

Geometry, Topology and Spectra of Non-Linear Spaces of Maps - Wolfgang Pauli Lectures

Misha Gromov

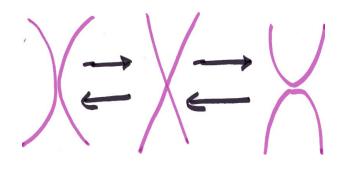
May 25, 2009

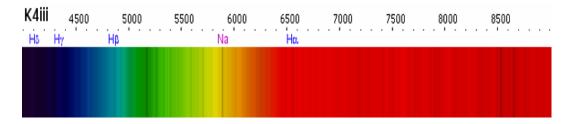
"How Many" Curves of Length

$\leq \lambda$ are there in a domain U in the Plane?

Plane algebraic curves of degree d $\sum a_{ij} u_1^{d_i} u_2^{d_j} = 0, \, d_i + d_j \le d.$ Their intersections with the disk of radius R have lengths at most $\lambda \approx Rd \approx area^{1/2}d$ (Buffon's needle formula) The number of a_{ij} is $1 + \ldots + (d+1) = \frac{(d+1)(d+2)}{2} \approx d^2.$ "The number" of curves of length λ (secretly of degree $d = \lambda/area^{1/2}$) equals (secretely $\approx d^2 \approx (\lambda/area^{1/2})^2$) $const(\lambda)(area(U))^{-1}\lambda^2$ where $const(\lambda)$ converges to a nonzero limit, some universal constant $c_1(2)$, for $\lambda \to \infty$. Hermann Weyl Formula.

The number $N_{\leq\lambda}$ of eigenvalues





 $\lambda_i \leq \lambda$ of the Laplace operator in a domain $U \subset \mathbb{R}^n$:

 $N_{\leq\lambda} \sim c_n \lambda^{n/2}$

(If n = 1, then $\lambda_i \sim i^2$ and, for any n the eigenvalues are, roughly, the sums $i_1^2 + i_2^2 + \ldots + i_n^2$, where we pretend all sums are different.)

Dimension, non-Linear Spectra and Morse Theory.

A is a linear self-adjoint possibly unbounded (e.g., differential) operator on a Hilbert space H. The normalized energy (function) F on H:

 $F(\bar{x}) = \langle A\bar{x}, \bar{x} \rangle / \langle \bar{x}, \bar{x} \rangle.$

This is defined for all non-zero $\bar{x} \in$

H in the domain of A.

Since this energy is homogeneous, $F(a\bar{x}) = F(\bar{x})$ for all $\bar{x} \in H$ it defines a function on the projective space X = PH consisting of the lines in the domain of A. This function is still denoted F(x) = $\langle Ax, x \rangle / \langle x, x \rangle$ but now on X =PH.

Assume A is a positive operator with discrete spectrum and let us look at F from the *Morse theoretic* point of view.

Critical points of smooth functions $F : X \to \mathbb{R}$ on arbitrary smooth manifolds X:

a point $x \in X$ is called *singular* and the value (point) $F(x) \in \mathbb{R}$ is called *critical* for F if the differential (gradient) of F vanishes at x.

The cardinality $N_{crit} = N_{crit}(F)$ of the critical value set $\Sigma = \Sigma(F) \subset \mathbb{R}$ of a generic (Morse) smooth function on a closed n-dimensional manifold, $F: X \longrightarrow \mathbb{R}$, is bounded from below by the sum of the Betti numbers of X,

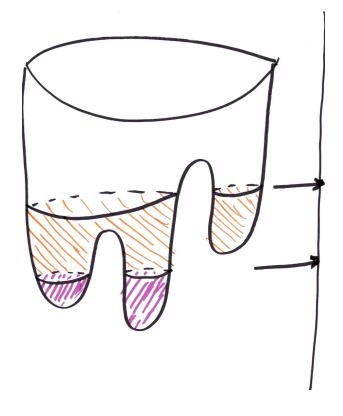
 $N_{crit} \ge |H_*(X)|_{\mathbb{F}}$

 $=_{def} \sum_{i=0,1,\ldots,n} rank(H_i(X;\mathbb{F})),$ where the homology groups $H_i(X) =$ $H^i(X;\mathbb{F})$ may be taken with any coefficient field \mathbb{F} .

The Morse-theoretic description of the spectrum.

 $\tilde{\Sigma}(F) \subset X$ the singular set of Fwhere the differential (or gradient) of F on X vanishes.

If X = PH and



 $F(x) = \langle Ax, x \rangle / \langle x, x \rangle,$ then $\tilde{\Sigma}(F)$ equals the union of the 1-dimensional eigenspaces of A.

In other words, \bar{x} may serve as a non-zero vector in the line in Hrepresenting a point $x \in \tilde{\Sigma}(F) \subset$ X = PH if and only if $A(\bar{x}) = \lambda \bar{x}$ for some real λ and, in this case, $F(x) = \lambda$.

The critical point of F correspond-

ing to a simple eigenvalue λ_i is nondegenerate and has Morse index *i*. More generally, the multiplicity of λ_i equals $dim\tilde{\Sigma}_i + 1$ for the component $dim\tilde{\Sigma}_i \subset \tilde{\Sigma}$ on which *F* equals λ_i , since $\tilde{\Sigma}_i$ consists of the lines in the eigenspace of λ_i .

Figure 1: default

The critical values and unstable under small perturbations (every point can be made critical by an arbitrary small C^0 -perturbation of the energy function): look for another candidate for the non-linear spectrum.

The eigenvalue λ_i equals the minimal number, such that the sublevel $X_{\leq\lambda} = F^{-1}[0,\lambda] \subset X = PH$ contains a projective subspace P'of dimension *i*.

Given $Y \subset X$ define essdim(Y)as the the minimal d such that Yit can be contracted in X to a subspace Y' with dim(Y') = d.

The eigenvalue λ_i is the minimal number, such that the sublevel

$$\begin{split} X_{\leq \lambda} &= F^{-1}[0,\lambda] \subset X = PH \\ has \ essdim(X_{\leq \lambda}) &= i. \end{split}$$

Lusternik–Schnirelmann–Borsuk– Ulam Theorem. An *i*-dimensional projective subspace $P^i \subset X =$ PH can not be contracted to anything of dimension < *i*, *i.e.* essdim $(P^i) =$ *i*; furthermore,

 $essdim(A \cup B) \leq essdim(A) +$

essdim(B) + 1

Examples of non-quadratic energy. $F(\bar{x}) = ||\bar{x}||_{L_p}/||d(\bar{x})||_{L_p}$ where $d(\bar{x}) (= grad(\bar{x})$ is the differential (gradient) of a function \bar{x} : $V \to \mathbb{R}$ and

 $||...||_{L_p} = \left(\int (...)^p\right)^{1/p}$

If p = 2 this gives the spectrum of the Laplacian Δ on V and if p = 1the singular points correspond to minimal hypersurfaces in V.

Hermann Weil again. Let V be a compact n-dimensional Riemannian manifold and F(x) denotes the (n-1)-dimensional volume of the zero set of a function $\bar{x} : V \to \mathbb{R}$. Then

the spectrum of F satisfies $\lambda_i \sim i^{1/n}$ (where $a(i) \sim b(i)$ if the ratios

a(i)/b(i) and b(i)/a(i) stay bounded for $i \to \infty$).

Almost equivalently and more quantitatively:

 $\begin{aligned} & essdim(X_{\leq\lambda})/\lambda^n \to c_{n-1}(n) vol(V)^{-(n-1)} \\ & \text{as } \lambda \to \infty, \end{aligned}$

Guth' ε -Inequalities.

Let X be the space of k-dimensional submanifolds x in the n-ball V and $F(x) = vol_k(x)$.

Then $\lambda_i \leq const \cdot i^{\frac{1}{k+1}}$ and

$$\begin{split} \lambda_i &\geq const(\varepsilon) \cdot i^{\frac{1}{k+1}-\varepsilon} \\ for \ all \ \varepsilon > 0. \end{split}$$

What is "the space X of submanifolds" in V?

Points $x \in X$ are smooth maps of smooth k-manifolds $S = S_x \to V$. An *i*-dimensional family x_y of ksubmanifolds, parametrized by a manifold $Y \ni y$ is declaired "continous" if

there is a smooth manifolds T of dimension i + k, a generic smooth map $p : T \to Y$ and a smooth map $q : T \to V$ such that $x_y =$ $q(p^{-1}(y))$. (Some fibers $p^{-1}(y) \subset$ T may be singular.)

Problems (raised by Guth).

1. Can one take $\varepsilon = 0$?

2. The ε -inequality applies to nonorieneted submanifolds; the case of orieneted ones, even of curves in the 3-balls, remains unclear.

The first significant case of Guth' inequlities is that of curves (k = 1)in the 3-ball and both problems are open in tis case.

Parametric Packing.

Given a domain $U \subset \mathbb{R}^n$, a number N = 1, 2, ..., and a positive ρ .

Packing problem. Can one find N disjoint balls in U of radii ρ ?

Parametric packing problem. Evaluate ($\Pi(N)$ -equivariant) essdim of the space of N-tuples of disjoint ρ balls in U.

 $(\Pi(N)$ is the permutation group on the N-point set.)

Here $X = U^N = U \times U \times ... \times U$ and the energy is

 $F(x) = \min_{i \neq j} dist^{-1}(u_i, u_j)$

What happens to spectra and to Morse theory if we replace \mathbb{R} , the range of a map F from X, by a more general space Y, e.g. by $Y = \mathbb{R}^m$?

 $F: X \to Y$

If we think of X as the "space of microstates" and Y is the coarse graining, then the entropy of a subset $Y_0 \subset Y$ is

 $ent(Y_0) = \log"number"(F^{-1}(Y_0))$

But what is "number" and why log?

If X and Y are smooth manifolds and F is smooth, then what we may see in Y is the *critical set* $\Sigma(F) \subset Y$

Definition of $\hat{\Sigma}$ and Σ . The singularity $\hat{\Sigma}(F) \subset X$ of a smooth map $F : X \longrightarrow Y$, for $dimY \leq$ dimX + 1, is the set of the points in X where the rank of the differential of F is < m = dimY, while the image of $\hat{\Sigma}$, called the *critical* set, is denoted by

$$F(\hat{\Sigma}(F)) = \Sigma(F) \subset Y.$$

Klartag's Theorem. Given a probability measure μ with a continuous density function on \mathbb{R}^n and a number k << n, there exists a surjective affine map P = $P_{\mu} : \mathbb{R}^n \to \mathbb{R}^k$ such that the pushforward measure $P_*(\mu)$ is ε -round (in the natural sense) where $\varepsilon \to$ 0 for $n \to \infty$.