ON SIMPLEXES INSCRIBED IN A HYPERSURFACE

M. L. Gromov UDC 513.83

The sufficient conditions are obtained for the existence, onahypersurface M < RD, of k points
whose convex hull forms a (k —1)-dimensional simplex, homothetic to a given simplex

A c RD, In particular, it is shown that if M is a smooth hypersurface, homeomorphic to a
sphere, such points will exist for any simplex A < R™, The proofs are based on simple
topological considerations. There are six references.

§ 1. Introduction

Let A < R be a rectilinear m-dimensional simplex with vertices &, 01, eess Oy, and q a real num-
ber. We shall say that a simplex A can be g-inscribed in a set A < R if there exists a vector y € R® such
that q6; +y€ A for i =0, 1, ..., m. We shall say that a simplex A can be g-immersed in a closed region
Q < R if for any nonnegative continuous function f(w), assigned in the region Q and vanishing on its bound-
ary, there exists a vector y € RR such that qé; +y €¢Q fori=0,1,..,, mand

Fgde + ) =1(g0: + ¥) = .= (g8 + ¥),

or, what amounts to the same, the simplex A ¢ R®c R?*! can be g-inscribed in a graph T'c RPH of the
function f(w).

THEOREM 1. Let Q © R™ be a closed bounded region such that its boundary M is a Cl-submanifold
of the space R and its Euler characteristic x(£) is nonzero. Let A < R® be a rectilinear simplex. Then:

a) there exists a positive g such that the simplex A can be g-inscribed in M;

b) there exists a positive p such that for any positive q < p the simplex A can be g-immersed in the
region Q.

If V< R is a convex body with boundary W and v € W, we shall denote by s(v; V) the (closed) subset
of the unit sphere S~ < R® that corresponds to the point v under a spherical mapping (see [1]) of the hyper-
surface W.

The boundary M of a convex body Q is said to be smooth with respect to an n-dimensional simplex
A < RP if for any point w € M there exists a vertex 6; of A such that s(w; 2)Ns(64; A) = ¢ (let us note that
if the boundary M is smooth with respect to every n-dimensional simplex A € R™, then M will be a Cl-sub-
manifold of the space RT).

THEOREM 2. Let © — R™ be a bounded convex region with boundary M that is smooth with respect
to an n-dimensional simplex A < R%. Then:

a) there exists a positive q such that the simplex A can be gq-inscribed in M;
b) there exists a positive p such that for any positive q < p the simplex A can be g-immersed in Q.

The proof of Theorem 1 is based on simple and well~-known topological results, set forth in § 2.
Theorem 2 will be derived from Theorem 1 in §4. In the remarks at the end of the paper we shall discuss
(without proof) the uniqueness of an inscribed simplex and the importance of the restrictions involved in
the conditions of Theorems 1 and 2.

In the following we shall denote by M + €, where M — R™ and €€ R", the subset obtained from M by a
shift by the vector &.
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§ 2. Topological Lemmas

LEMMA 1. Let an oriented C!-submanifold M < RP be the boundary (with allowance for the orienta-
tion) of a bounded closed region @ < R whose orientation is induced from the space R, Let t(M) be the
absolute value of the degree of the tangential mapping 7: M — S%7!, where S?"! © R® is the unit sphere.
Then

t (M) = |x (Q)I. (1)

The proof of formula (1) can be found in Hopf's paper [4] (see also [6]).

Remark 1, If n is odd, formula (1) will be equivalent to another well-known formula of Hopf:

E(M) =5 [x (M0)]
(see [3]).

Let Zg, Zy, «s, Z be integral cycles of the space RP such that the intersection of their supports is
empty and

dim Z, + dim Z; + ... + dim Z, = nk — 1.

Let us consider webs Ij, i = 0, 1, ..., k, spanned over the cycles Z; in the half-space Rl_l,_+1 =R, x RED O
x R? = RD (R, being a positive ray). In [5] we can find the definition of the index of intersection i(Ily, II;,
«es, Il ) of webs I1j, this index being independent of the choice of the webs.

Definition 1. The index of intersection i(Ily, Ily, ..., Ik} is called the linking coefficient k(Zg, Z4, ...,
Zy ) of the cycles Zy, Zy, «eey Zke.

The various definitions of the linking coefficient and the proof of their equivalence for the case of
two cycles can be found in [2]. The analysis for a larger number of cycles is entirely similar. In Lemmas
2 and 3 we present without proof the properties of the linking coefficient to be used by us below. The proof
of these lemmas is based on the standard use of the properties of the index of intersection [5].

LEMMA 2. By Z} ¢ RKD Iet us denote the image of the cycle Z< R™ for a diagonal immersion
R "X R"X... xR",
[ —)
k times

andby £ C RKD we shall denote the cycle
ZyXZyX...XZp = R"xR"x...xR".

Then
e (Zoy Ol = 1k (Zes Z1, vers Zi)ls

where k(Z§, £) is the linking coefficient of the cycles Z§ and ¢ in the space RkD,

LEMMA 3. Let M™ and N™ be closed oriented C*-submanifolds of the space RT*DH, By U we
shall denote a tubular neighborhood of N, Let M™ be contained in the set Uf;I\ NB, We shall assume that

U = N? x DIP* (DI®* ig a sphere of radius €), and denote by p: U§ — D™*! the projection onto the com-
ponent of the direct product. Let us consider the restriction ppp: MM — Df:n“ of the projection p. Under
the mapping pp1 the image Mp, of the manifold M™ does not intersect with the center of the sphere Df;n“, S0
that it is possible to project the image Mp onto the boundary SIEn of the sphere Dg-,n"'1 from its center. Let

6 : M — Sgl be a mapping constructed in this way. Then the degree of the mapping 6 will be equal to the
linking coefficient of the cycles, determined by the submanifolds M™ and N ¢ RIHIH,

Let M be a closed oriented (n —1)-dimensional C!-submanifold of the space R™, and let E = (€1, oees €p)
be a basis in R™, By Mp; (b real) we shall denote the submanifolds M + bej, wherei =1, 2, ..., n. By
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a(M; E) we shall denote the largest number b such that for any positive ¢ < b wehave M N Mg 1 N .eo N Mg p
= ¢. If such a large number does not exist, we shall write a(M; E) = «,

It is clear that for a sufficiently small positive b the intersection M Mp, 1 N e N My, n willbe empty,
and therefore a(M; E) > 0.

Definition 2. The self-linking coefficient (M) of a submanifold M < RP is defined as the absolute
value of the linking coefficient of cycles, determined (oriented!) by the submanifolds M, Mp, 15 «se» Mp, ns
where 0 < b < a(M; E). It is clear that the quantity »(M) depends neither on the choice of the basis E, nor
on the choice of a positive b < a(M; E), so that the definition is correct.

Proposition 1. The self-linking coefficient (M) is equal to the absolute value t (M) of the degree of
the tangential mapping 7: M — S°%,

Proof. Without loss of generality it can be assumed that the submainfold M has smoothness of class
C%and that the basis E is formed by orthogonal unit vectors &, 8y, «es, Epe

Let us denote by M* C R™ the image of the manifold M  RP in the case of a diagonal immersion
RS R"XR"4...XR",
N ———————
n times
2
and by NC R the direct product
MxXMx<... XMc R*%<XR"X...xR"

n times n times

By
ECR"XR" x ... X R"

R ————————
n times

we shall denote a vector with components (€;, €, ..., €y), where &; € R,

Let us consider a tubular neighborhood U%I of the submanifold N « R, By selecting the direction of
of the normal of the submanifold M < R, we specify the decomposition Uf;] =N x Dg and the projection

p :Uﬁ - Dg. Let us denote by Mg < R™ the submanifold M* + b% and assume the positive number b to be
so small that the inclusion Ml"; c U%I holds. Since the intersection My, N N is empty, it is possible to con-
struct the mapping 6 : Mi'; — Sg'i, considered in Lemma 3. It follows from Lemmas 2 and 3 that deg (9)
coincides in absolute value with the self-linking coefficient »(M).

Let us denote by 7(m) € R the vector of the unit normal to the manifold M at _t_he point m € M and con-
sider the vectors ¥;(m) = (V(m), 0, w, 0), Fy(m) = (0, ¥(m), 0, ees, 0), eee, Vp(m) = (0, oee, 0, ¥ (m)) in the

2 —
space R® = R% x R2 x ... x RP, The vectors 7 (m), %(m), ..., Vo(m) form a basis of the space of normals
of the manifold N at the point (m, m, ..., m) where m € MC R™, Let us consider mapping §': M— Sléﬂ,

defined as follows: To each point m € M we assign a set of scalar products (€, £73(m) ), (€, £®(m)), «., (€,
eVp(m)). For small positive b the mapping 6: My — SI™1 is close to the mapping 6': M — SU~! (let us
note that the manifolds M and Mf; are canonically diffeomorphic). But since (e, £vj(m)) = £(ej, ¥(m)), it
follows that the mapping 6' coincides in fact (when the spheres S%'i and SP~! are set identical) with the

tangential mapping 7: M — s0~!
Hence
| deg (t) | = | deg (8" | = | deg (8) | = = (M),

which proves the proposition.

COROLLARY. Let Mc RD be a closed oriented (n —1)-dimensional Cl-submanifold, and let t(M) = 0.
Let E be a basis of the space R%. Then:
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a) a(M; E) < =}

b) if 0 <b < a(M; E), then the intersection It N II; N ... N II,, of arbitrary webs, spanned in the space
RY* over the manifolds M, Mp, 1, «ee, Mp, n, Will not be empty.

Proof. If the intersection of some webs 11, IIy, ..., II;, spanned in the space R over the manifolds
M, Mp, 1, ee; Mp, p, is empty for 0 <b < a(M; E), then the self-linking coefficient »(M) will be equal to
zero; but in this case t(M) = 0, which proves Assertion (b).

d
For a sufficiently large number b (we must take b > max I(TIYII) , where d(M) denotes the diameter
1

of the set M and the e , i =1, 2, ..., 1, are vectors forming the basis E) there exist nonintersecting webs
(for example, conical), spanned in R}*! over the manifolds M, My, 15 «ess Mp, no But since the definition of
the number 1 (M) does not depend on the choice of a positive b < a(M; E), we would obtain for a(M; E) = «

the relation »(M) = 0, and hence t{M) = 0, which proves Assertion (a).

§ 3. Proof of Theorem 1.

Without loss of generality it can be assumed that the simplex A < R® is n-dimensional. In the space
R™ let us consider a basis E, formed by the vectors €; =6y —6, €y =830y, «ce, €y =09 —0p. Let us write
q = a(M; E). From the corollary of Proposition 1 and Lemma 1 it follows that 0 < g < «. From the defi-
nition of the number a(M; E) it follows that the intersection M N Mq’l N aea N Mq, n is not empty. Let m€ M
N Mg, 1M e Mg, n. Then m, m —qe€, «.., m ~qép € M. Let us writey =m —qdo. Thengdy+y =m€ M and
géj +y =m-—gej € Mfori =1, 2, ..., n, which proves Assertion (a).

Let us denote by I', T'g, 15 +ee» I'q,n © R&“the graphs of the functions f(x), f(Xx —g€{), ..., f{x —g€p),
defined in the regions 2,  + g€y, ..., & + qéy. The graph I'q, j can be regarded as a web, spanned over the
manifold My, j. By virtue of the corollary of Proposition 1 and of Lemma 1, the intersection I' N Tq,1 N e
n I'q,n is not empty for 0 < q < a(M; E). By reasoning in the same way as above, we can see that for
0 < q < a(M; E) the simplex A < RRc RI*! < R0 can be g-inscribed in the graph I' © R+ < RO which
completes the proof of Theorem 1.

Remark 2, In Assertion (b) of Theorem 1 we can take as the number p the smallest positive number
q such that the simplex A can be g-inscribed in the manifold M.

§4., Proof of Theorem 2.

At first we shall formulate a simple geometrical proposition:

LEMMA 4. Let @ € R™ be a closed bounded convex region with a boundary M that is smooth with re-
spect to a simplex A < R with vertices 6¢, 84, ser; Op. Let 1Oy D ... DRk O ... be a sequence of regions

Ded
with Cl-smooth boundaries My such that krlink =Q. Letqg > 0,k =1, 2, ..., be a2 sequence of numbers
such that the simplex A can be qi-inscribed in the set My for k = 1, 2, ... . Then lI(im infqr > 0.
— 00

Proof. By AK we shall denote a simplex with vertices of the form 610{ =qROg + Yks eoes 61151 =qKén + Yk
such that 6%{ vons 6% € Mg. It is clear that the spherical images of the boundaries of the simplexes A, A, ...,
Ak... coincide. If 1I{iilrxwoinqu = 0, there would exist a subsequence le, ka, cony ij, «oe With the following
properties:

1) there exist limitsly=1im 6§, v, I = lim 61, such that 2,=1, = . =Ip € M;

J—»oo J—»w
2) there exist limits ¢y = lim s%,{j, ess; Op = lim sgj, where we denoted by sli{ i=0,1, woe,n; k=1, 2,
—_—00 —00
.+o) the unique point of which the set s((‘il{, Qk).
On the one hand, oj € s(65, A) for 0 =i=n + 1, and on the other hand ¢¢, 64, ., op € 5(ly, Q) = s(ly, )

= oee = 8(lp, Q), so that at the point 1=, = ... I, €M the smoothness of the boundary M of Q with respect
to the simplex A is disturbed, which completes the proof of Lemma 4.
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Proof of Theorem 2. For the region & we shall construct a sequence of regions Q4, 24, ... with

©0
smooth boundaries M;, My, ..., such that kgigk =Q. Since x(Qk) = 1, it follows from Assertion (a) of

Theorem 1 that there exists a sequence of numbers qi > 0 and vectors yi € R™1 = k < «) such that qb;
+ yk € Mk(0 = i =< n). There evidently exists a subsequence Qk,» Qkys oo such that there exist the limits

q = lim ak; and y = lim Ykj* Since q6; + y € M(0 = i = n) and q is positive by Lemma 4, we thus proved
]—boo J—»‘X)
Assertion (a).

Let us continue the function f(w) by a zero to the region Qi D Q. By applying Assertion (b) of Theo~
rem 1 to each region Qi and going over to the limit in the same way as in the proof of Assertion (a), we
obtain by virtue of Remark 2 and Lemma 4 the Assertion (b) of Theorem 2.

§ 5. Remarks,

If n is odd, then for a region & < R™ with a smooth boundary M the condition x(Q) = 0 will be equiva-
lent by virtue of Remark 1 to the condition x (M) # 0; hence, the fulfillment of this condition will depend
only on the manifold M, and not on its manner of immersion in the space R%. If Q' is the complement of
the region Q in the sphere S”, we have for even n the following evident formula: x(Q) +x(Q"') = 2; this
formula shows that in general the fulfillment of the condition x(2) = 0 depends on the manner of immer-
sion of the manifold M in the space R for even n. This question is examined in more detail in [6].

The condition x(2) # 0 in Theorem 1 is essential. The corresponding examples for Assertion (a)
can be constructed beginning with n = 3, and for Assertion (b) beginning with n = 2,

The "smoothness" conditions in Theorem 2 are essential; moreover, if for any n-dimensional simplex
A c R™ there exists a positive q such that the simplex A can be g-inscribed (q-immersed) in M (in Q),
then the boundary M will be C!-smooth.

If McR™is a smooth or convex closed hypersurface and if for any n-dimensional simplex A ¢ RR
and any positive number q there exists not more than one vector y € R® such that g6; +y € M for i = 0, 1,
oss; 1, then for n > 2 the hypersurface M will be an ellipsoid.

L. A. Slutsman has reported that if M < R? is a strictly convex closed smooth curve, then there exist
for any triangle A < R? a unique positive number q and unique vector y € R? such that géj +ty€Mfori=0,
1, 2. Using this fact, Slutsman proposed an elementary proof of Assertion (a) of Theorem 1 for the case of
a convex region 2 < R,
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