curvature M = M(ν) is the linear function (covector field) on the
normal bundle T⊥(Y ) defined by My(ν) = traceg(Φν). It is easy to see (and this
was used in the local-to-global principle) that

the derivative of the i-volume of Y under the flow in X generated by ν̃
equals

∫
Y My(ν)dy. Conversely, if such equality is satisfied by some cov-

ector field M ′ and all ν, then M ′ = M .
Finally, define the sectional curvature of X at a tangent 2-plane T 2 ⊂ Tx(X) as

follows.
Take a hypersurface Y = Y n−1 ⊂ X, such that the tangent space Tx(Y ) ⊂ Tx(X)

contains a unit vector τ ∈ T 2 and such that the normal unit vector ν ∈ T 2 is also
normal to Tx(Y ).

Denote by ν̃ the gradient field of the function x �→ distX(x, Y ) defined locally in
the small half-ball in X on the side of ν. Let g̃′′ be the second (Lie) derivative of
the Riemannian quadratic form g of X under ν̃.

If the second fundamental form of Y (that is the first derivative g̃′) vanishes at x
– and one always can choose such a Y – then the number −g̃′′(τ) depends only on
T 2 and it is called the sectional curvature of X at T 2 (being independent of τ and Y ;
this is a miracle, but verifying it is rather trivial), where the minus sign is taken in
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agreement with the convention of the unit 2-sphere having sectional curvature +1:
a normal equidistant push of an equatorial arc Y ⊂ S2, shortens the length of Y .

3.4 Moves, tubes and filling inequalities. The following process of filling-in
cycles by pushing them with families of moving hypersurfaces was suggested by Max
Dehn in combinatorial group theory about hundred years ago.

Let X admit a family of properly immersed cooriented smooth hypersurfaces Sr,
r > 0, such that

(a) The i-mean curvatures Mi−1(Sr) of all Sr, i.e. the traces of the restrictions of
the second fundamental form Φ of Sr to all tangent i-planes to Sr, are bounded
from below by a positive constant m0.

(b) There exists a locally compact space X̃, a proper continuous map p : X̃ → X
and a continuous function f : X̃ → R+, such that
(b1) p−1(Sr) = f−1(r) for all r > 0;
(b2) The map p properly embeds the 0-level f−1(0) ⊂ X̃ to X, where the image

is a rectifiable set and where either dim(f−1(0)) ≤ i − 1 (e.g. f−1(0) is
empty) or f−1(0) is contractible of dimension i.

Then every quasiregular Y , that is not contained in p(f−1(0)), (obviously)
has supy ‖M(Y, y)‖ ≥ m0; hence,

‖∂−1
i+1‖fil(β) ≤ m−1

0

for all β ≥ 0.

Sub-example. The concentric r-spheres Sr in the hyperbolic n-space X (and in
every complete simply connected manifold of curvature ≤ −1 for this matter) have
Mi(Sr) ≥ i; thus, ‖∂−1

i+1‖fil(β) ≤ i−1 for all i ≥ 1 in these X. Dehn’s argument also
applies to the symmetric spaces X of non-compact types with rankR ≤ i and, in a
suitable form, to the Bruhat–Tits buildings.

Remark. The Dehn inequality is never sharp (at least in the natural examples)
and the true value of ‖∂−1

i ‖fil remains unknown in most cases, even in the hyperbolic
n-space for 3 ≤ i ≤ n− 1.

Tube volume estimates and filling inequalities. The local-to-global in-
equality delivers a lower bound on filling volumes of i-cycles, and thus, on ‖∂−1

i+1‖fil(β),
in a Riemannian manifold X, provided one can bound from below the i-volumes of
all quasiregular subvarieties Y in X with ‖M‖(Y ) ≤ const. Such a bound can be
achieved if
• on one hand, one can bound from above the n-volume of the R-neighborhood

UR(Y ) ⊂ X (i.e. the set of all points in X within distance ≤ R from Y ), which
is also called the R-tube if R is not assumed small, of every quasiregular Y ⊂ X
with ‖M‖(Y ) = supy∈Y ‖My‖ ≤ m by

voln
(
UR(Y )

)
≤ γ(m) · voli(Y )

for a suitable function γ = γX(m);



GAFA COMBINATORICS TO TOPOLOGY VIA ALGEBRAIC ISOPERIMETRY 473

•• on the other hand, one has some lower bound on the volumes of such R-
neighborhoods, e.g. with an a priori bound on the volumes of all R-balls in X
for a large R. Below are instances of where it works or does not quite work.

1. Curves in the Plane. Let Y be a normally oriented smooth curve in the plane
R2 and let the map exp⊥ : Y ×R → R2 send (y, r) to the second end of the straight
segment normal to Y at y, where the choice of the normal direction is determined
by the normal unit vector νy given by the normal orientation.

The Jacobian of this map at a point (y, r), obviously, equals 1 + r ·My(ν), in
so far as the segment [y, exp⊥(y)] ⊂ R2 minimizes the distance from exp⊥(y) ∈ R2

to Y . Notice that such a segment fails to be minimizing for 1 + r ·My(ν) < 0.
On the other hand, if Y is a closed curve then the area of the R-neighborhood

of Y in R2 equals the integral of this Jacobian over the subset Ũ ⊂ Y ×R of points
y where the segment [y, exp⊥(y)] is minimizing.

It easily follows that the area of the R-neighborhood of Y is bounded by the
length of Y at least as efficiently as happens to a circle S1

m of (constant) curvature
m = supy ‖My‖,

vol2
(
UR(Y )

)/
vol1(Y ) ≤ vol2

(
UR(S1

m)
)/

vol1(S1
m) .

Let R →∞ and observe that vol2(UR(Y ))/vol2(UR(S1
m)) → 1; hence vol1(Y ) ≤

vol1(S1
m). Therefore, among all closed curves with (mean) curvatures bounded by m,

the circles of curvature = m have minimal lengths. Finally, we invoke the local-to-
global principle and arrive at the isoperimetric inequality in the plane:

among all closed curves of given length the circles have the maximal
filling areas (which happen to be the areas bounded by these curves if
they have no self-intersections).

2. The Euclidean tube formula. Let Y = Y i be a smooth submanifold in the
Euclidean space Rn, let T⊥(Y ) be the normal bundle of Y and exp⊥ : T⊥(Y ) → Rn

be the normal exponential map that sends each point (y, νy) ∈ T⊥(Y ) to the second
end of the straight segment in Rn, which issues from y, which is directed by the
normal vector νy and which has the length equal the norm ‖νy‖.

It is easy to see that the Jacobian of exp⊥ at a point (y, νy), or, rather, the n-
form on T⊥(Y ) induced by exp⊥ from Rn, depends only on ‖νy‖ and on the second
fundamental form Φ of Y at y. In other words, if two submanifolds are second order
tangent at y, then they have equal Jacobians of their respective exp⊥ along every
straight line normal to them at y.

In fact, by looking closer, one easily sees that this Jacobian is determined by
the symmetric operators Φ∗ν on the tangent spaces of Y associated to Φν via the
Euclidean scalar product on the tangent bundle T (Y ), i.e. 〈Φ∗(τ1), τ2〉 = Φ(τ1, τ2),
(where the quadratic form Φ is regarded as a bilinear form) by the following:

The Hermann Weyl tube formula.

Jac(ν) = det
(
1 + ‖ν‖ · Φ∗ν′

)
for ν ′ = ν/‖ν‖ .

Then an elementary estimate of the determinant on the right-hand side shows
that, in-so-far as it remains positive, it is majorized by the norm of the mean cur-
vature covector My(ν). Therefore,
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the volume of the R-neighborhood UR(Y ) ⊂ Rn of an i-submanifold Y ⊂
Rn with the mean curvature M is majorized by voln(UR(Si

m)) for the
round i-sphere Si

m⊂Rn with the mean curvature m = supy∈Y ‖My‖.
We call the resulting bound Euclidean Weyl’s tube inequality.

If Y is quasiregular, we argue as in the case of curves in the plane by applying
the local-to-global principle and by sending R → ∞. Thus, we arrive at Almgren’s
theorem cited in the previous section.

Among all (singular Lipschitz) i-cycles of given i-volume the round i-
spheres have the maximal filling volumes.

Let X be a complete n-dimensional Riemannian manifold and Y = Y i ⊂ X a
smooth submanifold. The normal exponential map exp⊥ : T⊥(Y ) → X is defined
as earlier by sending geodesics in X directed by the normal vectors ν ∈ T⊥(Y ).
There are instances, most of the known ones concern (possibly) singular spaces with
curvatures bounded from below (in contrast with Dehn’s argument which relies on
upper bound on the curvatures), where one can bound the Jacobian of this map
[Buj], [HeK], and thus obtain estimates on the filling volumes of cycles in X which
are sharp in certain cases. Below are a few concrete examples.

A. Kleiner’s filling inequality in the sphere. The Weyl tube inequality extends to
the unit sphere Sn with det(1 + ‖ν‖ ·M∗

ν ) replaced by det(1 + γ1(‖ν‖) ·M∗
ν′), where

the function γ1 is seen by looking at round i-spheres in Sn for Y . Thus, one obtains
a sharp volume bound on the R-neighborhoods of Y i ⊂ Sn with supy ‖My‖ ≤ m,
and then Kleiner’s theorem on the filling extremality of round spheres cited earlier
follows by looking at UR(Y ) for R = π.

B. Tubes in hyperbolic spaces. There is a similar formula with det(1 + γ−1(‖ν‖) ·
M∗

ν′) in the hyperbolic space X = Hn of constant curvature −1 which provides the
bound on the volume of UR(Y ) by the volume of the R-tube U(β) ⊂ X around the
round i-sphere Si ⊂ Hn of i-volume β = voli(Y ). However, this gives a poor filling
inequality, especially for large β, since there is no satisfactory lower bound on the
volume of UR(Y ) ⊂ Hn, albeit such a bound is plausible in terms of filvol(Y ). (Such
a bound for i = n− 1 is obtainable by the Schwartz symmetrization.)

C. Tube inequalities in symmetric spaces. There are “explicit” tube formulas
in all symmetric spaces X, since the curvature tensor is parallel and, thus, Jacoby
fields along geodesics γ in X satisfy linear ODE-systems with constant coefficients,
but the issuing bounds on voln(UR(Y )) are rarely sharp.

For instance, such a formula provides a bound on the 2k-volumes of tubes around
i-submanifolds in X = Sk × Sk for i = k + 1, . . . , 2k − 1, but the issuing filling in-
equality on the volumes of minimal (i+1)-chains filling in i-cycles remains unsharp.
If i = n − 1 one can “in principle” obtain the sharp bound by the Schwartz sym-
metrization, but the case i ≤ n− 2 seems difficult, except, maybe for i = 1.

A rare exception, besides spaces of constant curvature, is the complex projective
space X = CP k where the tube volume bound is sharp for subvarieties Y with zero
mean curvature. It follows that
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every 2j-dimensional quasiregular subset Y ⊂ CP k with mean curvature
vanishing on the regular locus reg(Y ) has vol2j(Y ) ≥ vol2j(CP j).

However, the corresponding sharp bound is unknown for odd-dimensional Y .
For instance, if Y ⊂ CP k is a hypersurface, dim(Y ) = 2k − 1, one expects that its
volume is bounded from below by the volume of some homogeneous Y0 ⊂ CP k with
‖M(Y0)‖ = supy ‖M(Y )|y, where “homogeneous” means that the isometry group of
CP k preserving Y0 is transitive on Y0.

On the other hand, if, for instance, M(Y ) = 0, then the extremal Yβ that would
perfectly match the tube volume bound needs to be a totally geodesic submanifold.
But there is no i-dimensional totally geodesic Yβ ⊂ CP k of volume β > 0 for odd i,
except for i = 1.

D. Tubes and Filling for Positive Curvature. The volume tube bounds from
[Buj] and [HeK] allow an extension of the above proof of the Almgren and Kleiner
inequalities to manifolds X with the sectional curvatures ≥ κ ≥ 0 (and sometimes
with κ < 0).

If curv(X) > 0 the constant in the resulting filling inequality depends on vol(X);
if curv(X) ≥ 0 and X is complete non-compact, then the constant depends on the
rate of growth of the volumes of concentric balls B(R) ⊂ X, R → ∞, where the
latter inequality is sharp for cones and the former for spherical suspensions.
Questions. (a) Can one “hybridize” Dehn’s and Almgren’s inequalities, e.g. for
Cartesian products of manifolds of positive and of negative curvatures and/or for
spherical buildings? More generally, is there a “Künneth formula” relating filling
invariants of X = X1 ×X2 to those of X1 and X2?

One can show, for instance, that if X = Sn × Rm and i ≥ n + 1 then
the extremal i-cycles in X of voli ≥ constm,n are products of Sn with
round (i− n)-spheres in Rm,

but the full filling profile of this X is more complicated.
(b) Is there a meaningful version of Weyl’s formula in infinite-dimensional spaces

of constant curvature, say in the Hilbert space, such that all infinities cancel one
another?

Alternatively, one may search for a geometric inequality directly comparing the
exponential image exp(T⊥(Y i)) with exp(T⊥(Y i

0 )) for a suitable umbilical Y i
0 ⊂ X.

Notice that Almgren’s proof of the local-to-global principle applies to compact Y i,
i <∞, in infinite-dimensional spaces X.

On the other hand, if X = X∞ is a infinite-dimensional Riemannian manifold
which densely and isometrically contains an increasing union of finite-dimensional
submanifolds, X∞ ⊃ · · · ⊃ Xn+N ⊃ · · · ⊃ Xn, such that all Xn+N , N = 1, 2, . . . ,
have ‖∂−1

i ‖fil(β0) ≤ δ0, for some i(< ∞), then, obviously, X∞ also has ‖∂−1
i ‖fil(β0)

≤ δ0. This applies, for example, to the Hilbert space R∞, to the Hilbertian sphere
S∞ ⊂ R∞+1 and to other infinite-dimensional symmetric spaces of “compact type”,
where the argument depends on the N -asymptotic of the (n+N)-volumes of Xn+N .
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(c) Is there a dimension-free proof applicable to more general X∞ e.g. to S∞

divided by an infinite discrete isometry group Γ? (Notice that the simplicial volume-
like invariants of Γ can be defined as the minimal volumes of certain homology classes
in such spaces.)

(d) Is there a (sufficiently) sharp generalization of Almgren’s filling bound in
Rn to non-Euclidean Banach–Minkowski spaces Xn in the spirit of the Brunn–
Minkowski inequality (corresponding to i = n−1)? Are there such inequalities in the
metric spheres in Minkowski spaces and similar (e.g. Grassmann spaces) spaces S?

More realistically, one expects coarse filling inequalities in such S associated to
uniformly convex Minkowski spaces in terms of the modulus of convexity.

(e) Does the variational method apply to Δ(V ) and similar measurable com-
plexes, and improve the bound ‖(∂i)−1‖fil ≤ 1? (The complex of ε-simplices in the
round sphere looks promising.)

(f) Is there an algebraic/topological version of the local-to-global principle and
of ‖ . . . ‖loc

fil in the context of our section 4?
(g) If i = n− 1, then the filling volume of Y ⊂ Rn (which equals the volume of

the domain encompassed by Y in this case) can be bounded by the measure of the
set of straight lines in Rn meeting Y , see [Gr7].

It is conceivable that (similar to the remark following the spherical waist inequal-
ity in 1.3) the isoperimetric inequality stated at the end of section 5.7 of [Gr7] for
i = n−1 generalizes to all i, where instead of the volumes of i-dimensional subman-
ifolds in Rn and of their (i + 1)-fillings one uses their “projection volumes” that are
the measures of the sets of the (n − i)-planes and (n − i − 1)-planes meeting these
submanifolds and their fillings respectively. (One needs the “projection volumes”
for the fillings as well as for the i-submanifolds themselves as was pointed out to me
by Anton Petrunin.)

This may, possibly, work for submanifolds in the n-sphere but the hyperbolic
case seems more difficult.

3.5 Lower bounds on volumes of minimal varieties and waist inequali-
ties. There is an extension of the local-to-global variational principle to families
of cycles, called The Almgren–Morse theory [Pi]. This implies, for instance, a lower
bound on the i-waist of an X, provided there is a bound on the volumes of tubes of
minimal (i.e. with zero mean curvature) i-subvarieties Y ⊂ X.

Recall that the i-waist of X is the infimum of the numbers w, such that the fun-
damental Z2-homology class in the space of i-cycles in X, say [X]−i ∈ Hn−i(cli; Z2),
n = dimX, can be represented by an (n−i)-family of i-cycles c in X with voli(c) ≤ w.

Thus, the Weyl volume tube formula in the sphere Sn implies the

Almgren’s spherical waist inequality.

Every generic smooth map F : Sn → Rn−i, admits a point y ∈ Rn−i,
such that

voli
(
F−1(y)

)
≥ voli(Si) .



GAFA COMBINATORICS TO TOPOLOGY VIA ALGEBRAIC ISOPERIMETRY 477

Remarks. (a) As we mentioned in 1.3, the smoothness/genericity condition is
apparently redundant but the details have not been checked.

(b) The most frequently used lower bound on the volumes of minimal subvarieties
Y = Y i ⊂ X, called monotonicity (property), is obtained by estimating the rate of
growth of the volumes A(R) of intersections of Y with R-balls B(R, y0) in X centered
at some point y0 ∈ Y by integrating over Y the divergence of a suitable radial vector
field in X projected to Y .

For example, if X = Rn and Y � y0 = 0, then
vol

(
Y ∩B(R, 0)

)
≥ vol

(
Ri ∩B(R, 0)

)
, for all R ≥ 0 ,

and similar estimates are available in other cases [Fo].
For instance the monotonicity estimate is sharp in Sn, and this was used by

Almgren in his original proof of the waist theorem.
(c) The monotonicity argument usually (e.g. for Rn, Sn and the hyperbolic space

Hn) exploits an upper bound on the sectional curvature of X (which is zero for Rn,
it is +1 for Sn and −1 in Hn) and on the injectivity of the exponential maps
expx : Tx(X) → X, x ∈ X, on the R-balls in some range 0 ≤ R < R0 (where
R0 = ∞ for Rn and Hn, while Sn has R0 = π).

But the tube argument relies on the lower bound on the curvature where it ap-
plies to lower bounds on waists in conjunction with a lower bound on vol(X) similarly
to how it was indicated in D from the previous section for the filling problem.

(If X is complete non-compact with a lower bound on the rate of growth of
volumes of concentric balls B(R) ⊂ X for R →∞, then X satisfies asymptotic waist
inequalities, defined similarly to the relative growth in 2.7.)

Apparently, the monotonicity works better for symmetric spaces, but the tube
formula leads to sharper (sometimes even sharp) lower bounds of waists for many
non-symmetric spaces of positive curvature.

(d) Even if the lower volume bound on minimal Y is sharp, this does not guar-
antee the sharpness of the corresponding waist inequality.

For instance, let n = 2k and X = CP k. The lower bound on the volumes,
obtainable by either of the two methods, is sharp for minimal subvarieties Y i ⊂ CP k

for even i = 2j, with the equality for CP j ⊂ CP k.
However the corresponding waist inequality,

sup
y

voli
(
F−1(y)

)
≥ voli(CP j) ,

remains non-sharp, since the fibers Y = F−1(y) ⊂ CP k are homologous to zero and
must have voli(Y ) ≥ voli(CP j)+ε, where the exact value of this ε = ε(k) > 0 seems
hard (?) to guess.

(e) Sometimes positive and negative curvatures go along. For instance, if Bn is
the unit Euclidean or hyperbolic ball, then

every generic smooth (apparently, continuous will do) map F : Bn → Rn−i,
admits a point y ∈ Rn−i, such that voli(F−1(y)) ≥ voli(Bi) for the cor-
responding (Euclidean or hyperbolic) unit i-ball Bi.
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This trivially follows from the spherical waist inequality with an obvious (radial)
i-volume contracting map from Bn to the sphere Sn(R) of radius R which is chosen
such that voli(Sn(R)) = voli(Bi).

(f) A monotonicity property also holds for submanifolds with upper bounds on
their mean curvatures, but I am not certain in which cases the sharp inequalities are
available.

Analysis and geometry play complementary parts in the filling/waist inequalities.
The analytic existence/regularity statements are quite general and intuitively

obvious (probably due to the limitations of our imagination), but the proofs are
hard. The geometric lower volume bounds on minimal Y ⊂ X, which depend on
a particular geometry of an X, may look striking, but once you have the idea, the
proofs are elementary and straightforward.

The sparkle comes when the two collide.

3.6 Crofton’s formulas and lower bounds on ‖∂−1‖fil by calibrations.
Crofton calibration in projective spaces and spheres. Let Pn = Sn/± be the real
projective n-space with the usual metric of constant curvature and with the normal-
ized i-volumes, such that projective i-subspaces have i-volumes 1.

Let dg denote the O(n + 1)-invariant probability measure on the Grassman-
nian G = Gn−i(Pn) of (n − i)-subspaces g in Pn and recall that every smooth
i-submanifold V (and every rectifiable subset for this matter) satisfies Crofton’s
formula:

voli(V ) =
∫

G
|g ∩ Y |dg .

It follows, that every i-cycle c in PN , which is non-homologous to zero, has
voli(c) ≥ 1, since it intersect each g ∈ G. Hence

systi

(
(Pn); Z2

)
= 1 , for all i = 0, 1, . . . , n .

Similarly, let U ⊂ Si ⊂ Sn be an open subset with smooth boundary in the
i-sphere, which contains no pair of opposite points (s,−s) in it. Then almost every
equatorial (n − i)-sphere intersects U at a single point if at all; hence, the filling
norm of the boundary b = ∂U of U (which is an i− 1-cycle) has

‖b‖fil = voli(U) ,

by the Crofton formula in Sn.
In other words, U itself provides the minimal filling of b in the ambient sphere

Sn ⊂ Si ⊃ U .
Remarks and Questions. (a) Both statements remain valid for n = ∞, but no
“direct infinite-dimensional” proof seems to be known.

(b) Does the equality ‖b‖fil = voli(U) hold for all U with voli(U) ≤ vol(Si)/2?
The Crofton formula for intersections of (i+1)-dimensional subvarieties V ⊂ Sn

with (n−i+1)-dimensional (rather than with (n−i)-dimensional) equatorial spheres
implies this, provided the intersection of U with every equatorial circle S1 ⊂ Si has
length(S1 ∩ U) ≤ length(S1)/2.

Furthermore, a symmetrization argument apparently reduces the general case to
that of n = i + 1. Then, by the Morse variational lemma, the minimal filling of b
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must be invariant under the isometry group Iso(b) of Si preserving b, and if Iso(b)
is transitive on b (e.g. if U equals a ρ-neighborhood of a j-equator in Si for some
j < i), then the problem reduces to an ODE-computation which seems manageable.

(c) Intersections of i-chains with a family G of (n − i)-cycles in X = Xn

parametrized by a probability space defines an i-cocycle in X. If F = R, a sim-
ilar role is played by closed differential i-forms ω in X which can be used for lower
bounds on norms of homology classes h ∈ Hi(X; R), since, on the one hand, the
integral of a closed form over an i-cycle c depends only the class h = [c] ∈ Hi(X; R),
and, on the other hand

‖c‖ ≥
∫
c ω

supx∈X ‖ω‖x
.

When such a bound is sharp one says, following Harvey and Lawson, that ω
calibrates h.

Example. If X is a Kähler manifold of complex dimension n, then the i-th power
of the Kähler 2-form, ω = ωi

Kahl, thought of as the function on the tangent real
2i-planes in X, assumes its maximum on the complex i-planes according to the
Wirtinger inequality. Therefore (see [F]),

every closed complex subvariety V ⊂ X of complex dimension i is volume
minimizing in its homology class [V ] ∈ H2i(X; R).

For instance the projective subspaces CP i ⊂ CPn are Z-minimizing.

Remarks and Questions. (a) A use of the Crofton formula for the Grassmannian
G of complex projective subspaces CPn−i ⊂ CPn provides a lower bound on the
norms of Zp-cycles, but to make such bounds sharp one needs a stronger version of
the Wirtinger inequality. (This is easy for n = 2 and i = 1.)

(b) One can get (apparently sharp) lower bounds on volumes of (at least even-
dimensional) minimal subvarieties V in CPn applying the monotonicity estimate
that is a lower bound on the volumes vol(V (R)) of intersections of V with the
R-balls in CPn with the center v0 ∈ V .

If, for instance, V represent a Zp-cycle which is not a Z-cycle, where p is a prime
number, then V must have a point v0 of density p/2 which makes vol(V (R)) ≥
(p/2) vl(R), for a universal function vl(R, i = dimV ).

(c) There are, besides Kähler, other remarkable forms which allow sharp lower
bounds on volumes of (minimal) subvarieties. These were discovered by Harvey and
Lawson [HL] where they called calibrating forms.

Let us reformulate the concept of calibration in the context of general measur-
able chain complexes C∗ (where we prefer “chains” over “cochains” following the
geometric picture).

Recall the quotient norm ‖h‖ for h ∈ Hi = Hi(C∗) = ker(∂i)/ im(∂i−1) as the
infimum of the norms ‖c‖ over all cycles c ∈ ker(∂i) representing h, and let

systi(C∗) =def inf
0 	=c∈Hi

‖c‖ .

In other words, this systole equals the infimum of the norms of the i-cycles c
with ‖c‖fil = ∞.
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Define i-cocycles as homomorphisms g of Ci into a normed Abelian group, such
that g vanishes on ∂i−1(Ci−1) ⊂ Ci and let

‖g‖ =def sup
0 	=c∈Ci

‖g(c)‖/‖c‖ .

In other words, this is the minimal norm for which ‖g(c)‖ ≤ ‖g‖ · ‖c‖ for all
i-chains c ∈ Ci.

A random i-cocycle is a family G = {gp} of i-cocycles gp parametrized by a
probability space P , where ‖G‖ =def

∫
P ‖gp‖dp (and where we do not exclude gp

with the cohomology class depending on p).
Obviously, the expectation

∫
P ‖gp(c)‖dp for a cycle c ∈ ker(∂i)/ im(∂i−1) and a

given G depends only on the homology class h = [c] ∈ Hi(C∗) and
∫
P ‖gp(c)‖dp ≤

‖G‖ · ‖c‖.
Define the calibrated norm of a homology class h = [c] by

‖h‖cal = sup
r

sup
‖G‖≤r

r−1
∫

P

∥∥gp(c)
∥∥dp

where the supremum is taken over all random i-cocycles G = {gp} and all r > 0 and
introduce the the calibrated systole by

(systi)cal(C∗) =def inf
h 	=0

‖h‖cal .

In other words the calibrated systole expresses the best possible lower bound on the
true systole available with random cocycles.

A cycle c ∈ ker(∂i) ⊂ Ci is called calibrated by a random i-cocycle G = {gp} if
‖gp(c)‖ = ‖G‖ · ‖c‖ for almost all p ∈ P . Clearly, as in the Riemannian case (see
Harvey–Lawson [HL])

every calibrated cycle c is norm minimizing in its homology class: ‖c‖ =
‖[c]‖.

Similarly, define the relative calibrated norm ‖[c|∂(c)]‖cal, for c ∈ Ci, by∥∥[c|∂(c)]
∥∥

cal = sup
r

sup
‖g‖≤r

r−1
∫

P

∥∥gp(c)
∥∥dp ,

and observe that ∥∥[c|∂(c)]
∥∥

cal ≤ ‖c|∂c‖ for all c ∈ Ci ,

where ‖c|∂c‖ =def ‖[c/∂i+1(Ci+1)]‖ is the quotient norm in Ci/∂i+1(Ci).
If Hi(C∗) = 0, then

∂i(c′) = ∂i(c) implies
∥∥[c′|∂(c)′]

∥∥
cal =

∥∥[c|∂(c)]
∥∥

cal ;
thus the filling norm of every b = ∂i(c) ∈ Ci−1 is bounded from below by

‖b‖fil ≥
∥∥[c|∂(c)]

∥∥
cal .

In other words, the filling profile satisfies∥∥(∂i)−1∥∥
fil(β) ≥ β−1 sup

‖∂i(c)‖=β

∥∥[c|∂(c)]
∥∥

cal .

Say that a chain c ∈ Ci is calibrated (relative to ∂ic) by a random i-cocycle
G = {gp} if gp(c) = ‖G‖ · ‖c‖ for almost all p ∈ P and observe that

if Hi(C∗) = 0, then every calibrated i-chain c is minimizing: all i-chains
c′ with ∂ic

′ = ∂ic have ‖c′‖ ≥ ‖c‖.
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About Examples. Calibrations provide a quite general method for obtaining
lower bounds on the norms of cycles (as well as cocycles), but such estimates, apart
from calibrations by differential form and of product spaces, are known to be sharp
only in the presence of symmetries.

Sometimes, calibrations survive a break of symmetry. For example the
“�-discretization” of the Crofton calibration in Pn is again a calibration which
yields the Barany–Lovasz inequality. (See, 3.3, where the subcomplex S in the sec-
ond proof carries a cycle, such that the orbit G(S) calibrates the cocycle supported
by 0 �F {�n}.)

Similarly, the “Δ-discretization” of Crofton’s calibration in Sn implies that
the cochain complex C∗ = C∗(Δ(V ); Z2) of the simplex Δ(V ) on the
probability space V without atoms satisfies∥∥(∂i)−1

fil

∥∥(β) = 1 for β = 2−(i+1).

Proof. Recall that ‖(∂i)−1
fil ‖(β) ≤ 1 for all β (see 2.6) and, in order to prove the

opposite inequality, we exhibit the following i-cocycle b with ‖b‖ = ‖b‖fil = 2−(i+1).
Take V to be the round sphere, V = Si−1 ⊂ Ri, and let b ∈ Ci = Ci(V ; Z2) be

the cocycle with the support consisting of the i-simplices Δi ⊂ Ri which contain the
origin 0 ∈ Rn; observe that ‖b‖ = 2−(i+1) by Wendel’s formula.

Take an (i − 1)-face (simplex) Δi−1 ⊂ Δ(V ) and observe that its orbit un-
der the ±-involutions of its vertices makes an (i − 1)-cycle ci−1 = ∂ici, where
ci ∈ Ci(Δ(V )Z2) is the cone over ci−1 from a point in V .

The i-chain ci is determined by i + 1 points in V : the vertices of Δi−1 and
the vertex of the cone, where the full family of all these ci (parametrized by V i+1)
calibrates b, again by Wendel’s formula (since 〈ci−1, ci−1〉 = 〈b, ci〉 = 1 and
‖〈ci−1, ci−1‖ ≤ ‖ci−1‖ · ‖ci−1‖). Thus every ci−1 ∈ Ci−1 with ∂i−1ci−1 = b sat-
isfies ‖ci−1‖ ≥ 2−(i+1).
Remark. There is another value of β where ‖(∂i)−1

fil ‖(β) is known to equal 1,
namely β = (i + 2)!/(i + 2)i+2 ∼ e−i.

Indeed, partition V into i+2 measurable subsets Xj and let b ∈ Ci+1(Δ(V ); Z2)
be the (i + 1)-cochain supported on the simplices with vertices vj ∈ Xj , j =
1, 2, . . . , i + 2. Clearly

‖b‖ = (i + 2)!
∏

j=1,...,i+2

|Xj | .

Observe that b = ∂i(c), where c is an i-cochain that is supported on the simplices
with vertices vj ∈ Xj , j = 1, 2, . . . , i + 1, and that, if the set Xi+2 has the maximal
measure among all Xj , i.e. |Xi+2| = maxj |Xj |, then every c′ with ∂(c′) = b has

‖c′‖ ≥ ‖c‖ = (i + 1)!
∏

j=1,...,i+1

|Xj | .

Thus,
‖b‖fil/‖b‖ = (i + 2)−1|Xi+2|−1

that equals 1 if all Xj have measures 1/(i + 2). �
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Questions. (a) Are there further instances of calibrated combinatorial (co)cycles?
(b) Partition V into N + 1 subsets of, say, equal measure and let f : Δ(V ) →

ΔN = Δ{0, 1, . . . , N} be the induced simplicial map. When can one (effectively)
evaluate the filling norms of cocycles c∗ = f∗(c) ∈ C∗(Δ(V )) for c ∈ C∗(ΔN ) in
terms of (combinatorics of) c?

3.7 Bound ‖(∂1)−1‖fil(β) < 1 for small β. Strengthening ‖(∂i)−1‖fil(β) ≤ 1
to ‖(∂i)−1‖fil(β) ≤ 1 − εi at least for small (but not too small) β ≤ β(i) (e.g. for
β(i) = 10−i and all large i) would improve the constant btop in the [Δ → Rn]-
inequality from 1.1

Here is such a bound I was able to prove by a baby version of the local to global
principle, but, unfortunately, only for very small β precluding applications to lower
bound on btop.

Let V be a probability space without atoms and let σ′ ≺ σ denote the (i−2)-faces
of an (i− 1)-face σ in Δ = Δ(V ). Given c ∈ Ci−1(Δ; F), let

‖Σ‖(c, σ) =
∑
σ′≺σ

‖σ′ ∧ c‖ =
∑
σ′≺σ

∫
V

∥∥(σ′ ∧ c)(v)
∥∥dv ,

and observe that∥∥σ ∧ ∂i−1(c)
∥∥ =

∫
V

(
σ ∧ ∂i−1(c)

)
(v)dv ≥ (i + 1)

(
‖c(σ)‖ − ‖Σ‖(c, σ)

)
,

since the contribution (i + 1)‖c(σ)‖ of c(σ) to ‖σ ∧ ∂i−1(c)‖ at the i-faces σ̃  σ
can be cancelled by c(σ′′) for other (i − 1)-faces σ′′ ≺ σ̃ (that are adjacent to the
(i−2)-faces σ′ ≺ σ and where c(σ′′) enters with a ±-sign according to the orientation
of σ′′) by an amount not exceeding (i + 1)‖Σ‖(c, σ). Consequently,∥∥∂i−1(c)

∥∥ =
∫

Σi−1

∥∥σ ∧ ∂i−1(c)
∥∥dσ ≥ (i + 1)

∫
Σi−1

max
(
0, ‖c(σ)‖ − ‖Σ‖(c, σ)

)
dσ .

Let
‖Π‖(c, σ) =

∏
σ′≺σ

‖σ′ ∧ c‖ =
∏

σ′≺σ

∫
V

∥∥(σ′ ∧ c)(v)
∥∥dv ,

and observe that ∫
Σi−1

(
‖Π‖(c, σ)

) 1
i dσ ≤ ‖c‖

i+1
i

by the Loomis–Whitney inequality (see [Gr7] and references therein; we use below
only the case of i = 1 where, obviously,

∫
Σ1
‖Π‖(c, σ)dσ = ‖c‖2).

Now, let F = Z2 with the standard norm and assume that
‖σ′ ∧ c‖ ≤ 1

i for all (i− 2)-faces σ′.
Then

‖Σ‖(c, σ) ≤ i− 1
i

+
(
‖Π‖(c, σ)

) 1
i for all (i− 1)-faces σ ;

therefore, ∥∥∂i−1(c)
∥∥ ≥ (i + 1)

∫
supp(c)

(
1− i− 1

i
− ‖Π‖(c, σ)

1
i

)
dσ

≥ i + 1
i
‖c‖

(
1− (i + 1)‖c‖ 1

i
)
.



GAFA COMBINATORICS TO TOPOLOGY VIA ALGEBRAIC ISOPERIMETRY 483

Furthermore, if we assume ‖σ′ ∧ c‖ ≤ 1
i + ε instead of ‖σ′ ∧ c‖ ≤ 1

i , we obtain∥∥∂i−1(c)
∥∥ ≥ i + 1

i
‖c‖

(
1− (i + 1)‖c‖ 1

i
)
− ε′, where ε′ = ε′i(ε) → 0 for ε → 0 .

Conclusion: 2
3
-bound on ‖(∂i−1)−1

fil ‖ for i = 2.

If V has no atom then the filling norm of the 2-cocycles b ∈ C2(Δ(V ); Z2)
satisfies.

‖b‖fil − 2
3‖b‖ ≤ 3‖b‖1/2

fil .

Consequently, since ‖b‖fil ≤ ‖b‖,∥∥(∂1)−1
fil

∥∥(β) ≤ 2
3(1− 3β1/2)

.
(2

3

)
Proof. Pretend for the moment that there exists a minimal 1-cochain c with ∂(c) = b,
i.e. where ‖c‖ = ‖b‖fil, and observe that such a c has the (essential) supremum of
‖v′ ∧ c‖, v′ ∈ V = Σ0, bounded by 1/2. Indeed, if ‖v′ ∧ c‖ < 1/2 on a subset
V ′ ⊂ V of positive measure, one could diminish the norm of c by subtracting the
coboundary of a 0-cochain supported on a (possibly) smaller subset V ′′ ⊂ V ′. Then
the above inequality (without ε), specialized to i = 2, yields the required relation
‖c‖ − 2

3‖b‖ ≤ 3‖c‖1/2.
Finally, to avoid the minimality problem, use δ-minimizing cochains cδ with

δ → 0 where ‖c‖ ≤ ‖b‖fil + δ, and apply the above inequality with ε → 0.
Remarks. One may expect, by analogy with Almgren’s isoperimetric inequality
(see 3.3, 3.4), that ‖(∂i)−1

fil ‖(β) ≤ Ci with some constant C (say, C = 4) for all
i = 1, 2, . . . and β ≤ (β0)i where β0 > 0 is another universal constant (say, 1/4).
However, it is not even clear whether lim infβ→0 ‖(∂i)−1

fil ‖(β) < 1 for i ≥ 2. Also, it is
unclear if there are “small” cocycles b (i.e. with small norm ‖b‖) that locally (for the
‖b1 − b2‖-metric) minimize ‖b‖, or even if all (small?) cocycles b are decomposable
into sums of smaller cocycles.

3.8 Bounds on ‖∂i‖ and Turan’s graphs. Norm of ∂0 : C0 = C0(Δ(V ); Z2)
→ C1 = C1(Δ(V ); Z2) . Every 0-cochain c equals the (Z2-valued) characteristic
function of its support supp(c) ⊂ V , where μ1(supp(c)) = ‖c‖ and ∂c is supported
on the symmetrized set supp(c)× (V \ supp(c)) ⊂ V × V ; thus∥∥∂0(c)

∥∥ = 2‖c‖
(
1− ‖c‖

)
and

‖∂0‖(α) = 2− 2α .

Evaluation of the norm of ∂1 : C1= C1(Δ(V ); Z2)→ C2= C2(Δ(V ); Z2).

If V has no atoms then
‖∂1‖(α) = 1/α for 1 ≥ α ≥ 1

2 ,

‖∂1‖(α) = 3− 2α for α = 1
2 , 1

3 , 1
4 , . . . ,

‖∂1‖(α) < 3− 2α for α 
= 1, 1
2 , 1

3 , 1
4 , . . . .

Furthermore, the functions ‖∂i‖(α) are strictly monotone decreasing in
α ∈ [0, 1], for all i = 0, 1, 2, . . . .
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Proof. Denote by 1i ∈ Ci the i-cochain that equals 1 on all i-faces of Δ(V ). Clearly,
‖1i‖ = 1 and∥∥∂1(1i)

∥∥ = 1 for odd i and ‖∂1(1i)‖ = 0 for even i ;
thus ‖∂i‖(1) = 1 for odd i, since ‖∂i‖(α) ≤ 1/α for all i = 0, 1, 2, . . . and 0 ≤ α ≤ 1.

Next observe that
‖1i − c‖ = 1− ‖c‖ and

∥∥∂(1i − c)
∥∥ = 1− ‖∂c‖

for all odd i and all c ∈ Ci. It follows that∥∥∂i(1i − ∂b)
∥∥ = 1 for all b ∈ Ci−1.

Hence,
‖∂i‖(α) = 1/α

for
α ≥ 1− sup

b∈Ci−1

‖∂i−1b‖ = sup
β

β‖∂i−1‖(β).

Since, ‖∂0‖(1/2) = 1 the equality ‖∂1‖(α) = 1/α for α ≥ 1/2 follows.
Given a countable set S, probability spaces Vs = (Vs, μs), s ∈ S, and positive

numbers ps with
∑

s ps = 1 let V =
∐

psVs be the probability space decomposed into
the disjoint union of psVs =def (Vs, psμs). Then define the corresponding weighted
sum of i-cochains cs ∈ Ci(Δ(Vs); Z2), denoted

∐
s ps
cs ∈ Ci = Ci(Δ(V ); Z2).

Clearly,
∥∥∐

s ps
cs‖ =
∑

s pi+1
s

∥∥cs‖ and∥∥∥∂i
( ∐

s

ps
cs

)∥∥∥ =
∑

s

pi+2
s ‖∂ics‖+ (i + 2)

∑
s

(1− ps)pi+1
s ‖cs‖ .

For example, ∥∥∥p
c
∐

(1− p)
0
∥∥∥ = pi+1‖c‖

and ∥∥∥∂i
(
p
c

∐
(1− p)
0

)∥∥∥ = pi+2‖∂i(c)‖+ (i + 2)(1− p)pi+1‖c‖
for 0 denoting the identically zero cochain. Since, ‖∂i(α)‖ < i + 2 for α > 0, the
ratio ‖c||/‖∂i(c)‖ is strictly and definitely greater than 1/(i + 2), for ‖c‖ = α > 0;
thus ∥∥∥p
c

∐
(1− p)
0

∥∥∥/
‖c‖ <

∥∥∥∂i
(
p
c

∐
(1− p)
0

)∥∥∥/
‖∂i(c)‖

for ‖c‖ = α > 0 and p < 1. Consequently,
the norm ‖∂i‖(α) is a strictly monotone decreasing (and, obviously, con-
tinuous) function in α.

Next, let cs = 1i = 1i
s ∈ Ci(Δ(Vs)) and observe that the cochain c(ps) =∐

s ps
1i ∈ Ci(Δ(V ); Z2) satisfies∥∥c(ps)
∥∥ =

∑
s

pi+1
s and ‖∂ic‖ = χi

∑
s

pi+2
s ‖∂cs‖+ (i + 2)

∑
s

(1− ps)pi+1
s

where χi = 0 for even i and χi = 1 for odd i.
This, with c(1/k, 1/k, . . . , 1/k), i.e. where ps = 1/k, s = 1, 2, . . . , k, shows that

‖∂i‖
(

1
ki

)
≥ χi

k
+ (i + 2)

(
1− 1

k

)
.

In particular, ‖∂1‖(α) ≥ 3− 2α for α = 1/k, k = 1, 2, . . . .



GAFA COMBINATORICS TO TOPOLOGY VIA ALGEBRAIC ISOPERIMETRY 485

Let us refine the upper bound ‖∂i‖ ≤ i + 2 where we need the following notion.

Density of cochains. Given a positive function ϕ on the set Σi =
V i+1/Π(i + 1) of the i-faces of Δ(V ) (if V has no atoms the diagonals in V i+1

do not matter) define its j-density (degree) dj = denj(ϕ) : Σj → R+ via the push-
forwards of the measure ϕμi+1 by the coordinate projection V i+1 → V j+1. Clearly
dj′(dj(ϕ)) = dj′(ϕ) for j′ < j and ‖dj‖ =def

∫
Σj

djμ
j+1 =

∫
Σi

ϕμi+1 = def‖ϕ‖.
If ϕ(σ = ‖c(σ)‖ for an i-cochain on Δ(V ) then denj(ϕ)(σ′) = ‖σ′ ∧ c‖ that is

also denoted dj(c)(σ′).
Denote by ∂i

m(c) ∈ Ci+1(Δ(V ); Z2) for c ∈ Ci(Δ(V ); Z2), the cochain supported
on those (i + 1)-faces that contain at least m faces in the support of c and observe
that ∥∥∂i(c)

∥∥ =
∑
m

χm

(
‖∂i

m(c)‖ − ‖∂i
m+1(c)‖

)
≤ (i + 2)‖c‖ − 2

∥∥∂i
2(c)

∥∥ ,

where the equality holds if and only if ∂i
3(c) = ∂i

2(c) and ∂i
m(c) = 0 for m > 3.

The (i− 1)-density of ∂i
2(c) is related to that of c by∫

Σi−1

deni−1
(
∂i

2(c)
)
≥

∫
Σi−1

(
deni−1(c)

)2;

hence ∥∥deni−1(∂i
2(c))

∥∥ ≥ ‖c‖2
by the Cauchy–Schwartz inequality. Therefore,

‖∂i‖(α) ≤ (i + 2)− 2α .

Finally, let us explain why this upper bound for i = 1 is not sharp, unless
α = 1, 1/2, 1/3, 1/4, . . . .

If ‖∂1(c)‖/‖c‖ = 3 − 2α, then c must have constant density den0(c) = α = ‖c‖
(when “Cauchy–Schwartz” becomes an equality) and the support S ⊂ X ×X of c
must be an equivalence relation:

(x1, x2), (x2, x3) ∈ S ⇒ (x1, x3) ∈ S

for almost all x2 and almost all pairs (x1, x3) in the “slice” S ∩ x2 × X where the
latter “almost all” refers to the canonical (Fubini) measure in this slice. Since the
density is constant, the equivalence classes must have equal measures, all equal α,
and so α must be an inverse integer.

Thus, ‖∂(c)‖/‖c‖ < 3 − 2α for ‖c‖ = α 
= 1, 1/2, 1/3, 1/4, . . . , but it does not
imply the required bound for ‖∂1‖(α) = sup‖c‖=α ‖∂(c)‖/‖c‖ since the supremum
does not, a priori, have to be attained. However, by looking closely at the above
argument, one sees that, for every 0 < α < 1, the support S of every chain c with
‖c‖ = α and ‖∂1(c)‖/‖c‖ ≥ 3−2α−ε defines “a ε′-equivalence relation”: a collection
of disjoint subsets of measures ε′-close to α and with the union of measure ≥ 1− ε′,
where ε′ → 0 for ε → 0. Hence, the equality ‖∂1‖(α) = 3− 2α does imply that α is
an inverse integer.
Questions. (a) Can one describe the set A(Ci) ⊂ R∞ of norms of integral cochains
and their boundaries modulo the prime numbers,

A(Ci) =
{
‖c/Zp‖, ‖∂i(c/Zp)‖

}
for all c ∈ Ci(Δ(V ); Z) ,

where c/Zp denotes the reduction modulo p for all primes p?
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(b) Do the cochains c =
∐

s ps
11 for s = 1, 2, 3 . . . , k, with p1 ≤ p2 = p3 =
· · · = pk = p maximize ‖∂1(c)‖ among all Z2-cochains with given norm ‖c‖ = α =
p2
1 + (k − 1)p2?

Remarks. (a) Recently Rasborov and Nikiforov proved that these
∐

s ps
11

maximize ‖∂1
1(c)‖ or, equivalently, that 1 −

∐
s ps
11 minimize ∂1

3 (see [R], [Ni],
I owe these references to Noga Alon):

among all measurable graphs S ⊂ V ×V with α edges, the Turan graphs,
that are the supports of 1 −

∐
s ps
11, have the minimal “numbers” of

triangles,
(b) If V has no atoms and F = Z2, then

‖∂i‖(α) ≥ (i + 2)α(1− αi+1) for even i ,

and
‖∂i‖(α) ≥ α

i+2
i+1 + (i + 2)α(1− αi+1) for odd i .

In fact, this lower bound on ‖∂i‖(α) is seen on the i-cochains cμ that are equal 1
on all i-simplices in the sub-simplex Δ(Vμ) spanned by a subset Vμ ⊂ V of measure
μ ∈ 0, 1, and that vanish on the rest of the i-simplices in Δ(V ). Clearly ‖cμ‖ = μi+1,
while ∥∥∂i(cμ)

∥∥ = (i + 2)μi+2(1− μ) for even i ,

and ∥∥∂i(cμ)
∥∥ = μi+2 + (i + 2)μi+2(1− μ) for odd i .

4 Homological Isoperimetry

We start this section with formalizing and slightly refining the lower bound from
[Gr8] on the cohomologies of the fibers of continuous maps F : X → Y , and then
study in greater detail the case dim(Y ) = 1 with the help of isoperimetric/separation
inequalities for the algebra H∗(X).

The subsections 4.3 and 4.7 are needed for 4.10 where we construct homology
expanders promised in 1.6, while the result of 4.6 is used in 4.8 and 4.9, where we
prove the separation inequality for the N -tori stated in 1.5 and its generalizations.

4.1 Ideal valued measures and cohomological widths. Let A = ⊕nA(n)
be a graded (anti)commutative algebra over some field F where the product in A is
denoted by “�”, let I = I(A) be the set of the graded ideals I ⊂ A and let Y be a
topological space.

An I-mass μ on Y is an assignment μ = μA : U �→ μ(U) ∈ I(A), for all open
U ⊂ Y which satisfy the following five conditions:

(0) Normalization. μ(∅) = 0.
(1) Monotonicity. U1 ⊂ U2 ⇒ μ(U1) ⊂ μ(U2).
(2) Continuity. If U equals the union of an increasing sequence of open subsets

U1 ⊂ U2 ⊂ · · · ⊂ U , then
μ(U) = μ(U1) ∪ μ(U2) ∪ . . . .
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(3) Additivity. If subsets Ui ⊂ Y pairwise do not intersect, then
μ(∪iUi) = +iμ(Ui) ,

where “+” denotes the span/sum of linear subspaces in the vector space A.
(4) Multiplicativity. μ(U1 ∩ U2) ⊃ μ(U1) � μ(U2).

We distinguish masses with two additional properties.

(5) Intersection property. Let Wi ⊂ Y be disjoint closed subsets and denote
0A(Wi) = μ(X \Wi). Then

0A

(
∪iWi)

)
= ∩i0A(Wi) .

(6) Fullness. μ(Y ) = A.

These properties are obvious for A = Hn(X) and μA(U) equal the kernel of the
restriction homomorphism of A to X \U (see 1.5), where, maybe, the inclusion part
μ(∪iUi) ⊂ +iμ(Ui) of (3) needs an explanation.

To show this, observe that every cohomology class h from μ(∪iUi) can be rep-
resented by a cocycle c with the support in ∪iUi. Since the sets Ui are disjoint,
this c decomposes into the sum of cochains ci with supports in Ui and such that
ci|Ui = c|Ui. Clearly, these cochains are cocycles and

∑
i[ci] = [c] = h.

Push-forward and restriction. If F : X → Y is a continuous map and μ is
an I(A)-mass on X, then the push-forward μ� = F�(μ) of an I-mass μ on X to Y ,
defined by μ�(U) = μ(F−1(U)) for U ⊂ Y , is an I-mass on X, where the intersection
property and fullness are preserved under this push-forward.

The restriction of an I(A)-mass on X to an open subset Y ⊂ X is an I(A)-mass
on Y , but the intersection property and fullness are not necessarily preserved under
restriction.

A-Covariant functoriality. Let φ : A → B be a surjective homomorphism. Then
the map I(A) � I �→ φ(I) ∈ I(B) sends every I(A)-mass μ on Y to a I(B)-mass.
This preserves fullness but not necessarily the intersection property since, in general,
φ(I1 ∩ I2) 
= φ(I1) ∩ φ(I2).
H∗- and F�-examples. Let X be compact, F finite and A equals the C̆ech
cohomology H∗(X) = H∗(X; F). Then the kernels ker(rest∗X\U ) of the restriction
homomorphisms rest∗X\U : H∗(X) → H∗(X \ U) define a full mass with the in-
tersection property, U �→ ker(rest∗X\U ) on X called the H∗(X)-mass and denoted
μ = μH∗(X).

Remark. One needs C̆ech cohomology with finite coefficients in order to guarantee
continuity, which may, in general fail. However, if the sets U in question have non-
pathological boundaries, then any cohomology there will do. For example the mass
μH∗(X) is defined and has all of the above properties on semialgebraic subsets in
simplicial polyhedra.

The push-forward F�(μ) of the mass μH∗(X) to Y under a continuous map F :
X → Y is called the F�-mass μF� on Y .
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If the induced cohomology homomorphism F ∗ : H∗(Y ) → H∗(X) is surjective
then

F�
(
μH∗(X)

)
= F ∗I

(
μH∗(Y )

)
,

where F ∗I : (H∗(Y )) → I(H∗(X)) is the F ∗-pullback map on the set of ideals in
H∗(Y ).

Given an arbitrary I(A)-mass μ on Y , we write 0A(Y1) = 0μ
A(Y1) ∈ I(A) for the

value of μ on the complementary subset in X, i.e. the ideal I = μ(Y \ Y1) and let
A|Y1 = A|μY1 = A/0A(Y1) for all Y1 ⊂ Y . Observe that μ(Y1) � 0A(Y1) = 0 for all
open subsets Y1 ⊂ Y by the multiplicativity of the mass.

We are particularly interested in the maxima of the F-ranks of the algebras
A|y and of their n-th grades, denoted |A(n)|y|F, at the points y ∈ Y , especially
for the push-forward masses μF� on Y for continuous maps F : X → Y , where
A(n) = Hn(X; F).

The infimum of these maxima over all full I(A)-masses μ on Y (where we may
or may not require the intersection property), called the width of A over Y , denoted

width∗(A/Y ) = inf
μ

sup
y∈Y

|A|μy|F ,

and
widthn(A/Y ) = inf

μ
sup
y∈Y

|A(n)|μy|F .

These widths are evaluated for certain A and Y in the following sections and
applied for lower bounds on the cohomological width, denoted width∗(X/Y ), of topo-
logical spaces X over Y , defined with A = H∗(X), where the infimum taken over
the μF�-masses on Y for all continuous maps F : X → Y .

This constitutes a (small) step toward the solution of the following general

Iμ-Problem. Given a class {Y } of topological spaces (e.g. of Y with dim(Y ) ≤ d
for some d) and a class {B} of graded algebras (e.g. of B with rankF(B) ≤ r for
some r), describe the class {A} = {A}({Y }; {B}) of graded algebras such that each
A ∈ {A} admits a full (where one my insist on the intersection property) I(A)-mass
over some Y ∈ {Y }, where A|y ∈ {B} for all y ∈ Y .

This problem can usually be reduced to its combinatorial counterpart where {Y }
is a class of simplicial complexes Y which is closed under subdivisions of complexes,
and where the condition A|y ∈ {B} is replaced by A|Δ ∈ {B} for all simplices
Δ ∈ Y .

However, even in the simplest case where {Y } is the class of all finite graphs and
{B} is the class of algebras with rankF(B) ≤ r for some r, our results provide only
limited information on {A} = {A}(graphs; r).

The Iμ-problem is motivated by the corresponding topological problem where
we are a given, instead of {B}, a class {Z} of (homotopy classes of) topological
spaces (e.g. of spaces decomposable into r cells for some r) and we want to decide
whether a given space X admits a continuous map F to some Y ∈ {Y }, such that
F−1(y) ∈ {Z} for all y ∈ Y .

A particular case of this is the restricted Iμ-problem, where we allow only those
I(A)-masses μ on Y of the form μF� , where A = H∗(X) for some X and where
F : X → Y is a contionous map.
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It seems unclear by how much this restriction affects the answer. If for ex-
ample, F = Q, and {B} is defined by rank(B(n)) ≤ r, then the “restricted class”
{A}res({Y }; (n, r)) is closed under taking quotients of A, at least for (truncated) free
algebras A; but this, probably, does not hold for the corresponding non-restricted
class {A}.

Apparently, if F = Q, then some extension of the μF�-masses from cohomology to
the free differential algebras representing minimal model of spaces in question may
fully reflect the topological picture; and, if F = Fp, then μF� can probably be en-
hanced by incorporating the action of the Steenrod algebra. Also, other cohomology
theories, e.g. K-theory with the Adams operations, may prove useful.

Finally, observe that the μF�-mass represents a small part of the information
contained in the Leray–Grothendieck sheaf of the map F , but I have not worked out
any example of a lower bound on the cohomological width of X over Y with the use
of the (multiplicative) Leray spectral sequence.
Question. Is there some “integration theory” associated to μA?

4.2 Maximal fiber inequality revisited. Let A be a (anti)commutative graded
algebra over some field F with the product in A written as “�” and let A/r ⊂ A
denote (differently from that in [Gr8]) the intersection of the graded ideals I ⊂ A
with rank(A/I) < r.

Recall that rank�
d (A) is defined (see [Gr8]) as the maximal number r, such that

the d-multiple cup-product map (A)⊗d → A is not identically zero on A/r ⊂ A.
For example, if A = H∗(X; F), where X is the Cartesian product of k closed

connected manifolds Xi (orientable, unless F = Z2), then
rank�

k (A) ≥ min
i

rankF

(
H∗(Xi)

)
.

The proof of the cohomological maximal fiber inequality in [Gr8] shows that
width∗(A/Y ) ≥ rank�

d+1(A)
for all compact topological spaces Y with dim(Y ) ≤ d, where width∗ is defined
(see 4.1) with the I(A)-masses on Y which satisfy the intersection property.

This inequality is non-vacuous only if length�(A) ≥ 2d + 2 for d = dim(Y ), i.e.
if A contains 2d + 2 elements of positive degrees with non-zero �-product (e.g. if
A = H∗(Xd+1

0 ) where X0 is a closed surface of positive genus).
Let us describe a class of algebras A with length�(A) = 2d + 1 which may have

arbitrary large width∗(A/Y ) for all compact d-dimensional spaces Y .
Let a⊥ ⊂ A for a ∈ A denote the �-orthogonal complement to a, i.e. the kernel

of the operator � a : A → A of the right multiplication by a, let a + a⊥ be the
linear span of a and a⊥ and define

rank⊥(� a) =
∣∣A/(a + a⊥)

∣∣
F

=def rankF

(
A/(a + a⊥)

)
.

Notice that if the cup-product by a has finite rank, rankF(� a) <∞, then either
rank⊥(� a) = rank(� a) or rank⊥(� a) = rank(� a) + 1 depending on whether
a⊥ contains a.

Let I⊥(A, r) ⊂ A be the graded ideal generated by all a with rank⊥(� a) < r
and let rank′�d (A) be the maximal number r for which the image (A/r)�d ⊂ A of
the d-multiple �-product map (A/r)⊗d → A is not contained in I⊥(A, r).
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Example. Let A0 = A0(0) ⊕ · · · ⊕ A0(p) and A1 = A1(0) ⊕ · · · ⊕ A1(p + q) be
graded algebras of finite F-ranks, such that rank�

k (A0) ≥ r1 for some k and r1 and
such that the operators � a : A1(0)⊕ · · ·⊕A1(q) → A1 have rank(� a) ≥ r2 for all
0 
= a ∈ A1(1)⊕ · · · ⊕A0(p) ⊂ A1. Then the truncated tensor product algebra

A = ⊕i+j≤p+qA0(i)⊗A1(j)
has rank′�k (A) ≥ min(r1, r2), since

A/r1 ⊃ A0 ⊗ 1 ∩A/r1 ⊃ (A0 ⊗ 1)/r1 = A
/r1

0
and

I⊥(A, r2) ⊂ A(p + 1)⊕ · · · ⊕A(p + q) .

For instance, if X is the product of a Cartesian power of a closed orientable surface
and the N -torus, X = Xd

0 ×TN , then the algebra A = H0(X)⊕ · · · ⊕H2d+1(X) for
H∗ = H∗(· · · ; F) has

rank′�d (A) ≥ min
(
N, rank(H∗(X0))

)
.

Consequently, the cohomology of the (2d + 1)-skeleton of every cell decomposition
of X also has rank′�d ≥ min(N, rank(H∗(X0))).

(2d + 1)-Width inequality.

Let Y be a compact space of dimension d and μ = μA be an I-mass on Y
as in 4.1 with values in the set I = I(A) of graded ideals I ⊂ A. Then

width∗(A/Y ) ≥ rank′�d (A) .

Proof. By the multiplicativity of μ (see 4.1), every open subset U0 ⊂ Y satisfies
|A|U0|F ≤ s = sup

a∈μ(U0)
rank⊥(a) ,

where, recall, A|U0 = A/μ(Y \ U0) (where μA(U0) corresponds to the kernel of
the restriction cohomology homomorphism of A to the complement X \ U0 in the
topological context) and | . . . |F denotes rankF( . . . ).

Cover Y by sufficiently small open subsets, Y = ∪ijUij , i = 0, . . . , d, j = 1, 2, . . . ,
such that Uij is disjoint from Uij′ for all i and j 
= j′ and

|A|Uij |F ≤ s = sup
y∈Y

|A|y|F

for all Uij , which is possible due to the continuity of the mass (compare the proof
of the maximal fiber inequality in [Gr8]). Let Ui = ∪jUij and U = ∪i>0Ui. Then,
by the additivity and monotonicity of the mass

0A(U) ⊂ μ(U0) ⊂ I⊥(A, s) .

On the other hand, since 0A(Ui) = ∩j0A(Uij) by the intersection property and
since |A|Uij |F ≤ s, the ideals 0A(Ui) ⊂ A, i = 1, . . . , d, contain A/s ⊂ A, while the
product of these ideals is contained in 0A(U) by the multiplicativity of the mass.
Therefore,

(A/s)�d ⊂ I⊥(A, s)
and the proof follows.
Questions. Are there algebras A with length�(A) = δ < 2d − 1, for d ≥ 2,
with arbitrary large width (the intersection property is required) over all compact
d-dimensional spaces Y . (An encouraging sign comes from the lower bound on the
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fibers of maps of hyperbolic (d + 2)-dimensional spaces X to Y with dim(Y ) = d,
since our argument in [Gr8] is cohomological in nature.)

Does it help to limit to Y = Rd? Does anything of the topology of Y besides
d = dim(Y ) matter at all? (We shall see in 4.12 that this is the case for d = 1.)

Does the cohomological width of spaces X, such as product of spheres and/or
of unions of some coordinate sub-products X0 ⊂ X over, say, Rd equal the widths
of their respective cohomology (Stanley–Reisner) algebras? (Notice that the latter
may, apparently, only diminish under passing to quotient algebras.)

Can one fully describe algebras of width ≤ r over a given graph Y and/or over a
given class of graphs? (See the following sections for partial results in this direction.)

Define by induction the “higher-order cohomological widths”, where width∗1 =
width∗ and where, e.g. the “second Euclidean width” is

width∗2(X/Rn1/Rn2) = inf
F

sup
y∈Rn2

width∗1
(
F−1(y)/Rn1

)
for F running over all continuous maps X → Rn2 .

Can one evaluate these with suitable invariants of the cohomology algebra of X?

4.3 Construction of simply connected expanders. Recall (see 3.1) that the
edge boundary of a vertex subset V0 in the vertex set of a graph (V,E), denoted−→
∂ (V0) ⊂ E, is the set of edges issuing from the vertices in V0 and terminating in
the complement V \ V0.

A locally bounded expander is, by definition, a family {V } = {(V,E)} of finite
connected graphs with degrees deg(V ) ≤ d0 < ∞ where |V | → ∞ and such that the
isoperimetric profiles of ‖−→∂ ‖e/v of these graphs (see 3.1) are bounded from below
by a strictly positive constant λ. More precisely, every finite subset V0 ⊂ V in each
graph V ∈ {V } satisfies ∣∣−→∂ (V0)

∣∣ ≥ λ · |V0| , [
−→
∂  λ]

in so far as the cardinality of V0 satisfies |V0| ≤ |V |/2, where the key point is that λ
is bounded away from zero for all graphs V ∈ {V } regardless of their cardinality.

If you try to construct an expander from scratch you may be justified in con-
cluding they do not exist at all; yet they do. Moreover,

random d-valent graphs for d ≥ 3 are expanders
according to Lemma 1 in [KoB], which is combined with the following proposition (	).
(The main result in [KoB, Th. 1] consists in a construction of “least volume
consuming” topological embeddings of graphs into R3; expanders in (	) serve as
examples which show that the construction is essentially optimal.)

(	) Let U ⊂ R3 be an open subset and V ⊂ U be a topologically embed-
ded λ-expanding (sub)graph with N -vertices, all of degree ≤ d, such
that U homotopy retracts to V and such that distR3(V, ∂U) ≥ 1.
Then

Vol(U) ≥ const(λ, d)N
√

N .

(The 1967 paper [KoB] by Kolmogorov–Brazdin was pointed out to me by Larry
Guth; the most frequently cited paper [P] appeared in 1973, where an equivalent
superconcentration property of random graphs was proven.)
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Another (non-random) source of expanders was discovered by Margulis who re-
lated λ to the first non-zero eigenvalue λ1 of the combinatorial Laplace operator
on V (i.e. the norm of ‖(∂0)−1‖l2

fil, see 2.10) and proved the following:

Let G be a Kazhdan T group and X̃ be a connected simplicial polyhedron.
Then the 1-skeleta of the compact quotients X = X̃/Γ for lattices Γ ⊂ G
which freely and discretely acting on X̃ are expanders, [M1].

(D. Kazhdan defined T in [Ka] by requiring that the trivial representation of G
was not a weak limit of non-trivial irreducible unitary representations and he proved
that the simple Lee groups G of R-ranks ≥ 2 and their lattices are T .

Deciphering Kazhdan’s definition leads to the required universal bound on
‖(∂0)−1‖l2

fil. Notice that this bound for p-adic G, which is sufficient for our ap-
plications, is also a corollary of the Garland vanishing theorem [G] but this had not
been observed till several years afterwards.)

A family {X} of simplicial 2-polyhedra is called a (2-dimensional) locally bounded
(edge-wise) λ-expander if the degrees of all X (i.e. the numbers of the faces attached
to all vertices) are bounded by a constant d0 < ∞ and the 1-skeleta of X make
a λ-expander. Such a family (expander) is called simply connected if all X in the
family are simply connected.

Construction of locally bounded simply connected expanders. Take
a symmetric space X̃ with non-positive curvature of rankR ≥ 2 (or a Bruhat–Tits
building), let Γ0 be a discrete isometry group, freely and co-compactly acting on X̃,
and let {Γ} be an infinite family of subgroups Γ ⊂ Γ0 of finite index in Γ0.

Since Γ0 is Kazhdan T (see [Ka], [M2]), the family {X2} = {X2(Γ)} of lifts of the
2-skeleton X2

0 of a triangulation of X̃/Γ0 to X̃/Γ make a locally bounded λ-expander
for some λ > 0. (This is nearly obvious, modulo Margulis’ spectral reformulation
of the expander property, for the canonical triangulations of Bruhat–Tits buildings;
while the Riemannian case needs a minor adjustment.)

Take the shortest non-contractible closed curve of edges in each X2 = X2(Γ)
and attach a disk D by its boundary to X2 along this curve C. Denote by Γ[C] ⊂ Γ
the normal subgroup generated by the homotopy class of C and observe that the
fundamental group ΠC = Γ/Γ[C] of the resulting space, say X2

D, is finite, according
to

Margulis’ Theorem. Γ contains no non-trivial normal subgroup of infinite index
(see section 4.4 [M2]).

Subdivide the attached disk without introducing extra vertices to the triangula-
tion and adding no more than three 2-simplices at each vertex, and let X̂2

D be the
(finite!) universal covering of the so subdivided space X2

D.
This X̂2

D is, in fact, obtained by attaching |ΠC | discs to X2(Γ[C]) that are lifts
of D ⊂ X2

D, where, observe, the family {X2(Γ[C])} ⊃ {X2(Γ)} for all Γ and all C
is an expander for the same reason that the original family is. It follows that the
family X̂2

D is also an expander which is, obviously, locally bounded.
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Remarks. (a) The set of the above expanding graphs G = Ĝγ ∈ G, albeit infinite,
can be, a priori, very rare, since the Margulis theorem provides no effective estimate
on the order of the group ΠC . Probably, a reasonable lower bound on the density of
this set can be extracted from Margulis’ proof. (A last resort could be cut elimination
as in [Gi].)

(b) Margulis’ theorem does not apply to locally symmetric spaces with strictly
negative curvature: if, say K ≤ −1, then the total length of geodesics needed to
kill π1 is about log(Inj . Rad) · vol, and so they will crowd at some point, bringing
logarithmic local complexity.

4.4 Coarse geometry versus topology. In this subsection, we address general
issues of relations between geometry and topology of metric spaces which pertain to
the above construction, but which are not used in the sequel.

Let X (n, k, d,N) denote the class of n-dimensional k-connected simplicial poly-
hedra made of N simplices and having local degrees (i.e. the numbers of simplices
adjacent to the vertices) bounded by d and where each X is endowed with the length
metric corresponding to the standard Euclidean metrics in the regular unit simplices.

How much does the “coarse geometry” of an X ∈ X (n, k, d,N) depend on n, k, d
and N?

For example, let n and d be fixed. How much does the asymptotic behaviour of
the geometry of X = X(N) ∈ X (n0, k, d0, N → ∞) depend on k, say for n0 = 2,
d0 = 1000, and k = 0, 1, 2 ?

More specifically, let L · X (n0, k, d0, N), L ≥ 1, denote the class of the met-
ric spaces which are L-bi-Lipschitz equivalent to the above metric spaces (where
1 · X (n, k, d,N) = X (n, k, d,N)).

What is the Hausdorff distance between a given metric space X0 and X = L ·
X (n, k, d,N), for

distHau(X0,X ) =def inf
X∈X

distHau(X0, X) ?

For example, what is the supremum of this distance over all X0 ∈ X (n0, k0 <
k, d0, N)? Can this supremum, denoted

D(n, n0, k, k0, d, d0, N, L) = sup
X0

distHau(X0,X ) ,

be bounded for N →∞?
Is every X0 ∈ X (n0, k0, d0,∞) quasi-isometric to some X ∈ X (n = n0, k > k0,

d 	0,∞)?
Quasi-isometry does not account for all of the “coarse geometry” as it leaves the

following questions untouched.
Given an X0 ∈ X (n, k, d,N), what is the bound in terms of n, k, d and N , on the

minimal numbers Lk = Lk(X0) and Vk = Vk(X0), such that the (k + 1)-dimensional
homotopy group of X can be generated by classes of Lk-Lipschitz maps Sk+1 → X
or of maps of volumes≤ Vk? (See [NR] for some general results about this.)

What is (the bound on) the (filling) Dehn functions Dk(l) and the Lipschitz Dehn
function DLip

k (l) of X0? (Recall that Dk(l) equals the minimal number a such that
every map Sk → X of volume ≤ l extends to a map of ball of volume ≤ a, and



494 M. GROMOV GAFA 

DLip
k (l) is a similar function where l and a stand for the Lipschitz constants of the

maps.)
In particular, what are the above invariants for X0 = X[C] from the previous

section and of other spaces similarly associated to curves C for [C] running over all
conjugacy classes in Γ?

Are there 2-dimensional contractible locally bounded edge expanders?
Is there an effective bound on the Dehn functions of locally bounded contractible

2-polyhedra?
It is unclear, in general, if every simply connected locally bounded polyhedron X0

is quasi-isometric to a locally bounded contractible n-polyhedron for a given n ≥ 2.
In fact, the positive answer to the Andrews–Curtis conjecture on balanced group
presentations with an effective bound on the number of Nilson moves would imply
that the simply connected 2-polyhedra X0 with large Dehn functions, e.g. with no
recursive bound by N , cannot be quasi-isometrically approximated by contractible
polyhedra. Probably, the class of quasi-isometries of contractible 2-polyhedra is
large enough to contain a counterexample to the Andrews–Curtis conjecture but it
is smaller than the class of all locally bounded simply connected polyhedra.

If X is a closed simply connected Riemannian 3-manifold with locally 1-bounded
geometry (i.e. with curv(X) ≤ 1 and injrad(X) ≥ 1), then the Perelman theorem
on Hamilton’s flow along with Rubenstein’s algorithm on recognition of 3-spheres
probably provides an effective bound on the Dehn function D1(l, v) of X: every
closed curve in X of length l bounds a disk of area a ≤ a(l, v = vol(X)) for a
computable function a. How large can this a be? (This may be rather difficult to
determine, as Bruce Kleiner pointed out to me.)
Constructions. One can pass from contractible k-dimensional polyhedra P to
n-spheres X quasi-isometric to P , provided n ≥ max(2k− 1, k +2): immerse P into
R2k and take the boundary of the tubular neighborhood of this immersion. (This
also applies to k = 2, provided P is collapsible, as defined below.)

It remains unclear if the quasi-isometry class of contractible (or of p-connected)
locally bounded k-dimensional polyhedra stabilizes for large k, but we shall see below
some spaces where one can reduce dimensions without changing their homotopy
and quasi-isometry classes (much) and keeping (or only slightly increasing) the local
bounds on geometries.

Let X be a compact n-dimensional Riemannian manifold X with 1-bounded local
geometry and S ⊂ X a simple curve of length L, where L ≈ vol(X) in the relevant
cases.

If X is a closed manifold, then the complement X \ S is homotopy equivalent
to X minus a point; if X has boundary and S meets the boundary at an endpoint,
then X \ S is homotopy equivalent to X.

If dim(X) ≥ 3, then the induced length metric on X \ S equals distX restricted
to X \ S, but the k-th Dehn functions, k = n − 2, of X and X \ S may be quite
different: (arbitrarily) small k-spheres in X \ S positioned close to the center of S
need a homotopy of size ≈ L/2 in order to be contracted in X \ S.
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Now assume that
• the curvature of S is bounded by ≈ 1/2;
•• S is ε-dense in X, say, for ε ≈ 0.1;

• • • the normal δ-neighborhood W = Wδ(S) for δ ≈ 0.02, smoothly embeds to X,
i.e. every point in X within distance δ from X has a unique nearest point in S.
We call such W an εδ-worm of length L in X.

The cut locus X0 ⊂ X of X with respect to X is homotopy equivalent and ε-
quasi-isometric to S, and, under the above assumptions, it can be regularized by
a small perturbation that would bound its local geometry (by something of order
ε/δ).

Thus, for example, every closed Riemannian n-manifold, n ≥ 3, of bounded
geometry contains a locally bounded subpolyhedron P of dimension n− 1 which is
homotopy equivalent to X minus a point and such that P contains the 1-skeleton of
some locally bounded triangulation of X, thus being quasi-isometric to X.

Here is another use of “worms”. Let X be the round 3-sphere S3 of (large) radius
R and take two “worms” W1,W2 both of the length ≈ Rn in X. Then there is an
(almost) canonical diffeomorphism between their boundaries established with the
normal (Frenet) frame along their axial curves. Glue the complements of the worms
by this diffeomorphism of their boundaries and observe that the resulting manifold
say X1 is still a topological sphere with a metric of locally bounded geometry (with
bounds independent of R). But the global geometry of X1 may be rather far from
that of X0, since the gluing can bring far away points in X \W1 to nearby points in
X \W2.

What is the first non-zero eigenvalue of the Laplace operator on X1 for two
“random” worms?

What happens if we iterate this construction, where X2 is obtained with two
worms in X1, etc?

Let X be a graph on N vertices and take two random simple paths of edges
S1, S2 ⊂ X of equal length L slightly less than the number of vertices in X. What
can be said about the first non-zero eigenvalue (or the isoperimetric profile) of the
graph X1 obtained by gluing the two graphs along these paths?

What are the geometric possibilities of such a construction with “p-dimensional
worms”, i.e. small neighborhoods of topological p-disks similarly embedded into
Riemannian n-manifolds?

Below, we shall use higher-dimensional “worms” associated to collapsible poly-
hedra of dimensions≥ 2 (similar to spanning trees of the adjacency graphs of the
top-dimensional cells) but it is less clear what to do with more complicated con-
tractible subpolyhedra in P ⊂ X, e.g. spanning trees of the adjacency graphs of the
n-simplices of locally bounded triangulations of X?

The Dehn function D1(l) admits no recursive bound in terms of l and N on the
set of locally bounded contractible 3-dimensional polyhedra (and on Riemannian
5-spheres with locally bounded geometries) by a theorem by Novikov. But the
underlying (central extension) construction (see, e.g. [N] provides a very rare set of
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examples (somewhat similar to what happens to simply connected expanders), and
most quasi-isometry questions for the class X (3, 2, d,N) remain open. (Yet, some
estimates of this kind are established in [NW].)

Let X be a simplicial polyhedron which admits an L-exhaustion with respect to
a subpolyhedron X0 ⊂ X, say, X0 ⊂ X1 ⊂ . . . . ⊂ X, which means that

every sub-polyhedron Xi+1 is adjacent to Xi, i = 1, 2, . . . , i.e. every
vertex of Xi+1 is joint by an edge with some vertex in Xi;
every Xi, i = 0, 1, . . . , is (1, L)-locally connected: if two vertices in Xi

are joint by an edge in X, then they are joined by a path of at most L
edges in Xi.

Move every vertex v in Xi+1 \Xi to a nearest vertex in Xi, say p(v) ∈ Xi and,
whenever two vertices are joined by an edge in Xi+1, join them by a shortest edge
path in Xi, say, p[v1, v2] ⊂ Xi+1 \Xi. Then attach a 2-cell to every closed path of
edges of the form [v1, v2] ◦ [v2, p(v2)] ◦ p[v2, v1] ◦ [p(v1), v1].

The resulting cell complex P = P (X, X0) = P (X, X0, p) ⊃ X0 satisfies the
following obvious properties:

(1) X0 is a homotopy retract in P ⊃ X0; moreover, P collapses to X0: there is a
retraction decomposable into homotopy retraction of 1- and 2-cells into their
boundaries.

(2) The 1-skeleton of P equals that of X.
(3) dim(P ) ≤ max(2, dim(X0)).
(4) The boundary of each 2-cell σ in P \X0 is a simple closed path in the 1-skeleton

X1 = P 1 of length≤ L + 3.
(5) Each σ ⊂ P \ X0 can be subdivided into L + 1 triangles while keeping the

0-skeleton unchanged; thus, P becomes a simplicial complex, say P ′ with the
vertex set equal to that of X,

(6) The metric on the 0-skeleton of X induced from P ′ satisfies distX ≥ distP ′ ≥
L−1 distX .

(7) The local degrees of P ‘ are bounded by deg(P ′) ≤ deg(X)L+3.
(8) If every (L+3)-Lipschitz map of the unit circle to X extends to an L1-Lipschitz

map of the unit disk bounded by this circle, then the identity map on the
X0 ∪ P1 extends to a 10L1-Lipschitz map P ′ → X.

Examples. (a) Every triangulation of Sn into convex simplices (for the standard
projective structure on Sn) admits a 10n-exhaustion with respect to a vertex for all
n ≥ 2. This shows, in particular, that the metrics associated to such triangulations
(where each simplex given the unit geometry) are rather special. For example the
triangulated Novikov spheres are far from this class.

On the other hand, the topological 2-disk with an arbitrary triangulation admits
a 10-exhaustion with respect to its boundary.

Consequently, if the 2-skeleton of a polyhedron X is obtained from a given X0 by
consecutive attaching triangulated 2-disks to (closed or non-closed) paths of edges,
then X admits a 10-exhaustion.
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(b) Let the cube [−N,N ]n be subdivided into (2N)n unit subcubes and then
every unit cube is subdivided into affine simplices without introducing new vertices.
Then the triangulated boundary sphere Sn−1(N) = ∂[0, N ]n admits an L-exhaustion
with respect to each vertex with L ≤ (10n)10n, provided n ≥ 3.

(c) Let X0 ⊂ Rn be the union of the above spheres Sn−1(N) of radii N =
1, 2, 4, 8, . . . and of the straight ray r0 ⊂ Rn issuing from the origin in the direction
of the first coordinate. Then Rn admits an L-exhaustion with respect to X0 with
L ≤ (10n)10n.

(d) Take P (j) = Sn−1(2j) ⊂ Rn, j = 1, 2, . . . , and let X0 ⊂ Rn be the union of
these sphere and the ray r0. Let n ≥ 2 and X1 ⊃ Rn be obtained by replacing each
sphere Sn−1(2j) by the polyhedron P (j) = P (Sn−1(2j)), r0 ∩ Sn−1(2j), where each
P (j) is attached to Rn at its 1-skeleton (which equals that of Sn−1(2j) ⊂ Rn).

Then the 2-dimensional polyhedron Q = Q(Rn) = P (Rn, X0) has the following
properties:
• The 0-skeleton of Q equals that of Rn, i.e. the set of the integer points in Rn.
•• The distances between the vertices in Q and in Rn satisfy distQ ≤ distRn ≤

L2 distQ for L ≤ (10n)10n; thus Q is quasi-isometric to Rn.
• • • The polyhedron Q is collapsible, in particular Q is contractible; moreover, Q is

exhausted by compact collapsible subpolyhedra Qj = Q([−2j , 2j ]n) ⊂ Q with
collapsible boundaries ∂Qj = P (Sn−1(2j)).

It follows that the boundary of an (m+1)-dimensional manifold thickening of Q
for each m ≥ 3 is

a complete Riemannian manifold X of bounded geometry which is diffeo-
morphic to Rm and is, at the same time, quasi-isometric to Rn, where
m and n are arbitrarily given numbers satisfying m,n ≥ 3.

(This answers a question put to me by Itai Benjamini some time ago. Probably,
the construction extends to complete metrics on Rn of non-positive curvatures on
one hand and of positive curvatures instead of the Euclidean metric on the other
hand, with a use of convex non-radial exhaustions in the curv > 0 case.)

Remarks. (A) No metric on R2 is quasi-isometric to Rn for n > 2, since a
subquadratic isoperimetric profile implies hyperbolicity for simply connected surfaces.

(B) If a manifold X is quasi-isometric to a surface with a complete metric (e.g.
to R2), then X is non-simply connected at infinity. In particular, no metric on Rn,
n ≥ 3, is quasi-isometric to R2 (nor, obviously, to R1).

(C) The Dehn function of a collapsible 2-polyhedron X is bounded by the number
of 2-cells in X. It follows that the quasi-isometry class of such polyhedra is strictly
smaller than the class of the simply connected polyhedra.

Indeed, if f0 : X0
1 → X0

2 is an L-bi-Lipschitz bijective map between the 0-skeleta
of two polyhedra, then the first Lipschitz Dehn function of X2 satisfies DLip

1 (X2, l) ≤
DLip

1 (X2, 10L2)DLip
1 (X1, L · l) for all l ≥ 0.

It follows that the 2-polyhedra with large Dehn functions for large l, e.g. those
(re)presenting trivial groups with unsolvable isomorphism problem, cannot be
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quasi-isometrically approximated by collapsible polyhedra. (This severely limits
applicability of the above construction X � P (X).)

Related Questions. Consider a sequence Pi of simplicial polyhedra (e.g. graphs)
of a fixed dimension k, built of i simplices where all Pi have their local degrees (i.e.
the maximal number of simplices adjacent to each vertex) bounded independently
of i. Under what kind of conditions does there exist another sequence of polyhedra,
say Qi, also of bounded local degrees which satisfy the following conditions?

(1) There is a combinatorial embedding Pi ⊂ Qi for all i = 1, 2, . . . ;
(2) The number of simplices making Qj is bounded by C · i with a constant C

independent of i;
(3) All spaces Qi are combinatorially equivalent to an n-ball for a fixed n ≥ k.
(3′) One may require some weaker conditions on Qi, such as all Qi being all mu-

tually homotopy equivalent manifolds, for example with or without asking for
the bound on their local complexity.

Notice that a fixed triangulation of an n-ball Bn with i+ ≤ const ·i simplices
contains at most 2i+ subcomplexes while the number of graphs with i edges is
about i!. Thus one needs a lot of different triangulations of Bn (which must be
far removed from the “obvious” triangulations according to (	) in 4.3) in order to
accommodate all graphs and one does not know if this “lot” exists. For example,
it is unknown if the number Mn(i) of triangulations of Bn into at most i simplices
grows at most exponentially in i.

On the other hand, one can always find Qi satisfying (1) and (3) and having
about i · log(i) simplices.

A closely related question is as follows. Can a connected graph G be embedded
into the 1-skeleton of a simply connected 2-dimensional simplicial complex G+, such
that the local complexity of G+ is bounded by that of G (i.e. the number of simplices
in G+ at each vertex is bounded by some universal function of the maximal valency
of the vertices in G), and the number M+ of the simplices in G+ is linearly bounded
by the number M of the edges in G, i.e. M+ ≤ const ·M , where “const” must be
independent of M (but it may depend on the maximal valency of vertices in G)?

It is easy to make such an embedding with M+ roughly bounded by M log(M)
for all graphs G but it is unclear what happens with the linear bound in general.

4.5 Separation and isoperimetric profiles of graded semigroups and al-
gebras.

Isoperimetry in semigroups. Let G◦ be a commutative semigroup with 0,
where the product is denoted by “�” and where, by definition, g � 0 = 0 for all g
in G and where G ⊂ G◦ denotes the set of non-zero elements, i.e. G = G◦ \ {0}. For
instance, a commutative ring makes such a semigroup under multiplication.

Two elements g0 and g1 in G are called �-orthogonal if g0 � g1=0. Accordingly,
subsets in G0 and G1 in G are called �-orthogonal (or separated) if every g0 in G0
is �-orthogonal to all g1 in G1.
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The �-orthogonal complement G⊥0 ⊂ G is, by definition, the set of all g1 which
are �-orthogonal to all g0 in G0.

The ∂⊥-boundary of a subset G0 ⊂ G is defined as the complement to G0 and
G⊥0 in G

∂⊥(G0) = G \ (G0 ∪G⊥0 ) .

Graph example. Let (V,E) be a graph without multiple edges, G be the disjoint
union of V and E and let G◦ equal G augmented by en extra element called 0.
Define the product in G◦ as follows.

If g1 = v1 and g2 = v2, where v1 and v2 are vertices in V joined by an edge
e ∈ E, then v1 � v2 = e; otherwise the product g1 � g2 = 0.

Two subsets in the vertex set V ⊂ G are �-orthogonal if and only if they are
edge separated, i.e. if there is no edges between these subsets.

The ⊥-boundary ∂⊥(V0) of a subset V0 ⊂ V is contained in V , where it equals the
set of all vertices in the complement V \ V0 which are joined by edges with vertices
in V0.

Also observe that the intersection V0 ∩ V ⊥0 equals the set of isolated vertices v0
in V0, i.e. where there is no edge between v0 and any other vertex in V0.

Finally, notice the cardinality of the ⊥-boundary is related to that of the edge
boundary

−→
∂ (see 3.1 and 4.3) as follows:

1
d

∣∣−→∂ (V0)
∣∣ ≤ ∣∣∂⊥(V0)

∣∣ ≤ ∣∣−→∂ (V0)
∣∣ ,

where d denotes the maximum of the degrees (valences) of the vertices in V , and
where, recall,

−→
∂ (V0) ⊂ E is the set of edges between V0 and its complement V \ V0.

Granted a concept of boundary, one may speak of the isoperimetric profile of
G◦ defined as the set M = M(G◦) of pairs of numbers, say (M0,M1), for which
G admits a subset V0 where the cardinality of V0 equals M0 and the cardinality
of its boundary is ≤ M1, and where one is mainly concerned with isoperimetric
inequalities that are lower bounds on M1 in terms of M0.

Let us generalize the above to graded semigroups G◦, where a grading means a
decomposition of G into disjoint union of subsets G(n), n = 1, 2, . . ., such that

if g ∈ G(i) and g′ ∈ G(j), then g � g′ ∈ G(i + j), unless g � g′ = 0 .

We want to bound from below the cardinalities of products of “large” subsets Vi

in G = G◦ \ {0}, where this bound may (or may not) be specified in each grade.
In other words, we are concerned with “graded cardinalities” of subsets V in G,
denoted |V |(∗), where ∗ = 1, 2, . . . , and |V |(n) =def |V ∩G(n)|

Besides commutative semigroups (and algebras later on), we also allow anti-
commutative ones with respect to a given involution in G◦, called a ±-involution,
which must have the usual properties of such involution in multiplicative semigroups
of rings.
Example: Stanley–Reisner semigroups. Every simplicial complex G defines
G◦ where the (only) non-zero products are Δn1+n2+1 = Δn1 ·Δn2 for pairs of faces
in the simplices Δn1+n2+1 in G which span Δn1+n2+1.
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Definitions. Let Vi, i = 1, 2, . . . , k, be subsets in G such that∣∣Vi1(n1) � · · ·� Vil(nl)
∣∣ ≤ Mi1,...,il(n1, . . . , nl) , [�G≤ M�]

where Mi1,...,il(n1, . . . , nl) are given numbers, some of which may be taken +∞, and
where Vi1(n1) � · · ·� Vil(nl) denotes the set of all non-zero products of gl ∈ Vil(nl).

Let M� denote the totality of numbers Mi1,...,il(n1, . . . , nl) and define the sepa-
ration profile M∗ of G◦,

M∗(G◦; M�) =
{
Mi(n)

}
(M�

)
, n = 1, 2, . . . ,

as the set of graded cardinalities Mi(∗) = M∗(Vi) = |Vi|(∗) for all Vi in G which
satisfy [�G≤ M�].

The set M∗ is insufficient for reconstruction of the ∂⊥-isoperimetric profile in
the graph example. To compensate for this, we augment the above set M∗(M�) by
the graded cardinalities M∪(Vi)(∗) = | ∪i Vi|(∗), ∗ = 1, 2, . . . , n, . . . , and denote the
resulting set by M∗∪(G◦; M�).

Thus, the separation ∪-profile M∗∪(M�) is the set of pairs
M∗
∪(G; M�) =

{
M∪(Vi),M∗(Vi)

}
for all k-tuples of subsets Vi in G which satisfy [�G≤M�].

Clearly, this M∗∪ encodes sufficient information for reconstruction of the ∂⊥-
isoperimetric profile but this information, as we shall see, is rather unstable under
linearization, i.e. when we pass from semigroups to algebras.

Profiles of algebras. Let us extend the above definitions to graded commu-
tative or anti-commutative algebras A = ⊕nA(n), n = 1, 2, . . . , over a field F, where
the product is denoted by “�”.

Denote by | . . . | = | . . . |F the ranks of linear subspaces in A and let | . . . |(∗) =
| . . . |F(∗), ∗ = 0, 1, . . . , n, . . . , denote the graded ranks of graded subspaces in A.
This notation extends to arbitrary subsets in A by passing to the linear spans of
subsets.

We are concerned with possible values of ranks of graded subspaces Ai =
⊕nAi(n) ⊂ A, i = 1, . . . , k, where the ranks of the linear spans of the products
Ai1(n1) � · · ·� Ail(nl) are bounded by certain numbers, some of which may be
equal +∞ (i.e. the corresponding inequality is vacuous),∣∣Ai1(n1) � · · ·� Ail(nl)

∣∣ ≤Mi1,...,il(n1, . . . , nl) , [�A≤ M�]
where M� denotes the totality of these numbers M .

The separation profile of A is the set
M∗(A; M�) =

{
Mi(n)

}
(M�)

of M∗(Ai) for all Ai in A which satisfy [�A≤M�].
Besides the ranks of Ai, we are interested, as in the G◦-case, in upper bounds on

the ranks of their spans, denoted +iAi. (These can be replaced by the ranks of the
corresponding graded quotient spaces A−i Ai = A/+i Ai which is more appropriate
for infinite-dimensional A(n).)

Accordingly, the above set M∗(M�) is augmented by the graded rank, called
M+(Ai)(∗) = | +i Ai|(∗), ∗ = 1, 2, . . . , n . . . , and the result, called the separation
+-profile of A, is denoted M∗

+(A; M�).
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Thus, M∗−(M�) is the set of pairs
M∗

+(A; M�) =
{
M+(Ai),M∗(Ai)

}
for all k-tuples of graded subspaces Ai in A which satisfy [�A≤M�].

Notice that the M+-component of every M∗
+ in M∗− is constrained by the M∗-

component via the obvious inequality | +i Ai|(∗) ≤
∑

i |Ai|(∗). This allows us, in
some cases, to reduce bounds on M+-numbers to bounds on M∗-numbers.

Let us look closely at the case where there are only two subspaces and M� = 0,
i.e. where the �-product between these subspaces is zero.

Define the �-orthogonal complement A⊥0 ⊂ A to a graded linear subspace A0 ⊂ A
as the maximal (necessarily graded) subspace such that a � a⊥ = 0 for all a ∈ A0
and a⊥ ∈ A⊥0 and let the �-boundary ∂�(A0) be the the quotient space B =
A/(A0 + A⊥0 ).

The graded isoperimetric ∂�-profile of A is the set of pairs (M0,M1) of sequences
M0 = M0(n), M1 = M1(n), n = 1, 2, . . ., for which A admits a graded subspace A0,
such that |M0|F(n) = M0(n) and |∂�(A)|F(n) ≤M1(n). An isoperimetric inequality
for A is a lower bound on M1 in terms of M0.

The isoperimetric ∂�-profile of A is obviously expressible in terms of M∗
+(0),

but not in terms of M∗(0); yet, sufficiently strong bounds on M∗(0) may suffice for
meaningful lower bounds on |∂�|, as happens in some cases of interest.
Bilinear form example. If A has only two non-zero grades, say A = A(1)⊕A(2),
then the product is given by a symmetric or antisymmetric A(2)-valued bilinear form
� on A(1) and everything is expressed in terms of �-orthogonal subspaces in A(1).

For instance, let F = R, |A(2)|R = 2, and � be represented by a pair of positive
quadratic forms. Then |∂|�(M) = 0 for all M . But generic triples of forms have
M(1)−1|∂|�(M)(1) ≥ λ0 > 0 for all M(1) ≤ 1

2 |A(1)| (similar to 3-valent graphs).

Profiles of monomial algebras. Let
G◦ = {0} ∪n G(n) , n = 1, 2, . . . ,

be a graded commutative or anti-commutative semigroup with zero, let FG be the
space of F-valued functions a on G, where a(−g) = −a(g) for the ±-involution in
the anti-commutative case. and let F[G◦] ⊂ FG be the space of functions with finite
supports.

The semigroup G◦ naturally embeds into F[G◦] (with 0 �→ 0) and the product in
G◦ extends to a bilinear (product) map F[G◦]⊗ F[G◦] → F[G◦], also denoted “�”;
moreover, if every g ∈ G = G◦ \ {0} admits at most finally many decompositions
g = g1g2, this “�” extends to a product FG ⊗ FG → FG.

More generally, given a class G of subsets in G = G◦ \{0}, such that the product
map G1 × G2, for (g1, g2) �→ g1 · g2, is finite-to-one and has its image in G, the
space F{G◦}G ⊂ FG makes an algebra. These are called G◦-algebras or monomial
algebras A, since G makes what is called the monomial basis in F[G◦].

The sets (separation profiles) M∗(G◦; M�) and M∗∪(G◦; M�) for semigroups can
be expressed in terms of F[G◦] by using the subspaces Ai, satisfying the inequalities
[�A≥ M�], such that each Ai(n) equals the set of all functions on its support
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in G(n). Therefore,
M∗(G◦; M�) ⊂M∗(F[G◦];M�

)
and M∗

∪(G◦; M
�) ⊂M∗

+
(
F[G◦];M�

)
.

4.6 Combinatorial reduction of separation inequalities in orderable
monomial algebras. Our objective is to establish opposite relations, possibly
non-sharp ones, that would reduce isoperimetric/separation inequalities in mono-
mial algebras to those in semigroups. (This is similar to the combinatorial approach
to group algebras in [Gr7], where, however, the isoperimetry is defined differently;
also see [D] for isoperimetric inequalities in general algebras.)

The two properties of G◦ we need are faithfulness and order.
Faithful G◦. This means that the equality g1 � g = g2 � g 
= 0, implies g1 = g2.

Notice that the Stanley–Reisner semigroup G◦ associated to a simplicial com-
plex G is faithful.

Ordered G◦. This signifies an order relation on each G(n) ⊂ G = G◦ \ {0}, denoted
g1 % g2, such that g1 % g2 and g′1 % g′2 implies g1 � g′1 % g2 � g′2, unless one
of the two products equals zero.

Example. Every order on the vertex set V of a simplicial complex G lexicograph-
ically extends to an order on G that makes the associated semigroup G◦ ordered.

If a faithful semigroup G◦ admits an order, then
M∗(F[G◦];M�

)
= M∗(G◦; M�) . [A ∼M� G]

Proof (Compare 3.2 in [Gr7]). Given a non-zero function a : G → F, with the
support admitting a maximal element g ∈ G, denote this g by g = [a]max and
extend this notation to linear subspaces A0 ⊂ F[G◦](n0) ⊂ F[G◦] by

[A0]max =
⋃

0 	=a∈A0

[a]max ⊂ G(n0) .

Observe that ∣∣[A0]max
∣∣ = |A0|F , (1)

either [a0 � a1]max = [a0]max � [a1]max or [a0]max � [a1]max = 0 , (2)
for all homogeneous ai, say ai ∈ F[G◦](ni), i = 0, 1; therefore

[A0 � A1]max ⊃ [A0]max � [A1]max and, consequently ,∣∣[A0 � A1]max
∣∣ ≥ ∣∣[A0]max � [A1]max

∣∣ (3)
for all homogeneous Ai, say Ai ⊂ F[G◦](ni), i = 0, 1.

Thus, the [�A≤ M�] inequalities for graded subspaces Ai in A imply the
[�G≤M�] inequalities for the subsets [A0]max ⊂ G with the same M�-numbers;
hence,

M∗(G◦; M�) ⊃M∗(F[G◦];M�
)
,

and the proof follows.

Idealization of M-profiles. Define IM∗(M�) as well as IM∗
∪(M�) and

IM∗
+(M�) for semigroups and algebras by limiting the [�G≤ M�] and [�A≤ M�]

inequalities to those subsets Vi in G and graded subspaces Ai in A which make ideals
in G◦ and A correspondingly.
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The relations (2) and (3) show that if a graded subspace A0 ⊂ A = F[G◦] is an
ideal, then the graded subset [A0]max ⊂ G◦ is a semigroup ideal, which implies the
idealized version of [A ∼M∗ G],

IM∗(G◦; M�) = IM∗(F[G◦];M�
)
, [A ∼IM∗ G]

for all graded faithful orderable semigroups G◦ with 0.
Remarks. (a) The use of ordering is standard in the study of ideals in exterior
algebras, e.g. see the survey [MoS]. I learned this idea from Dima Grigoriev in the
context of polynomial algebras.

(b) The original draft of this paper contained a “proof” of the equality
M∗∪(G◦; M�) =M∗

+(F[G◦];M�). The mistake in the argument was pointed out
by the referee who has also indicated how one could circumvent this equality in the
topological context of 4.8–4.10.

4.7 ∂�-isoperimetry in graph algebras. As indicated by the referee the
equality M∗∪(G◦; M�) = M∗

+(F[G◦];M�) may fail in general. Below is a counter-
example which, albeit seemingly trivial, points to a true relation between the com-
binatorial and algebraic isoperimetric profile for the graph algebras (defined below).

Let A be the algebra associated to the single edge graph, [v, v′], i.e. A is F-linearly
spanned by v, v′ and e = [v, v′], where v � v′ = v′ � v = e and the other products
are zero.

The “bad” subspaces are A1 and A2 generated by v+v′ and by v−v′ respectively:
these two subspaces are �-orthogonal and they generate A, unless the characteristic
of the field F equals 2, while no two edge separated subsets in V = {v1, v2} cover
all V .

More generally, let (V,E) be a graph, let V1, V2 ⊂ V be two vertex sets and
E∩ ⊂ E be a set of edges, such that

The end vertices of all edges from E∩ are contained in the intersection V1∩V2.
No two edges from E∩ have a common vertex.
Every two vertices v1 from V1 and v2 ∈ V2 are either edge separated or they
are joined by an edge from E∩.

Let Ai, for an i = 1, 2, be the linear space of F-valued functions ai(v) on V such
that

1. The functions ai(v) vanish outside Vi, i.e. the support of Ai, denoted [Ai]sp, is
contained in Vi.

2. Every ai ∈ Ai satisfies ai(v) = ci(e)ai(v′) for the pairs of the vertices of all
edges e ∈ E∩, where ci : E∩ → F, i = 1, 2, is a non-vanishing function.

3. The functions c1 and c2 are related by the equality c1(e) = −c2(e) for all edges
in E∩.

Clearly, these spaces are �-orthogonal in the corresponding commutative graph
algebra that is the commutative Stanley–Reisner algebra A associated to the graph
(V,E) via the semigroup G◦ = 0 ∪ V ∪ E.

Furthermore, the dimensions of these spaces are
|Ai|F = |Vi| − |E∩| ,
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while the dimension of their span satisfies
|A1 + A2|F = |V1 ∪ V2| , if char F 
= 2 ,

and
|A1 + A2|F = |V1 ∪ V2| − |E∩| , if char F = 2 .

Notice that the equality |A1 +A2|F = |V1∪V2|−|E∩| is also valid for anticommu-
tative graph algebras over the fields of characteristics 
= 2, since two �-orthogonal
lines in a 2-dimensional space necessarily coincide if “�” is antisymmetric, i.e.
v � v′ = −v′ � v.

Let us show how an arbitrary pair of �-orthogonal linear subspaces A1 and A2
in A can be reduced to the above example.
General definitions. Let A0 be a linear space of functions on a set G. An
injective reduction A′0 of A0 to a subset V ′0 ⊂ G is the projection of A0 to the space
of functions vanishing outside V ′0 , i.e to the space A′0 = 1V ′0 (A0) for the indicator
function 1V ′0 , such that the projection operator, i.e. multiplication by 1V ′0 , is injective
on A0.

Notice that such a reduction is practical only if V ′0 is contained in the support
of A0, denoted [A0]sp. On the other hand every A0 admits an injective reduction to
a subset V ′0 ⊂ [A0]sp with |V ′0 | = |A0|F.

For example, the reduction of A0 to the subset [A0]max ⊂ [A0]sp for some ordering
of the support [A0]sp is injective.

Given a k-tuple of linear spaces Ai, i = 1, 2, . . . , k, a +-injective reduction is a
k-tuple of injective reductions A′i, such that the resulting linear map between the
spans, +iAi → +iA

′
i, is injective.

An elementary linear algebraic argument shows that
• an arbitrary k-tuple {Ai} of linear spaces Ai of functions with finite

supports on a set V admits a +-injective reduction {A′i}, where the
corresponding subsets V ′i ⊂ [Ai]sp satisfy

|V ′i | = |A′i|F for i = 1, . . . , k and | ∪i V ′i | = |+i A′i|F .

Finally, if the functions in question come with a �-product, a reduction {A′i} of
{Ai} is called [�A≤ M�]-admissible if the (reduced) spaces A′i satisfy the inequalities
[�A≤M�] from 4.5.

Notice that our proof of [A ∼M∗ G] amounts to showing that the collection of
(injective) reductions of Ai to the subsets [Ai]max ⊂ [Ai]sp is [�A≤M�]-admissible.
(This reduction is not, in general, +-injective as was pointed out by the referee.)

Let us return to graph algebras A and concentrate on the case M� = 0, where
we look at +-irreducible k-tuples of mutually �-orthogonal subspaces Ai of F-
functions on the vertex set V of a graph (V,E), where +-irreducible means that
the k-tuple {Ai} admits no non-trivial [�A≤ 0]-admissible (i.e. preserving orthog-
onality) +-injective reduction and where “trivial” signifies A′i = Ai.

Combinatorial reduction of +-separation inequalities in graph alge-
bras. Let (V,E) be a graph, σ(e) be a ±1-valued function on its edges and let A
be the algebra made of finite F-linear combinations of vertices v in V and edges e
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in E, where the product v � v′ is non-zero if and only if v and v′ are joined by an
edge e where v � v′ = σ(e)v′ � v = ±e.

Let {Ai} be an +-irreducible k-tuple of mutually �-orthogonal subspaces Ai ⊂ A
of F-functions on V with finite supports denoted Vi = [Ai]sp and let E∩ ⊂ E be the
set of all edges e = [v, v′] in E such that v is contained in some Vi and v′ ∈ Vj with
j 
= i.

(a) If a vertex v of an edge e from E∩ is contained in some Vi then the
second vertex v′ of e is also contained in Vi.

(b) Every pair of edges from E∩ is disjoint, i.e. there is at most one
edge e ∈ E∩ issuing from each vertex v in V .

(c) If e ∈ E∩, then σ(e) = 1; in particular, if σ(e) = −1 for all edges
e ∈ E, then the subsets Vi are mutually edge separated.

(d) The cardinalities of Vi and of their union satisfy
|Vi|= |Ai|F+|E∩i | , for i= 1, 2, . . . , k , and |∪iVi|= |+ iAi|F + |E∩| ,
where E∩i ⊂ E∩ denotes the set of edges from E∩ with the vertices
in Vi.

In particular, if σ(e) = −1 for all e ∈ E, then
|Vi| = |Ai|F for i = 1, 2, . . . , k , and | ∪i Vi| = |+i Ai|F .

Thus, if the �-product in a graph semigroup G◦ = 0 ∪ V ∪ E is anti-
commutative, e.g. commutative and char F = 2, then the graph algebra
A = F[G◦] has the same isoperimetric profile as G◦; moreover,

M∗
+
(
F[G◦]; 0

)
= M∗

∪(G◦; 0) . [A+ ∼0� G∪]

Proof. The property (a) does not depend on irreducibility. In fact the orthogonality
relation (ai � aj)(e) = 0 for ai ∈ Ai and aj ∈ Aj at an edge e = [v1, v2] from E
with the vertices vi ∈ [Ai]sp and vj ∈ [Aj ]sp, j 
= i, is possible only if both vertices
are contained in the intersection of the supports [Ai]sp and [Aj ]sp.

(b) The restriction of each linear space Ai to the pair of vertices (v, v′) of any edge
from E∩ has |Ai|{v, v′}|F ≤ 1. Moreover, if V ′ is the set of vertices of a connected
subgraph of (V,E) with the edges from E∩, then also |Ai|V ′|F ≤ 1. It follows, that
if there are two edges issuing from a v with the second ends denoted v′ and v′′

then simultaneous reduction of all Ai to the complement V \ {v′′} is +-injective and
0-admissible.

(c) If an edge e = [v, v′] from E∩ has σ(e) = −1, then one may reduce {Ai} to
the subset V \ {v′}.

(d) Granted (a), (b) and (c), this (d) follows from the above •.

Lower bound on ∂� in graph algebras by the combinatorial
−→
∂ . The

isoperimetric inequalities in graphs are usually stated (and proven) as low bounds
on the cardinalities of the edge boundaries

−→
∂ (V0) of subsets V0 ⊂ V of the vertex set

of a graph (V,E), where the edge boundary
−→
∂ (V0) is the set of edges issuing from

all v ∈ V0 and terminating in the complement V \ V0 (see 3.1 B).
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On the other hand, when it comes to graph algebras A, we want to bound from
below the ranks of the quotient spaces B = ∂�(A0) = A/(A0 + A⊥0 ) for a linear
subspaces A0 ⊂ A and their �-orthogonal complements A⊥0 .

The following shows how the latter bound can be reduced to the former.
Let (V,E) be a finite or infinite graph where every connected component contains

at least two edges, and where the degrees (valencies) of all vertices are bounded by
d < ∞. Let A(1) be the space of linear F-valued functions on V and let � be a
bilinear map, denoted “�”, from A(1) to A(2) which is the space of functions on E,
where v � v′ = 0 if there is no edge between v and v′ and v � v′ = ±e if v and v′

are joined by an edge e in the graph.

Let A0 be a linear space of functions on V with finite support [A0]sp ⊂ V .
Then there exists a subset V ′0 ⊂ [A0]sp of cardinality |V ′0 | = |A0|F, such
that the rank of ∂�-boundary ∂�(A0) = A/(A0 + A⊥0 ) of A0 ⊂ A(1)
is bounded from below by the cardinality of the edge boundary of V ′0 as
follows: ∣∣A/(A0 + A⊥0 )

∣∣
F
≥ 1

d

∣∣−→∂ (V ′0)
∣∣ . [∂�  −→∂ ]

Proof. Denote by W0 the complement W0 = V \ ([A0]sp ∪ [A⊥0 ]sp) and let W ′
0 ⊂ V

be the set of points in the complement V \ V0, for V0 = [A0]sp, which can be joined
by an edge with V0. Observe that

W ′
0 ⊂ W0 and that 1

d

∣∣−→∂ (V0)
∣∣ ≤ |W ′

0| ≤ |W0| ≤
∣∣A/(A0 + A⊥0 )

∣∣
F
.

Assume without loss of generality that the pair of spaces {A0, A
⊥
0 } is irreducible

and let E∩ ⊂ E be the set of edges with the above properties (a)–(d).
Let V ′0 ⊂ V0 = [A0]sp be obtained from V0 by removing one vertex from each

edge e ∈ E∩, where we choose and remove from among the two ends of e, the vertex
which has degree > 1 in the ambient graph (V,E).

(d) above implies that |V ′0 | = |A0|F, while it follows from (b) that the cardinality
of the edge boundary of V ′0 satisfies∣∣−→∂ (V ′0)

∣∣ ≤ ∣∣−→∂ (V0)
∣∣ .

Indeed, −→
∂ (V ′0) \

−→
∂ (V0) = E∩ , while

∣∣−→∂ (V0) \
−→
∂ (V ′0)

∣∣ ≥ |E∩| ,
since every vertex v ∈ V0 \ V ′0 coming from an edge e ∈ E∩ admits another edge
e′ 
= e issuing from v, where, observe, the second vertex v′ of e′ necessarily lies in
the complement V \ V0. Thus,∣∣A/(A0 + A⊥0 )

∣∣
F
≥ 1

d

∣∣−→∂ (V0)
∣∣ ≥ 1

d

∣∣−→∂ (V ′0)
∣∣ . �

Question. Is there a generalization of the above to non-graph algebras and/or to
where M� 
= 0?

4.8 ∂�-control of homological isoperimetry and topological translation
of extremal set systems inequalities.

Graded homological isoperimetry and [∂A ≥ ∂�]-inequality. Let X be
a topological space and A ⊂ H∗ = H∗(X; F) a linear subspace. Recall (see 1.5) that
the restriction A|X0, denotes the quotient space,

A|X0 = A/0A(X0) where 0A(X0) = A ∩ ker(rest∗/X0
) ⊂ A ,
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where rest∗/X0
: H∗(X) → H∗(X0) is the restriction cohomology homomorphism and

that the A-mass μA(X0) ⊂ A is defined via the complement of X0 in X, by
μA(X0) = 0A(X \X0) .

We are concerned with bounds on this “mass” in term of the A-boundary of X0,
that is

∂A(X0) = A|∂(X0) ,

where ∂(X0) ⊂ X is the topological boundary of X0 and where we encode such
bounds in terms of inequalities between the graded ranks of the linear spaces μA(X0)
and ∂A(X0).

If A = H∗, then such inequalities can be derived from the corresponding isoperi-
metric inequalities for the ∂�-boundary in this A (see 4.5, 4.7).

In fact, the additivity and multiplicativity of the mass μH∗ (see 4.1) imply
that there is a surjective homomorphism from A|∂X0 onto the space ∂�(A0) =
A/(A0 + A⊥0 ) for A0 = 0A(X \X0) = μA(X0); thus, the rank of ∂A(X0) is bounded
in each grade n = 1, 2, . . . , by∣∣∂A(X0)

∣∣
F
(n) ≥

∣∣∂�(μA(X0))
∣∣
F
(n) [∂A ≥ ∂�]

for A being the Čeck cohomology algebra H∗(X, F) with coefficients in a (preferen-
tially finite) field F.

� [∂A ≥ ∂�]-Inequality for �-retracts and coannulators. The above proof of this
inequality remains valid for �-retracts A ⊂ H∗, i.e. the subspaces which admit
graded projectors P : H∗ → H∗ (projector means P 2 = P ), with P (A) = A,
which are �-algebra homomorphisms in the grades i+j, where A(i)⊕A(j) 
= 0.

The simplest examples of �-retracts are homogeneous coannulators, i.e. sub-
spaces A⊂H i which admit complementary subspaces B⊂H i such that B � H i = 0.

More generally, let A = ⊕A(n) ⊂ H∗(X F) be a graded subalgebra, Xi ⊂ X,
i = 0, 1, . . . , k, be open subsets and let XI ⊂ X, I ⊂ {0, 1, . . . , k} denote the
intersections ∩i∈IXi.

Since the �-products of the graded ideals Ai = μA(Xi) ⊂ A satisfy
�i∈I Ai =�i∈I μA(Xi) ⊂ AI =def μA(XI) ,

the set M∗(Xi) of the graded F-ranks of μA(Xi) is contained in such a set for Ai,
where the ranks of AI are bounded by μ(A(XI)), i.e.

M∗(Xi) ∈M∗(A; M�) for M� =
{
|μA(XI)|F(n)

}
I
,

whereM∗ denotes the separation profile of A defined in 4.5. This is especially useful
if

A is a semigroup algebra, A = F[G◦] for a faithful ordered semigroup G◦
with zero,

since M∗ for such an A equals the corresponding profile of G◦ which, in turn, can
be often evaluated by combinatorial means as we shall see presently.
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Homological isoperimetry in the torus. Let X be the N -torus. Then
A = H∗(TN ; F) is isomorphic to the exterior algebra ∧∗FN = F[ΔN−1◦ ] for the
graded semigroup G◦ = ΔN−1◦ associated to the simplex ΔN−1 on N -vertices (see
2.1).

Namely, G◦ equals 2{1,...,N} that is the set of subsets g in {1, . . . , N}, where
G(n) ⊂ G◦ consists of all subsets of cardinality n and where the product gi � g2
for gi ⊂ {1, . . . N} is defined as follows:

If g1 intersects g2, then g1 � g2 = 0; otherwise, g1 � g2 = ±g1 ∪ g2.
(If char F = 2 one does not have to bother with the specification of the ± sign.)

Thus,
bounds on cardinalities of subsets Gi ⊂ 2{1,...,N} established in extre-
mal set theory in terms of the numbers of non-intersecting members
gi ∈ 2{1,...,N} regarded as subsets gi ⊂ {1, . . . , N} imply corresponding
inequalities between the cohomology masses of subsets Xi ⊂ TN and of
their intersections.

Example: Matsumoto–Tokushige inequality [MatT1].
Let Gi ⊂ G(ni) ⊂ G◦ = 2{1,...,N}, i = 0, 1, be subsets such that the
intersections g0 ∩ g1 in {1, . . . , N} are non-empty for all g0 ∈ G0 and
g1 ∈ G1. If n0, n1 ≤ N/2, then the cardinalities of these sets satisfy

|G0| · |G1| ≤
(

N − 1
n0 − 1

)(
N − 1
n1 − 1

)
.

This implies the following homological separation inequality for pairs of disjoint
subsets X0, X1 ⊂ TN (stated in slightly different notation in 1.5), i.e. an upper
bound on the ranks of the n0- and n1-grades of their cohomology masses,

If n0, n1 ≤ N/2, then∣∣(μH∗(X0)(n0)
∣∣
F
·
∣∣(μH∗(X1)(n1)

∣∣
F
≤

(
N − 1
n0 − 1

)(
N − 1
n1 − 1

)
.

In particular,
if X1 can be obtained from X0 by a homeomorphism of TN homotopic to
the identity, then∣∣(μH∗(X0)(n)

∣∣
F

=
∣∣(μH∗X1)(n)

∣∣
F
≤

(
N − 1
n− 1

)
.

(This corresponds to the Erdös–Ko–Rado theorem (see [Fr]).)

t-Disjointness and t-intersection. Subsets X0, X1 ⊂ TN are called t-dis-
joint, t = 1, 2, . . . , if the homotopy class of every coordinate projection P : TN →
TN−t+1 has a continuous representative P ′ : Tn → TN−t+1, such that the images
P ′(X0) and P ′(X1) are disjoint in TN−t+1. This corresponds to the t-intersection in
the extremal set theory (see [Fr]); thus, the t-version of the Erdös–Ko–Rado theorem
[MatT2] implies that

if the above X0, X1 ⊂ TN are t-disjoint, then∣∣(μH∗(X0)(n)
∣∣
F

=
∣∣(μH∗(X1)(n)

∣∣
F
≤ n

N
|Hn|F =

(
N − 1
n− 1

)
≤

(
N − t

n− t

)

for all sufficiently large N ≥ N0(n, t).
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Remarks. (a) The intersection (e.g. t-disjointness in TN ) pattern of subsets
Xi ⊂ X, i = 1, . . . , k, can be expressed in terms of intersections of ×iXi ⊂ Xk with
diagonals in Xk, which suggests a more general version of separation inequalities.

(b) If X is a Cartesian product, say of spheres and projective spaces, then its
cohomology is a semigroup algebra. Probably, the combinatorial inequalities cited
above extend to this context which would yield the corresponding cohomological
separation inequalities in X. (Products of odd-dimensional spheres have the same
cohomological separation inequalities as tori; but the products of even-dimensional
spheres, where the cohomology algebras are truncated polynomial rings, need com-
binatorial inequalities for systems of sets with multiplicities.)

(c) The multiplicativity property of the I-mass carries over to algebras repre-
senting minimal models of spaces X. Probably, it leads to homotopy separation
inequalities refining, in certain cases, the homological inequalities. An example one
may start with is a compact nil-manifold X with the free nilpotent fundamental
group of nilpotency degree δ on N generators.

4.9 Parametric separation inequalities. Let X be a smooth manifold, F :
X → R+ a proper generic smooth (Morse) function and A ⊂ H∗ = H∗(X; F) a
graded linear subspace. Then the rank of the restriction of A to a y-sublevel of F is
a ±1-continuous function in y ∈ R+, i.e.

1 ≥ lim
y→y0

∣∣A|F−1[0, y]
∣∣
F
−

∣∣A/F−1[0, y0]
∣∣
F
≥ −1

for all graded subspaces A ⊂ H∗ = H∗(X; F), all coefficient fields F;
therefore, the function |A|F−1[0, y)|F, y ∈ R+, assumes all integer values
between 0 and |A|F.

It follows, that if X is compact, there is a y0 = y0(A) ∈ R+ such that
2 ≥

∣∣A|F−1[0, y0)
∣∣
F
−

∣∣A|F−1(y0,∞)
∣∣
F
≥ −2

where, moreover, one can replace “2” by “0” if X is a closed N -manifold and
A ⊂ H∗ < N/2.

In particular, as explained in 1.5, “the Hn-mass” of the F -level of such y0 =
y0(A = Hn) for the torus X = TN satisfies∣∣Hn|F−1(y0)

∣∣
F
≥ (1− 2n/N)|Hn|F = (1− 2n/N)

(
N

n

)

for every n < N/2 and since every continuous function can be approximated by
smooth generic ones, such a y0 exists for all continuous functions on TN , as was
claimed in 1.5.
Remarks. (a) The above argument depends on the multiplicativity and additivity
of the μH∗-mass but does not need the intersection property.

(b) A continuous function F on an arbitrary compact space X can be approxi-
mated by generic smooth maps Fε of smooth thickening of nerves of finite open covers
of X where the A-mass |A(k)|F−1

ε [0, y]|F assumes all values m = 0, 1, . . . , |A(k)|.
Then the maximum of the (C̆ech) cohomology (with finite coefficients), restricted

to the levels of F , i.e.
sup

y∈R+

∣∣H∗|F−1(y)
∣∣
F
,
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can be bounded from below in terms of the separation profile of the algebra H∗ =
H∗(X; F).

Let Fs : X → R, s ∈ S, be a smooth generic family of proper smooth maps pa-
rameterized by a k-dimensional family S. Then the map (s, y) �→ |A|F−1(−∞, y)|F
is ±k continuous for every finite-dimensional linear subspace A ⊂ H∗(X).

For example, let X be a compact manifold, F : X → Rk be a smooth generic
map and Ai ⊂ H∗(X) = H∗(X; F), i = 1, . . . , k be linear subspaces. Then the
Borsuk–Ulam theorem shows that

there exists an affine hyperplane P ⊂ Rk, such that −2k ≤
|Ai|F−1(P+)|F − |Ai|F−1(P−)|F ≤ 2k, i = 1, 2, . . . , k, where P± ⊂ Rk

are the two half spaces in the complement to H.
For example, let X = TN and n1, . . . , nk be given positive integers.

Then there exists a hyperplane P ⊂ Rk such that∣∣Hni |F−1(P )
∣∣
F
≥ (1− 2ni/N)

(
N

ni

)
− 4k , i = 1, . . . , k .

(In fact, one can replace 4k by 2k.)
Similarly, let X be the connected sum of k copies of TN and let n ≤ N/2.

Then there exists a hyperplane P = P (F, n) ⊂ Rk, such that∣∣Hn|F−1(P )
∣∣
F
≥ k(1− 2n/N)

(
N

n

)
− 4k .

Remarks and Questions. (a) The above extends to arbitrary compact spaces X
where suitable bounds on the �-profiles of their cohomology algebras are available.

(b) What happens if “hyperplane” is replaced by an “affine subspace of codimen-
sion m” for m ≥ 2? This, for X = TN , is reminicent of sections of an N -simplex by
affine subspaces (see 1.1), since the cohomology of TN equals the cochain complex
of δN−1. Is there a true connection here?

(c) There is another possible link between affine section of simplices and topology
(or rather geometry of toric varieties). Consider the standard action of the C-torus
(C×)N on CPN and recall that CPN/TN = ΔN for the subgroup TN ⊂ (C×)N .

Let G ⊂ (C×)N be a connected subgroup, let G(x) ⊂ CPN be an orbit of a point
x ∈ CPN and let �k (G, x) denote the number of k-dimensional orbits of (C×)N in
CPN which intersect G(x). Can one bound supx �k (G, x) from below for suitable
classes of subgroup G and use this for lower bounds on Barany’s constants baff(n, k)?

4.10 Homological realization of monomial algebras by spaces with lo-
cally bounded geometries. A (typically infinite) family {X} of (e.g. finite) sim-
plicial polyhedra X is said to have locally bounded geometry if the degrees of all
vertices x in all X in the family (i.e. the numbers of simplices in X adjacent to x)
are bounded by a constant d = d{X} < ∞ (which is independent of X and x).

One can also express this by saying that the set L = ({X} of isomorphism classes
of links of all x in all X is finite and observe that |L| ≤ dd; however, if dim(X) ≥ 2,
there is no bound of d in terms of the cardinality |L|.
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Next, given a family {X} of metric spaces (e.g. of simplicial polyhedra with the
standard metrics), denote by NLip({X}; ρ, λ) the minimal number N for which there
exists a set {Y } of N metric spaces Y , such that every ρ- ball in every X ∈ {X} is
contained in a neighborhood U ⊂ X which is (1+λ)-bi-Lipschitz equivalent to some
Y ∈ {Y }. (One may say in this case that the family {X} has its ρ-local λ-Lipschitz
geometry is bounded by N . This agrees with the above “bounded geometry” for
polyhedra, where, in fact, one could equally use the Hausdorff distance distHau(U, Y )
instead of distLip.)

For example, if {X} is the class of all complete n-dimensional Riemannian mani-
folds with sectional curvatures bounded by | curv | ≤ κ2 and with injrad ≥ 1/r,
then, by Cheeger’s compactness theorem, NLip({X}; ρ, λ) ≤ C(n, ρ, λ, κ, r) < ∞ for
all ρ, λ, κ, r > 0; moreover, this C is bounded by something like exp(exp(nρκr/ε)).

We say, in this case, that the local (Riemannian) geometries of the spaces X are
bounded by κ. For instance, if a smooth closed submanifold X ⊂ RN has the norm
of second fundamental form bounded by 1, then the induced Riemannian metric in
X has its local geometry bounded by something like 10n2.

Given a simplicial complex S and a marked topological space R = (R, r0) there
are topological spaces X = S(R) and X� = S�(R) canonically (covariantly func-
torially in R) associated to these S and R, which are, recall, glued of Cartesian
powers Ri for i = 1, 2, . . . ,dim(S) + 1 according to the combinatorial pattern en-
coded by S. (See 2.1 and (b) at the end of this section for a geometric counterpart
of the functorial construction in 2.1.)

If the cohomology H∗(R) = H∗(R; F) is faithful, which means it is (isomorphic to)
the monomial algebra associated to a faithful ordered semigroup G◦ with 0 (see 4.6),
then H∗(X) is also faithful being associated to the obviously defined semigroup
H◦ = S(G◦); hence the homological separation profile M∗ of X equals that of H◦
(see 4.6).

For example, if R is the homology i-sphere, then H◦ = 0 ∪n=0,i,2i,... H(n) equals
the Stanley–Reisner semigroup associated to S and the cohomology H∗(X) = ⊕nH in

is the (monomial) Stanley–Reisner algebra F{H◦} associated to S (see 4.5, 4.6).
Therefore, if dim(S) = 1 and either i is odd or the coefficient field F has char-

acteristic 2, then the cohomological isoperimetric profile of X equals the ⊥-profile
of S; in any case, for all i and F, the profile of X is bounded from below by the
ordinary

−→
∂ -profile of S up to 1/ deg(S)-factor, unless some connected component

of S consists of a single edge (see 4.7).
The space X = S(R) is locally homeomorphic at the marked point to the cone

over something which is, roughly, as complicated as S. Since we look for infinite
families of spaces with uniformly bounded local geometries, we turn to the spaces
X� = S�(R) that do have locally bounded geometry if the polyhedra S do. This
creates, however, a (minor in the present context) problem, since the homology of
X� is more complicated than that of X as some part of it comes from S. Yet this
can be either controlled or modified to our liking as we shall see below.
Questions. Can one achieve bounded geometry without changing the homotopy
type of X = S(R) or, at least, its cohomology algebra? (An alternative to X� could
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be removing a small ball around the “bad” marked point in X and then doubling
the resulting space across the boundary of this ball.)

More generally, given a family {X} of finite n-dimensional simplicial polyhedra,
can one find another family of polyhedra {X̃} = {X̃(X)} of a given dimension
ñ ≥ n, such that every X̃ is homotopy equivalent to the respective X and such
that the local combinatorial degrees of all X̃ are bounded by a constant independent
of X̃, while the numbers of simplices in X̃ are bounded by NΔ(X̃) ≤ CNΔ(X) for
a constant C?

Presumably, the answer is in the negative for many “natural” families, but, it is
apparently unsettled even for the family of all finite polyhedra, allowing non-simply
connected ones; then one wonders what is the asymptotic of functions C(N) such
that NΔ(X̃) ≤ C(NΔ(X))NΔ(X) can be, where one expects C(N) ∼ (log N)α(n)

for “typical” families, e.g. for families of random polyhedra.

1. 2-Dimensional homology expanders. (a) Let S be a simply connected
2-dimensional simplicial polyhedron and R = T be the circle with a marked point.
Let X2

� = S1(T) ∪ S ⊂ X� = S�(T), where S1 ⊂ S is the 1-skeleton of S and
where, recall (see 2.1) S is naturally embedded to X�. Denote by Π : X2

� → X
the restriction of the map X� → X (see 2.1) to X2

� and observe that Π induces an
isomorphism Π∗ : H1(X; F) → H1(X2

� ; F) for all fields F and that the homomorphism
Π∗ : H2(X; F) → H2(X2

� ; F) is injective.
It follows that

the isoperimetric (separation) �-profile of H1(X2
� ) is equal to that of

H1(X); hence, (see 4.5) the isoperimetric H1-profile of X2
� can be esti-

mated in terms of the
−→
∂ -profile of the graph S1 according to [∂�  −→∂ ]

in 4.6 as follows:
The rank of the cohomology boundary ∂H1(X0) = H1|∂(X0) of every
open subset X0 ⊂ X2

� is bounded from below in terms of (the rank of) its
cohomology mass |μH1(X0)|F as follows:∣∣∂H1(X0)

∣∣
F
≥ 1

d

∣∣−→∂ (V0)
∣∣ ,

where V0 = V0(X0) is a set of vertices in S1 of cardinality
|V0| =

∣∣μH1(X0)
∣∣
F

where d is the maximum of the degrees of vertices in S1 and where
−→
∂ (V0)

the set of edges between V0 and its complement in the full vertex set of S1.
One can “simplify” this X2

� further, by adding the 2-handles corresponding to the
disc D attached to the circle T by a map ∂(D) → T of degree p. The resulting space,
say X2

p ⊃ X2
� has a finite Abelian fundamental group and the same Fp-cohomology

as X2
� .

If we take such X2
p = X2

p (S) with a family {S} of 2-dimensional simply connected
uniformly locally bounded polyhedra S (see 2.1) that make an edge-wise expander
(see 4.3) we obtain a family {X2

p} of finite uniformly locally bounded 2-dimensional
polyhedra X with finite Abelian fundamental groups and with |H1(X2

p ; Fp)|Fp →∞,
such that,
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every compact space X that is homotopy equivalent to some member of
the family {X2

p} is an H1-expander, for H1 = H1(X; Fp), i.e. all closed
subsets X0 ⊂ X with |H1|X0|Fp ≤ 1

2 |H1|Fp, satisfy∣∣H1|∂(X0)
∣∣
Fp
≥ λ · |H1|X0|Fp for λ = λ{S} > 0 .

2. Simply connected 4-dimensional homology expanders. Proceed as
above with R being the 2-sphere instead of the circle and denote the resulting space
by X4

� = S(R = S2). Observe (see 2.1) that if S is simply connected then X4
� is also

simply connected.
Since the complement X4

� \ S1(R) ⊂ S equals the union of disjoint open 2-
simplices, the kernel K ⊂ H2(X4

� ) of the inclusion homomorphism H∗(X4∗ ) →
H∗(S1(R) is a �-annulator; thus the H4(X4

� )-valued �-product on every subspace
A� ⊂ H2(X4

� ) complementary to K, that is �: A� ⊕ A� → H4(X4
� ), equals the

H4(S1(R))-valued �-product on H2(S1(R)) = A = H2(X4
� )/K for H4(S1(R) =

H4(X4
� ).

Since A� is a coannulator in the sense of 4.8, the cohomological A�-mass profile
of X4

� , concerning the ranks of the linear spaces μA�(X0) ⊂ A�(2) and ∂A�(X0) =
A�|∂(X0) for X0 ⊂ X4

� , is bounded from below by the � profile, of A�; therefore,
the A�-mass profile of X4

� is bounded from below via [∂�  −→∂ ] from 4.6 by the
−→
∂ -

profile of the 1-skeleton S1 of S upto the 1/d factor where d is maximum of degrees
of vertices in S1. That is

for every subset X0 ⊂ X4
� , there exists a subset V0 of vertices in the graph

S1, such that |V0| = |μA� |F and |−→∂ (V0)| ≤ d · |∂A�(X0)|F.

3. Manifolds homology expanders. Let us turn the above X2
p and X4

�

into smooth manifolds as follows. Observe that X2
p and X4

� can be immersed into
R4 and R6 respectively and thus they are homotopy equivalent to compact 4- and
6-manifolds with boundaries.

Let M4
p = M4

p (S) and M6
� = M6

� (S) be the doubles of these. Clearly, M4
p and M6

�

are closed manifolds which admit Riemannian metrics with bounds on their local
geometries depending (only!) on that of S (and on p for M4

p ) and with volumes
bounded by the numbers of simplices in S (and p for M4

p ). Also observe that X2
p

and X4
� embed as retracts into M4

p and M6
� correspondingly and that the manifolds

M6
� are simply connected (for simply connected S) while M4

p have finite Abelian
fundamental groups.

Let A1 ⊂ H1(M4
p ; Fp) and A2 ⊂ H2(M6

� ; F) (for any F) be the images of
H1(X2

p ; Fp) and of the above A� ⊂ H2(X4
� ) under the retractions M4

p → X2
p and

M6
� → X4

� . The isoperimetric homology and �-profiles for A1 and A2 are, obviously,
equal to those of H1(X2

p ; Fp) and of A�; hence, by 4.7 and � in 4.8,

The families of closed manifolds M4
p {S} and M6

� {S} are, respectively,
A1- and A2-expanders, whenever {S}, the family of 2-polyhedra S, is an
(edge-wise) expander.

3-Manifold homology expanders. The polyhedron X = S1(T) can be (obviously)
immersed into R3, then thickened to a manifold with boundary and doubled to a
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closed 3-manifold M3 = M3(S) (which is a graph manifold in the usual sense). The
homological profile of this M3 with respect to the image A1 of H1(X; F) equals that
of X, and M3 enjoys all of the above properties except for having infinite H1(M3; Z)
that we render zero as follows.

Take a system of disjoint simple closed curves in M3 making a basis in H1(M3; Q),
and perform surgery along the slightly perturbed p-multiples of these curves with
some frames. The resulting manifold, say M3

p , has H1(M3
p ; Z) = 0 while the coho-

mology algebra with Fp coefficients splits in the grades 1 and 2,
H1,2(M3

p : Fp) = H1,2(M3; Fp)⊕B ,

where the image of the coordinate embedding of H1,2(M3; F) → H1,2(M3
p ) is a �-

retract (as in � in 4.8). Indeed, a surgery along a p-multiple curve adds one F

summand to H1 which is �-orthogonal to H1 and one to H2.
Thus we obtain

closed Riemannian 3-manifolds M3
p = M3

p (S) with volumes and local
geometries bounded by those of S, with H1(M3

p ; Z) = 0 and with A =
H1(X; Fp) contained in H1(M3

p ; Fp) as �-retracts, where the latter makes
homological A-isoperimetry of M3

p equal that of S.
Remarks. (a) The Margulis theorem on normal subgroups is not needed in this
case, vanishing of H1(Γ; Z) suffices.

(b) The above construction of manifolds with controlled �-products can be seen
in a (more general) geometric light as follows. Let Xi, i ∈ I, be closed smooth
manifolds of dimension n and Yij ⊂ Xi, j ∈ Ji, be smooth closed codimension k
submanifolds with a given set {D} of diffeomorphisms between some pairs of Yij .

For example, one may have two manifolds Xi ⊃ Yi, i = 1, 2, with a single
diffeomorphism Y1 → Y2, or a single X ⊃ Y , with a finite group of diffeomorphisms
of Y . (Also one may include immersed rather than embedded hypersurfaces.)

Glue Xi by {D}, denote the resulting n-dimensional space by X{D} and suppose
that X{D} is locally homeomorphic at each point to the union of linear subspaces of
codimension k in Rn+k in general position. (One may allow non-general position as
well.)

Then, modulo an obvious obstruction, X{D} can be thickened to an (n + k)-
manifold M with boundary, where the intersection ring generated by [Xi] ∈ Hn(M)
can be expressed in terms of {D} and in the intersections of [Yij ] ∈ Hn−k(Xi).

For instance, if Xi are 2-tori and Yij , j = 1, 2, are the coordinate circles, we
recapture the above 3-manifold thickening of S(T) and get more examples by gluing
surfaces Xi along systems of closed curves Yij ⊂ Xi.

(c) According to [Su], every antisymmetric 3-form can be realized by intersections
of 2-cycles in a 3-manifold X which leads to examples of 3-manifolds homology
expanders with A = H1(X).

4.11 Maps to trees and folds in R2. Let F : X → Y be a continuous map
of a compact space X with finite-dimensional cohomology Hk = Hk(X; F) for given
k = 1, 2, . . . , and F to a locally finite tree Y and denote the normalized cohomology
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mass of open subsets Z ⊂ Y by
m(Z) =

∣∣μHk(Z)
∣∣
F
/|Hk|F .

The set function m is monotone: Z1 ⊂ Z2 ⇒ m(Z1) ≤ m(Z2), (semi)continuous:
m(Z) = lim m(Zi) for open exhaustions Z1 ⊂ Z2 ⊂ · · · ⊂ Z and subadditive
m(Z1 ∪ Z2) ≤ m(Z1) + m(Z2) for all pairs of disjoint open subsets (see 4.5). It
follows that

there exists a point yc ∈ Y such that either
m

(
Y \ {yc}

)
≤ 3/4 ,

or there is a multibranch Zc ⊂ Y at yc (see 3.1), such that the masses of
Zc and of the complementary multibranch Z⊥c =def Y \(Zc∪{y0}) satisfy

1
2m(Zc) ≤ m(Z⊥c ) ≤ m(Zc) .

[1
2 ·m

]
.

Proof. If a point y0 ∈ Y violates
[1

2 ·m
]
, then there is a branch B0 at y0, such that

m(B0) > 2m(B⊥0 ) , [>]
since every subadditive measure m on a finite set I (of branches at y0), where m(i) ≤
2m(I \ {i}) for all i ∈ I admits a subset J ⊂ I, such that m(J) ≤ m(I \J) ≤ 2m(J)
(as in the proof of

[1
3 , 2

3

]
in 3.1).

If there exists a point yε ∈ B0 arbitrarily close to y0, such that the branch
Bε ⊂ B0 of Y at yε has

m(Bε) ≤ 1
2m(B⊥ε ) ,

then [>] implies that
m(B0) + m(B⊥0 ) < 3

4m(B⊥ε ) + 1
2

(
m(B0)−m(Bε)

)
.

Since m(B⊥ε ) ≤ 1 and since m(B0)−m(Bε) → 0 for ε → 0 (in fact, m(B0)−m(Bε)
= 0 in the present case) we conclude that

m
(
Y \ {yc}

)
≤ m(B0) + m(B⊥0 ) ≤ 3

4 .

If there is a point y1 in the open edge E of B0 adjacent to y0, such that m(B1) ≤
1
2m(B⊥1 ), while all points yε that lie closer to y0 have m(Bε) ≥ 1

2m(B⊥ε ), then such
y1 which is the farthest from y0 serves for the required yc. Otherwise take the vertex
of Y in E for y1 = y1(y0), then pass to y2 = y2(y1), y3 = y3(y2), etc., until the
process terminates at yc.

Corollary: Lower bounds on the cohomology mass over trees by the isoperimetric
profile. Let |∂k|(m) be a function (cohomological isoperimetric profile of X) such
that all open subsets X0 ⊂ X satisfy∣∣Hk|∂(X0)

∣∣
F
≥ |∂k|

∣∣μ(X0)
∣∣F for Hk = Hk(X; F)

and let m1,m2 be integers such that m1 < 1
3 |Hk|F and m2 > 2

3 |Hk|F.

Then every continuous map F : X → Y , where Y is a tree, admits a
point y ∈ Y , such that∣∣Hk|F−1(y)

∣∣
F
≥ min

(
1
4 |H

k|, inf
m1≤m≤m2

‖∂k|int(m)
)
.

Furthermore, this inequality also holds for maps to arbitrary graphs Y ,
provided H1(X; Z) = 0 (e.g. if H1(X) is pure torsion), since every map
to X → Y lifts to a map X → Ỹ for the the universal covering Ỹ of Y .
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We apply this to the families of polyhedra {X} = {S}(R), associated to “simply
connected” expanders {S} (see 4.3) and where R is a sphere (of dimension 1 or 2
for the present purpose) and conclude that maps of these to trees have

sup
y∈Y

∣∣Hk|F−1(y)
∣∣
F
≥ λ|Hk|F for λ = λ{S} > 0 .

Then we recall the corresponding families of manifolds M from 4.8 of dimensions
3, 4 and 6, which all have H1(M) = 0, and where M6 are simply connected, while
M4 have finite fundamental groups. Every such M has a corresponding X embedded
into it such that the restriction cohomology homomorphisms are surjective and their
kernels K are bounded by |K| ≤ 10|H∗(X)|. Thus the above inequality remains valid
for M as well.

Finally, we invoke the depth inequality (proof) from [Gr8] and conclude with the
following:
Deep Fold Examples.

There exist three families {M} of closed Riemannian manifolds:
(1) of dimension 6, which have trivial π1;
(2) of dimension 4, which have finite π1;
(3) of dimension 3;

where all these M have 1-bounded local geometries and volumes tending
to infinity, and such that a generic map F of every member M of such
family to an open surface Y admits a point y ∈ Y , where every path from
y to ∞ crosses the folding locus of F at least N times for N ≥ λ ·vol(M)
for λ = λ{M} > 10−100 > 0.

4.12 Tree-like algebras over graphs. There are spaces X, including simply
connected 6-manifolds, which admit maps to “deep” binary trees with “homolog-
ically small” fibers but where every map F of X to a “shallow” tree Y (e.g. to
Y = R) necessarily has a “large” fiber F−1(y) for some y ∈ Y , namely where the
A-mass |A|F−1(y)|F (see 1,5) is rather large. This follows from the properties of
the kernels of restriction homomorphisms H∗(X) → H∗(F−1(Z)), Z ⊂ Y which are
enumerated in the following definition.

Let A = A(S, F) be the Stanley-Reisner algebra associated to a connected graph
S, i.e. A = H∗>0(X; F) for X = X� = S�(R), where R is the k-sphere and F is a
field. Recall that Ak = Hk(X; F) equals the space of F-valued function a on the
vertex set vert(S).

Given a linear subspace Ik ⊂ Ak, let supp(Ik) ⊂ vert(S) denote the support of
Ik i.e. the set of those s ∈ vert(S), for which a(s) 
= 0 for some function a ∈ Ik and
let supp(Ik) be the subgraph in S spanned by supp(Ik).

Let Ik
1 , Ik

2 ⊂ Ak be �-orthogonal, i.e. Ik
1 � Ik

2 = 0. Then, clearly,∣∣vert(S) \ (supp(Ik
1 ) ∪ supp(Ik

2 ))
∣∣ ≤ corank(Ik

1 + Ik
2 ) =def rank

(
Ak/(Ik

1 + Ik
2 )

)
;

supp(Ik
2 ) does not intersect the exterior boundary ∂ext(supp(Ik

1 ) ⊂ vert(S);
the intersection supp(Ik

1 ) ∩ supp(Ik
2 ) consists of the union of disjoint

subgraphs in S which simultaneously serve as connected components of
supp(Ik

1 ) and of supp(Ik
2 );
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if S0 is a connected subgraph in supp(Ik
1 ), then the rank of the restriction

of (the linear space of functions a : vert(S) → F from) Ik
2 to the vertex set

vert(S0) ⊂ vert(S) is at most 1; moreover, if the rank of the restriction
of Ik

1 to vert(S0) is ≥ 2, then the restriction of Ik
2 to vert(S0) is zero.

It follows that
The rank of the restriction of Ik

2 to the union supp(Ik
1 ) ∪ ∂ext(supp(Ik

1 ))
is bounded by the number of the connected components of supp(Ik

1 ).
The rank of the restriction of Ik

1 + Ik
2 to the vertex set of a union of l

connected subgraphs in supp(Ik
1 ) ∩ supp(Ik

2 ) is ≤ 2l.
Let S have at least 3 vertices and denote S12 =def supp(I1) ∩ supp(I2).
Then the rank R12 of the restriction of Ik

1 + Ik
2 to S12 ∪ ∂ext(S12) is

bounded by

R12 ≤
∣∣S12 ∪ ∂ext(S12)

∣∣− |S12|
3 deg(S)

[3 deg]

where deg(S) denotes the maximum of degrees (valences) at the vertices
of S.

Take an I(A)-valued mass μ on Y = R for the above A = A(S; F) and denote by
S−(y) and S+(y), y ∈ R, the supports of the ideals I−(y) =def μ(−∞, y) ⊂ A and
I+(y) =def μ(y, +∞), where, observe,

I−(y) � I+(y) = 0 for all y ∈ R

and notice that
S−(+∞) =def

⋃
y∈R

S−(y) = S+(−∞) =def

⋃
y∈R

S+(y) = supp(I(R)) ⊂ vert(S) .

Let
I−(y] =

⋂
ε>0

I−(y + ε) , S−(y] = supp
(
I−(y]

)
⊂ vert(S)

and
S−(y↑] = S−(y] \ S−(y) ⊂ vert(S) .

Denote
m(y) =

∣∣supp(Ik
⊥(R))

∣∣− rank
(
I−(y) + I+(y)

)
and observe that

m(y + ε) = m(y) for small ε > 0
by the continuity of the I-mass (see the above (3)).

Let us bound the cardinality |S−(y↑]| by m(y) as follows. Write
S−(y↑] =

(
S−(y↑]∩S+(y)

)
∪

(
S−(y↑] \S+(y)

)
⊂

(
S−(y]∩S−(y)

)
∪

(
S−(y↑] \S+(y)

)
and observe that if the graph S has at least 3 vertices, then the above [3 deg] applies
to I1 = I−(y+ε) and I2 = I+(y+ε) and yields, in the limit for ε → 0, the inequality∣∣S−(y] ∩ S−(y)

∣∣ ≤ 3 deg(s)m(y) .

Since, obviously, ∣∣S−(y↑] \ S+(y)
∣∣ ≤ m(y) ,

we conclude with the inequality∣∣S−(y↑]
∣∣ ≤ m(y)

(
3 deg(S) + 1

)
.
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3. Map the subgraph supp(μ(R)) ⊂ S to [−∞, +∞) = R ∪ {−∞} by sending
each vertex s ∈ supp(μ(R)) = vert(supp(μ(R))) to f(s) ∈ [−∞, +∞) equal to the
supremum of the points y ∈ R, such that s is not contained in the support of
the subspace I−(y) =def Ii

⊥(−∞, y) ⊂ Ai and where f is extended to continuous
monotone maps on the edges of supp(μ(R)).

Let us bound the number N(y) of the edges [s−, s+] in supp(μ(R)), such that
f [s−, s+] � y, i.e. of the edges issuing from vertices in S−(y] and terminating in
supp(μ(R)) \ S−(y).

There are at most m(y) among the s+-ends of these edges which are not contained
in S+(y); thus there are at least N(y)−deg(S)m(y) edges with the s+-ends in S+(y)
whose s−-ends necessarily lie in S−(y↑] since I−(y) � I+(y) = 0. It follows that

N(y)/m(y) ≤ 3 deg(S)
(
deg(S) + 1

)
. [3 deg2]

4. Mapping to graphs corollary. Let A = Ak ⊕ A2k be the Stanley–Reisner
algebra associated to a connected graph S of degree (at most) d, let X be a compact
topological space with H∗>0(X; F) = A and F be a continuous map of X to a finite
graph Y with Nvr = Nvr(Y ) vertices of degrees ≥ 3.

If the Ak-mass of every fiber F−1(y) ⊂ X (i.e. the rank of the restriction ho-
momorphism Hk(X) → Hk(F−1(y))) is at most m, then there exists a subset
V0 ⊂ vert(S) with |V0| ≤ m ·Nvr such that the graph S0 ⊂ S spanned by the comple-
ment vert(S)\V0 admits a continuous map f : S0 → R where |f−1(y)| ≤ 3md(d+1)
for all y ∈ R.

Proof. Let I0 ⊂ Ak be the kernel of the restriction homomorphism from Hk(X) to
the F -pullbacks of the set of vertices in Y of degrees ≥ 3 and let S0 = supp(I0).
Then every connected component of S0 serves as a component of the support of
μ((y, y′)) ⊂ Ak for some open edge (y, y)′ in Y , where, recall, μ((y, y′)) denotes the
kernel of the restriction homomorphism Hk(X) → F−1(Y \ (y, y′)).

Since (y, y′) is homeomorphic to R, the above 3. applies to the I(A)-valued mass
U �→ H∗(F−1(U)), U ⊂ (y, y′), and the proof follows.
5. Example: Mapping tree-like spaces to trees. Let S be a simplicial
binary rooted tree Xd+δ of depth d + δ and let R be a sphere Sk and X� = S�(R),
be as in 4.8. We know (see 2.1) that X� comes with a map ρ : X� → S where all
fibers are either Sk or Sk × Sk. On the other hand, the above shows that

every continuous map F of X� to the binary tree Y of depth ≤ d has
a fiber F−1(y) ⊂ X�, y ∈ Y , such that the A-mass of F−1(y) for A =
Hk(X�; F) satisfies,∣∣A|F−1(y)

∣∣
F
≥ const ·δ − 1 for some const ≥ 0.1 .

Finally, every such X� can be turned into a manifold, as earlier, and in particular,
one obtains, for each k = 1, 2, . . . and every n ≥ 2k + 1,

closed Riemannian manifolds of dimension n, say M(d) = Mn
� (d), d =

1, 2, . . . , of volumes N = 2d with uniformly bounded local geometries,
such that every M(d) admits a map into a binary tree Yd of depth d
with the diameters of the pullbacks of all points y ∈ Yd bounded by a
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constant independent of d, and, yet, every continuous map F : M(d) →
Yd−δ admits a point y0 ∈ Yd−δ, such that the rank of the restriction
homomorphism Hk(M ; F) → Hk(F−1(y0); F) is bounded from below by
const ·δ − 1 for const ≥ 0.1 and every coefficient field F. Moreover, if
k ≥ 2 and n ≥ 2k + 2, there are such simply connected M(d).

4.13 Perspectives and problems.

A. On LG-invariance of ∂i. Let F be a ring with a unit (e.g. a field), C a
module (vector space) over F with a distinguished non-zero element (vector) denoted
1 ∈ C and Ci = ∧i+1

F
C be the (i + 1)-th exterior power of C. Then the linear map

∂i
1 : Ci → Ci+1 for c �→ c ∧ 1 satisfies (∂i

1)2 = 0 and if C = C0 is the space of
measurable F-valued function on V with 1 ∈ C0 being the constant unit function,
then ∂i

1 equals the coboundary operator ∂i : Ci(Δ(V ); F) → Ci+1(Δ(V ); F) on the
F-cochain complex of the simplex Δ(V ) on the vertex set V , where, recall V is a
measure space (see 2.3).

Thus, the complex (C∗(Δ(V ), ∂∗)) (but not the norms ‖ . . . ‖ on Ci(Δ(V )) is
invariant not only under the group G of measurable transformations of V but also
under the (much larger) group LG of invertible “measurable linear operators” of C
fixing 1: a measurable linear operator A : C → C is, by definition, given by the
measure space W with an F-valued function K on W (the “integral kernel” of A)
and a pair of measurable maps Mi : W → V , i = 1, 2, where M2 is finite to one.
Then every function c : V → F is first pulled back to W with M1, then multiplied
by K and finally pushed forward to V with M2. (If V is a finite set and F is a field,
then LG equals the group of linear transformations of C = FV fixing 1.)

Is there an LG-Invariant version of the homological isoperimetry, e.g. for the
N -torus?

B. On measurable functoriality. Let X and Y be measurable cell complexes,
let {Y → X} denote the space of cellular maps and let [Y → X] be the set of
connected components in {Y → X} (i.e. of homotopy classes of cellular maps). For
example, if X and Y are simplicial complexes, then [Y → X] equals the set of
simplicial maps Y → X.

The correspondence Y � [Y → X] is a set valued contravariant functor from
the category Y of cellular complexes Y with Hom(Y1, Y2) = [Y1 → Y2]. This functor
on the category Y of finite complexes Y essentially recovers X. One would like to
have a similar definition of a measurable cell complex (e.g. of a measurable simplicial
complex) as a contravariant functor from Y to the category of measure spaces.

In fact, in most examples, say of measurable simplicial complexes X and for
all finite simplicial complexes Y , one can introduce measure structures on the sets
[Y → X]; however, the restriction maps R0 : [Y → X] → [Y0 → X] for subcomplexes
Y0 ⊂ Y may be non-measurable: the R0-pullbacks of null-sets in [Y0 → X] may
have positive measure in [Y0 → X]. This happens when “most” simplicial maps
s0 : Y0 → X do not extend to Y ⊃ Y0 and the best one can do is to require the
existence of “many” extensions of s0 to a simplicial subdivision Y ′ of Y , where the
restriction map R′0 : [Y ′ → X] → [Y0 → X] becomes measurable.
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To make this consistent one needs the following “coherence” property of the
measure spaces [Y → X]. Let Y1, Y2 ⊃ Y0 be complexes for which the restriction
maps R10 : [Y1 → X] → [Y0 → X] and R20 : [Y2 → X] → [Y0 → X] are measurable
and let Y be obtained by gluing Y1 and Y2 along Y0. Then the measure space
[Y → X] is equivalent to the fiber product of [Y1 → X] and [Y2 → X] over [Y0 → X].

C. Cohomological width of spaces X over coverings of graphs Y . Let
X be a compact topological space and let F : X → Y be a continuous map such
that the F∗-image of the fundamental group π1(X) in the (free) group π1(Y ) has
at most l-generators. (For instance, l = 0 if H1(X : Z) = 0 and l ≤ 1 if π1(X) is
Abelian.) Then F lifts to a map F̃ : X → Ỹ where Ỹ is a graph (covering Y ) which
has at most l independent cycles; thus, Ỹ admits a map to a tree, say ϕ : Ỹ → Y ,
where |ϕ−1(y)| ≤ 2l for all y ∈ Y and then X goes to Y by F = ϕ ◦ F̃ : X → Y .

Since Y is a tree, the maximum m of the Hk-masses |Hk(X; F)/F
−1(y)| can be

bounded from below by the isoperimetric profile of A = H∗(X; F); then a lower
bound on m = maxy |Hk(X; F)/F−1(y)| follows, for m ≥ m/2l. (This applies, in
particular, to X where Hk(X; F)⊕H2k(X; F) = Ak⊕A2k for A = A(S1(N); R) and
R being a k-sphere.)

In general, with no assumption on π1(X), one has to deal with the map F̃ : X̃→ Ỹ ,
where Ỹ is the universal covering of Y and X̃ is the induced covering of X with the
(free) Galois group = π1(Y ).

Is there a non-trivial lower bound on maxỹ |Hk(X̃)/F̃−1(ỹ)| in terms of H∗(X)?
What is the condition on H∗(X) such that every proper map F̃ of every reg-

ular covering X̃ of X with a free Galois group to a tree, say F̃ : X̃ → Ỹ (where
Ỹ is not necessarily associated to any Y ), satisfies a non-trivial lower bound on
maxỹ |Hk(X̃)/F̃−1(ỹ)|?

Can one control the isoperimetric profile of the algebra H∗(X̃) by an appropriate
profile of H∗(X) itself?

D. Homological filling. The simplest (co)homological model of an n-cycle
c in a space X with the cohomology algebra A = H∗(X; F) is given by a graded
algebra C = C(c), a graded homomorphism h = h(c) : A → C and a linear map
l = l(c) : C → F.

Denote,
|c|F = |C|F , |A/c|F = rankF(h) and [c] = l ◦ h : A → F .

We think of c as a representative of the class [c] and introduce the following
“norms”:

|[c]|F = inf
c∈[c]

|c|F = |C(c)|F and |A/[c]|F = inf
c∈[c]

|A/c|F .

The first (apparently easy) question is the evaluation of these “norms”(ranks) on
linear maps [c] : A → F for particular algebras A, e.g. for the cohomology algebras
A of products of Eilenberg–MacLane spaces.

Next, if a “cycle” c has [c] = 0, we define a “filling” b of c as an algebra B and
a decomposition of h : A → C into homomorphisms A−→g1

B−→g2
C. Then we set

‖c‖fil = inf
b
|b|F = |B|F and ‖A/c‖fil = inf

b
|A/b|F = rankF(g1)

where the infima are taken over all “fillings” b of c.



GAFA COMBINATORICS TO TOPOLOGY VIA ALGEBRAIC ISOPERIMETRY 521

What are the the “filling inequalities” between |[c]|F and |A/[c]|F on the one
hand and their filling counterparts ‖c‖fil and ‖A/c‖fil on the other for particular
algebras A (e.g. for free anticommutative algebras)?

Eventually, we want to find lower bounds on the cohomological width∗(X/Y ),
say for Y = Rm, by a filling argument similar to that in 2.4, but one needs for
this, besides filling inequalities, an appropriate semisimplicial structure in the space
of cycles in A = H∗(X). It seems unlikely, however, that this structure can be
constructed while remaining within H∗(X), since “gluing fillings across common
boundaries” involves (the multiplicative structure on) the relative cohomology that
is not contained in the restriction homomorphism alone. In any case, a realistic
evaluation of the cohomological widthn(X/Rm) remains open even for such X as
the product of Eilenberg–MacLane spaces.

If F = Fp, then A comes with an action of the Steenrod algebra and one may
insist on C and h being compatible with this action and if F = Q one may use the
full minimal model of X instead of the cohomology.

If one wants to be “homotopically comprehensive”, one takes the set H∗(X)
of the isomorphism classes of objects of the homotopy category over X, where the
objects are the homotopy classes of (say, polyhedral) spaces P along with homotopy
classes of maps f : P → X, where the morphism are the homotopy classes of
maps p12 : P1 → P2, such that the triangular diagrams over X are (homotopically)
commutative, and where “∗” refers to the filtration by dim(U) ≤ i. Besides this
filtration, H∗(X) carries a variety of combinatorial (and algebraic) structures (e.g.
a partial order) and the corresponding “homotopy masses” take values in (the set
of subsets in) H∗(X) compatible with these structures.

Finally observe that the main difficulty of the higher-codimensional filling is,
apparently, due to non-monotonicity (see F. below) of the filling invariants.

E. Homological moment problem. Given a continuous map F : X → Y let
XN

/Y denotes the N -th fibered product power of X over Y and (EN/Y )∗ : H∗(XN ) →
H∗(XN

/Y ) the restriction cohomology homomorphism for the embedding EN/Y of
XN

/Y to the Cartesian power XN for H∗( . . . ) = H∗( . . . ; F) as usual. Define the
Poincaré series in the formal variables t and u by

P (X/Y ; t, u) =
∑
n,N

tnuN
∣∣Hn(XN

/Y )
∣∣
F

and
P (E/Y ; t, u) =

∑
n,N

tnUN rankF(EN/Y )∗=n.

What are recursion relations between the coefficients of these series? Do they
admit analytic continuations to C2 with mild singularities (poles?) for “reasonable”
maps F , e.g. for simplicial maps, smooth generic maps, complex analytic maps?
When are these series rational functions? Are there inequalities on their coefficients
and/or on the values at particular (t, u) refining the inequalities on the cohomological
width of X over Y ?
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This is unclear even for fibrations over the figure ∞ if the action of the (free)
fundamental group on the cohomology of the fibers is not reductive. On the other
hand, the reductive case (where the Zariski closure of the monodromy is reductive)
seems easier. For example, the ranks of the spaces of fixed vectors in tensorial N -th
powers of representations of reductive groups (which corresponds to H0 with local
systems for coefficients) are well controlled by the Hermann Weyl character formula
as was explained to me by Sasha Kirillov.

F. “Quasi-isometry” invariants of graded algebras. Let A = A1⊕A2 by
the Stanley–Reisner algebra associated to an infinite connected graph S of degree (at
most) d. (This A equals the cohomology of X�(S) with compact supports.) Which
quasi-isometry invariants of S can be expressed in terms of A?

Since S can be reconstructed from the lattice of the graded ideals in A, every
invariant of S can be read from A; but we want to be more specific than that and
to define invariants in the spirit of the isoperimetric profile of A.

For example, given an A = A1 ⊕ A2, consider a graph S with the vertex set
V ⊂ A1 which makes a linear basis in A1 (or just linearly spans A1) and where two
vertices v1, v2 ∈ V are joined by an edge if and only if v1 � v2 
= 0. Then, given
a monotone invariant Inv on graphs (which may only increase if an edge is added),
extend Inv to A by taking the infimum of Inv(S) over all above S.

This allows one, for instance, to define the growth function of A and to show that
it agrees with the combinatorial one for the Stanley–Reisner algebras. Similarly, one
can define and evaluate the relative growth (see 2.7), say |R\A| of Stanley–Reisner
algebras A associated to the Cayley graphs of nilpotent groups.

However, most invariants (e.g. Dehn functions) are non-monotone and it remains
unclear how much of the (coarse) asymptotic geometry can be extended to algebras.
Is there, for example, a working notion of hyperbolicity for A?

G. On equivariant cohomology measures. The notion of the ideal valued
mass μH∗ from 4.1 admits an equivariant counterpart where an (infinite-dimensional)
X is acted upon by an (infinite) amenable group Γ (e.g. where X is a Cartesian Γ-
power, X = XΓ), where the subsets U ⊂ X must be Γ-invariant and where the
ranks of cohomology groups are taken in a suitable category of Γ-moduli as in [L],
[Gr9], [BeG]. (Since Γ is amenable, this may even make sense for not invariant
U ⊂ X.) Possibly, some (all?) results of (both parts of) the present paper admit
such Γ-generalization.

Another potentially interesting possibility is that of using, instead of cohomology,
the Chow ring of cycles in an algebraic variety X or in a symbolic algebraic variety,
e.g. in XΓ, where X is algebraic as in [Gr10].

H. On smooth maps. If X is a smooth manifold, the above (co)-homological
arguments can be applied to the subalgebra in H∗(X) generated by the characteristic
classes, thus providing non-vanishing results for certain characteristic classes of some
smooth fibers of generic smooth maps.

If dim(X) = 4 one expects much finer lower bounds on the topology (e.g. maximal
genera) of the fibers of generic smooth maps of X to surfaces that would depend
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on the smooth structures in X, apply to simply connected manifolds (as well as
non-simply connected ones) and would be related to the Donaldson–Seiberg–Witten
invariants. (Lower bounds in [Gr8] for hyperbolic manifolds rely on π1(X) and do
not incorporate the smooth structure, thus, being non-specific for dimension 4.)
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