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ISOPERIMETRY OF WAISTS AND CONCENTRATION
OF MAPS

M. Gromov

1 Waist of the Sphere Theorem

Let f : Sn → R
k be a continuous map where Sn is the unit n-sphere.

Then there exists a point z ∈ R
k such that the spherical n-volumes of the

ε-neighbours of the level Yz = f−1(z) ⊂ Sn, denoted Yz + ε ⊂ Sn, satisfy

Vol(Yz + ε) ≥ Vol(Sn−k + ε) (�)Sn

for all ε > 0, where Sn−k ⊂ Sn denotes an equatorial (n− k)-sphere.

This is proven in §5.9.
Remarks. (a) If k = n, and card f−1(z) ≤ 2, z ∈ R

n, then (�)Sn

applied to ε = π/2 amounts to the Borsuk–Ulam theorem: some level
f−1(z) of f : Sn → R

k equals a pair of opposite points. Not surprisingly, our
argument in the general case depends on Z2-cohomological considerations.

(b) If k = 1 one may take the Levy mean of f for z ∈ R, where
the level f−1(z) ⊂ Sn divides the sphere into equal halves (i.e. where
Vol(f−1(−∞, z]) and Vol(f−1[z,∞)) are both ≥ 1

2 Vol(Sn)). Then (�)SN

follows from the spherical isoperimetric inequality (see 9.2.B).
(c) The inequality (�)Sn for ε→ 0 shows that the Minkowski m-volume

of f−1(z) for m = n − k is ≥ than that of the equatorial sphere Sm ⊂ Sn.
Yet, it remains unclear if some level of f has the Hausdorff measure
≥ Volm(Sm). (If f is a generic smooth map, a level with Haumesm ≥
Volm(Sm) is delivered by the Almgren–Morse theory, see [Gr5].)

2 Waists of mm-spaces

An mm space X = (X,dist, µ) is a metric space with a Borel measure µ on
it. Customarily one deals with Polish spaces, where X is a dist-complete
separable space. Our X’s, for most part, are Riemannian manifolds, where
µ may or may not be equal to the corresponding Riemannian measure dx
of (X,distRiem). One says that µ is normalized or it is a probability measure
if µ(X) = 1. In this case X is called a pm space.
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We extend the mm framework by allowing X = (X,dist, µ), where
dist(x, x′) becomes infinite on some pairs (x, x′) ∈ X × X. A basic ex-
ample is the countable Cartesian power X∞ of a compact pm space X,
where the Cartesian (i.e. Pythagorian) metric dist∞ is infinite for almost
all (x, x′) ∈ X∞×X∞. Yet dist∞(Y, Y ′) <∞ for measurable subsets Y, Y ′

of positive µ∞-measure under rather mild assumptions on X = (X,dist, µ),
e.g. for (connected!) Riemannian X with normalized Riemannian measures
(compare “concentrated spaces” in [Gr8]).

Given a family Z of subsets Y = Yz ⊂ X = (X,dist, µ), z ∈ Z, and a
function w(ε), ε > 0, we write

wst
(
X, {Yz}, ε

) ≥ w(ε)

if ∃ z, s.t.
µ(Yz + ε) ≥ w(ε) for all ε > 0 ,

where Y + ε denotes the ε-neighbourhood {x ∈ X | dist(x, Y ) ≤ ε}.
Given a topological space Z, write

wst(X → Z, ε) ≥ w(ε) ,

if for every continuous map f : X → Z there exists z ∈ Z, where the level
Yz = f−1(z) ⊂ X satisfies

µ(Yz + ε) ≥ w(ε)

for all ε > 0.
If one is concerned with an individual ε = ε0 ≥ 0, one writes wst(X, {Y },

ε = ε0) ≥ w0 if µ(Yz + ε0) ≥ w0 for some z ∈ Z. A particular value is
ε0 = 0, where one arrives at the Minkowski volume (measure) of codimen-
sion k, that is ck lim infε→0 ε

−kµ(Yz + ε), where ck = (VolBk)−1 for the
unit ball Bk ⊂ R

k. The supremum of these over z ∈ Z is denoted by
Miwst−k(X, {Yz}) and Miwst−k(X → Z) is understood accordingly.

If Z = X and Yx = {x} ⊂ X, (or, speaking of X → Z, we have a
so large Z that X can be embedded into Z), then a lower bound on the
waist amounts to finding a point x0 with the balls B(x0, ε) ⊂ X of large
measures, with no map f entering the definition. We set

wstx0(X, ε) = µ
(
B(x0, ε)

)

and write wst•(X, ε) for wstx0(X, ε) if there is a specified non-ambiguous
(choice of a distinguished) point x0 ∈ X. Sometimes, wstx0(X, ε) ≥
wstx(X,ε), x ∈ X, simultaneously for all ε > 0, as it happens, for in-
stance, for the Gaussian spaces (see below), and then wst• refers to wstx0

for this x0 ∈ X.
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3 Gaussian Spaces and Log-concavity

Let
Ga =

(
R, g(x)dx

)

for
g(x) = (2π)−1/2 exp−x2

2

and
Gan =

(
R

n,
(
gn = (2π)−

n
2 exp−‖x‖2

2

)
dx

)
.

A smooth positive function ϕ on a convex subset X in R
n and the corre-

sponding measure ϕ(x) dx are called λ-log-concave, if the second derivative
∂2 logϕ(x) is ≤ −λ for all unit tangent vectors ∂ in X. For example g(x) dx
is log-concave, that is, λ-log-concave for λ = 1.

3.1 Log-waist theorem (see §5.8). Let X be a convex subset in R
n with

a log-concave probability measure. Then

wst(X → R
k, ε) ≥ wst•(Gak, ε) =

∫

B(0,ε)
gk(x)dx

=
∫ ε

0

(
xk−1 exp−x2

2

)
dx

/∫ ∞

0

(
xk−1 exp−x2

2

)
dx . (�)log

If n ≥ k then the inequality (�)log is sharp: for example, the equality is
achieved for linear maps Gan → R

k.
3.1.A Question. Let dist and µ be O(n)-invariant metric and measure

in Rn. Under what condition(s) is the waist inequality extremized by the
(n − k)-plane through the origin? This is unknown (except for the case
k = 1), for instance, for the Euclidean measure restricted to the unit ball
B(0, 1) ⊂ R

n with the Euclidean metric.

3.2 Waists of powers. Let X be a compact connected Riemannian
manifold with a probability measure µ = ϕ(x) dx, where the function ϕ :
X → R+ is continuous and > 0 everywhere on X. Then there exists
λ = λ(X) > 0, such that all Cartesian powers XN , N = 1, 2, . . . ,∞, have

wst(XN → R
k, ε) ≥ wst•(Gak, λ ε) (�)N

for all k = 0, 1, . . . (where the continuity of f : X∞ → R
k is understood for

the infinite product topology).
Proof. One sees easily that X can be dominated by the space λ−1 Gan

for each n ≥ dimX and λ = λn = λ(X,dist, µ, n) (λn monotone decrease
in n), where

λ−1X
def= (X,λ−1 dist, µ)
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and accordingly,

wst(XN → R
k, ε) ≥ wst

(
(λ−1 Gan)N → R

k, ε
)

= wst•(Gak, λ ε) =
∫ λ ε

0

(
xk−1 exp−x2

2

)
dx

/∫ ∞

0

(
xk−1 exp−x2

2

)
dx .

Domination, written X ≺ X ′ between mm spaces X = (X,dist, µ) and
X ′ = (X ′,dist′, µ′), signifies the existence of a λ-Lipschitz map ψ : X ′ → X
that pushes forward µ′ to µ, i.e. ψ∗(µ′) = µ. The required domination of
X by some λ−1 Gan is elementary (compare § 31

2 in [Gr1]) and then (�)N
follows from (�)log applied to GanN = (Gan)N , since

(a) the waist is obviously monotone for the domination ordering between
mm spaces.

(b) The domination order is consistent with the Cartesian products.

3.3 Z2-waists and Gibbsian waists. We shall introduce in §7.2 the
notions of parametric Z2-waists, denoted Z2-wst(X → Z, ε), that minorize
the corresponding ordinary waists, wst ≥ Z2-wst ≥ Z2-pawst, i.e. Z2-
wst(ε) ≥ w(ε) ⇒ wst(ε) ≥ w(ε) for all functions w(ε) and similarly for
pawst. Our proof of (�)Sn , (�)log and (�)N allows Z2-pawst, and hence,
Z2-wst in these inequalities (see §7) where the advantage of the Z2-version
is their stability under Cartesian products and other operations over mm
spaces. For example, we shall see in §7 (for certain fibrations as well as
products) that

Z2- pawst(X ×X ′ → R
k) ≥ (

Z2- pawst(X → R
k)

)(
Z2- pawst(X ′ → R

k)
)

(×)�∞
for all k and all mm-spaces X and X ′, where X × X ′ is given the sup
(or �∞) product metric

dist
(
(x1, x

′
1), (x2, x

′
2)

)
= max

(
distX(x1, x2),distX′(x′1, x

′
2)

)
.

There is a similar inequality for the ordinary Cartesian (�2-Pythagorian)
products (and Riemannian fibrations) applicable not to the functions wst(ε)
but rather to their Gibbs–Laplace transforms. Namely, assign, to each
Y ⊂ X , the function

Gi(Y ;β) =
∫

X

(
exp−β distX(x, Y )

)
µdx

and modify the definition of the waists by substituting Gi({Yz}, β) and
Gi(f−1(z), β) in the place of µ(Yz+ε) and µ(f−1(z)+ε). The (�)-inequalities
obviously yield their Gi-version, and moreover, these Giwst’s admit para-
metric Z2-refinements as well. The latter satisfy the Cartesian product
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inequality (see §7)
Z2-paGiwst(X ×X ′ → R

k, β)

≥ (
Z2-paGiwst(X → R

k, β)
) × (

Z2- paGiwst(X ′ → R
k, β)

)
. (×)Gi

3.4 Remarks and examples. One can combine (×)Gi with the Z2-
refined (�)Sn and thus evaluate Giwst’s of products of spheres. How-
ever, the resulting inequalities are far from being sharp. A better (still
not sharp) result can be obtained with a domination of the half-sphere
Sn

+ (with the normalized Riemannian-measure) by λ−1
n Gan, where λn can

be explicitly evaluated by looking at O(n)-invariant (dominating) maps
(Rn, gn(x) dx) → Sn

+, where the problem reduces to domination of the
measure (sin t)n−1dt by suitably normalized tn−1(exp−λn t

2)dt. Thus one
can show that the products of the spheres ri Sni , i = 1, . . . , j of radii ri
with normalized measures have the waists bounded by the infimum of the
corresponding Gaussian waists. Namely, let λ = mini=1,...,j(λni/ri). Then
the product X = r1 S

n1 × · · · × rj S
nj has

wst(X → R
k, ε) ≥ wst•(λ−1 Gak, ε) (×)Sn

+

for all k = 0, 1, . . . (see §7).
3.5 Concentration and upper bounds on waists of X���. If
wst(X → R

k, ε) ≥ w(ε) then, obviously, for every 1-Lipschitz map the
push-forward measure µ∗ = f∗(µ) on R

k (for the measure µ on X) is w-
concentrated at some point z0 ∈ R

k:

wstz0

(
(Rk, µ∗), ε

) ≥ w(ε) . (∗)Lip

Thus the (�)-inequalities yield the corresponding (∗)-inequalities for µ∗.
One can use (∗)Lip the other way around and bound wst(X∞ → R

k) by
wst•(λ

−1 Gak) for some λ = λ(X) > 0 as follows.
Given a compact pm spaceX, consider 1-Lipschitz functions f :XN → R,

N = 1, 2, . . . , with
∫
XN f(x)µNdx = 0 and let Λ = Λ(X) = supf,N

∫
XN f

2(x)
µNdx over all such f and N = 1, 2, . . . . Let λ = λ(X) be defined by the
relation ∫ +∞

−∞
λ

2
x2g(x)dx = Λ , i.e. λ =

√
Λ .

Then
wst(X∞ → R

k, ε) ≤ wst•(λ
−1 Gak, ε) (≤)∞

for all k = 1, 2, . . . where this inequality must be understood as follows: for
every pair of numbers 0 < ε0 < ε1 < ∞ and each δ > 0 there exists a
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continuous (in fact 1-Lipschitz) map F : XN → R
k for all sufficiently large

N ≥ N(ε0, ε1, δ), such that all levels Yz = F−1(z), z ∈ R
k satisfy

µN (Yz + ε) ≤ µGak

(
B(0, λε)

)
+ δ

for all ε ∈ [ε0, ε1].
Proof. Take a 1-Lipschitz map f : XN0 → R with

∫
f2 approaching Λ,

and let fN1 = 1√
N1

∑N1
i=1 f(xi), xi ∈ XN0 , on XN1N0 . The distribu-

tion of fN1 approaches λ−1
g(t) dt by the central limit theorem and F =

(fN1 , fN1, . . . , fN1︸ ︷︷ ︸
k

) : XN1N0 → R
k does the job for N0, N1 → ∞.

Question. Obviously, λ(X) ≥ λ(X), but it is unclear what is a possible
gap between the two numbers.

4 Concavity Classes and Convex Derivation of Measures

A concavity class C of measures on a Polish space X is, by definition, a
cone in the space of Borel measures on X stable under infima of measures:
for every family of measures µi ∈ C, i ∈ I, there exists a unique measure
µ∨ ∈ C, such that

µ∨ ≤ µi , i ≤ I ,

and µ∨ ≥ µ for all measures µ satisfying µ ≤ µi, i ∈ I. In our applications
concavity classes are of the form {ϕ(x) dx} for some background measure
dx on X, where the (density) functions ϕ(x) are distinguished by some
(local) concavity condition.
Examples. (a) An x-concave (or just concave) measure on R

n is sup-
ported on a convex subset S (of possibly positive codimension) in R

n and is
of the form ϕ(s) ds for a concave function ϕ(s) and the Lebesgue measure
ds on S.

(b) A smooth λ-log-concave µ on S is a one where ϕ(s) is λ-log-concave,
i.e. ∂2 logϕ(s) ≤ −λ. Then one defines (non-smooth) λ-log-concavity by
taking infima of the smooth λ-log-concave ϕ’s. Intuitively, these are “more
concave” than exp−λ

2 ‖x‖2.
(c) xk-concavity refers to densities ϕ that are “more concave” than the

function xk on R+, i.e. ϕ1/k(x) is a concave function.
(d) sin-concavity: these ϕ are more concave than sin(x), x ∈ [0, π]; if

ϕ is smooth this is expressed by the inequality ∂2 ϕ ≤ −ϕ and, in general,
one takes infima of such ϕ’s.
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(e) sink-concavity: this means ϕ1/k is sin-concave.

The notion of sink-concavity is useful for convex subsets S in Sn, where
it refers to such concavity (of the density function ϕ of the measure in
question) on each geodesic segment in S. (Similarly, one defines various
classes of concave function and measures on general Riemannian and some
Finsler manifolds.)

4.1 Products of concavity classes. Given a (concavity) class C0 of
measures µ on X and a (concavity) class Φ of positive functions ϕ one
defines C = Φ · C0 as the minimal concavity class of measures containing the
products ϕµ for all ϕ ∈ Φ and µ ∈ C. This is well defined as the intersection
C = ∩i∈ICi of concavity classes Ci is a concavity class.

Examples. (a) Given a class C0 of measures on (convex subsets in) R
n

one defines C = xk C0 as Φxk · C0 for the class Φxk of xk-concave functions.
One checks (elementary) that this transforms x�-concave measures to xk+�-
concave ones and that the class of λ-log-concave measures goes into itself.

(b) Multiplication by (sin)k-concave functions transforms the class Csin�

of sin�-concave measures to Csin�+k .

4.2 Derived classes. Given a class C of measures µ on X = Sn or R
n

(or on an arbitrary Finsler space for that matter) one restricts these µ to
open convex subsets U , normalizing them by taking µnor | U = (µ | U)/µ(U)
and defines C′ as the set of the weak limits of µnor | U for all µ ∈ C and
U ⊂ X. The measures µ′ ∈ C′ are called convexly derived from measures µ
in C and they acquire new concavity properties when the implied sequences
of convex subsets Ui degenerate, i.e. Hausdorff converge to convex subsets
S ⊂ X of positive codimension k. The Brunn–Minkowski theorem claims,
for example, that the measures on such S derived from x�-concave measures
in R

n are xk+�-concave and λ-log-concave measures remain λ-log-concave,
while in Sn this codimension k-degeneration brings (sin)�-concave measures
to (sin)�+k-concave ones. In general, under mild (if any) assumption on C,
it transforms to xk C for the codimension k degeneration in R

n and to sink C
in Sn (compare [GrM]).

Remark. The latter generalizes to arbitrary Riemannian manifolds X
as follows. Let a family of geodesically convex open subsets U Hausdorff
converge to some S with codimS = k and let the normalized Riemannian
measures dx in U ’s weakly converge to some measure µ on S with the
density function ϕ(s) with respect to the Riemannian measure ds on S.
Take a unit tangent vector ∂ to S at some point s ∈ S, an orthonormal
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frame ν1, . . . , νk of normal vectors and let R(S, ∂) denote the sum of the
sectional curvatures on the bi-vectors ∂ ∧ νi, i = 1, . . . , k. Then the con-
cavity of the restriction of ϕ to each geodesic segment σ in S is controlled
by the lower bound on R(S, ∂) for the unit tangent vectors ∂ to σ: if
R(S, ∂) ≥ k (= Ricci Sk+1) on σ then ϕ(σ) is sink-concave. This can be
derived from the Paul Levy inequality for convex subsets in manifolds with
Ricci ≥ k or can be proven, I guess, by a direct elementary argument.

Questions. (a) Let a geodesic segment S without conjugate points in a
Riemannian manifold X be given. When can S be approximated by open
geodesically convex subsets in X? (The same question for convex subsets
S of dimension n− k > 1 seems relevant for symmetric spaces X.)

(b) What happens if instead of convex U ⊂ Sn in the definition of
convex derivation of measures one uses another class of open subsets of
“bounded complexity”, for example, semi-algebraic U ’s of degree ≤ d?

4.3 Convex partitions (compare [GrM]). A measurable partition Π
of Sn (or of a convex subset in Sn) into convex subsets S = Sπ, π ∈ Π,
is called convex if it equals the limit of consecutive refinements of finite
partitions into convex subsets. Every probability measure µ on Sn, induces
the canonical system of probability measures µπ on almost all Sπ and these
µπ are convexly derived from µ for almost all π ∈ Π (see [GrM]). Thus
almost all µπ are sink-concave for the Lebesgue measure µ = ds, provided
codimSπ ≥ k for all π ∈ Π and these are 1-log-concave if µ is 1-log-concave,
e.g. equals the Gaussian measure. (Observe that R

n is projectively realized
by a semi-sphere and thus convex partitions of R

n are induced by those
of Sn.)

4.4 Convex partition theorem. Let µ be a Borel probability measure
on Sn and let M′

k denote the space of weak limits µ′ of the restrictions
(µ | Ui)/µ(Ui) for all sequences of convex open Ui’s that Hausdorff converge
to compact convex subsets S ⊂ Sn of codimension (exactly!) k. Clearly,
S ⊃ suppµ′, and, to save notation, we assume that S = suppµ′.

Let ck• : M′
k → Sn be a continuous (“center”) map, such that ck•(µ′) ∈ S

= suppµ′ for all µ′ (e.g. the center of mass of µ′). The map ck• does not, in
general, continuously extend to the weak closure of M′

k: when a sequence
(S′

i, µ
′
i) converges to (S′′, µ′′) with codimS′′ ≥ k+1 the sequence ck•(µ′i) ∈ S′

i

does not have to converge. In such a case we take the limit points of all
these (sub)sequences and denote by c◦(µ′′) ⊂ S′′ the (compact) subset
consisting of all such limits. If Π is a convex partition of Sn into Sπ’s
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with codimSπ ≥ k, we denote by Cπ ⊂ Sπ the (“center”) image of the
(set valued) map sending each Sπ with codimension = k to ck•(µπ) and
if codimSπ ≥ k + 1 to c◦(µπ), where µπ denote the canonical system of
measures associated to Π. As we know these µπ are convexly derived from
µ for almost all π and thus the (“central”) subset Cπ is well defined in Sπ

for almost all π.

4.4.A (see §6). Let f : Sn → R
k be a continuous map and ck• a

center map. Then there exist a value z ∈ R
k and a convex partition Π of

Sn into Sπ’s of codimension ≥ k, such that the level Yz = f−1(z) ⊂ Sn

meets (the corresponding “center”) Cπ for almost all π ∈ Π.

The spherical and the log-concave waist theorems easily follow from
4.4.A. The map ck• : µπ �→ s ∈ Sπ one employs here is the assignment of the
maximum point of the density function ϕ(s) of µπ on Sπ. The sink- and
log-concavity, respectively, of ϕ makes this c• well defined and continuous
in µπ. Since

µ(Yz + ε) =
∫

Π
µπ

(
Sπ ∩ (Yz + ε)

)
dπ ,

(by the definition of the canonical system of measures), everything reduces
to showing that the waists of almost all (Sπ, µπ) at ck•(µπ) are bounded from
below by the normalized Vol(Sn−k, ε) and wst•(Gak, ε) correspondingly.
This trivially reduces to similar bounds for sink-concave and log-concave
measures on R+, ψ(t)dt, with the maximum densities points at the origin,
where the proof follows from the following

Elementary Lemma. Let ϕ0(t), t ∈ [0, t0 ≤ ∞) be a smooth posi-
tive monotone decreasing function where, (logϕ0)′′ ≤ 0, and, moreover,
(logϕ0)′′ is monotone decreasing. Let λ(τ), τ ≤ τ0 < t0 be a positive
function and define, for t ∈ [0, t0 − τ0], ψ(t) = inf0≤τ≤τ0 λ(τ)ϕ0(t + τ).
Then ∫ ε

0
ψ(t)dt

/∫ t0−τ0

0
ψ(t)dt ≥

∫ ε

0
ϕ0(t)dt

/∫ t0

0
ϕ0(t)dt .

The proof is straightforward. In the Sn-case this applies to ϕ0(t) = cos t,
t ∈ [0, π/2] and in the log-concave case to ϕ0(t) = exp−t2.
Question. Does every closed subset Y ⊂ Sn passing through the “cen-
ters” Cπ of all Sπ making a k-dimensional convex partition of Sn necessarily
have Haumesn−k Y ≥ VolSn−k? (The transversal (n − k)-measure of the
partition looks like a calibrating (n − k)-form with norms ≤ 1 on Y that
integrates to ≥ Vol Sn−k.)
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5 Spaces of Partitions

A convex partition of depth i is obtained by the following i-step process.

Step 1. Divide Sn into halves by an (co)oriented hyperplane i.e. ori-
ented equatorial hypersphere h ⊂ Sn.

Step 2. Divide each convex subset S defined on the (i − 1)-th step
into two parts by an oriented hyperplane.

The resulting space Pi of partitions Π of depth i identifies with the
Cartesian power H2i−1 where H = Hn = (Sn)∗ is the space of oriented
hyperplanes h ∈ Sn; this H is canonically homeomorphic to Sn, where
each h is determined by the unit normal vector h⊥ ∈ Sn. The 2i − 1
hyperplanes making a point in Pi are organized into a rooted dyadic tree
Ti of depth i: the interior vertices t ∈ Ti have the outcoming degree 2. The
leaves of Ti mark the subsets Sπ ⊂ S making a partition.

The group Gi of the automorphisms of Ti naturally acts on Pi by per-
mutations of the coordinates ht ∈ H, t ∈ {interior vertices of Ti} and
central reflections of H for h ↔ −h where h �→ −h indicates reversal of
the (co)-orientation of the hyperplane h. Namely, if a vertex t goes to t′ by
g : Ti → Ti, then ht goes to ht′ or −ht′ depending on whether g preserves
or reverses the order of the two edges growing from tj here we assume that
all vertices t of a given level j (i.e. of distance j from the root of Ti) are
naturally (lexicographically) ordered, while Gi consists of combinatorial au-
tomorphisms of Ti irrespective of the order. Thus card(Gi) = 22i−1 and it is
generated by involutions it that switch two branches growing from the ver-
tex t ∈ Ti. There is a natural homomorphism ρi : Gi → Gi−1, i = 2, 3, . . . ,
where ker ρi ⊂ Gi is canonically isomorphic to (Z2)2

i−1
.

The action of Gi on Pi is (obviously) free and we set Qi = Pi/Gi.
The Cartesian projection Pi → Pi−1 induces a fibration Qi → Qi−1,
i = 2, 3, . . . , where the fiber is the 2i−1-th Cartesian power of the projec-
tive space Pn = Hn/{+1,−1}. The fundamental group π1(Qi−1) = Gi−1

acts on (Pn)2
i−1

by permuting coordinates; these permutations naturally
extend to isomorphisms between the standard line bundles � over projec-
tive spaces. Thus the Whitney power (�)2

i−1
over (Pn)2

i−1
defines a vector

bundle L′
i → Qi whose restriction to each fiber equals (�)2

i−1
. Besides L′

i,
the manifold Qi carries the bundles L∗

j , j = 1, 2, . . . , i− 1 induced from L′
j

over Q. The Whitney sum of all of them is called Li → Qi,

Li = L∗
1 ⊕ L∗

2 ⊕ · · · ⊕ L∗
i−1 ⊕ L′

i .
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5.1 Non-vanishing Lemma. For each m ≤ n, the top Stiefel–Whitney
class of the m-th Whitney’s power Lm

i does not vanish

wN (Lm
i ) �= 0 , for N = Nm = m(2i − 1) .

Proof. Since wNm ∪wN�
= wNm+�

, it suffices to prove the lemma for m = n.
The class wNn((L′

i)
n) restricts to the generator in HN ′

((Pn)2
i−1

; Z2) = Z2,
N ′ = n 2i−1 on each fiber of the fibration Qi → Qi−1, while wNn(Ln

i−1) may
be assumed �= 0 by induction. Hence

wNn(Ln
i ) = wNn((L′

i)
n) ∪w∗

Nn
(Ln

i−1) �= 0 ,

where w∗
Nn

denotes the pull-back of wNn under Qi → Qi−1. �

Remark. The dual homology class w⊥
Nn

((L′
i)

n) ∈ HN−N ′(Qi; Z2) can be
realized by the section Qi−1 → Qi corresponding to a diagonal point in
(Pn)2

i−1
that is fixed under the monodromy, while (w∗

Nn
)⊥ ∈ HN ′

∗ (Qi; Z2)
can be represented by a fiber of Qi → Qi−1. Thus the non-vanishing is seen
geometrically as the two cycles transversally intersect at a single point.

5.2 Vanishing Corollary. Every continuous section Qi → Lm
i , m ≤ n,

vanishes at some point q ∈ Qi. Moreover, the zero set of a section supports
a non-zero homology class in HNm(Qi; Z2).

Notice that for i = 1 this amounts to the Borsuk–Ulam theorem.

5.3 c•-corollary. Denote by S the space of all n-dimensional geodesically
convex subsets S ⊂ Sn, each contained in a hemisphere, with the Hausdorff
topology and let S �→ c• = c•(S) ∈ Sn be a continuous map S → Sn. Then
for each continuous map f : Sn → R

k, k = 1, 2, . . . , n − 1, there exists a
partition Π ∈ Pi of Sn, for each i = 1, 2, . . . , such that

(i) All convex subsets Sπ making Π have equal n-dimensional volumes
= Voln(Sn)/2i;

(ii)
f(c•(Sπ)) = f(c•(Sπ′)) (+)•

for all π, π′ in all Π.

Proof. Take a (possibly empty) convex subset S = Sπ ⊂ Sn for some
π ∈ Π ∈ Pi and let S⊥ = Sπ⊥ be the immediate neighbour subset, where S
and S⊥ are two halves of a convex subset S− divided by a hyperplane h on
the i-th (the last) step of the division process. Thus S and S⊥ correspond
to two neighbour leaves in Ti, while h represents the interior vertex in Ti

adjacent to the two leaves. Set

v(h) = voln(S)



Vol. 13, 2003 ISOPERIMETRY OF WAISTS AND CONCENTRATION OF MAPS 189

and
ϕ(h) = v(h)f(c•(S)) .

Observe, that h is (co)oriented and thus there is a non-ambiguous choice
between S and S⊥, say corresponding to the “left” leaf in the tree Ti.

Next, take a hyperplane h− appearing on the j-th step of the division
process for j < i and let Th− ⊂ Ti be the “left” subtree in Ti issuing
upstream from (the vertex corresponding to) h. Let Πh− ⊂ Ti consist of
the leaves of Ti contained in Th− . Take all convex subsets Sπ, corresponding
to π ∈ Πh− and hπ the respective (final) hyperplanes. Set

v(h−) =
∑

π∈Πh−

v(hπ)

ϕ(h−) =
∑

π∈Πh−

ϕ(hπ) .

Now, to each point Π ∈ Pn given by {ht} for t ∈ {interior vertices of Ti},
we assign the vector F (Π) in (Rn−k+1)2

i−1 by the rule
F : {ht} �→ {

(v(ht) − v(−ht), ϕ(ht) − ϕ(−ht))
}
.

The map F : Pi = (Hn)2
i−1 → (Rk)2

i−1 is equivariant for the action of Gi

on Pi as well as the similar action on (Rk)2
i−1 and it is, clearly, continuous.

Thus F defines a section of Li → Qi, and hence has a zero point π ∈ Pi
i

which satisfies (i) and (ii) by the definition of F . �

5.4 Example. Let c•(S) ∈ S be the center of the maximal n-ball inside S.
Then the above delivers a convex partition of Sn into 2i subsets of equal
volume, where some level f−1(σ) ⊂ Sn meets the centers of all Sπ.

5.5 On i = ∞. By passing to the projective limit Q∞ for · · · Qi →
Qi−1 → · · · → Q1 one obtains a similar result for infinite partitions that
are our eventual destinations but, for the purposes of the present paper,
one can reduce everything one needs to i <∞, by several standard (albeit
artificial) regularization tricks. A problem which presents itself however,
is the dimension bound on the convex subsets Sπ ⊂ Sn making the final
infinite partition: we need dimSπ ≤ k for all (at least, almost all) π. This
is achieved with the following.

5.6 Generalization of the Vanishing Lemmas. Suppose, in the con-
text of §7 we are given equatorial spheres Hm

1 ⊂Hn, Hm
2 ⊂Hn, . . . ,Hm

i ⊂Hn.
If m ≥ k + 1, then there exists a partition π ∈ Pi satisfying (i) and (ii) of
§5.3 where, moreover, all hyperplanes h ∈ Hn of level j are contained in
Hm

j for all j = 1, . . . , i.
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Proof. Proceed as before with Pi = Pi(Sn) replaced by Pi(Sm) in the
non-vanishing lemma.

5.7 c•-corollary. There exists a convex partition Π of Sn into Sπ with
dimSπ ≤ k for all π, such that

f(c•(Sπ)) = f(c•(Sπ′)) (+)∞•
for all pairs π, π′ ∈ Π, where c•(Sπ) for dimSπ < n refers to some limit point
of c•(Sπi) for Sπ = ∩∞

i=1Sπi , where πi ∈ Pi are finite partitions converging
to Sπ.

Proof. To make dimSπ ≤ k, we take a sequence Hm
j , j = 1, 2, . . . , that

is dense in the space of all m-spheres in Hn. Then every convex subset S
that is approximately �-dimensional for � > k will be cut infinitely often by
h’s almost normal to it, thus making its �-dimensional width going to zero
for i → ∞; therefore, some sequence of finite partitions πi converges, for
i→ ∞ to the desired π. �

5.8 Construction of c� and the proof of the waist theorem in the
Gaussian case. The above corollary does not directly imply 4.4.A, since
the map c•, unlike ck• in §4.4, is supposed to be continuously defined for
all convex subsets S not only of those with codimS = k. In some cases,
one can construct a map c• as in §5.7, that is arbitrarily close to ck• on the
space of k-dimensional sets S and then §5.7 does imply 4.4.A.

The easiest case is that of the Gaussian, or a general 1-log-concave
measure µ on R

n where one has the following well known

5.8.A Concavity property. Let µ be a 1-log-concave measure on
a convex subset in R

n and let U1 and U2 be two convex domains. Consider
the translates U1 + x1 of U1 for all x1 ∈ R

n and the intersections Ux1 =
(U1 + x1) ∩ U2 ⊂ R

n. Then the function µ(Ux1) is 1-log-concave x1 ∈ R
n

in-so-far as it is > 0.

Proof. The “middle intersection” Uy for y = (x1 + x2)/2 contains the
Minkowski half-sum 1

2(Ux1+Ux2) and the Brunn–Minkowski for log-concave
measures applies.

Now we may use c• = cδ by approximately extending ck• from k-dimensio-
nal subsets S to n-dimensional ones using the partition of unity, for exam-
ple, where such a cδ is constructed in the δ-neighbourhood of each S of
dimension k and these extensions are brought together with a partition of
unity (in the space of convex subsets in R

n). The value of the resulting
cδ on the original S equals a convex combinations of values of ck• ’s on the



Vol. 13, 2003 ISOPERIMETRY OF WAISTS AND CONCENTRATION OF MAPS 191

k-dimensional subsets S′ close to S. Therefore, by the above concavity, the
measures of the intersections of S with the ε-ball around sδ = cδ(S) are
almost as large as the original ones for s = ck•(S)

µ
(
S ∩B(sδ, ε)

) ≥ µ
(
S ∩B(s, ε)

) − δ′ ,

where δ′ → 0 for δ → 0. Thus 4.4.A is reduced to §5.7 and the proof of the
log-concave (in particular, Gaussian) theorem follows.

5.9 The spherical case. The volume of the intersection of the ε-ball
B(x, ε) ⊂ Sn with a convex domain U ⊂ Sn does not seem (?) a sufficiently
concave function in x ∈ Sn in order to apply the above argument. However,
this volume

vε(x) = µ
(
U ∩B(x, ε)

)

is, obviously, weakly concave in the following sense: the value of vε at each
point y on the geodesic segment [x1, x2] ⊂ Sn satisfies

vε(y) ≥ Cn min
(
vε(x1), vε(x2)

)
(∗)

for some Cn > 0 (possibly Cn = 1).
When we approximately extend ck• from k-dimensional to n-dimensional

sets, we face a (convex) ambiguity, only at those k-dimensional S that are
close to (k − 1)-dimensional ones. Then the volume vε(ck•(S)) becomes of
order εk−1 rather than εk, and in the limit, we either have no ambiguity
problem for almost all Sπ, π ∈ Π, or we arrive at some level Yz = f−1(z)
with infinite Minkowski measure of codimension k. The latter can be ruled
out by approximating f by generic smooth maps f ′ : Sn → R

k and applying
the above to these f ′. The spherical waist theorem for f itself follows by
letting f ′ → f .

6 (Co)homological Partition Theorems

The remaining problem in the proof of the general case of 4.4.A is due
to the ambiguity in approximation of a convex domain U ⊂ Sn by a k-
dimensional convex subset S for some k < n. This ambiguity is of the
same nature as the selection of the first eigenvector of a symmetric matrix
at a point with multiple eigenvalues, since the above approximation reduces
to a choice of k principle eigenvectors for the measure (distribution) µ = µU

associated to U that is assumed to have a positive continuous density in U .
In general, given a probability measure µ on R

n with n-dimensional support
(or rather with the convex hull of the support of dimension n) one uses
the canonical scalar product on affine functions R

n → R, that defines an
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ellipsoid E = E(U) (approximating µ), centered at the center of mass
c(µ) ∈ R

n of µ that is the unit ball of the dual scalar product (Hilbertian
norms) on R

n. Let �1, �2, . . . , �n be the principal axes of E written in the
length decreasing order and let Lk ⊂ R

n be an affine space spanned by
�1, . . . , �k (that passes through c(µ)). The relevant k-dimensional measure
µk (traditionally) used as a k-dimensional approximation to µ is (defined
to be) the normal projection (push-forward) of µ to Lk.

The choice of Lk, and thus of µk become ambiguous if the k-th eigen-
value of (the quadratic form associated to) E is non-simple: multiplicity
of order δ brings forth (δ − 1)-pencil (projective space) of Lk’s. However,
this is not so bad as it looks since ellipsoids (i.e. symmetric matrices) with
multiple eigenvalues have codimension two (not one!) in the space of all
ellipsoids E. Thus, for a generic family of measures µv, parametrized by,
say, a closed d-manifold V � v, the totality of Lk = Lk(µv) make a d-cycle:
the space L of pairs (v, L(µv)) ⊂ V × Grk(Rn) (where Grk stands for the
Grassmann manifolds of k planes in R

n) is a d-cycle, where the “cycle”
property follows from the local real algebraic origin of L and where the
projection of L to V is non-homologous to zero mod 2 in V . Consequently,
the corresponding cohomology homomorphism H∗(V ; Z2) → H∗(L; Z2) does
not vanish. This remains true for all subsets U ⊂ V : the homomorphism
from H∗(U ; Z2) to the cohomology of the pull-back of U in L (for the
projection L ↪→ V × Grk(Rn) → V ) is injective. This goes along with
the non-vanishing lemma and a simple generalization of the proof of §5.7
yields 4.4.A. In fact, the (co)homological nature of this argument leads to
the following generalization of §4.4.
6.1 Borsuk–Ulam families of cycles. A BU-family of (codimension
k “cycles”) subsets in Sn is given by the following data

(i) A topological space X̃ with a continuous map p : X̃ → Sn;
(ii) A continuous map f from X̃ to a space Z.

The resulting “cycles” are the images Yz ⊂ Sn of the pull-backs Ỹz =
f−1(z) ⊂ X̃ under p : X̃ → Sn, i.e. Yz = p(f−1(z)) ⊂ Sn, z ∈ Z.

We assume that the cohomology homomorphism Z2 = Hn(Sn,Z2) →
Hn(X̃ ; Z2) is injective and that the parameter space Z is a k-dimensional
Z2-homology manifold (e.g. a topological k-manifold). This means that Z
satisfies the local Poincaré duality over Z2. For example, if Z is a polyhedral
space, then the link of each m-simplex has the same Z2-homology as the
(n − m − 1)-sphere. Equivalently, the “normal bundle” of the diagonal
∆Z ⊂ Z × Z has the structure of a Z2-“vector” bundle. In particular, it
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possesses a coherent system of local Thom isomorphisms and well-defined
Stiefel–Whitney classes.

6.2 UB-partition Theorem. If ck• and Cπ are as in §4.4 and k < n
then the conclusion of 4.4.A holds true for every UB-family: there exists
a convex partition Π of Sn into (at most) k-dimensional subsets Sπ such
that some Yz, z ∈ Z meets Cπ ⊂ Sπ for almost all π ∈ Π.

Remark. The case k = n, corresponding to Borsuk–Ulam theorem, needs
extra assumptions on Z and/or on f . For example, it suffices to assume
that Z splits into Z0 × R.

Sketch of the proof. To clarify the geometry, let Z be a k-manifold.
Take an n-manifold X̃ and a generic smooth map f : X̃ → Z. Then the
pull-back of the diagonal under the square f × f : X̃ × X̃ → Z × Z, say
∆̃ = (f×f)−1(∆Z) ⊂ X̃×X̃ makes a relative (2n−k)-cycle in (X̃×X̃,∆

�X),
whose Z2-equivariant homology class is invariant under homotopies of maps
X̃ → Z (and under homotopies of Z2-equivariant maps X̃ × X̃ → Z ×Z in
general). Next, consider a smooth map p : X̃ → Sn, take a round (not nec-
essarily equatorial) sphere Sk ⊂ Sn and look at the cycle S̃k ⊂ X̃ × X̃\∆

�X
that is the pull-back under p × p of the set of the pairs of opposite points
in S̃k.

6.2.A. If p has non-zero Z2-degree and k < n, then the Z2-intersection
between ∆̃/Z2 and S̃k/Z2 in X̃ × X̃/Z2 is non-zero mod 2.
Proof. If Sk is a small sphere at some point s ∈ Sn, this amounts to
the (homological content of the) Borsuk–Ulam theorem. Since k < n, all
k-spaces are homotopic in Sn and the proof follows by the invariance of
Z2-intersection numbers under homotopies.

The non-vanishing of this intersection (expressed in cohomological lan-
guage) is sufficient for carrying over the argument in §5.7 and (with some
homological tinkering) the proof of §6.2 follows.

6.2.B Examples and applications. Let X̃ = Ỹ × Z where p :
X̃ → Z is the projection.

If dimZ = k, the conclusion of §6.2 holds true without assuming that
Z is a Z2-manifold.

In fact, if Z is a polyhedron, then every homology class in it is realizable
by a mapped manifold Z ′ → Z. Then §6.2 applies to the product X̃ ′ =
Ỹ × Z ′ → Z ′. Since general, say compact, spaces Z can be approximated
by polyhedra, we obtain the same result for all Z.
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One easily extends the above to the case where p : X̃ → Z is an arbitrary
(not necessarily trivial) fibration or even a topological submersion. In fact,
one needs the fibration (submersion) condition only over those points z ∈ Z,
where the Z2-manifold condition fails to be satisfied.
Remark. In most examples Z comes as a manifold; we brought in Z2-
manifolds in order to emphasize the (local) (co)homological aspect of the
Ulam–Borsuk theorem. If Z a general, say compact k-dimensional space
one can obtain lower bounds on waists (and/or concentration) by just topo-
logically embedding Z to a 2k-manifold Z+ ⊃ Z, but these do not seem
sharp for Sn and Gan. On the other hand, if k = 1, then, e.g. for Z being
a tree, one arrives at the isoperimetric problem of estimating the volume
of the ε-neighbourhood of a subset Y in X (e.g. X = Sn) dividing X
into three parts of given volumes. This can be reduced in some cases (e.g.
for 1-log-concave measures in R

n) to a 2-dimensional problem (by using
the partition argument from [GrM]) with Borsuk–Ulam applied to maps
S2 → R

2, rather than to S1 → R
1 where an explicit solution seems easy.

Question. Does (�)Sn hold true for all k-dimensional spaces Z (not just
for Z2-manifolds such as R

k) and/or for n-dimensional manifolds Z̃ mapped
to Sn with even degree �= 0?

6.3.A Isometric UB-families. Take a ((n − k)-dimensional)
space Ỹ , a continuous map p0 : Ỹ → Sn and all “isometric translates”
of this Ỹ → Sn; thus X̃ = Ỹ × SO(n + 1) and p : X̃ → Sn is defined by
p(ỹ, z) = zp(ỹ) for all ỹ ∈ Y and z ∈ SO(n+ 1).

If Ỹ = Sn−k and the map p0 : Ỹ = Sn−k → Sn is equivariant for the
standard involution on the spheres, then the family Yz = zp0(Sn−k) ⊂ Sn

admits a partition as in §6.2 provided n is odd and k = 2m − 1 for some
m = 1, 2 . . . .
Proof. We need a k-dimensional cycle Z ′ ⊂ SO(n), such that the map p
restricted to X̃ ′ = Ỹ ×Z ′ is non-homologous to zero mod 2. We take this Z ′

inside SO(k+1) by rotating Sk ⊂ Sn where we pass to the projective spaces
P k = Sk/Z2 ⊂ Pn = Sn/Z2 and observe that for n odd, the existence of Z ′

reduces to surjectivity of the homology homomorphism for the full tangent
frame bundle Fk over P k. Since the Stiefel–Whitney classes of P k for
k = 2m − 1 vanish, the frame fibration Fk → P k (with fibers SO(k)) is
surjective on the Z2-homology. �

6.3.B Corollary. The volumes of the ε-neighbourhoods of Y0 = p0

(Ỹ = Sk) in the standard round sphere Sn are bounded from below by
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those of the equatorial Sn−k ⊂ Sn, provided n is odd and k = 2m − 1.

Remarks and questions. (a) Doesn’t it look bizarre? Conjecturally,
the conclusion of 6.3.B holds true for all n and k: an (n − k)-cycle Y in
the projective space Pn non-homologous to zero must have Vol(Y + ε) ≥
Vol(Pn−k + ε) for all ε > 0, not only for Pn = RPn but for CPn and
HPn as well. Moreover, such lower bound (in a non-sharp form) might be
true for non-Riemannian metrics in Pn’s associated to some (all?) Banach
norms in R

n+1 (Rn+2 for C and R
n+4 for H), where the main issue is

the asymptotics of (the constant in) such a bound for n → ∞. (A lower
bound for Haumes(Y ) is covered by isosystolic inequalities in [Gr5] where
the constants are very poor but dimension free.) And it would not hurt
to have such inequalities for other symmetric spaces, Grassmann manifolds
Grm R

n for instance (that may carry non-homogeneous metrics associated
to non-Euclidean norms on R

n).

(b) A geometric characteristics close to the waist arises when one takes
the square of a map f : X → Z and looks at the measures of the ε-
neighbourhoods of the pull-backs of the diagonal, µ × µ((f × f)−1(∆Z)),
but it is unclear what are possible improvements over the waist inequalities
(say forX = Sn, Z = R

k). Next, one seeks configurations of i points xi ∈ X
mutually ε-apart, such that f is constant on {xi} ⊂ X. This suggests new
metric invariants reflecting the “homological complexity” of the space of
these ε-separated configurations in the space of all configuration of mutually
distinct points, but it remains unclear what happens for specific X , not even
for X = Sn.

6.3.C. Let X̃ be an n-dimensional Riemannian manifold and sup-
pose that the map p : X̃ → Sn (of non-zero Z2-degree) is (n − k)-volume
contracting, e.g. p is C1-smooth and the sup-norm of the differential of
p on the (n − k)-exterior power of the tangent bundle of X̃, denoted
Λkdp : ΛkT (X̃) → Λk(Sn), is bounded by one: ‖Λkdp(x̃)‖ ≤ 1, x̃ ∈ X̃ .
Then some “fiber” Ỹz = f−1(z) ⊂ X̃ , z ∈ Z, has its k-codimensional
Minkowski volume bounded by that of the equatorial Sn−k ⊂ Sn (where Z
is a k-dimensional Z2-homology manifold).

Proof. This follows from the lower bound on Miwst−k(Sn, {Yz = p(Ỹz)),
where this bound is derived from the BU-partition theorem in the same
way as (�)Sn .

Remark. If the “fibers” Ỹz, z ∈ Z are rectifiable then “Minkowski
volume” can be substituted by the “(n−k)-dimensional Hausdorff measure”



196 M. GROMOV GAFA

but this is unclear for (the “fibers” of) general continuous maps f : X̃ → Z.

6.3.D Filling and related problems. Let Ỹ ⊂ R
n+1 be an (n−k)-

dimensional Z2-cycle, e.g. a k-submanifold, with Fill Rad (Ỹ ⊂ R
n+1) ≥ 1,

i.e. such that Ỹ is not homologous to zero in its 1-neighbourhood Ỹ + 1 ⊂
R

n+1. Then by taking Z = R
n+1\(Ỹ + 1) and radially projecting Ỹ to the

unit spheres Sn(z, 1) = Sn we conclude with §6.2 (compare §8 in [Gr5])
that Ỹ admits a 1-Lipschitz map to Sn, say p : Ỹ → Sn, such that the
ε-neighbourhood of p(Ỹ ) ⊂ Sn have their spherical volumes ≥ Vol(Sn−k)
for all ε > 0.

This, for ε → 0, provides an elementary (with no use of calculus of
variations) solution to the Gehring linking problem (see [Gr5] and references
therein).

Remarks and questions. (a) An anybody’s guess is that the inequality
Fill Rad (Ỹ ⊂ R

n+1) ≥ 1 implies that

Voln+1(Ỹ + ε ⊂ R
n+1) ≥ Voln+1(Sn−k + ε,Rn+1)

for the unit round (n − k)-sphere Sn−k ⊂ R
n+1. (In fact one may expect

such a bound on Voln+1(Ỹ +ε) under the assumption Fill Vol (Ỹ ⊂ R
n+1) ≥

Voln−k+1(Bn−k+1(1)) for the unit (n−k+1)-ball in R
n−k+1 ⊂ R

n+1, where
the limit case for ε → 0 is covered by Almgren’s filling inequality.) The
above does not yield such a bound since Vol(Y+ε) is not (always) decreasing
under 1-Lipschitz maps. This suggests the following

(b) Definition. Given a metric space Y and an mm space X let
µX((Y → X) + ε) stand for the supremum of the measures of the ε-
neighbourhoods of the images of Y under all 1-Lipschitz maps Y → X.

The immediate question is that of identifying extremal subsets Y in
standard X’s (such as R

n and Sn) i.e. those Y ⊂ X, where µX(Y + ε) =
µX((Y → X) + ε). This is related to a problem by Hadwiger solved for
n = 2 in [BeC].

(c) Let Y1 and Y2 be two disjoint cycles in Sn+1 of dimension k and
(n − k) with non-zero linking number and with dist(Y1, Y2) = d. What
is the (sharp) lower bound on Vol(Y1 + ε) + Vol(Y2 + ε) in terms of d, ε1
and ε2?

(d) The above filling bound for Ỹ ⊂ R
n+1 extends to “sufficiently con-

vex” non-Hilbertian Banach spaces X ⊃ Ỹ (compare [GrM]) where it is
much sharper than the general filling theorem from [Gr5] for k small com-
pared to n.
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Are there filling inequalities mediating between these two? What are the
waists of the unit spheres S(B) in the standard (finite dimensional) Banach
spaces B? What are the ε-systoles of the corresponding projective spaces
P (B) = S(B)/{−1,+1} and other standard spaces (such as Grassmann
manifolds) associated to B? (An ε-systole of an mm space X is defined as
the ordinary one in [Gr7], where the (n − k)-Hausdorff measure of a cycle
Y ⊂ X is replaced by the volume of Y + ε ⊂ X.)

7 Parametric Partitions and Z2-waists

Consider an n-sphere bundle α : X → B and let Ck(X) denote the space
of (exactly) k-dimensional convex subsets S in the (spherical) fibers Sn =
α−1(b) ⊂ X for all b ∈ B. Let ck : Ck(X) → X be a continuous (“center”)
map sending each S ⊂ X to a point in S. Next consider a topological
space X̃ along with a map p : X̃ → X that is Z2-onto in the following
sense: for every pair of compact subsets X1 ⊂ X2 ⊂ X the Z2-cohomology
homomorphism

H∗(X2,X1; Z2) → H∗(p−1(X2), p−1(X1); Z2

)

is injective (and the corresponding homology homomorphism is surjective,
provided the spaces in question are not overpathological). For example,
if X is a closed Z2-homology N -manifold, then p is Z2-onto iff the ho-
momorphism HN (X; Z2) → HN (X̃,Z2) is injective. Another instance of
this, recurrent in the present paper, is the full (or partial) non-oriented flag
bundle of a real vector bundle, where the Z2-onto property amounts to the
splitting principle for O(n)-bundles.

Take, furthermore, a fibration β : Z → B, where the fibers are k-
dimensional Z2-homology manifolds. (In truth, β does not need to be a
fibration: topological submersions will do. Moreover, one can allow maps
ϕ with a suitable Poincaré duality satisfied by their Leray cohomology
sheaves) and let f : X̃ → Z be a fiberwise (i.e. βf = αf) continuous map.

Now, let us restrict attention to what happens over a given point b ∈ B,
where we have the fibers Xb = Sn, X̃b and Zb along with the maps
pb : X̃b → Xb, fb : X̃b → Zb, and ckb : Ck

b = Ck(Xb) → Xb. One checks
easily that these satisfy the assumption of §6.2 and therefore, there exists
zb ∈ Zb, such that the level Yzb

= pb f
−1(zb) ⊂ Xb meets the (central)

subsets Cπb
of some convex partition Πb of Xb = Sn with (at most) k-

dimensional “slices” Sπ ⊂ Xb π ∈ Πb.
Denote by Z ′

b ⊂ Zb the set of all these zb ∈ Zb, let Z ′ ⊂ Z be the union
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of Z ′
b over all b ∈ B and β′ : Z ′ → B be the restriction of β : Z → B to Z ′.

7.1 Parametric BU-partition Theorem. The map β′ is Z2-onto.

Proof. If B consists of a single point b this is equivalent to §6.2 claiming
that Z ′ = Z ′

b is non-empty in this case. The Z2-onto property says, in
effect, that Z ′

b is “(co)homologically continuous” in b ∈ B for all B. In
fact, the formal structure of the proof of §6.2 automatically ensures such
“continuity” (or functoriality) and the proof of §7.1 follows.

Remark: Z2-morphisms. One can save notation by introducing the (well
known, I guess) notion of a Z2-(faithful)-morphism f̃ : X → Z that is (a
multivalued map) given by a pair p : X̃ → X and f : X̃ → Z with p
being Z2-onto. (One can “reduce” such a morphism to a correspondence
f : X → Z by taking the image X ⊂ X×Z of the map p×f : X̃ → X×Z.)

Example. If X is a smooth real algebraic variety, then every rational
map X → Z is a Z2-morphisms, where Z is another (possibly singular)
real algebraic variety and where “smooth” can be relaxed to “Z2-homology
manifold”. The Z2-morphisms make a decent category, where one avoids
explicitly mentioning X̃’s. (Also the center maps ck : C → Sn can be re-
placed by a Z2-morphism without changing the conclusions of the partition
theorems.) For instance, the Borsuk–Ulam theorem obviously applies to
Z2-morphisms f̃ : Sn → R

n and claims that f̃(s) ∩ f̃(−s) �= ∅ for some
s ∈ Sn (for f̃(s) = f(p−1(s)) ⊂ R

n). More generally, let α : X → B be a
(topological) n-sphere bundle with a fixed point free fiberwise continuous
involution, denoted x �→ −x, x ∈ X, let β : Z → B be a topological sub-
mersion (e.g. a locally trivial fibration), where the fibers are Z2-homology
k-manifolds, and let f̃ : X → Z be a Z2-morphism over B, i.e. the implied
map f : X̃ → Z sends each “fiber” X̃b = (α ◦ p)−1(b) to Zb, b ∈ B. Denote
by BU = BU(f̃) ⊂ X̃ × X̃ the subset of the pairs (x̃1, x̃2) satisfying the
equations

p(x̃1) = −p(x̃2) and f(x̃1) = f(x̃2) .

Parametric BU-theorem. If k < n (or k = n and the fibers Zb are
contractible) then the (tautological) projection BU → B is Z2-onto. Con-
sequently, the f̃ × f̃ -image f̃ × f̃(BU) ⊂ Z projects Z2-onto Z.

This is obvious (in the 21st century).

Corollary. Let fb : Sn → Z, b ∈ B, be a continuous family of maps.
Then the assignment to each b ∈ B of (the subset of) those z ∈ Z for which
∃ s ∈ S, where fb(s) = fb(−s) = z, is a Z2-morphism.
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Intuitively, one can pretend that the equation fb(s) = fb(−s) has a
unique, up-to ± sign, solution s = s(b) continuously depending on b ∈ B
and z(b) = f(s(b)) also unique and continuous in b.

7.3 Parametric waists. Consider a family X = {Xb}, b ∈ B of mm
spaces, that is a (continuous) map α : X → B with metrics distb and
measures µb in the “fibers”Xb = α−1(b), b ∈ B, and a (double) family of “k-
cycles” Yzb

⊂ Xb defined with β : Z → B by an f̃ : X → Z, where f̃ refers to
some space X̃ mapped to X and to Z, that are p : X̃ → X and f : X̃ → Z;
here f is a fiber preserving map (over Z) and Yzb

= p(f−1(zb)) ⊂ Xb ⊂ X
for zb ∈ Zb = β−1(b) ⊂ Z. Given a function w(b, ε), b ∈ B, ε ≥ 0, let
Z ′ = Z ′(w) ⊂ Z consist of those zb ∈ Zb ⊂ Z, b ∈ B, where

µb(Yzb
+ ε) ≥ w(b, ε)

for all ε ≥ 0.
Say that the Z2-waist of the family {Yzb

} is ≥ w = w(b, ε) if the restric-
tion of β : Z → B to Z ′ ⊂ Z is Z2-onto. Then we write

Z2- wst(X −→
β

Z, ε) ≥ w(b, ε)

if for every Z2-morphism f̃ : X → Z over B, (defined via an X̃ and f :
X → Z as above with p : X̃ → X being Z2-onto)

Z2- wst{Yzb
} ≥ w .

If we deal with individual X0 and Z0, we consider arbitrary fibrations
α : X → B and β : Z → B with the fibers Xb and Zb isomorphic to X0 and
Z0 respectively where “isomorphism” refers to “homeomorphism” for Zb

and to the measure preserving isometries for Xb; moreover we insist in the
latter case on α being a MIs (X0)-fibration for the group MIs (X0) (mm-
preserving isometries of X0). (If X0 is an mm-space, where the metric is
allowed to become infinite, “homeomorphisms” refer to a topological struc-
ture additionally given to X0, as for infinite Cartesian powers of compact
mm-spaces, for example.) We say that the parametric Z2-waist of X0 → Z0

is ≥ w(ε),
Z2- pawst(X0 → Z0, ε) ≥ w(ε) ,

if
Z2- wst(X −→

β
Z, ε) ≥ w(ε)

for all fibrations X and Z over all B with the fibers X0 and Z0 respectively.
Similarly, one defines the Gibbsian versions Z2-Giwst and Z2-paGiwst.
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7.4 Z2-waists of product and fibrations. Let a pm space X ′ be
fibered over X with fibers X ′

x, x ∈ X, where X is given the pushforward µ
of the measure µ′ on X ′ and the fibers come with the canonical (probability)
measures µ′x. Consider the family of codimension k-cycles Y ′

z = f−1(z) for
a continuous map f : X → Z and assume that

Z2- wst(X ′ −→
X

Z, ε) ≥ w′(ε)

for some function w′ = w′(ε). This means, by the definition of the Z2-waist
over X, that there is a “Z2-homological selection” of z = z(x) ∈ Z for all
x ∈ X, where the corresponding Yz(x) = f−1

x (z) ∈ X ′
x have µ′x(Yz(x) + ε) ≥

w′(ε) (and where the ambiguity of this selection makes the correspondence
x �→ z(x) a Z2-morphism rather than an ordinary map). Granted the
inequality Z2- wst(X → Z, ε) ≥ w(ε), we apply it to the above Z2-morphism
X → Z and obtain a subset Y ⊂ X with µ(Y + ε) ≥ w(ε), where the
“fibers” Y ′

z(x) = f−1(z) ∩ X ′
x have µ′x(Y ′

z(x) + ε) ≥ w′(ε) for all x ∈ Y .
Then, under suitable conditions on the metric in X ′ we obtain a lower
bound on µ′(f−1(z) + ε) in X ′ and thus on wst(X ′ → Z). Furthermore,
if the waists of X ′ over X and of X are bounded from below in the Z2-
parametric form, then such a bound for X also applies to Z2- pawst(X, ε).
Similarly, one treats the Gibbsian Z2-waists and immediately obtains the
product inequalities (×)�∞ and (×)Gi in 3.3, as well as the same inequality
for metric fibrations, e.g. (classical) Riemannian fibrations in the Gibbsian
case. (We leave it to the reader to work out specific metric assumptions on
X ′ → X allowing a lower product waist bound for X ′ in terms of X and
the fibers.)

7.5 Pawst inequalities. It follows from the above discussion that all
waist inequalities stated in §1 remain valid with Z2-pawst’s instead of wst’s,
and, whenever the “central” map ck• appears, it may be assumed a Z2-
morphism rather than an ordinary map. Moreover, one can generalize the
waist inequality to sphere bundles over B, where the measure may vary with
the fiber. Then the essence of the partition proof of the waist inequalities
can be seen in the following.

Subdivision Lemma. Let µ be a measure on Sn with positive continuous
density and H denote the space of oriented hyperplanes (equators) h di-
viding Sn into halves of equal µ-measure, say X+

h and X−
h . The totalities

of these make fibrations X+ and X− over H with half-sphere fibers. Then
the Z2-waist of (Sn, µ) is bounded from below by the sum of the Z2-waists
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of X+ and X−: if Z2-wst(X± −→
H

Z, ε) ≤ w±(h, ε), then

Z2-wst
(
(Sn, µ) → Z, ε

) ≥ inf
h∈H

(
w+(h, ε) + w−(h, ε)

)
.

This is an immediate corollary of the Borsuk–Ulam theorem that re-
mains valid for sphere bundles instead of an individual (Sn, µ). It can be
applied repeatedly eventually reducing the waist estimate for µ to that for
families of convexly derived measures on convex subsets of codimension ≥ k
in Sn.

8 Waists of Degree d ≥ 1.

The property of a family of subsets {Y ⊂ X} essential for lower waist
bounds says, in effect, that there is a “Z2-essentially unique” Y in the family
containing every given point in X. More precisely, say that the family is Z2-
faithful in codimension k, or it admits a Z2-faithful k-parametrization (by
a Z) if there exists a Z2-morphism f̃ from X to a Z2-homology manifold Z,
such that each Yz ⊂ X associated to f̃ (that is p(f̃−1(z))) is contained in
some Y in the family. This eventually applies to the parametric case and the
result is denoted Z2- pawst(X, ε): this is essentially infZ Z2- pawst(X→Z, ε)
over all Z2-homology k-manifolds Z.

Given a family {Y } in X denote by {Y d ⊂ Xd} the family of the d-th
Cartesian powers of Y ’s and say that the original family is Z2-faithful of
degree d in codimension k if {Y d} is Z2-faithful in codimension kd.

8.1 Examples. Let X be a smooth real algebraic variety and consider a
family of subvarieties Y ⊂ X with codimY = k. If the number of Y ’s
passing through a generic d-tuple of points in X is finite and odd, then
this family is Z2-faithful of degree d in codimension k. (Here, a family,
presupposes that each Y is a limit of generic members of the family.)

An instance of this is the family of all d-tuples of points in X (of di-
mension k). Another relevant case is that of all (n− k)-planes in R

n or in
Pn that is (obviously) faithful of degree (n− k) in codimension k.

8.2 Induced families. Given a family of Y ’s in Z and a map f : X → Z
one has the induced family f−1{Y } in X. If {Y } is faithful then {f−1(Y )} is
also faithful with the same codimension and degree; moreover this remains
true for an arbitrary Z2-morphism X → Z.

8.3 Semiadditivity of wst�. Now we introduce with our standing con-
vention the waist Z2- pawstd−k(X, ε), abbreviated to wstd−k(X), with the
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above faithful families and observe that every pair of disjoint open subsets
X1 and X2 in X satisfies

wstd−k(X) ≥ wstd1
−k(X1) + wstd2

−k(X2) (+)d
for every k and all d1, d2 with d1 + d2 = d.
Proof. This automatically follows from the Z2-parametric definition of wstd.

The above applies d-times to a partition of X into d small pieces Xi,
i = 1, . . . , d, with diameters Di<∼((VolX)/d)1/n for large d, thus bounds
wstd(X) by

∑d
i=1 wstd(Xi). The latter waist, for small “roundish” Xi can

be bounded from below, with a Gaussian domination for example, by ≈
Dn−k

i εk provided ε ≤ Di. In particular, the Minkowski waist of X satisfies

lim inf
d→∞

d
k−n

n Miwstd−k(X) ≥ C−
k,n(VolX)

n−k
n (∗)∞

for a universal C−
k,n > 0.

8.4 Remarks. (a) One sees easily by looking at particular families of
Y ’s that the corresponding lim sup is bounded by C+

nk(VolX)(n−k)/n, but
it is unclear if C+ = C−, for all X. On the other hand, the Weyl type
asymptotic formulas for non-linear spectra (see [Gr4]) suggest a possibility
of replacing “lim inf” in (∗)∞ by plain “lim”.

(b) The inequality (+)d can be seen in the “non-linear spectral frame-
work” as a reflection of semiadditivity of a certain topological colength (func-
tion) on the space C−k of suitable “codimension k cycles Y ⊂ X”:

colength A ∩ B ≤ colength A + colength B
for all A,B ⊂ C−k. An archetypical example of colength is seen in the
projective space P∞: this is the cohomological length of the complement to
A ⊂ P∞, i.e. the maximal power d of the generator h ∈ H1(P∞; Z2) = Z2

that does not vanish on P∞\A.

8.5 Evaluation of waist for specific families {Y }. This seems non-
trivial even for the simplest examples such as the family of d-tuples of
(n−k)-planes in projective spaces X over R, C, or H. One knows, however,
the minimal ε for which Y + ε = X in the R and C-cases due to theorems
of Bang and Ball (see [B]). Such an ε can be essentially sharply evaluated
for every algebraic hypersurface Y ⊂ RPn of degree d by an appeal to the
Bernstein inequality as in Chapter 31

2 of [Gr1],

‖ grad f‖ ≤ d sup ‖f‖ ,
for all polynomials f : Sn → R of degree d; consequently, the above ε is
≥ π/d.
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Question. Let Y1, . . . , Ym be algebraic subvarieties in a projective space
X of degrees di and codimension ki. What is the range of values of the
sum of the volumes of their respective εi-neighbourhoods for given εi > 0,
i = 1, . . . ,m? For which εi may these neighbourhoods Yi + εi cover all
of X?

Let X be a compact symmetric space (e.g. Sn) and f : X → R
d be a

Veronese map, i.e. f is isometric equivariant (where the implied represen-
tation of the isometry group of X may or may be not assumed irreducible).
What is the waist of the family {Y } in X induced by (intersecting f(X)
with) (d−k)-planes in R

d? Are the above special families {Y } (for standard
spaces X) extremal for the waist or some waist-like invariants?

What is the minimal waist of the family induced on Sn from the family
of d-tuples of points in R

k?
Let X ⊂ SN be a semialgebraic subset of dimension n and degree δ.

Can one universally bound from below wstd−k(X) for d � δ? (Here one is
tempted to use suitable semialgebraic partitions of X, e.g. induced by con-
vex partitions of SN , but even the apparently simpler problem of estimating
the spectrum of ∆ on X remains open, compare [Gr6].)

The above question is better suited for semialgebraic measures in R
N

of degree ≤ δ. These are derived in the semialgebraic category from the
Lebesgue measure dx by the following operations

1. Restricting a measure to a semialgebraic subset (e.g. dx itself on an
open semialgebraic X ⊂ R

N ).
2. Pushforwards under semialgebraic maps.
3. (Canonically) inducing on fibers of semialgebraic maps.
4. Cartesian products of measures and, more generally, integration of

semialgebraic families of measures on fibers of semialgebraic maps.

A measure µ arising this way can be assigned (negotiably) its degree δ =
δ(µ) reflecting (summing up) the (totality of) degrees of the (semi)algebraic
operations generating µ. The problem is of evaluating (non-linear) spectral
invariants of µ (waists included) in terms of δ(µ) (where the relevant metric
may or may be not assumed Euclidean). Also there may be some sense in
evaluating the rate of approximation of general measures µ by semialgebraic
µd of degrees d for d→ ∞.

Given a polynomial map f : Sn → R
k≤n of degree d. What is the (best)

bound on sup ‖Λkdf‖, i.e. the norm of the differential df on k-vectors, in
terms of the k-measure of the image f(Sn) ⊂ R

k (and possibly something
like the diameter of the image) in the spirit of Bernstein’s inequality?
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Estimating volumes of ε-neighbourhoods of algebraic subsets X of codi-
mension k and degree d reduces to the codimension 1 case, if X can be
included into a hypersurfaces of degree d′ much smaller than d as happens
for complete intersections where d′ is ≤ d1/k. This does not give much,
however, for such X’s as unions of linear subspaces; yet one wonders.

The interest in the study of geometric characteristics of (families of)
subsets Y ⊂ X of given codimension and complexity, (e.g. degree in the
(semi)algebraic case) is warmed up by the infinite dimensional examples
of X’s, such as Grassmannians over Banach spaces and infinite products of
mm spaces with a.e. infinite distance.

9 Isoperimetric Recollections (compare [L])

If k = 1, then the geometry of waists imbeds into the classical isoperimetric
framework, where one associates, to each space X = (X,dist, µ), its (raw)
isoperimetric profile given by a monotone correspondence v ↔ s, that is
a subset I = (vX(s), sX(v)) in R

2
+ defined as follows. Consider the set

(space) U of all domains U ⊂ X with µ(U) < ∞ and Min−1 ∂U < ∞,
where for µ(X) <∞ one additionally assumes that µ(U) ≤ 1

2 µ(X). (Here
∂U denotes the topological boundary if U and Min−1 ∂U stands for the
Minkowski measure.) Consider the map from U to R

2
+ given by U �→ (v =

µ(U), s = Min−1 ∂U), let I ⊂ R
2
+ denote the image of this map and define

I as the minimal closed subset in R
2
+, such that for every pair (v, s) ∈ I

there exists a point (v′, s′) ∈ I, where v′ ≥ v and s′ ≤ s. If I projects one-
to-one to the s-coordinate, the resulting (monotone increasing) function
vX(s) furnishes the (sharp) isoperimetric inequality

µ(U) ≤ vX(Min−1 ∂U)

for all U ∈ U ; if I has such a projection to v’s, one has Min−1 ∂U ≥
sX(µ(U)). In what follows, the both projections are usually (assumed)
one-to-one and I equals the common graph of the pair of mutually in-
verse continuous strictly monotone increasing functions vX(s) and sX(v).
Even if this fails to be true, we still write v(s) and s(v), where the mono-
tone functions v(s) and s(v) may become discontinuous and/or non-strictly
monotone.

9.1 Isoperimetry in R and domination. Given a measure ν on R

we regard (R, ν) as an mm space (X,µ) and denote its isoperimetric profile
I by (vν(s), sν(v)). If f : X → R is a 1-Lipschitz map then, clearly, the
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pushforward measure ν = f∗(µ) satisfies
(
vν(s) ≤ vX(s), sν(v) ≥ sX(v)

)

thus the (concentration) behavior of ν can be seen in the properties of the
profile I of X.

Conversely, given a domain U ⊂ X, one considers the 1-Lipschitz
function d = dU : X→R equal dist(x,U) for all x outside U and
d(x) = − dist(x,X\U) for x ∈ U . The pushforward measure ν = d∗(µ) on
R encodes the measure of U , as ν(−∞, 0], and Min−1 ∂U , as the density of
ν at zero with respect to Lebesgue measure. Thus the isoperimetric profile
vX(s) of X equals the supremum of these for the 1-Lipschitz pushforwards
of µ to ν on R and sX(v) equals the corresponding infimum.
Remark. Not every continuous map f : X → R admits a push-
forward f∗(µ): one needs some µ-properness of f , e.g. the assumption
µ(f−1[a, b]) <∞ for all segment [a, b] ⊂ R for −∞ < a ≤ b < +∞. In
what follows, we shall tacitly assume that f∗(µ) is defined whenever this is
needed.

A measure ν on R is called iso(perimetrically)-simple if its support
is connected and its isoperimetric profile equals the closure of the pairs
of points (v = µ(−∞, v), s = Min−1{t}), where Min−1 = dµ/dt < ∞.
In other words, the subsets (−∞, t] ⊂ R solve the isoperimetric problem
for (R, ν).

9.1.A Lemma (Isoperimetric inequality in R). Let ν be given by a
strictly positive continuous density function, ν = ϕ(t)dt on some open,
finite or infinite, segment in R. Then ν is iso-simple in the following two
cases.

1. ϕ(t) is strictly monotone increasing.
2. µ(X) <∞, the function ϕ is even (ϕ(t) = ϕ(−t)), strictly monotone

increasing for t < 0 and the corresponding function sν(v) is sublinear
for v ≤ 1

2µ(X),

sν(v1 + v2) ≤ sν(v1) + sν(v2) , v1 + v2 ≤ 1
2µ(X) .

This is straightforward, as well as the following

9.1.B Domination Corollary. Let ν satisfy 1 or 2 and let f : R → R

be a 1-Lipschitz map that is assumed µ-proper in the case 1. Then there
exists a monotone increasing 1-Lipschitz function f

→
: R → R, unique on the

segment where ϕ > 0, such that f∗
→

(ν) = f∗(ν).
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9.1.C Iso-domination. A measure ν on R (preferably but not nec-
essarily iso-simple) is called an iso-dominant of X = (X,dist, µ) if for every
µ-proper Lipschitz map f : X → R there exists a monotone increasing 1-
Lipschitz function f

→
: R → R such that f∗

→
(ν) = f∗(µ). (If ν is iso-simple,

this is equivalent to (vν(s) ≥ vX(s), sν(v) ≤ sX(v)).) An iso-dominant is
called minimal if it is iso-dominated by the other iso-dominants of X. (If
vX(s) and sX(v) are honest functions, there is a unique minimal dominant
ν = ϕ(t) dt where ϕ solves the differential equation (logϕ)′ = v′(ϕ).)

If we drop the monotonicity assumption on f
→

, we arrive at a more

general notion: (non-iso)domination of X by ν. If ν is iso-simple, then,
clearly, domination ⇒ iso-domination.

An (iso)-dominant ν is called sharp, if it equals the pushforward of µ
under a 1-Lipschitz function f : X → R that is called (iso)-extremal: the
levels of f solve the isoperimetric problem in X.
Remarks. (a) If the isoperimetric profile sX(v) is sublinear, the isoperi-
metric inequality for disconnected domains U ⊂ X reduces to that for
connected ones. Otherwise, one should keep track of individual connected
components of U , possibly, by introducing a counterpart to iso-domination
for a map of X not to R, but rather to certain 1-dimensional spaces (trees
or more general graphs), where the pull-backs of the points are connected.

(b) A special feature of R is the existence of unique monotone decreas-
ing function pushing forward a (standard) measure ν to a given ν ′ under
obvious assumptions that are easily satisfied. This is not so in higher di-
mensional spaces Z where neither existence of such a, say dominating 1-
Lipschitz map Z → Z, nor its uniqueness are available. For example, if
f ′ : X ′ → R

k is a generic smooth map and dimX ′ ≥ k + 2, then the den-
sity of the measure ν ′ = f ′∗(µ′) vanishes on the boundary ∂′ of the image
f ′(X ′) ⊂ R

k. Thus every measure ν on R
k dominating ν ′ needs to have a

vanishing density locus (hypersurface) ∂0 admitting a 1-Lipschitz map onto
∂′: this is rather hard on ν = f∗(µ).

(c) One can sometimes regain the uniqueness of a measure preserving
map f

→
for dim ≥ 2 by requiring extra properties of this f

→
. For example,

let Z come as the (final total) space of a power of R-fibrations

Z
�−→ Z−1

�−→ · · · −→ Z−k+1 = R ,

(e.g. a simply connected nilpotent Lie group Z decomposed into a sequence
of central R-extensions). Suppose we have a subset U ⊂ Z such that the
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projection U−i ⊂ Z−i, i = 0, 1, . . . , k − 1, of U to each Z−i has connected
intersection with the R-fibers of the following projection U−i → Z−i−1.
Then, given an arbitrary U with µ(U) = µ(U ′), for a given smooth measure
µ on Z, there (obviously) exists a unique (Knöthe) map U ′ → U preserving
µ and compatible with the R-tower structure: each intersection U ′

−i ∩ Rz′ ,
z′ ∈ Z−i−1, is sent to Rz ⊂ Uz by a monotone map, for all i = 0, 1, . . . , k−1.
(Such a map for R

n → R
n−1 → · · · → R, instantaneously leads to a proof

of the isoperimetric inequality and Brunn–Minkowski inequality in R
n, see

[MS]).
One can envisage other preferred choices of (not necessarily equidimen-

sional) “measure parametrization”, e.g. by Gaussian spaces or by Kähler
manifolds (via moment maps as in [Gr3]), where one may also use f

→
’s min-

imizing a suitable (transportation) energy (in the spirit of Brenier map, see
[GM]).

9.2 Standard inequalities. Take an arbitrary probability measure µ
on the sphere Sn, say with a positive bounded density, and consider all
convexly derived measures µ′ on the minimal geodesic segments S ⊂ Sn.
Let dist be a metric on Sn, take its restrictions to the segments S and
define (v(s), s(v)) by

v(s) = sup v(s) , s(v) = inf s(v)

where the sup and inf are taken over the isoperimetric profiles of all
(S,dist |S, µ′) (where (S,dist |S) may come with many probability mea-
sures µ′ corresponding to various weak limits of normalized µ | Ui, for
convex domains Ui converging to a given S).

9.2.A (compare [GrM]). The isoperimetric profile of X = (Sn,dist, µ)
satisfies

vX(s) ≤ v(s) , sX(v) ≥ s(v) .

Proof (compare [GrM]). Take an arbitrary U ⊂ Sn and observe that there
obviously exists a convex partition of Sn into geodesic segments S, such
that the canonical probability measure µS on S satisfies, for almost all S

µS(S ∩ U) = µ(U) .

Each µS can be convexly derived from µ and thus the isoperimetric inequal-
ities on S’s integrate to that on Sn.

9.2.B Corollary (Euclid?). Spherical isoperimetric inequality. The
distance function to a point s0 ∈ S, that is f(s) = dist(s, s0) is iso-extremal



208 M. GROMOV GAFA

for the standard geometry on Sn. Furthermore, this remains valid for every
convex sector, i.e. a subset X ⊂ Sn containing s0 and −s0.
Proof. The convexly derived measures on the segments are sinn−1-concave
and hence are iso-dominated by (properly normalized) (iso-simple!) mea-
sure sinn−1 t dt on [0, π].

9.2.C Euclidean Subcorollary. Let X ⊂ R
n be a convex cone.

Then the distance to the origin, f(x) = ‖x‖, is iso-extremal on X.

Proof. Go to the limit, R
n = limλ→∞ λSn.

Questions. (a) Is there a similar scaling limit argument bringing the
waist inequality from (sectors in) Sn to R

n?

(b) The above is also true for “slightly concave” cones by the stabil-
ity of the implied (variational) boundary value problem, but the exact
condition is unclear. It is worthwhile to consider (warped) cones X over
arbitrary Riemannian manifolds (and mm-spaces) and identify those where
dist(x0, x) : X → R is iso-extremal for the apices x0 of the cones X.

(c) The partition proof of the isoperimetric inequality for hypersur-
faces Y in R

n and Sn suggests the following refinement of Almgren’s fill-
ing isoperimetric inequality. Let Y ⊂ R

N (or Y ⊂ SN ) be an (n − 1)-
dimensional cycle, e.g. a closed (piece-wise) smooth manifold with Voln−1 Y
≤ VolSn−1. One seeks a ruled filling U of Y partitioned into straight
(geodesic in SN ) segments of length ≤ 1, such that a thin tube T around
almost every segment reaches the boundary Y in U and has n-volume
≤ 1

n Voln−1(T ∩ Y ) (with the obvious modification for Y ⊂ SN ).

(d) Let X be an irreducible symmetric space of non-compact type. Does
it admit an iso-extremal function f : X → R? If so, it seems easy to show
that such an f is invariant under the isotropy subgroup G0 of a point
x0 ∈ X and then its identification reduces to the corresponding isoperi-
metric problem for the Weyl chamber X/G0 with the pushforward of the
Riemannian measure of X to X/G0. In particular, if R-rank X = 1, then
one (naively?) expects that f(x) = dist(x0, x) is iso-extremal.

(e) Let X = R
n with O(n)-invariant distance and measure. When is the

distance function to the origin, f(x) = dist(x, 0) iso-extremal? Here is a
standard counter example, where alternative iso-extremal functions exist.

9.2.D Borel’s Gaussian isoperimetric inequality. Normal pro-
jections of Gan = (Rn, e−‖x‖2

dx) to lines in R
n are iso-extremal.
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Proof. The derived measures of e−‖x‖2
dx are 2-log-concave and, hence,

iso-dominated by e−t2 dt (with all measures being normalized).

9.3 Paul Levy inequality One can productively apply 9.2.A to met-
rics dist associated to the projective structure in Sn see [GrM] but, in gen-
eral, one would prefer dist-geodesics rather than the spherical ones. Here
one needs the following modifications of convex derivation of measures.

9.3.A Normal geodesic partition. A partition of a metric space
X into topological segments S is called normal geodesic if there exists a
1-Lipschitz function d : X → R that is isometric on each segment S. If C
is a concavity class of measures ϕ(t) dt on R, we say that X = (X,dist µ)
is C-concave if the canonical measures on almost all S (when transported
to R by d) are in this class for all normal geodesic partitions. If X is a
smooth manifold, it is called smoothly C-concave, if this holds for partitions
admitting an almost everywhere smooth function d. (This is an apparently
weaker, but probably, an equivalent condition for smooth X.)

Levy domination inequality. Let X = (X,dist, µ) be a compact
smooth Riemannian pm space, where X may have non-empty convex bound-
ary and where smoothness of µ means that µ = ϕ(x) dx for ϕ(x) > 0 and
C2-smooth. If X is smoothly sinα-concave for some α > 0 then it is iso-
dominated by the normalized measure sinα t dt on [0, π].

This is proved in [Gr1] for α = dimX − 1 and µ being the normalized
Riemannian measure. (This concavity condition is equivalent to Ricci(X) ≥
n−1 = Ricci Sn.) The (variational) proof (see [Gr1]) allows an introduction
of non-Riemannian µ.

Remarks and questions. (a) The above seems to work for some (all?)
Finsler manifolds X and, possibly, one can completely drop the smoothness
assumption.

(b) Similar (domination) inequalities can be proved, at least in the
smooth case, for other C’s, e.g. for 1-log-concave X ′, that are easily seen to
be iso-dominated by e−t2dt, but I have not looked for meaningful examples.

(c) Let X be an n-dimensional Riemannian manifold with sectional
curvature K(X) ≥ 1 (or an Alexandrov’s space with K ≥ 1). Does it have
the codimension k waist ≥ µ(Sn−k +ε) for Sn−k ⊂ Sn (where the measures
in question are normalized Riemannian)? What are possible (plausible)
non-Riemannian measures in this context?

(d) Can one replace the variational method of Levy by a (topological)
partition argument? Ideally, given U ⊂ X, one would like partition X into
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geodesic segments S, such that µS(U∩S) = µ(U) for all S for the canonical
measures µS , where, moreover, this partition is normal; but this does not
seem realistic.

(e) Given two “geometric” measure spaces A and A′ one routinely proves
(isoperimetric) inequalities of the form µ(A) ≤ I(µ′(A′)) for a given func-
tion I(t) by partitioning (or rearranging) the spaces, and then integrating
over the partitions (integral geometry, symmetrization etc.). In the present
paper the relevant partition Π emerges as a solution of a certain system
of (infinitely many) functional equations, where the solvability of these is
derived from their homological non-triviality. Can one extend the topolog-
ical method to other situations where the present (rearrangement) proofs
rely on P.D.E., such as the Alexandrov–Fenchel inequality? The analytic
proof of Alexandrov suggests that this is so as it depends on “complex rear-
rangement” of the relevant integral via some linear Hodge operator of zero
index, i.e. with non-zero topological degree (see [Gr2]). Similar, but non-
linear “complex rearrangements” can be seen in the proofs of inequalities
between Chern numbers of stable (tangent) bundles over (of) Kähler mani-
folds (Bogomolov–Yau–Aubin–Simpson. . . ). Can one see this topologically
and trace the topology to analysis and/or the algebraic geometry of the
manifolds in question?

(f) Is there a calculus of variations in the spaces of (convex) partitions?
If so, is it compatible with the Gibbsian geometry in the space of micells
indicated in [CaG]?

9.4 Symmetrization and isoperimetry of products. LetX be par-
titioned into closed subsets Xb that are the fibers of a continuous map
p : X → B and concentrate on the isoperimetric problem over B, where one
looks for a subset (domain) U ⊂ X with prescribed measures µb(U ∩Xb),
b ∈ B having minimal Min−1 ∂U , where µb denote the canonical measures
in the fibers Xb = p−1(b). In other words, one prescribes a function v on
B and minimizes Min−1 ∂B over U ’s with p∗(µ | U) = vp∗(µ) (with an
obvious interpretation/modification for non-µ-proper p).

Let p′ : X ′ → B be another mm space over B where the fibers are
oriented topological lines Rb = R, such that the canonical measures µ′b are
finite on (−∞, t] ∈ Rb = (p′)−1(b) for all t < ∞ and b ∈ B. Assume
the canonical measures µ′b on Rb’s have no atoms and µ′b(Rb) ≥ µb(Xb)
for all b ∈ B. Then for each U ⊂ X there exists a unique U ′ ⊂ X ′,
such that U ′ ∩ Rb = (−∞, tb] with µ′(−∞, tb) = vb, called the (Schwarz)
symmetrization of U .



Vol. 13, 2003 ISOPERIMETRY OF WAISTS AND CONCENTRATION OF MAPS 211

9.4.A. Let us compare the Minkowski measure of the “hypersurface”
H = ∂U with those of the intersections Hb = H ∩ Xb ⊂ X. Let d =
dH(x) = distX(x,H) and D = DH(x) = distXb

(x,Hb) for b = p(x). Clearly
d < D and the ratio ∆ = ∆H = D/d represents the “slope” of H. Say that
(a closed subset H ⊂ X → B) is regular, if the function ∆H continuously
extends from the complement X\H to H.

Call U strongly regular, if ∂U is a.e. regular and

Min−1 ∂U =
∫

B
db

∫

Hb

∆H(h) dhb (∗)
where dhb refers to the Minkowski measure in Hb ⊂ Xb that is assumed
good enough to use for integration.

Say that X ′ iso-restricts X if Min−1 ∂U
′ ≤ Min−1 ∂U for all those

strongly regular U , where U ′ is also strongly regular.
Since µ′(U ′) = µ(U), this makes the isoperimetric inequality in X

stronger than that in X ′,

vX(s) ≤ vX′(s), sX(v) ≥ sX′(v) .

Furthermore, if the spaces X and X ′ themselves are sufficiently reg-
ular, e.g. smooth Riemannian with smooth measures and with the maps
X,X ′ → B being smooth submersions, then the isoperimetric inequality
for strongly regular domains U implies that for all U , and one should not
bother much about strong regularity. Call H horizontal at a point h ∈ H,
if ∆H(h) = 1.

Now, turn to p′ : X ′→B, assume it is split into the product, X ′ = B×R,
and postulate the following normality of this splitting: a regular graph
H ′ ⊂ X ′ of a function σ : B → R is horizontal at a point h′ = σ(b) ∈ H ′

if and only if ∇′σ(b) = 0, that is σ(b) − σ(b′) = o(distX′(σ(b), σ(b′)) for
b′ → b.

The next symmetrization postulate concerns X: if the boundary ∂U is
horizontal at all point h ∈ p−1(b) ∩ ∂U for some b0 ∈ B then the function
σU : b �→ µb(Ub) has ∇′σU (b0) = 0 for all U ⊂ X with regular boundaries.
(Observe, this depends on the metric dist′ assigned to X ′ = X × R.)

This implies together with the previous postulate that the symmetriza-
tion U �→ U ′ preserves horizontality of the boundaries over all points b ∈ B.

Coming back to X ′ = B × R we strengthen the first postulate by re-
quiring the existence of a continuous function ϕ′ = ϕ′(δ, b), δ ∈ R+, b ∈ B,
monotone increasing in δ, such that ∆H′(σ(b)) ≤ ϕ′(∇′σ(b), b) for all func-
tions σ : B → R with regular graphs H ′ ⊂ X ′ = B × R and almost all
b ∈ B.
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Example. IfX ′ is a Riemannian product, X ′ = B×R, then ∆ =
√

1 + ∇2

and ϕ′(δ) =
√

1 + δ2 does the job.
Finally, we require that there is a continuous function ψ(θ, b) monotone

increasing in θ such that
AvHb

ψ
(
∆H(h), b

) ≥ (∇′σU (b)
)
/σU (b)

for all U with regular boundaries, where the average “Av” is taken with
respect to the Minkowski measure in Hb ⊂ Xb under the assumption this
is well defined; furthermore, we require that the inverse function ϕ(δ, v) to
ψ(θ, v) (i.e. ϕ(ψ(θ, v), v) = θ) majorizes the above ϕ′(δ, v).
Example. If X = B ×X• is a Riemannian product, then the (obvious)
ψ is ψ(θ, v) =

√
θ2 − 1.

9.4.B Schwarz Symmetrization Lemma. Granted the assumptions
above, the space X → B is iso-restricted by X ′ = B × R, provided the
function ϕ(θ, v) is convex in θ.

Proof. Follow through the above definitions observing that
AvHb

∆(h) ≥ ϕ
(
Avψ(∆(h))

)

for convex functions ϕ = ϕ(δ) and their inverses ψ.
Schwarz’ lemma may be applied twice: first to X → B and then to

X ′ = B × R → R. Thus the isoperimetric inequality for X reduces to that
for the plane X ′′ = (R → R, ν ′ × ν ′′), where, moreover, one only needs to
check the inequality for monotone domains U ′′ ⊂ X, where the intersections
of U ′′ with the (vertical and horizontal) lines t × R and R = R × s are
segments of the form (−∞, t].

The essential condition for applying the lemma is the convexity of ϕ(δ),
that is available for a rather wide class of fibration of (mildly) singular
Finsler manifolds. The classical example is the following

9.4.C Schwarz’ Product Theorem. Let Xi = (Xi,disti, µi), i =
1, . . . , r, be Riemannian manifolds with smooth measures µi iso-dominated
by measures νi on R. Then the isoperimetric profile (vX , sX) of X =
X1 × · · · ×Xr is restricted by that of X ′ = (R, ν1) × · · · × (R, νr),

vX(s) ≤ vX′(s) , sX(v) ≥ sX′(v) .
Indeed, the function

√
1 + δ2 is convex and Schwarz’ lemma applies.

9.4.D Generalization to fibrations. Let us enumerate the essen-
tial features of the products, say for r = 2, that are needed to apply
Schwarz’ lemma and that allow an extension of Schwarz’ theorem to fi-
bration p : X → X.
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1. The measures µ on X, µ on X and µx in the fibers Xx = p−1(x),
x ∈ X , must agree in the obvious manner:∫

X
ψ(x) dµ =

∫

X
dµ

∫

Xx

ψ(x) dµx

for all continuous functions ψ on X with compact supports.
2. The measures µx are invariant under the parallel transport normal

to the fibers. This means that the map p : X → X is a smooth
submersion and every local vector field in X normal to the fibers and
moving fibers to fibers preserves the measures µx.

3. The map p : X → X is 1-co-Lipschitz: the Hausdorff distance between
every two fibers satisfies, distHau(Xx1

,Xx2
) ≤ distX(x1, x2).

Granted 1, 2 and 3 one has

Schwarz Fibration Theorem. If X is iso-dominated by ν1 and all fibers
Xx by ν2, then the isoperimetric profile of X is restricted by that of X ′ =
(R, ν1) × (R, ν2).

This theorem applies, for example, to Riemannian fibrations as well
as to warped products. (In the latter case the fiber measures must be
normalized with a suitable warping function ϕ(x).)
Remark. A similar theorem holds true for suitably “infinitesimally split”
fibrations of Finsler manifolds.

9.4.E Isoperimetric problems in the plane. Let us write down
the Euler–Lagrange (variational) equation for smooth hypersurfacesH ⊂ X
= (X,dist, µ(x) = ϕ(x)dx) with prescribed µ(Ω) and having minimal
Min−1H. First define mean µ-curvature of H,

Mµ(h) = M(h) + ϕ−1(h)
〈
�n(h), gradϕ(h)

〉
,

where M(h) is the ordinary mean curvature of H at h ∈ H and �n is the unit
normal (say inward looking) vector, and where ϕ(x) is assumed smooth and
strictly positive in the interior of X.

The Euler–Lagrange equation reads: Mµ(h) ≡ const; moreover H is
normal to the boundary ∂X (at least) at those points where ϕ(x) �= 0.

This P.D.E. reduces to an O.D.E. for X = (R, ν1), x(R, ν2) and, when-
ever solvable, can be used in conjunction with Schwarz’ theorem.
Examples. (a) Let X = (R2

+, cn t
n−1 dt dt′). If cn = (VolB(1) ⊂ R

n),
one can easily show that the relevant solutions are concentric (quarters of)
circles and that consequently, X is iso-dominated by the measure cn+1 t

n dt
on R+. This obvious induction on n, constitutes the Schwarzian proof of
the isoperimetric inequality in R

n.
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Remark. One does not actually need to solve the equation Mµ ≡ const
for n ≥ 3, as the symmetries of the ambient space force the solution to be
circular (while the case of n = 2 does need the identification of circles as
the only curves of constant curvature).

(b) The Gaussian space Gan splits into product of Ga′’s and Schwarz’
theorem yields the Gaussian isoperimetry.

(c) The hyperbolic space Hn splits into the warped product R+×ϕS
n−1

for ϕ = ϕ(t) = sinh(t). If n = 2, one accepts the circles as the only curves
of constant curvature and the same holds for the planes iso-restricting Hn

for n ≥ 3; here circularity of the solutions of the equation Mµ ≡ const
follows by the symmetry (in Hn for n ≥ 3) argument. As a bonus one
solves the isoperimetric problems in convex cones X ⊂ Hn: the distance
function to the apex is iso-extremal in every such X (including those with
apices at the ideal boundary ∂Hn). Moreover, the same holds true for the
warped product R+ ×ϕ(t) X0 with X0 being an n-dimensional Riemannian
manifold with Ricci(X0) ≥ n− 1 and ϕ(t) = sinht.

Remarks. (a) Explicit evaluation of the isoperimetric profiles of (warped)
products of lines, (R, ν1) × (R, ν2), may become painful even if the corre-
sponding O.D.E. is readily solvable; this is partly due to a possible dis-
crepancy between domination and iso-domination. Apparently, this is the
reason why one still does not know the profiles of product of (round) spheres
and of regular simplices (in Sn, R

n and Hn), for example. (A more difficult
question concerns evaluation of waists of these spaces.)

(b) Schwarz’ fibration argument also applies to Minkowski sums and
yields Minkowski’s (type) inequalities for group extensions, e.g. the ordi-
nary Brunn–Minkowski for the simply connected nilpotent Lie groups.

Acknowledgement I am thankful to Shiri Artstein and Vladimir Pestov
for a variety of corrections and clarifying remarks.
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