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Unlike manifolds with controlled sectional and Ricci curvatures, those with
their scalar curvatures bounded from below are not configured in specific rigid
forms but display an uncertain variety of flexible shapes similar to what one
sees in geometric topology.

Yet, there are definite limits to this flexibility, where determination of such
limits crucially depends, at least in the known cases, on two seemingly unrelated
analytic means: index theory of Dirac operators and the geometric measure
theory in codimension one 1

The nearest to what one sees in the emergent picture of the scalar curvature
domain is reminiscent of symplectic geometry, but the former has yet to reach
maturity enjoyed by the latter.

We start these lectures with a dozen pages, §§1 and 2, of elementary back-
ground material followed in §3 by a brief overview of main topics in spaces with
their scalar curvatures bounded from below, that covers, I guess 70-80% of cur-
rently pursued directions. Then, in §§4 and 5 we give a more detailed exposition
of several known and some new geometric constraints on spaces X implied by
the lower bound Sc(X) ≥ σ.
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1 Geometrically Deceptive Definition.
The scalar curvature of a C2-smooth Riemannian manifold X = (X,g), denoted
Sc = Sc(X) = Sc(X,g) = Sc(g) = Scg is a continuous function on X, which is
traditionally defined as

the sum of the values of the sectional curvatures at the n(n − 1) ordered
bivectors of an orthonormal frame in X,

Sc(X)(x) =∑
i,j

κij(x), i ≠ j = 1, ..., n,

where this sum doesn’t depend on the choice of this frame by the Pythagorean
theorem.

But if you are geometrically minded, you want to have a geometric definition
where the first attempt to find such a definition relies on the following properties
of Sc(X).

●1 Additivity under Cartesian-Riemannian Products .

Sc(X1 ×X2, g1 ⊕ g2) = Sc(X1, g1) + Sc(X2, g2).

●2 Quadratic Scaling.

Sc(λ ⋅X) = λ−2Sc(X), for all λ > 0,

where

λ ⋅X = λ ⋅ (X,distX) =def (X,distλ⋅X) for distλ⋅X = λ ⋅ dist(X)

for all metric spaces X = (X,distX) and where dist ↦ λ ⋅ dist(X) corresponds
to g ↦ λ2 ⋅ g for the Riemannian quadratic form g.

(This makes the Euclidean spaces scalar-flat: Sc(Rn) = 0.)
●3 Volume Comparison. If the scalar curvatures of n-dimensional manifolds

X and X ′ at some points x ∈X and x′ ∈X ′ are related by the strict inequality

Sc(X)(x) < Sc(X ′)(x′),

then the Riemannian volumes of the ε-balls around these points satisfy

vol(Bx(X,ε)) > vol(Bx′(X ′, ε))

for all sufficiently small ε > 0.
Observe that this volume inequality is additive under Riemannian products:

if

vol(Bxi(X,ε)) > vol(Bx′i(X
′
i, ε)), for ε ≤ ε0,

and for all points xi ∈Xi and x′l ∈X ′
i, i = 1,2, then

voln(B(x1,x2)(X1 ×X2, ε0)) > voln(B(x′1,x′2)(X
′
1 ×X ′

2, ε0)

for all (x1, x2) ∈Xi ×X2 and (x′1, x′2) ∈X ′
1 ×X ′

2.
This follows from the Pythagorean formula

distX1×X2 =
√
dist2X1

+ dist2X2
.
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and the Fubini theorem applied to the "fibrations" of balls over balls:

B(x1,x2)(X1×X2, ε0))→ Bx1(X1, ε0) and B(x′1,x′2)(X
′
1×X ′

2, ε0))→ Bx1(X ′
1, ε0),

where the fibers are balls of radii ε ∈ [0, ε0] in X2 and X ′
2.

●4 Normalisation/Convention for Surfaces with Constant Sectional Curva-
tures. The unit spheres S2(1) have constant scalar curvature 2 and the hy-
perbolic plane H2(−1) with the sectional curvature −1 has scalar curvature −2

It is an elementary exercise to prove the following.
⋆1 The function Sc(X,g)(x) which satisfies ●1-●4 exists and unique;
⋆2 The unit spheres and the hyperbolic spaces with sect.curv = −1 satisfy

Sc(Sn(1)) = n(n − 1) and Sc(Hn
−1) = −n(n − 1).

Thus,
Sc(Sn(1) ×Hn

−1) = 0 = Sc(Rn),

which implies that the volumes of the small balls in Sn(1)×Hn
−1 are "very close"

to the volumes of the Euclidean 2n-balls.
Also it is elementary to show that the definition of the scalar curvature via

volumes of balls agrees with the traditional Sc = ∑κij , where the definition via
volumes seem to have an advantage of being geometrically more usable.

But this is an illusion:
there is no single known (are there unknown?)

geometric argument which would make use of this definition.
The immediate reason for this is the infinitesimal nature of the volume com-

parison property: it doesn’t integrate to the corresponding property of balls of
specified, let them be small, radii r ≤ ε > 0. 2

2 Useful Formulas.
The logic of most (all?) arguments concerning the global geometry of manifolds
X with scalar curvatures bounded from below is, in general terms, as follows.

Firstly, one uses (or proves) the existence theorems for solutions Φ of certain
partial differential equations, where the existence of these Φ and their properties
depend on global, topological and/or geometric assumptions A on X, which are,
a priori, unrelated to scalar curvature.

Secondly, one concocts some algebraic-differential expressions E(Φ, Sc(X)),
where the crucial role is played by certain algebraic formulae and issuing in-
equalities satisfied by E(Φ, Sc(X)).

Then, assuming Sc(X) ≥ σ one arrives at a contradiction, thus showing that
the inequality Sc(X) ≥ σ implies properties of X opposite to A.

[I] Historically the first Φ in this story were harmonic spinors, that are
solutions s of D(s) = 0, where D is the Dirac operator, the existence of which
on certain manifolds X followed by the Atiyah-Singer index theorem of 1963,

2An attractive conjecture to the contrary appears in Volumes of balls in large Riemannian
manifolds by Larry Guth in Annals of Mathematics173(2011), 51-76.
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while the relevant formula involving Sc(X) was an algebraic identity between the
squared Dirac operator and the, a priori positive, (coarse) Laplace operator.

Confronting these, André Lichnerowicz [Lich 1963] found examples of
closed 4k-dimensional manifolds which admit no metrics with Sc > 0.
[II] Next Φ to come [SY(structure) 1979] were smooth stable minimal hyper-

surfaces in X for n = dim(X) ≤ 7, the existence of which was proved by Federer
[Fed 1970] relying on the regularity of volume minimising cones of dimensions
≤ 6 proved by Simons [Sim 1968], while the key algebraic identity employed by
Schoen and Yau in [SY(structure) 1979] was a suitably rewritten Gauss formula,
that lead, in particular, to

non-existence theorem of metrics with Sc > 0 on the 3-torus.
[III] The third kind of Φ are solutions to the 4-dimensional Seiberg-Witten

equation of 1994, that is the Dirac equation coupled with a certain non-linear
equation and where the relevant formula is essentially the same as in [II].

Using these, LeBrun [LeB 1999] established a non-trivial (as well as sharp)
lower bound on ∫X Sc(X,x)

2dx for Riemannian manifolds X diffeomorphic
to algebraic surfaces of general type.
In what follows in this section, we enlist classical formulae involved with [II]

and indicate their (more or less) immediate applications.

2.1 Variation of the Metrics and Volumes in Families of
Equidistant Hypersurfaces

(2.1. A) Riemannian Variation Formula. Let ht, t ∈ [0, ε], be a family of
Riemannian metric on an (n−1)-dimensional manifold Y and let us incorporate
ht to the metric g = ht + dt2 on Y × [0, ε].

Notice that an arbitrary Riemannin metric on an n-manifold X admits such
a representation in normal geodesic coordinates in a small (normal) neighbour-
hood of any given compact hypersurface Y ⊂X.

The t-derivative of ht is equal to twice the second fundamental form of the
hypersurface Yt = Y × {t} ⊂ Y × [0, ε], denoted and regarded as a quadratic
differential form on Y = Yt, denoted

A∗
t = A∗(Yt)

and regarded as a quadratic differential form on Y = Yt.
In writing,

∂νh =
dht
dt

= 2A∗
t ,

or, for brevity,
∂νh = A∗,

where
ν is the unit normal field to Y defined as ν = d

dt
.

In fact, if you wish, you can take this formula for the definition of the second
fundamental form of Y n−1 ⊂Xn.

Recall, that the principal values α∗i (y), i = 1, ..., n − 1, of the quadratic
form A∗

t on the tangent space Ty(Y ), that are the values of this form on the
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orthonormal vectors τ∗i ∈ Ti(Y ), which diagonalize A∗, are called the principal
curvatures of Y , and that the sum of these is called the mean curvature of Y ,

mean.curv(Y, y) =∑
i

α∗i (y),

where, in fact ,
∑
i

α∗i (y) = trace(A∗) =∑
i

A∗(τi)

for all orthonormal tangent frames τi in Ty(Y ) by the Pythagorean theorem.
Also observe that A∗ changes sign under reversion of the t-direction. Ac-

cordingly the sign of the quadratic form A∗(Y ) depends on the coorientation of
Y in X, where our convention is such that

the boundaries of convex domains have positive definite second fundamental
forms A∗, hence, positive mean curvatures.
(2.1.B) First Variation Formula. This concerns the t-derivatives of the

(n − 1)-volumes of domains Ut = U × {t} ⊂ Yt, which are computed by tracing
the above (I) and which are related to the mean curvatures as follows.

[○U] ∂νvoln−1(U) = dht
dt
voln−1(Ut) = ∫

Ut
mean.curv(Ut)dyt

where dyt is the volume element in Yt ⊃ Ut.
This can be equivalently expressed with the fields ψν = ψ ⋅ ν for bounded

Borel functions ψ = ψ(y) as follows

[○ψ] ∂ψνvoln−1(Yt) = ∫
Yt
ψ(y)mean.curv(Yt)dyt

Now comes the first formula with the Riemannin curvature in it.

2.2 Gauss’ Theorema Egregium
Let Y ⊂ X be a smooth hypersurface in a Riemannin manifold X. Then the
sectional curvatures of Y and X on a tangent 2-plane τ = τ2 ⊂ Ty(Y ) ⊂ T )y(X)
y ∈ Y , satisfy

κ(Y, τ) = κ(X,τ) + ∧2A∗(τ ),

where ∧2A∗(τ) stands for the product of the two principal values of the second
fundamental form form A∗ = A∗(Y ) ⊂X restricted to the plane τ ,

∧2A∗(τ) = α∗1(τ) ⋅ α∗2(τ).

This, with the definition the scalar curvature by the formula Sc = ∑κij ,
implies that

Sc(Y, y) = Sc(X,y) +∑
i≠j
α∗i (y)α∗j (y) −∑

i

κν,i,

where:
● α∗i (y), i = 1, ..., n − 1 are the (principal) values of the second fundamental

form on the diagonalising orthonormal frame of vectors τi in Ty(Y );
● α∗-sum is taken over all ordered pairs (i, j) with j ≠ i;
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● κν,i are the sectional curvatures of X on the bivectors (ν, τi) for ν being a
unit (defined up to ±-sign) normal vector to Y ;

● the sum of κν,i is equal to the value of the Ricci curvature of X at ν,

∑
i

κν,i = RicciX(ν, ν).

(Actually, Ricci can be defined as this sum.)
Observe that both sums are independent of coorientation of Y and that in the

case of Y = Sn−1 ⊂ Rn =X this gives the correct value Sc(Sn−1) = (n−1)(n−2).
Also observe that

∑
i≠j
αiαj = (∑

i

αi)
2

−∑
i

α2
i ,

which shows that

Sc(Y ) = Sc(X) + (mean.curv(Y ))2 − ∣∣A∗(Y )∣∣2 −Ricci(ν, ν).

In particular, if Sc(X) ≥ 0 and Y is minimal, that is mean.curv(Y ) = 0,
then

(Sc ≥ −2Ric) Sc(Y ) ≥ −2Ricci(ν, ν).

Example. The scalar curvature of a hypersurface Y ⊂ Rn is expressed in
terms of the mean curvature of Y , the (point-wise) L2-norm of the second
fundamental form of Y as follows.

Sc(Y ) = (mean.curv(Y ))2 − ∣∣A∗(Y )∣∣2

for ∣∣A∗(Y )∣∣2 = ∑i(α∗i )2, while Y ⊂ Sn satisfy

Sc(Y ) = (mean.curv(Y ))2−∣∣A∗(Y )∣∣2+(n−1)(n−2) ≥ (n−1)(n−2)−nmax
i

(c∗i )2.

It follows that minimal hypersurfaces Y in Rn, i.e. these with mean.curv(Y ) =
0, have negative scalar curvatures, while hypersurfaces in the n-spheres with all
principal values ≤

√
n − 2 have Sc(Y ) > 0.

Let A = A(Y ) denote the shape operator that is the symmetric operator on
T (Y ) associated with A∗ via the Riemannin scalar product g restricted from
T (X) to T (Y ),

A∗(τ, τ) = ⟨A(τ), τ⟩g for all τ ∈ T (Y ).

2.3 Variation of the Curvature of Equidistant Hypersur-
faces

(2.3.A)The Second Main Formula of Riemannian Geometry.3 Let Yt be a family
of hypersurfaces t-equidistant to a given Y = Y0 ⊂X. Then the shape operators
At = A(Yt) satisfy:

∂νA = dAt
dt

= −A2(Yt) −Bt,

3The first main formula is Gauss’ Theorema Egregium.
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where Bt is the symmetric operator associated with the quadratic differential
form B∗ on Yt, the values of which on the tangent unit vectors τ ∈ Ty,t(Yt) are
equal to the values of the sectional curvature of g at (the 2-planes spanned by)
the bivectors (τ, ν = d

dt
).

Remark. Taking this formula for the definition of the sectional curvature, or
just systematically using it, delivers fast clean proofs of the basic Riemannian
comparison theorems along with their standard corollaries, by far more efficiently
than what is allowed by the cumbersome language of Jacobi fields lingering on
the pages of most textbooks on Riemannin geometry. 4

Tracing this formula yields
(2.3.B) Hermann Weyl’s Tube Formula.

trace(dAt
dt

) = −∣∣A∗∣∣2 −Riccig (
d

dt
,
d

dt
) ,

or
trace(∂νA) = ∂νtrace(A) = −∣∣A∗∣∣2 −Ricci(ν, ν),

where
∣∣A∗∣∣2 = ∣∣A∣∣2 = trace(A2),

where, observe,

trace(A) = trace(A∗) =mean.curv =∑
i

α∗i

and where Ricci is the quadratic form on T (X) the value of which on a unit
vector ν ∈ Tx(X) is equal to the trace of the above B∗-form (or of the operator
B) on the normal hyperplane ν⊥ ⊂ Tx(X) (where ν⊥ = Tx(Y ) in the present
case).

Also observe – this follows from the definition of the scalar curvature as ∑κij
– that

Sc(X) = trace(Ricci)

and that the above formula Sc(Y, y) = Sc(X,y) + ∑i≠j α∗i α∗j − ∑i κν,i can be
rewritten as

Ricci(ν, ν) = 1

2

⎛
⎝
Sc(X) − Sc(Y ) −∑

i≠j
α∗i ⋅ α∗j

⎞
⎠
=

= 1

2
(Sc(X) − Sc(Y ) − (mean.curv(Y ))2 + ∣∣A∗∣∣2)

where, recall, α∗i = α∗i (y), y ∈ Y , i = 1, ..., n − 1, are the principal curvatures of
Y ⊂X, where mean.curv(Y ) = ∑i α∗i and where ∣∣A∗∣∣2 = ∑i(α∗i )2.

4Thibault Damur pointed out to me that this formula, along with the rest displayed on
the pages in this section, are systematically used by physicists in books and in articles on
relativity. For instance, what we present under heading of "Hermann Weyl’s Tube Formula",
appears in [Darm 1927] with the reference to Darboux’ textbook of 1897.
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2.4 Umbilic Hypersurfaces and Warped Product Metrics
A hypersurface Y ⊂ X is called umbilic if all principal curvatures of Y are
mutually equal at all points in Y .

For instance, spheres in the standard (i.e. complete simply connected) spaces
with constant curvatures (spheres Snκ>0, Euclidean spaces Rn and hyperbolic
spaces Hn

κ<0) are umbilic.
In fact these are special case of the following class of spaces .
Warped Products. Let ϕ = ϕ(y) > 0 be a smooth positive function on a

Riemannian (n-1)-manifold Y = (Y,h), and let g = ht + dt2 = ϕ2h + dt2 be the
corresponding metric on X = Y × [0, ε].

Then the hypersurfaces Yt = Y × {t} ⊂ X are umbilic with the principal
curvatures of Yt equal to α∗i (t) =

ϕ′

ϕ
, i = 1, ..., n − 1 for

A∗
t =

ϕ′

ϕ
ht for ϕ′ = dϕ

dt
and At being multiplication by ϕ′

ϕ
.

The Weyl formula reads in this case as follows.

(n − 1)(ϕ
′

ϕ
)
′

= −(n − 1)2 (ϕ
′

ϕ
)

2

− 1

2

⎛
⎝
Sc(g) − Sc(ht) − (n − 1)(n − 2)(ϕ

′

ϕ
)

2⎞
⎠
.

Therefore,

Sc(g) = 1

ϕ2
Sc(h) − 2(n − 1)(ϕ

′

ϕ
)
′

− n(n − 1)(ϕ
′

ϕ
)

2

=

(⋆) = 1

ϕ2
Sc(h) − 2(n − 1)ϕ

′′

ϕ
− (n − 1)(n − 2)(ϕ

′

ϕ
)

2

,

where, recall, n = dim(X) = dim(Y ) + 1 and the mean curvature of Yt is

mean.curv(Yt ⊂X) = (n − 1)ϕ
′(t)
ϕ(t)

.

Examples. (a) If Y = (Y,h) = Sn−1 is the unit sphere, then

Scg =
(n − 1)(n − 2)

ϕ2
− 2(n − 1)ϕ

′′

ϕ
− (n − 1)(n − 2)(ϕ

′

ϕ
)

2

,

which for ϕ = t2 makes the expected Sc(g) = 0, since g = dt2 + t2h, t ≥ 0, is the
Euclidean metric in the polar coordinates.

If g = dt2 + sin t2h, −π/2 ≤ t ≤ π/2, then Sc(g) = n(n − 1) where this g is the
spherical metric on Sn.

(b) If h is the (flat) Euclidean metric on Rn−1 and ϕ = exp t, then

Sc(g) = −n(n − 1) = Sc(Hn
−1).

What is slightly less obvious, is that if

ϕ(t) = exp∫
t

−π/n
− tan

nt

2
dt, − π

n
< t < π

n
,
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then the scalar curvature of the metric ϕ2h + dt2, where h is flat, is constant
positive, namely Sc(g) = n(n − 1) = Sc(Sn), by elementary calculation5

Higher Warped Products. Let Y and S be Riemannian manifolds with the
metrics denoted dy2 (which now play the role of the above dt2) and ds2 (instead
of h), let ϕ > 0 be a smooth function on Y , and let

g = ϕ2(y)ds2 + dy2

be the corresponding warped metric on Y × S,
Then

(⋆⋆) Sc(g)(y, s) = Sc(Y )(y)+ 1

ϕ2
Sc(S)(s)−m(m − 1)

ϕ2(y)
∣∣∇ϕ(y)∣∣2− 2m

ϕ
∆ϕ(y),

where m = dim(S) and ∆ = ∑∇i,i is the Laplace operator on Y .
To prove this, apply the above (⋆) to l × S for naturally parametrised

geodesics l ⊂ Y passing trough y and then average over the space of these l,
that is the unit tangent sphere of Y at y.

The most relevant example of (⋆⋆) is where S is the real line R or the circle
S1 also denoted T1 and where it reduces to

(⋆⋆)1 Sc(g)(y, s) = Sc(Y )(y) − 2

ϕ
∆ϕ(y).

(The roles of Y and S = R and notationally reversed here with respect to
those in (⋆).)

The basic feature of the metrics ϕ2(y)ds2 + dy2 on Y × R is that they are
R-invariant, where the quotients (Y × R)/Z = Y × T1 carry the corresponding
T1-invariant metrics, while the R-quotients are isometric to Y .

Besides R-invariance, a characteristic feature of warped product metrics is
integrability of the tangent hyperplane field normal to the R-orbits, where Y ×
{0} ⊂ Y ×R, being normal to these orbits, serves as an integral variety for this
field.

Also notice that Y = Y × {0} ⊂ Y ×R is totally geodesic with respect to the
metric ϕ2(y)ds2 + dy2, while the (R-invariant) curvature (vector field) of the
R-orbits is equal to the gradient field ∇ϕ extended from Y to Y ×R.

In what follows, we emphasise R-invariance and interchangeably speak of
R-invariant metrics on Y ×R and metrics warped with factors ϕ2 over Y .

2.5 Second Variation Formula
The Weyl formula also yields the following formula for the second derivative of
the (n − 1)-volume of a cooriented hypersurface Y ⊂ X under a normal defor-
mation of Y in X, where the scalar curvature of X plays an essential role.

The deformations we have in mind are by vector fields directed by geodesic
normal to Y , where in the simplest case the norm of his field equals one.

In this case we have an equidistant motion Y ↦ Yt as earlier and the second
derivative of voln−1(Yt), denoted here V ol = V olt, is expressed in terms of of

5See §12 in [GL 1983].
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the shape operator At = A(Yt) of Yt and the Ricci curvature of X, where, recall
trace(At) =mean.curv(Yt) and

∂νV ol = ∫
Y
mean.curv(Y )dy

by the first variation formula.
Then, by Leibniz’ rule,

∂2
νV ol = ∂ν ∫

Y
trace(A(y))dy = ∫

Y
trace2(A(y))dy + ∫

Y
trace(∂νA(y))dy,

and where, by Weyl’s formula,

trace(∂νA) = −trace(A2) −Ricci(ν, ν)

for the normal unit field ν.
Thus,

∂2
νV ol = ∫

Y
(mean.curv)2 − trace(A2) −Ricci(ν, ν),

which, combining this with the above expression

Ricci(ν) = 1

2
(Sc(X) − Sc(Y ) − (mean.curv(Y ))2 + ∣∣A∗∣∣2) ,

shows that

∂2
νV ol = ∫

1

2
(Sc(Y ) − Sc(X) +mean.curv2 − ∣∣A∗∣∣2) .

In particular, if Sc(X) ≥ 0 and Y is minimal, then,

(∫ Sc ≥ 2∂2V) ∫
Y
Sc(Y, y)dy ≥ 2∂2

ν

(compare with the (Sc ≥ −2Ric) in 2.2).
Warning. Unless Y is minimal and despite the notation ∂2

ν , this derivative
depends on how the normal filed on Y ⊂ X is extended to a vector filed on (a
neighbourhood of Y in) X.

Illuminative Exercise. Check up this formula for concentric spheres of radii
t in the spaces with constant sectional curvatures that are Sn, Rn and Hn.

Now, let us allow a non-constant geodesic field normal to Y , call it ψν, where
ψ(y) is a smooth function on Y and write down the full second variation formula
as follows:

∂2
ψνvoln−1(Y ) = ∫

Y
∣∣dψ(y)∣∣2dy +R(y)ψ2(y)dy

for

[○○] R(y) = 1

2
(Sc(Y, y) − Sc(X,y) +M2(y) − ∣∣A∗(Y )∣∣2) ,

where M(y) stands for the mean curvature of Y at y ∈ Y and ∣∣A∗(Y )∣∣2 =
∑i(α∗)2, i = 1, ..., n − 1.

Notice, that the "new" term ∫Y ∣∣dψ(y)∣∣2dy depends only on the normal field
itself, while the R-term depends on the extension of ψν to X, unless

11



Y is minimal, where [○○] reduces to

[∗∗] ∂2
ψνvoln−1(Y ) = ∫

Y
∣∣dψ∣∣2 + 1

2
(Sc(Y ) − Sc(X) − ∣∣A∗∣∣2)ψ2.

Furthermore, if Y is volume minimizing in its neighbourhood, then ∂2
ψνvoln−1(Y ) ≥

0; therefore,

[⋆⋆] ∫
Y
(∣∣dψ∣∣2 + 1

2
(Sc(Y ))ψ2 ≥ 1

2
∫
Y
(Sc(X,y) + ∣∣A∗(Y )∣∣2)ψ2dy

for all non-zero functions ψ = ψ(y).
Then, if we recall that

∫
Y
∣∣dψ∣∣2dy = ∫

Y
⟨−∆ψ,ψ⟩dy,

we will see that [⋆⋆] says that

the operator ψ ↦ −∆ψ+ 1
2
Sc(Y )ψ is greater than6 ψ ↦ 1

2
(Sc(X,y)+∣∣A∗(Y )∣∣2)ψ.

Consequently,
if Sc(X) > 0, then the operator −∆ + 1

2
Sc(Y ) on Y is positive.

Justification of the ∣∣dψ∣∣2 Term. Let X = Y ×R with the product metric and
let Y = Y0 = Y × {0} and Yεψ ⊂X be the graph of the function εψ on Y . Then

voln−1(Yεψ) = ∫
Y

√
1 + ε2∣∣dψ∣∣2dy = voln−1(Y ) + 1

2
∫
Y
ε2∣∣dψ∣∣2 + o(ε2)

by the Pythagorean theorem
and

d2voln−1(Yεψ)
d2ε

= ∣∣dψ∣∣2 + o(1).

by the binomial formula.
This proves [○○] for product manifolds and the general case follows by

linearity/naturality/functoriality of the formula [○○].
Naturality Problem. All "true formulas" in the Riemannin geometry

should be derived with minimal, if any, amount of calculation – only on the
basis of their "naturality" and/or of their validity in simple examples, where
these formulas are obvious.

Unfortunately, this "naturality principle" is absent from the textbooks on
differential geometry, but, I guess, it may be found in some algebraic articles
(books?).

Exercise. Derive the second main formula (above (IV) by pure thought from
its manifestations in the examples in (VI).7

6A ≥ B for selfadjoint operators signifies that A −B is positive semidefinite.
7I haven’t myself solved this exercise.
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2.6 Conformal Modification of Scalar Curvature.
Let (X0, g0) be a compact Riemannian manifold of dimension n ≥ 3 and let ϕ = ϕ(x)
be a smooth positive function on X.

Then, by a straightforward calculation,8

G# Sc(ϕ2g0) = γ−1
n ϕ−

n+2
2 L(ϕ

n−2
2 ),

where L is the conformal Laplace operator on (X0, g0)

L(f(x)) = −∆f(x) + γnSc(g0, x)f(x)

for the ordinary Laplace (Beltrami) ∆f = ∆g0f = ∑i ∂iif and γn = n−2
4(n−1) .

Thus, we conclude to the following.
Kazdan-Warner Conformal Change Theorem [KW 1975]. Let X = (X,g0)

be a closed Riemannin manifold, such the the conformal Laplace operator L is
positive.

Then X admits a Riemannin metric g (conformal to g0) for which Sc(g) > 0.
Proof. Since L is positive, its first eigenfunction, say f(x) is positive and

since L(f) = λf, λ > 0,

Sc(f
4
n−2 g0) = γ−1

n L(f)f−
n+2
n−2 = γ−1

n f
2n
n−2 > 0.

Example: the Schwarzschild metric. If (X0, g0) is the Euclidean 3-space, and
f = f(x) is positive function, then

the sign of Sc(f4g0) is equal to that of −∆f .

In particular, since the function 1
r
= (x2

1 + x2
2 + x2

3)−
1
2 , is harmonic, the

Schwarzschild metric gSw = (1 + 1
r
)4
g0 has zero scalar curvature.

Question. What is the geometric/topological significance of positivity of the
operator −∆X + γSc(X) for particular numbers γ, e.g, for those smaller than the
above γn = n−2

4(n−1)?
For instance, do, for a given γ < γn, all n-manifolds X admit Riemannin metrics

g with positive operators −∆g + γScg?
(It is easy to see that all closed n-manifolds, n ≥ 2, admit Riemannin metrics

g with positive operators −∆g + γScg for all γ < 1
n10n .)

2.7 Applications to Minimal Surfaces and Hypersurfaces.
Let X be a three dimensional Riemannin manifold with Sc(X) > 0 and Y ⊂ X be
a cooriented surface with minimal area in its homology class.

Then the inequality (∫ Sc ≥ 2∂2V ) from section 2.5, which says in the present
case that

∫
Y
Sc(Y, y)dy > 2∂2

νarea(Y ),

implies that
Y must be a topological sphere.

In fact, minimality of Y makes ∂2
νarea(Y ) ≥ 0, hence ∫Y Sc(Y, y)dy > 0, and

the sphericity of Y follows by the Gauss-Bonnet theorem.
8There must be a better argument.
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And since all integer homology classes in closed orientable Riemannin 3-
manifolds admit area minimizing representatives by the geometric measure the-
ory developed by Federer, Fleming and Almgren, we arrive at the following
conclusion.

☀3 Schoen-Yau Theorem. All integer 2D homology classes in closed
Riemannian 3-manifolds with Sc > 0 are spherical.

For instance, the 3-torus admits no metric with Sc > 0.
The above argument appears in Schoen-Yau’s 15-page paper [SY(incompressible)

1979], most of which is occupied by an independent proof of the existence and
regularity of minimal Y .

In fact, the existence of minimal surfaces and their regularity needed for
the above argument has been known since late (early?) 60s9 but, what was,
probably, missing prior to the Schoen-Yau paper was the innocuously looking
corollary of Gauss’ formula in 2.2,

Sc(Y ) = Sc(X) + (mean.curv(Y ))2 − ∣∣A∗(Y )∣∣2 −Ricci(ν, ν)

and the issuing inequality

Sc(Y ) > −2Ricci(ν, ν)

for minimal Y in manifolds X with Sc(X) > 0.
For example, Burago and Toponogov, come close to the above argument in

[BT 1973], where, they bound from below the injectivity radius of Riemannian
3-manifolds X with sect.curv(X) ≤ 1 and Ricci(X) ≥ ρ > 0 by

inj.rad(X) ≥ 6e−
6
ρ ,

where this is done by carefully analysing minimal surfaces Y ⊂ X bounded by,
a priori very short, closed geodesics in X, and where an essential step in the
proof is the lower bound on the first eigenvalue of Y by

√
Ricci(X).

Exercises. Let X be homeomorphic to Y ×S1, where Y is a closed orientable
surface with the Euler number χ.

(a) Let χ > 0, Sc(X) ≥ 2 and show that there exists a surface Yo ⊂ X
homologous to Y × {s0}, such that area(Yo) ≤ 4π.

(b) Let χ < 0, Sc(X) ≥ −2 and show that all surfaces Y∗ ∈ X homologous to
Y × {s0} have area(Y∗) ≥ −2πχ.

(c) Show that (a) remains valid for complete manifolds X homeomorphic to
Y ×R.10

Schoen-Yau Codimension 1 Descent Theorem. [SY(structure) 1979] . Let X
be a compact orientable n-manifold with Sc > 0.

If n ≤ 7, then all integer homology classes h ∈ Hn−1(X) are representable
by compact oriented (n − 1)-submanifolds Y in X, which admit a metrics with
Sc > 0.

Proof. Let Y be a volume minimizing hypersurface representing h, the ex-
istence and regularity of which is guaranteed by [Fed 1970] and recall that by

9Regularity of volume minimizing hypersurfaces in manifolds X of dimension n ≤ 7, as we
mentioned earlier, was proved by Herbert Federer in [Fed 1970], by reducing the general case
of the problem to that of minimal cones resolved by Jim Simons in [Sim 1968].

10I haven’t solved this exercise.
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[⋆⋆] in 2.5 the operator −∆+ 1
2
Sc(Y ) is positive. Hence, the conformal Laplace

operator −∆ + γnSc(Y ) is also positive for γn = n−2
4n−1

≤ 1
2
and the proof follows

by Kazdan-Warner conformal change theorem.
☀nCorollary. If a closed orientable n-manifold X admits a map to the torus

Tn with non-zero degree, then X admits no metric with Sc > 0.

Indeed, if a closed submanifold Y n−1 is non-homologous to zero in this X
then it (obviously) admits a map to Tn−1 with non-zero degree. Thus, the
above allows an inductive reduction of the problem to the case of n = 2, where
the Gauss-Bonnet theorem applies.

Remarks. (a) The original argument by Schoen and Yau yields the following
stronger topological constraints on X.

Call a closed orientable n-manifold Schoen-Yau-Schick if it admits a smooth
map f ∶ X → Tn−2, such that the homology class of the pullback of a generic
point,

h = [f−1(t)] ∈H2(X)

is non-spherical, i.e. it is not in the image of the Hurewicz homomorphism
π2(X)→H2(X).

What the above argument actually shows, is that
☀☀n SYS-manifolds of dimensions n ≤ 7 admit no metrics with Sc > 0.
(b) Exercise. Construct examples of SYS manifolds of dimension n ≥ 4,

where all maps X → Tn have zero degrees.
Hint: apply surgery to Tn.
(c) The limitation n ≤ 7 of the above argument is due a presence of singu-

larities of minimal subvarieties in X for dim(X) ≥ 8.
If n = 8, these singularities were proven to be unstable, (see [Smale 1993]

and section 5.2), which improve n ≤ 7 to n ≤ 8 in ☀☀n

More recently, the dimension restriction was fully removed in [SY(singularities)
2017] and in [Loh(smoothing) 2018]; the arguments in both papers are difficult
and I have not mastered them.

On the other hand, there are several short and technically simple (modulo
standard index theorems) proofs of☀n (but not of☀☀n) for spin 11 manifolds
X, e.g. for X homeomorphic to Tn. (see section 3.2).

Also notice, that besides being short, the Dirac operator arguments deliver in
some cases obstructions to Sc > 0 that lie fully beyond the range of the minimal
surface techniques. For instance (see [G (positive) 1996] and [G(inequalities),
2018])

⊗ if a closed orientable manifold of dimension dim(X) = 2k carries a closed
2-form ω (e.g. a symplectic one), such that ∫X ω

k ≠ 0, and if the universal cover
X̃ is contractible, 12 then X admits no metric with Sc > 0.

(This applies, for instance, to even dimensional tori and to aspherical 4-
manifolds with H2(X,R) ≠ 0.)

11A smooth connected n-manifolds X is spin if the frame bundle over X admits a double
cover extending the natural double cover of a fiber, where such a fiber is equal to the linear
group, (each of the two connected components of) which admits a a unique non-trivial double
cover G̃L(n)→ GL(n). For instance, all manifolds X with H2(X;Z2) = 0 are spin.

12It’s enough to have X̃ spin and the lift ω̃ to X̃ exact.

15



3 Topics, Results, Problems
We present in this section a (very) brief overview of what is known and what
is unknown about scalar curvature, where we illustrate general results by their
simplest instances. The general formulations and the proofs will appear in the
sections to come.

3.1 Closure and Density Theorems
LetX be a smooth Riemannian manifold, letG = G2(X) the space of C2-smooth
Riemannin metrics g on X and let GSc≥σ ⊂ G and GSc≤σ ⊂ G, −∞ < σ <∞, be
the subsets of metrics g with Sc(g) ≥ σ and with Sc(g) ≤ σ respectively.

Then:
A: limSc≥σ. The subset GSc≥σ ⊂ G is closed in G with respect to C0-topology:
uniform limits g = lim gi of metric gi with Sc(gi) ≥ σ have Sc ≥ σ, provided

these g are C2-smooth in order to have their scalar curvature defined.
B: limSc≤σ.The subset GSc≤σ ⊂ G is dense in G with respect to C0-topology.
Moreover, all g ∈ G admit fine (which is stronger than uniform for non-

compact X) approximations by metrics with scalar curvatures ≤ σ.
There are two proofs of A. The first one in [G(billiards) 2014] depends on

non-existence of metrics with Sc > 0 on tori and the second one in [Bamler 2016]
uses Ricci flow.

The proof of B is achieved by a (more or less) direct and elaborate geometric
construction in [Lohkamp 1994], where it is, in fact, shown that the metics with
Ricci < 0 are C0-dense as well.

Observe that if contrary to A the space of metrics with Sc ≥ 0 were dense,
there would be no hope for a non-trivial geometry of such metrics, whileA leads
us to the following.

Problem. Study continuous Riemannian metrics which are C0-limits of smooth
gi, such that lim infi→∞ Sc(gi) ≥ 0.

Notice that the experience with a similar problem concerning C0-limits of
symplectic diffeomorphisms offers little expectations on geometry of such limits,
but stability (see below) of basic geometric inequalities with Sc ≥ 0 (e.g. as
indicated in the next section below) points toward a more optimistic solution.)

3.2 TnSc≯0: No Metrics with Sc > 0 on Tori

We have already explained (see section 2.7) Schoen-Yau’s proof from [SY(structure)
1979] by an inductive descent argument with minimal hypersurfaces of the fact
that

The tori Tn, n ≤ 7, admit no metrics with Sc > 0,
Schoen and Yau also show that
Riemannin metrics on these tori with Sc ≥ 0 are Riemannin flat: the univer-

sal coverings of these tori are isometric to Rn. (We shall explain this in section
5.8)

And as we mentioned earlier, the condition n ≥ 7 was removed in the difficult
papers [SY(singularities) 2017] and [Loh(smoothing) 2018].
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An alternative proof of TnSc≯0, albeit very short and simple but lacking the ge-
ometric transparency of the Schoen-Yau argument, was given in [GL(fundamental
group) 1980] for all n with a use of twisted Dirac operators13 D on Tn.

At the present moment there are (at least) five such proofs which rely on
different versions of the Atiyah-Singer index theorem which guarantees the ex-
istence of non-zero harmonic representatives in various spaces of sections of
twisted spinors on Tn (or on Rn which cover Tn) with arbitrary metrics .

Then non-existence of a metric on Tn with Sc > 0 (eventually) follows from
Schroedinger-Lichnerowicz-Weitzenboeck algebraic identity

D2 = ∇2 + 1

4
Sc

for a positive (coarse Bochner Laplace) operator ∇2, 14

that implies that no non-zero harmonic spinor exists if Sc > 0. (see §4 for
more about it).

Stability Problem for [Sc ≥ −ε]. Let a metric g on the torus have Sc(g) > −ε.
Find additional conditions on g that would make it close to a flat metric.

The simplest expected result of this kind would be as follows:
if a sequence of smooth metrics gi with Sc(gi) ≥ −εi →

i→∞
0 uniformly converges

to a continuous metric g, then this g is Riemannian flat.
(See section 5.8 for a possible approach to the proof of this)

3.3 Asymptotically Flat Spaces with Sc ≥ 0

It was conjectured by Geroch for n = 3 [Ger 1975] that
The Euclidean metric on Rn admits no compactly supported perturbations with

increase of the scalar curvature. Moreover,
If a metric g on Rn with Sc(g ≥ 0 is equal to gEucl outside a compact subset

in Rn, then (Rn, g) is isometric to (Rn, gEucl).
This, of course, trivially follows from the above TnSc≯0, since compactly sup-

ported perturbations of the flat metric on Rn yields similar perturbations of flat
metrics on tori.

In fact, a more general version of this was originally proven by Schoen and
Yau in [SY(positive mass) 1979] for a class of metrics g on 3-manifolds asymp-
totic to gEu under the name of positive mass/energy theorem (see sections 3.13)
with a use of minimal surfaces.

Then Witten in [Witten 1981] (also see [Bartnik 1986]) suggested a proof
with a use of a perturbation argument in the space of invariant (non-twisted)
harmonic spinors on Rn.

Later, Lohkamp [Loh(hammocks) 1999] found a (relatively) simple reduc-
tion of the general, and technically more challenging, case of the positive mass
theorem to that of compactly supported perturbations, that in turn, (trivially)
reduces to :TnSc≯0.

13The "untwisted" Dirac operator acts on the spin bundle S(X) and a "twisted" one operates
on the tensor product of S(X) with some vector bundle L over X.

14Here and everywhere in our lectures, ∇2 is an abbreviation for ∇∇∗ = −∑i∇i∇i, where ∇
is covariant differentiation operator in a Euclidean vector bundle with an orthogonal connec-
tion and where positivity of ∇2 is seen via the relation ∫ ⟨∇2ψ,ψ⟩ = ∫ ∣∣∇ψ∣∣2 for the sections
ψ of our bundle.
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Also notice that the doubling property formean convex manifolds with bound-
aries (see [GL(fundamental group) 1980]) allows a reduction of the Geroch Con-
jecture and of similar more general results to the Goette-Semmelmann theorem
[GS 2002] concerning extremality/rigidity of the metrics g with positive curva-
ture operators (see [X→b] in section 3.5 below).

Problems. What are other (homogeneous?) Riemannian spaces that admit no
(somehow) localised deformations with increase of the scalar curvatures?

What are most general asymptotic (or boundary) conditions on such deforma-
tions that would allow their localization?

Here is a definite result along these lines due to Michael Eichmair, Pengzi
Miao and Xiadong Wang, [ EMW 2009] generalizing an earlier result by Yuguang
Shi and Luen-Fai Tam[ ST 2002]

STEMW Rigidity Theorem. Let X ⊂ Rn be a star convex domain, e.g. a
convex one, such as the unit ball, for example, and let X be a compact Riemannin
manifold the boundary Y = ∂X of which is isometric to the boundary Y = ∂X.

If Sc(X) ≥ 0 and if the total scalar curvature of Y is bounded from below by
that of Y ,

∫
Y
mean.curv(Y, y)dy ≥ ∫

Y
mean.curv(Y , y)dy,

then X is isometric to X.
Remark. Originally, this was proven for n ≤ 7 but this restriction can be now

removed in view of [SY(singularities) 2017] and/or of [Loh(smoothing) 2018].
Conjecture. Let X be a compact Riemannin manifold with Sc ≥ σ. Then the

integral mean curvature of the boundary Y = ∂X is bounded by

∫
Y
mean.curv(Y, y)dy ≤ const,

where this const depends on σ and on the (intrinsic) Riemannian metric on Y
induced from that of X ⊃ Y .

(See section 3.6 for description of some results in this direction.)

3.4 Simply Connected Manifolds with and without Sc > 0

As we already stated earlier, according to Lichnerowicz [Lich 1963], the Atiyah-
Singer index theorem for the Dirac operator D and the identity D2 = ∇2 + 1

4
Sc,

imply that
there are smooth closed simply connected manifolds X of all dimensions n = 4k,

k > 0, that admit no metrics with Sc > 0.
The simplest example of these for n = 4 is the Kummer surface given by the

equation
z4

1 + z4
2 + z4

3 + z4
4 = 0

in the complex projective space CP 3.
Also by Lichnerowicz’ theorem, other complex surfaces of even degrees d ≥ 4

as well as their Cartesian products, e.g XKu × ... ×XKu admit no metrics with
Sc > 0.

A decade later, using a more general index theorem by Atiyah and Singer,
Hitchin [Hit 1974] pointed out that
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there exist manifolds Σ homeomorphic (but no diffeomorphic!) to the spheres
Sn, for all n = 8k + 1,8k + 2, k = 1,2,3..., which admit no metrics with Sc > 0.

Notice that, by Yau’s solution of the Calabi conjecture, the Kummer surface
admits a metric with Sc = 0, even with Ricci = 0, but, probably, (I guess this
must be known) there is no metrics with Sc = 0 on these Σ.

The actual Lichnerowicz-Hitchin theorem says that if a certain topological
invariant α̂(X) doesn’t vanish, then X admits no metric with Sc > 0, since, by
the Atiyah and Singer index formulae,15

α̂(X) ≠ 0⇒ Ind(D∣X) ≠ 0⇒ ∃ harmonic spinor ≠ 0 on X.

Conversely,
if X is a simply connected manifold of dimension n ≠ 4, and if α̂(X) = 0 then

it admits a metric with positive scalar curvature [GL(classification) 1980], [Stolz
1992].

Thus, for instance
all simply connected manifolds of dimension n ≠ 0,1,2,4 mod 8 admit met-

rics with Sc > 0, since α̂(X) = 0 is known to vanish for these n.
A Few Words on n = 4 and on π1 ≠ 0. (See sections 3.11, 3.14) more about it.)

If n = 4 then, besides vanishing of the α̂-invariant (which is equal to a non-zero
multiple of first Pontryagin number for n = 4), positivity of the scalar curvature
also implies the vanishing of the Seiberg-Witten invariants (See lecture notes by
Dietmar Salamon, [Sal 1999]; also we say more about it in section 3.14).

If X is a closed spin manifold of dimension n ≥ 5 with the fundamental group
π1(X) = Π , then

the existence/non-existence of a metric g on X with Sc(g) > 0 is an invariant
of the spin bordism class [X]sp ∈ bordsp(BΠ) in the classifying space BΠ,
where, recall, that (by definition of "classifying") the universal covering of BΠ
is contractible and π1(BΠ) = Π. (See lecture notes [Stolz(survey) 2001].)

There is an avalanche of papers, most of them coming under the heading of
"Novikov Conjecture", with various criteria for the class [X]sp, and/or for the
corresponding homology class [X] ∈ Hn (BΠ) (not) to admit g with Sc(g) > 0
on manifolds in this class, where these criteria usually (always?) linked to
generalized index theorems for twisted Dirac operators on X with several levels
of sophistication in arranging this "twisting". Yet, despite a significant progress
in this direction, the following remains unsettled for n ≥ 4.

Conjecture. No closed aspherical16 manifold X admits a metric with Sc > 0.
Moreover,
if a closed oriented n-manifold X admits a continuous map to an aspherical

space, that is BΠ for some group Π, such that the image of the rational fundamental
homology class of [X]Q in the rational homology17 homology (BΠ;Q) doesn’t
vanish, then X admits no metic g with Sc(g) > 0.

(We shall briefly describe the status of this conjecture in section 3.11.)
15The Dirac operator is defined only on spin manifolds and to avoid entering into this at

the present moment we postulate α̂(X) = 0 for non-spin manifolds X.
16Aspherical means that the universal covering is contractible.
17Bernhard Hanke pointed out to me that the role of homology with finite coefficients

in prohibiting Sc > 0 , especially for finite groups Π, remains obscure even on the level of
conjectures.

19



3.5 Bounds on Size, Extremality, Rigidity
The inequality Sc(X) ≥ σ > 0, as it becomes a positive curvature condition,
imposes an upper bound on the size of X, where an instance of this can be
expressed in terms of the hyperspherical radius RadSn(X), defined for closed
Riemannian n-manifolds X as

the supremum of the radii R > 0 of n-spheres, such that X admits a non-
contractible 1-Lipschitz, i.e. distance non-increasing, map f ∶X → Sn(R).

The existence of a non-trivial such bound,

RadSn(X) ≤ constn√
σ

, σ = inf
x∈X

Sc(X,x),

for orientable spin18 manifolds X of even dimensions n 19 follows by confronting
the index theorem with a "twisted version" of the formula D2 = ∇2+ 1

4
Sc for the

Dirac operator on X twisted with the f -pullback of a suitable vector bundle L
over Sn [GL(fundamental) 1980], where

the optimal constant constn =
√
n(n − 1) =

√
Sc(Sn) is achieved with L

being the (complexified) positive spin bundle over Sn, (see [Llarull 1998] and
section 4.2)

This sharp inequality, says, in particular, that one can’t enlarge the spherical
metric gsphr on Sn without making the scalar curvature smaller at some point.
That is if a metric g on Sn satisfies

g ≥ gsphr and Sc(g) ≥ n(n − 1) = Sc(gsphr)

then, necessarily, Sc(g) = n(n− 1), which we express by saying that spheres are
extremal.

In fact, Llarull’s argument (we say a few words about it in section 4.2) shows
that spheres are rigid:

[g ≥ gsph]&[Sc(g) ≥ Sc(gsph)] implies that g = gsph.
This extremality/rigidity property of spheres was generalised by Goette and

Semmelmannto manifolds X with positive curvature operators, where the ex-
amples of such manifolds we are concerned with now are smooth locally convex
hypersurfaces in Riemannin flat (n + 1)-manifolds, e.g. products of convex hy-
persurfaces in Rm+1 by the flat tori Tn−m.

The (proof of the) main result in [GS 2002] implies in this case the following
theorem.

[X→b] Let X be a connected orientable Riemannian n-manifold, let X ⊂ Rn+1

be a smooth closed locally convex hypersurface in a Riemannin flat (n+1)-manifold
and let f ∶X →X be a smooth map.

18All surfaces are spin and an orientable manifold X of dimension n ≥ 3 is spin if and
only if the restriction of the tangent bundle T (X) to all surfaces Y 2 ⊂ X are trivial, e.g. if
H2(X;Z2) = 0. The simplest examples or spin n-manifolds are smooth hypersurfaces in Rn+1,
such as product of spheres.

More interesting in this respect are complex projective spaces CPm and smooth complex
hypersurfaces X ⊂ CPm of degree d: these X are spin if and only if m + d is odd, as it the
case for the Kummer surface, for instance.

19A trivial (and ungraceful) reduction to the even dimensional one follows taking X times
the circle, but there is a better way of doing it.

20



Let the norm of the differential of f and the scalar curvatures of X and X
be related by the inequality

Sc(X,x) ≥ Sc(X,f(x)) ⋅ ∣∣df(x)∣∣2, x ∈X.

If X is orientable and the degree of f is non-zero, then, provided X is spin, this
inequality becomes an equality:

Sc(X,x) = Sc(X,f(x)) ⋅ ∣∣df(x)∣∣2,

at all points x ∈X.
Notice that the above Llarull’s theorem as well as non-existence of metrics

with Sc > 0 on tori are special cases of [X→b].
Problem. What are further examples of extremal/rigid manifoldsX with Sc(X) >

0? (We shall meet a few later on.)
Do all closed manifolds which admit metrics with Ricci > 0 admit extremal/rigid

metrics with Sc > 0?

3.6 Hypersurfaces with Large Mean Curvatures
Let Y ⊂ Rn be a smooth closed hypersurface with the mean curvature bounded
from below by µ > 0.

Then the hyperspherical radius of Y is bounded by

RadSn−1(Y ) ≤ 1

n − 1
.

Moreover, if RadSn−1(Y ) = 1
n−1

, then mean.curv(Y ) = n − 1,
which, by a theorem of A.D. Alexandrov, implies that

Y equals to the unit sphere Sn−1
x ⊂ Rn around some point x ∈ Rn.

This is shown (see section 4.3) by applying [X→b], to a smoothed double
DDε(X) defined as follows.

Let
X1/2 ⊂ Rn ⊂ Rn+1

be the (closed) domain in ⊂ Rn bounded by Y and let Xε =DDε(X) ⊂ Rn+1

be a (more or less) naturally/canonically C2-smoothed boundary of the ε-
neighbourhood (which is only C1-smooth) of X1/2 ⊂ Rn+1.

Then let X1/2 ⊂ Rn+1 be the unit n-ball Bn ⊂ Rn ⊂ Rn+1 and let, accordingly,
DDε(X) = Xε ⊂ Rn+1 be a (more or less) naturally/canonically C2-smoothed
boundary of its ε-neighbourhood.

Then maps f ∶ Y → Sn−1 define maps

Fε ∶Xε →Xε,

to which [X→b] applies and, when ε→ 0, it yields the inequality
RadSn−1(Y ) ≤ 1

n−1
. (See [G(boundary) 2019] and section 4.3.)

Questions. Is there a direct proof of this inequality?
What exactly happens in the limit when ε → 0 to the Dirac operator used

in the proof of [X→b]?
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Exercise + Problem. Let Y0 ⊂ Rn be a smooth compact cooriented subman-
ifold with boundary Z = ∂Y0.

If the mean curvature of Y0 with respect to its coorientation satisfies

mean.curv(Y ) ≥ n − 1 =mean.curv(Sn−1),

then every distance decreasing map

f ∶ Z → Sn−2 ⊂ Rn−1

is contractible, where "distance decreasing"refers to the distance functions on
Z ⊂ Rn and on Sn−2 ⊂ Rn−1 coming from the ambient Euclidean spaces Rn and
Rn−1.

Hint. Observe that the maximum of the principal curvatures of Y0 is ≥ 1
and show that the filling radius of Z ⊂ Rn is ≤ 1.

Question. Does contractibility of f remains valid if the distance decreasing
property of f is defined with the (intrinsic) spherical distance in Sn−2 and with
the distance in Z ⊂ Y0 associated with the intrinsic metric in Y0 ⊃ Z, where
distY0(y1, y2) is defined as the infimum of length of curves in Y0 between y1 and
y2?

Bringing Scalar Curvature into the Open. Our proof of the inequality

inf
y∈Y

mean.curv(Y, y) ≤ 1

RadSn−1(Y )

applies not only to hypersurfaces in Rn but to
the boundaries Y = ∂X of all compact Riemannin spin manifolds X with

Sc(X) ≥ 0.
This, suggests the following version of the conjecture following STEMW

Rigidity Theorem in section 3.3.
Let the above Y = ∂X be λ-bi-Lipschitz homeomorphic to the unit sphere Sn.
Then, conjecturally,

∫
Y
mean.curv(Y, y)dy ≤ C(λ)(n − 1)vol(Sn),

where – this might follows from the STEMW proof – C(λ)→ 1 for λ→ 1.

3.7 Widths of Riemannian Bands X with Sc(X) ≥ Sc(Sn)

Bands, sometime we call them capacitors, are manifolds X with two distin-
guished disjoint non-empty subsets in the boundary ∂(X), denoted

∂− = ∂−X ⊂ ∂X and ∂+ = ∂+X ⊂ ∂X.

A band is called proper if ∂± are unions of connected components of ∂X and

∂− ∪ ∂+ = ∂X.

The basic instance of such a band is the segment [−1,1], where ±∂ = {±1}.
Furthermore, cylinders X =X0×[−1,1] are also bands with ±∂ =X0×{±1},

where such a band is proper if X0 has no boundary.
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Riemannian bands are those endowed with Riemannin metrics and
the width of a Riemannin band X = (X,∂±) is defined as

width(X) = dist(∂−, ∂+),

where this distance is understood as the infimum of length of curves in V be-
tween ∂− and ∂+.

We are concerned at this point with proper compact Riemannin bands X of
dimension n, such that

no closed hypersurface Y ⊂ X, which separates ∂− from ∂+, admits a metric
with strictly positive scalar curvature.

Simplest Examples of such bands are (we prove this in section 5.3)
●Tn−1 toric bands which are homeomorphic to X = Tn−1 × [−1,1];
●α̂ these, called α̂ bands, are diffeomorphic to Y−1 × ×[−1,1], where the

Y−1 is a closed spin (n− 1)-manifold with non-vanishing α̂-invariant (see the IV
above);

●Tn−1×α̂ these are bands diffeomorphic to productsXn−k×Tk, where α̂(Xn−k) ≠
0.

2π
n -Inequality. Let X be a proper compact Riemannin bands X of dimen-

sion n with Sc(X) ≥ n(n − 1) = Sc(Sn).
If no closed hypersurface in X which separates ∂− from ∂+ admits a metric

with positive scalar curvature, then

[�± ≤
2π
n
] width(V ) ≤ 2π

n
.

Moreover, the equality holds only for warped products X = Y × (−π
n
, π
n
)20

with metrics ϕ2h + dt2, where the metric h on Y has Sc(h) = 0 and where

ϕ(t) = exp∫
t

−π/n
− tan

nt

2
dt, − π

n
< t < π

n
,

as in VI of section 2.
Corollary. Let Y be a closed manifold of dimension ≠ 4 (see 3.15 below about

n = 4). Then the following three conditions are equivalent.
1: the open cylinder Y × R admits a complete metric g1 with uniformly

positive scalar curvature, i.e. with infx∈X Sc(g, x) > 0;
2: the open cylinder Y ×R admits a complete metric g2 with positive scalar

curvature which decays subquadratically:

lim inf
x→∞

Sc(g2, x) ⋅ dist(x,x0)2 =∞.

3: the closed cylinder Y × [−1,1] admits a metric g3 with Sc(g2) ≥ n(n − 1)
and such that

distg3(Y × {−1}, Y × {1}) ≥ 2π

n
.

20Here, since X is non-compact, the width is understood as the distance between the two
ends of X.
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Two words about the proof(s). There are two somewhat different proofs of
[�± ≤

2π
n
] which use the calculus of variation but advance along slightly different

routes.
The first route follows an inductive descent with minimal hypersurfaces á

la Schoen-Yau adapted to manifolds with boundaries similarly to that in [GL
1983]. This applies only to the toric and to similar bands, but not to α̂-bands.
(See [G(inequalities) 2018].)

The second route proceeds with a use of stable µ-bubbles which are closed
hypersurfaces in X with (prescribed) mean curvature µ, where µ = µ(x) is a
signed measure on X as in §5 5

6
of [G(positive) 1996]. (See section 5)

This applies to all bands and it also improves certain results from [G(inequalities)
2018] obtained with the first proof.

Both proof, when it comes to dim(X) = n ≥ 9 have to face the problem of
possibly) stable singularities of minimal ( and minimal-like) hypersurface in X.

I feel more comfortable in this respect with the first proof, where a direct
application of theorem 4.6 from the recent Schoen-Yau paper [SY(singularities)
2017], (also see [Sch 2017]) is possible.

And as far the second proof for n ≥ 9 is concerned, the argument from
[Loh(smoothing) 2018] seems to be applicable to our case, but this seems harder
than the analysis in [SY(singularities) 2017] (which, honestly, I haven’t carefully
studied, either).

3.8 Bound on Widths of Riemannian Cubes
Let g be a Riemannin metric on the cube X = [−1,1]n and let di, i = 1,2, ..., n,
denote the g-distances between the pairs of the opposite faces denoted ∂i± = ∂i±(X)
in this cube X, that are the length of the shortest curves between ∂i− and ∂i+ in
X.

◻
n-Inequality. If Sc(g) ≥ n(n − 1) = Sc(Sn), then

◻∑
n

∑
i=1

1

d2
i

≥ n2

4π2

In particular,

◻min min
i
dist(∂i−, ∂i+) ≤

2π√
n
.

About the Proof. On the surface of things, this inequality is purely geometric
with no topological strings attached. But in truth, the combinatorics of the cube
fully reflects toric topology in it.

The proof of ◻∑ indicated in section 5.4 proceeds along the above second
route which, in fact, applies to more general "cube-like" manifolds X, such as
Y−m×[−1,1]n−m and yields inequalities mediating between the above [�± ≤

2π
n
]

and ◻∑.
But the proof of ◻∑ as it stands for m = n is also possible closely follow-

ing t the first route, where the argument from [SY(singularities) ] seems easily
adaptable.

This makes the proof of ◻∑ for n ≥ 9 more tractable.

24



Corollary. Let X be a Riemannin manifold with Sc(X) ≥ n(n − 1) =
Sc(Sn), which admits a λn-Lipschitz21 homeomorphism onto the hemisphere
Sn+ ,

f ∶X → Sn+ .

Then
λn ≥

arcsinβn
πβn

> 1

π
for βn =

1√
n
.

Proof. The hemisphere Sn+ admits an obvious cubic decomposition with
the (geodesic) edge length 2 arcsin 1√

n
and ◻min applies to the pairs of the f -

pullbacks of the faces of this decomposition.
Remarks. (a) This lower bound on λn improves those in §12 of [GL 1983]

and in §3 of [G(inequalities) 2018].
Moreover the sharp inequality for Lipschitz maps to the punctured sphere

stated in the next section implies that λn ≥ 1
2
for all n.

But it remains problematic if, in fact, λ ≥ 1.
Exercise. Show that λ2 ≥ 1.
(b) The proof of the inequality ◻∑ in section 5.4 applies to proper ((boundary→

boundary) λ-Lipschitz maps with non-zero degrees from all compact connected
orientable manifolds X to Sn+ , while the proof via punctured spheres needs X
to be spin.

Additional Exercises. (i) Show that the Riemannin metrics with sectional
curvatures ≥ 1 on the square [−1,1]2 satisfy

◻2
min. min

i=1,2
dist(∂i−, ∂i+) ≤ π.

(ii) Construct iterated warped product metrics gn on the n-cubes [−1,1]n
with Sc(gn) = n(n − 1), where, for n = 2, both di, i = 1,2, are equal to π and
such that

di > 2 arcsin
1√
n
, i = 1, ..., n, for all n = 3,4, ..., .

(iii) Show, that ◻min is equivalent to the over-torical case of 2π
n -Inequality.

modulo constants. Namely,
A. If a Riemannin n-cube X has mini dist(∂i−, ∂i+) ≥ d, then it contains an

n-dimensional Riemannin band X○ ⊂ X, where dist(∂−X○, ∂+X○) ≥ εn ⋅ d, εn > 0,
and where X○ admits a continuous map to the (n− 1) torus, f○ ∶X○ → Tn−1, such
that all closed hypersurfaces Y○ ⊂ X○ which separate ∂−X○ from ∂+X○ are sent by
f○ to Tn−1 with non-zero degrees.

B. Conversely, let Xo be a band, where dist(∂−Xo, ∂+Xo) ≥ d) and which
admits a continuous map to the (n−1) torus, such that the hypersurfaces Yo ⊂Xo,
which separate ∂−Xo from ∂−Xo, are sent to this torus with non-zero degrees.

Then there is a (finite if you wish) covering X̃o of Xo, which contains a
domain X◽ ⊂ X̃o, where this domain admits a continuous proper map of degree
one onto the d-cube f◽ ∶X◽ → (0, d)n, such that the n coordinate projections of
this map, (f◽)i ∶X◽ → (0, d), are distance decreasing.

21A map f between metric spaces is λ-Lipschitz if dist(f(x)f(y)) ≤ dist(x, y).
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3.9 Extremality of Punctured Spheres
Let (X,g) be the unit sphere Sn minus two opposite points with the spherical
Riemannin metric g = gsphe.

If a smooth metric g on X satisfies

g ≥ g and Sc(g) ≥ n(n − 1) = Sc(g),

then g = g.
About the Proof. By following the above second route, one can reduce this to

(a version of) Llarull’s theorem (see section 5.5, where again I can fully vouch
only for n ≤ 8.

Remark. It follows by Llarull’s argument for all n that
no complete metric g on the n-sphere minus a finite subset Σ can satisfy the

inequalities g ≥ g and Sc(g) ≥ n(n − 1).
But this is unknown if one makes no completeness assumption, except for

the empty Σ, a single point or a pair of opposite points.
Exercise. Prove with the above that no metric g on the hemisphere (Sn+ , g)

can satisfy the inequalities g ≥ 4g and Sc(g) > n(n−1). Then directly show that
if n = 2 then the inequality g ≥ g and Sc(g) ≥ 2 imply that g = g.

Question. Does the implication

[g ≥ g]&[Sc(g) ≥ n(n − 1)]⇒ g = g

ever hold for Sn ∖Σ apart from the above cases?

3.10 Manifolds with Negative Scalar Curvature Bounded
from Below

If a "topologically complicated" closed Riemannin manifolds X, e.g. an aspher-
ical one with a hyperbolic fundamental group, has Sc(X) ≥ σ for σ < 0, then a
certain "growth" of the universal covering X̃ ofX is expected to be bounded from
above by const

√
−σ and accordingly, the "geometric size" – ideally n

√
vol(X)–

must be bounded from below by const′/
√
−σ.

If n = 3 this kind of lower bound are easily available for areas of stable
minimal surfaces of large genera via Gauss Bonnet theorem by the Schoen-Yau
argument from [SY(incompressible) 1979].

Also Perelman’s proof of the geometrization conjecture delivers a sharp
bound of this kind for manifolds X with hyperbolic π1(X) and similar results
for n = 4 are possible with the Seiberg-Witten theory for n = 4 (see section 3.15).

No such estimate has been established yet for n ≥ 5 but the following results
are available.

Min-Oo Hyperbolic Rigidity Theorem [Min(hyperbolic) 1989]. Let X
be a complete Riemannin manifold, which is isometric at infinity (i.e. outside a
compact subset in X) to the hyperbolic space Hn

−1.
If Sc(X) ≥ −n(n − 1) = Sc(Hn

−1), then X is isometric to Hn
−1.

About the Proof. The original argument by Min-Oo, which generalizes Dirac-
theoretic Witten’s proof of the positive mass/energy theorem for asymptotically
Euclidean (rather than hyperbolic) spaces, needs X to be spin.
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But granted spin, Min-Oo’s proof allows more general asymptotic (in some
sense) agreement between X and Hn

−1 at infinity.
In order to get rid of spin, one may use here either minimal hypersur-

faces with boundaries (as in [G(inequalities) 2018]) or stable µ-bubbles (as in
[G(positive) 1996]).

To accomplish this it is convenient, here as in the flat case, to pass to a
quotient space Hn

−1/Γ, where, instead of letting Γ = Zn that allows a reduction of
the rigidity of Rn to that of the torus Tn = Rn/Zn, one takes a parabolic isometry
group isomorphic to Zn−1 for Γ, for which the quotient Hn

−1/Γ is the hyperbolic
cusp-space, that is Tn−1 ×R with the metric e2rdt2 +dr2. (Here as earlier, when
it comes to n ≥ 9, I feel more comfortable with minimal hypersurfaces to which
Schoen-Yau’s theorem 4.6 from [SY(singularities) 2017] directly applies.)

Finally, a derivation of the hyperbolic positive mass theorem from the rigidity
theorem follows by an extension of the Euclidean Lohkamp’s argument from
[Loh(hammocks) 1999] to the hyperbolic spaces (see [AndMinGal 2007]).

Ono-Davaux Spectral Inequality [Ono 1988], [Dav 2002]. Let X be
a closed Riemannian manifold and let all smooth functions f(x̃) with compact
supports on X̃ satisfy

∫
X̃
f(x̃)2dx̃ ≤ 1

λ̃2
0

∫
X̃

∣∣df(x̃)∣∣2dx̃.

(The maximal such λ̃0 ≥ 0 serves as the lower bound on the spectrum of the
Laplace operator on the universal covering X̃ of X).

If X̃ is spin and if one of the following two conditions (A) or (B) is satisfied,
then

[Sc/λ̃0] inf
x∈X

Sc(X,x) ≤ −4nλ̃0

n − 1
.

Condition (A). The dimension ofX is n = 4k and the α̂-invariant from section
3.4 (that is a certain linear combinations Pontryagin number called Â-genus) doesn’t
vanish.

Condition (B). The manifold X is enlargeable: there exists a covering X̃ ′ of
X, which admits a proper distance decreasing map X̃ ′ → Rn of non-zero degree.

Remarks. (a) The inequality [Sc/λ̃0] is sharp: if X has constant negative
curvature −1, then

−n(n − 1) = Sc(X) = −4nλ̃0

n−1

for λ̃0 = (n−1)2
4

, that is the bottom of the spectrum of Hn
−1 = X̃.

(b) The rigidity sharpening of [Sc/λ̃0] is proved in [Dav 2002] in the case A
and it seems that a minor readjustment of the argument from [Dav 2002] would
work in the case B as well. If so it would yield yet another proof of Min-Oo
rigidity theorem in the spin case.

3.11 Positive Scalar Curvature, Index Theorems and the
Novikov Conjecture

Given a proper (infinity goes to to infinity) smooth map between smooth ori-
ented manifolds, f ∶X ↦X of dimensions n = dim(X) = 4k +n for n = dim(X),
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let sign(f) denote the signature of the pullback Y 4k
x = f−1(x) of a generic point

x ∈X, that is the signature of the (quadratic) intersection form on the homology
H2(Y 4k

x ;R), where observe orientations of X and X define an orientation of Y 4k
x

which is needed for the definition of the intersection index.
Since the f -pullbacks of generic (curved) segments [x1, x2] ⊂X are manifolds

with boundaries Y 4k
x1

− Y 4k
x2

, (the minus sign means the reversed orientation),

sign(Y 4k
x1

) = sign(Y 4k
x2

),

as it follows from the Poincaré duality for manifolds with boundary by a two-
line argument. Similarly, one sees that sign(f) depends only on the proper
homotopy class [f]hom of f .

Thus, granted X and a proper homotopy class of maps f , the signature
sign[f]hom serves as a smooth invariant denoted sign[f](X), (which is actually
equal to the value of some polynomial in Pontryagin classes ofX at the homology
class of Y 4k

x2
in the group H4k(X)).

If X and X are closed manifolds, where dim(X) > dim(X) > 0, and if X,
is simply connected, then, by the Browder-Novikov theory, as one varies the
smooth structure of X in a given homotopy class [X]hom of X, the values of
sign[f](X) run through all integers i = sign[f](X) mod 100n! (we exaggerate
for safety’s sake), provided dim(X) > 0 and Y 4k

x ⊂X is non-homologous to zero.
However, according to the (illuminating special case of the) Novikov conjec-

ture,
if X is a closed aspherical manifold22 then this sign[f](X) depends only on

the homotopy class of X. 23

Originally, in 1966, Novikov proved this, by an an elaborated surgery ar-
gument, for the torus X = Tn, where X = Y × Tn and f is the projection
Y ×Tn → Tn.

Then in 1971, Gheorghe Lusztig found a proof for general X and maps
f ∶X → Tn based on the Atiyah-Singer index theorem for families of differential
operators Dp parametrised by topological spaces P , where the index takes values
not in Z anymore but in the K-theory of P , namely, this index is defined as
the K-class of the (virtual) vector bundle over P with the fibers ker(Dp) −
coker(Dp), p ∈ P , (Since the operators Dp are Fredholm, this makes sense
despite possible non-constancy of the ranks of ker(Dp) and coker(Dp).)

The family P in Lusztig’s proof is composed of the signature operators on X
twisted with complex line bundles Lp, p = P , over X, where these L are induced
by a map f ∶ X → Tn from flat complex unitary line bundles Lp over Tn

parametrised by P (which is the n-torus of homomorphism π1(Tn) = Zn → T).
Using the the Atiyah-Singer index formula, Lusztig computes the index of

this operator, shows that it is equal to sign(f) and deduce from this the homo-
topy invariance of sign[f](X).

What is relevant for our purpose is that Lusztig’s computation equally ap-
plies to the Dirac operator twisted with Lp and shows the following.

22Aspherical means that the universal cover of X is contractible
23Our topological formulation, which is motivated by the history of the Novikov conjecture,

is is deceptive: in truth, Novikov conjecture is 90% about infinite groups, 9% about geometry
and only 1% about manifolds.
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Let X be a closed orientable spin manifolds of even dimension n and f ∶X →
Tn be continuous map of non-zero degree. Then

ind(D⊗{Lp}) ≠ 0.

Therefore, there exits a point p ∈ P , such that X carries a harmonic Lp-
twisted spinor

But if Sc(X) > 0, this is incompatible with the the Schroedinger-Lichnerowicz-
Weitzenboeck formula from section 3.4 which says for flat Lp that

D⊗Lp = ∇2
⊗Lp +

1

4
Sc(X).

Thus, the existence of a map f ∶ X → Tn with deg(f) ≠ 0 implies that X
carries no metric with Sc > 0.

Moreover, Lusztig’s computation applies to manifolds X of all dimensions
n = n+4k, shows that if the generic pullback manifold Y 4

p h−f−1)p) ⊂X (here f
is smooth) has non-vanishing α̂-invariant defined in section 3.4 (that is the Â-
genus for 4k-dimensional manifolds), then the index ind(D⊗{Lp}) doesn’t vanish
either and, assuming X is spin, it can’t carry metrics with Sc > 0.

Remark on X = (X,g0) = Tn. If (X,g0) is isometric to the torus, then
the only g0-harmonic Lp-twisted spinors on X are parallel ones, which allows a
direct computation of the index of D⊗{Lp}. Then the result of this computation
extends to all Riemannin metrics g on Tn by the invariance of the index of
D⊗{Lp} under deformations of D, where the essential point is that, albeit the
harmonic spinors of the (untwisted) D may (and typically do) disappear under a
deformation Dg0 ; Dg, they re-emerge as harmonic spinors of Dg twisted with
a non-trivial flat bundle Lp.

The index theorem for families can be reformulated with P being replaced by
the algebra cont(P ) of all continuous functions on P , where in Lusztig’s case the
algebra cont(Tn) is Fourier isomorphic to the algebra C∗(Zn) of bounded linear
operators on the Hilbert space space l2(Zn) of square-summarable functions on
the group Zn, which commute with the action of Zn on this space.

A remarkable fact is that a significant portion of Lusztig’s argument gen-
eralizes to all discrete groups Π instead of Zn, where the algebra C∗(Π) of
bounded operators on l2(Π) regarded as algebra of functions on a (fictious)
non-commutative space dual to Π (that is the actual space, namely that of of
homomorphisms Π→ T for commutative Π.)

This allows a formulation of what is called in [Ros 1984] the strong Novikov
Conjecture, the relevant for us special case of which reads as follows.
D⊗C∗-Conjecture. If a smooth closed orientable Riemannin spin n-manifold X

for n even admits a continuous map F to the classifying space BΠ of a group Π,
such that the homology homomorphism F∗ sends the fundamental homology class
[X] ∈Hn(X;R) to nonzero element h ∈Hn(BΠ;R), then

the Dirac operator on X twisted with some flat unitary Hilbert bundle over
X has non-zero kernel.

(Here "unitary" means that the monodromy action of π1(X) on the Hilbert
fiber H of this bundle is unitary and where an essential structure in this H is
the action of the algebra C∗(Π), which commute with the action of π1(X).)
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This, if true, would imply, according to the Schroedinger-Lichnerowicz-Weitzenboeck
formula, the spin case of the conjecture stated in section 3.4. saying that

X admits no metric with Sc > 0.
Also "Strong Novikov" would imply, as it was proved by Rosenberg, the

validity of the
Zero in the Dirac Spectrum Conjecture. Let X̃ be a complete contractible

Riemannin manifold the quotient of which under the action of the isometry group
iso(X̃) is compact.

Then the spectrum of the Dirac operator D̃ on X̃ contains zero, that is, for
all ε > 0, there exist L2-spinors s̃ on X̃, such that

∣∣D̃(s̃∣∣ ≤ ε∣∣s̃∣∣.

This, confronted with the Schroedinger-Lichnerowicz-Weitzenboeck formula,
would show that X̃ can’t have Sc > 0.

Are we to Believe in these Conjectures. A version of the Strong Novikov
conjecture for a rather general class of groups, namely those which admit discrete
isometric actions on spaces with non-positive sectional curvatures, was proven
by Alexander Mishchenko in 1974.

Albeit this has been generalized since 1974 to many other cases groups Π
and/or representatives h ∈ Hn(BΠ;R), the sad truth is that one has a poor
understanding of what these classes actually are, how much they overlap and
what part of the world of groups they fairly represent.

At the moment, there is no basis for believing in this conjecture and there
is no idea where to look for a counterexample either.

On the positive side, the C∗-algebras bring forth the following interesting
perspective on coarse geometry of non-compact spaces proposed by John Roe.

Given a metric space Ξ, e.g. a discrete group with a word metric, let T =
Tra(Ξ) be the semigroup of translations of M that are maps τ ∶ Ξ → Ξ, such
that

sup
ξ∈Ξ

dist(ξ, τ(ξ)) <∞.

The (reduced) Roe C∗-algebra R∗(Ξ) is a certain completion of the semi-
group algebra C[T ]. For instance if Ξ is a group with a word metric for which,
say the left action of Ξ on itself is isometric, then the right actions lie in T and
R∗(Ξ) is equal to the (reduced) algebra C∗(Ξ).24

Using this algebra, Roe proves a partitioned index theorem, which implies,
for example, that.
� the toric half cylinder manifold X = Tn−1 ×R+ admits no complete Rie-

mannin metric with Sc ≥ σ > 0.
The subtlety here is twofold:
(i) the presence of non-empty boundary which is poorly tolerated by Dirac op-

erators,
(ii) the metric on this X may (can it?), similarly to the hyperbolic metric dr2 +

e−2tdt2, exponentially contract at infinity.
24"Reduced" refers to a minor technicality not relevant at the moment. A more serious

problem – this is not joke – is impossibility of definition of "right" and "left" without an
appeal to violation of mirror symmetry by weak interactions.
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Notice in this regard that if X is sufficiently "thick at infinity", then this
follows by a simple argument with twisted Dirac operators and the standard
bound on the number of small eigenvalues in the spectrum of the Laplace (or
directly of the Dirac) operator in vicinity of ∂X, which applies to all manifolds
with boundaries and which yields, in particular, (see section 4.5) the following.

Let X be a complete oriented Riemannin spin n-manifold with compact
boundary, such that there exists a sequence of smooth maps fi ∶ X → Sn, which
are constant in a (fixed) neighbourhood V ⊂X of the boundary ∂X as well as away
from compact subsets Wi ⊂ V , which decrease the areas of all surfaces in X and
which have

deg(fi) →
i→∞

∞.

Then the scalar curvature of X satisfies

inf
x∈X

Sc(Xx) ≤ n(n − 1).

Also notice, that according to corollary to the 2π
n

-inequality in section 3.7,
the scalar curvature on Tn not only approaches zero but it must decay quadrat-
ically fast.

Yet, different proofs of �display different geometric aspects of the scalar
curvature which are interesting in their own rights, where "non-existence for-
mulations" serve only an illustrative purpose in our picture.

Conclude by formulating the following.
Coarse D-Spectrum Conjecture. Let X̂ be a complete uniformly contractible

Riemannian manifold, i.e. there exists a function R(r) ≥ r, such that the ball
Bx̂(r) ⊂ X̂, x ∈ X, of radius r is contractible in the concentric ball Bx̂(R(r)) for
all x̂ ∈ X̂ and all radii r > 0.

Then the spectrum of the Dirac operator on X̂ contains zero.
This conjecture, as it stands, must be, in view of [DRW 2003], false, but finding

a counterexample becomes harder if we require the bounds vol(Bx̂(r)) ≤ exp r for
all x̂ ∈ X̂ and r > 0.

3.12 Foliations With Positive Scalar Curvature.
According to the philosophy (supported by results) of Alain Connes much of
the geometry and topology of manifolds with discrete group actions, notably,
those concerned with index theorems for Galois actions of fundamental groups
on universal coverings of compact manifolds, can be extended to foliations.

In particular, Connes shows in [Con 1986] that compact manifolds X which
carry foliations with leaf-wise Riemannin metrics with positive scalar curvatures
behave in many respects as manifold which themselves admit such metrics.

As a specific result in this regard we mentioned here the following bound on
the size of X that can be derived from Connes’ theorem.

[⋆] Let X be a complete Riemannin n-manifold with a smooth foliation such
that scalar curvature of the induced metric on the leaves satisfies Sc ≥ σ > 0.

If H2(X;Z2) = 0,25 then X admits no distance non-increasing map X → Rn
with non-zero degree.

25This condition, which safeguards spin, is, probably, redundant.
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The Proof of this indicated in §§9 2
3
,1 7

8
in [G(positive) 1996], which follows

[Con 1986], relies on Connes-Scandalis longitudinal index theorem for folia-
tions26, while similarresults all [Zhang [2018]) and [BH 2017] use somewhat
different index theoretic arguments.

Although Connes theorem goes well beyond [⋆], the geometry of foliated
Riemannian manifolds X with leaf-wise positive scalar curvatures remains ob-
scure.

For instance, the following remains remains unclear.
[⋆?] When/if do these X themselves, or closely geometrically related to X

manifolds, admit metrics with Sc > 0.
What are geometric/topological effect of lower bounds on the scalar curva-

tures of the leaves by σ < 0?
For instance,
Do compact Riemannian n-manifolds with constant curvature −1 admit k-

dimensional foliations, 2 ≤ k ≤ n − 1, such that the scalar curvatures of the induced
Riemannian metrics in the leaves are bounded from below by −ε for a given ε > 0?

In general, one expects most (all) aspects of constraints on geometry implied
by Sc ≥ σ to have their counterparts for foliations, where certain formulations
and sometimes proofs are transportable from individual manifolds to foliations,
such, for instance as Ono-Davaux spectral inequality (see section 3.10), but
in some cases, especially where minimal subvarieties are concerned, this look
harder(compare [G(foliated) 1991]).

Also, surgery constructions of manifolds with Sc > 0 may go along with
surgery of singularities in construction of foliations by Thurston and Eliashberg-
Mishachev, see [EM 1998]/

3.13 Scalar Curvature in Dimension 3
If n ≥ 4, then then all known bounds on the size of n-manifolds X with
Sc(X) ≥ σ > 0 are expressed by non-existence of "topologically complicated
but geometrically simple" maps from these X to "standard manifolds" X.

But if n = 3 the following two more satisfactory results are available.
Let X be a complete Riemannin 3-manifold with scalar curvature ≥ 6 = Sc(S3).
Then
A. There exists a continuous map f ∶ X → P 1, where P is a 1-dimensional

polyhedral space (topological graph) such that the diameters of the pullback of
all points are bounded by

[width3−2] diam(f−1(p)) ≤ 2π
√

6.

B. If X is homeomorphic to S3, R3, S2×R or S2×S1 then there exists a map
Φ ∶ S2 × T → X, where, either T = R or T = S1 of degree 127 and such that the

26I must admit that I didn’t try now to reconstruct in memory all steps necessary for the
proof of [⋆].

27If T = R then "degree 1" here presupposes here that there are at most two points in X,
such that if a compact subset C ⊂ X doesn’t contain either of these points, then the pullback
Φ−1(C) ⊂ S2 × T is compact.
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areas (counted with multiplicities if you wish) of the images Φ(S2 × {t}, t ∈ S1

satisfy

[waist3−2] area(Φ(S2 × {t}) ≤ 4π.

Remarks and Conjectures. (a) The proof of A (corollary 10.11 in [GL 1983])
relies on stable minimal surfaces in X, while B follows from the Marques-Neves
estimate in [MN 2011] on the areas of surfaces with Morse index 1.

(b) The inequality [waist3−2], unlike [width3−2], is sharp, with the equality
for the unit sphere S3.

(c) The factor
√

6 in [width3−2] is, probably redundant, but even without
this factor it wouldn’t look as pretty as [waist3−2].28

(d) Proposition A, as it stands, (obviously) fails to be true for compact
manifolds X with non-empty boundaries but, by the argument in §10 from GL
1983], it remains valid for the part of X within distance d > 2

√
6π from the

boundary .
(e) Conjecturally, all complete n-manifolds X with Sc(X) ≥ n(n − 1) admit

continuous maps to polyhedral spaces of dimension n− 2, say, F ∶X → Pn−2, such
that

diam(F −1(p)) ≤ constn and voln−2(F −1(p)) ≤ const′n for all p ∈ Pn−2.

Probably, this can be shown for n = 3 by combining the arguments from [GL
1983] and [MN 2011].

(d) Let X be a complete Riemannin n-manifolds with a 3-dimensional foli-
ation such that the scalar curvature of the induced leaf-wise metric is bounded
from below by 6.

Does X admit a continuous map F ∶ X → Pn−2 with diam(F −1(p)) ≤ constn,
p ∈ Pn−2?

(If so, this would provide a geometric proof of [⋆] from the previous section
for 3-dimensional foliations.)

Penrose Inequality. Start with recalling that
the (space sliced) Schwarzschild metric with mass m

is defined on R3 minus the origin in polar coordinates as

gSwm = gSw = (1 + ρ
r
)

4

gEucl, for ρ = ρm = m
2
,

and that the
scalar curvature of this metric is zero

by the conformal change formula IX in section 2.
Since the function s(r) = r2 (1 + ρ

r
)4

is invariant under the transformation

r ↦ ρ2

r
,

28The inequality [width3−2] says that X can be "sliced" by surfaces of small diameters,
but it doesn’t tell anything about topologies and/or areas and intrinsic diameters of thees
surfaces.
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this gSw is invariant under the (conformal) reflection of R3 around the sphere
S2(Rm) ⊂ R3 of radius ρ = m

2
, that is

(s, r)↦ (s, ρ
2

r
) .

Thus the sphere S(ρ) is totally geodesic in geometry of gSw with area

areagSw(S(ρ) = πρ
2 (1 + ρ

ρ
)

4

= 16πm2.

In 1973 Penrose formulated in [Pen 1973] a conjecture concerning black holes
in general relativity with an evidence in its favour, that would, in particular
imply the following

Special case of the Riemannian Penrose Inequality. Let X be complete Rie-
mannin 3-manifolds with compact boundary Y ∂X, such that

● X is isometric at infinity to the Schwarzschild space of mass m at one of its
two ends at infinity;

● the scalar curvature of X is everywhere non-negative: Sc(X) ≥ 0;
● the boundary Y of X has zero mean curvature;29

● no minimal surface in X separates a connected component of Y from infinity.
Then the area of Y = ∂X is bounded by the mass of the Schwarzschild space

as follows.
area(Y ) ≤ 16πm2.

This, in a greater generality was proven by Hubert Bray in [Bray 2009].
On Geometric Meaning of Mass. The Schwarzschild metric at infinity fast

approaches the Euclidean metric, where the greater the mass the slower is the
growth rate of this metric.

To get a rough idea, let is compare gSw with the conical metrics

ga = a2 ⋅ r2ds2 + dr2.

If a < 1 these metrics have positive scalar curvatures (zero for a = 1) and if you
compare them with gSw these have infinite masses, and would violate any kind
of Penrose-like inequality.

But if a > 1, then these ga have masses −∞ and one can show, e.g. using the
bound on RadS2 from section 3.6 for suitable surfaces at infinity, that such a
fast growth rate of general Riemannian manifolds is incompatible with Sc > 0.

Moreover, the positive mass theorem says that even finite but negative mass
of an asymptotically Euclidean metric needs a bit of negativity in its scalar
curvature.

But I must admit I haven’t thought through further the geometric meaning
of what physicists call "mass" in general relativity.

29It suffices to assume that the the boundary is mean convex, i.e. its mean curvature relative
to the normal field pointing outward is positive.
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3.14 Scalar Curvature in Dimension 4
The simplest examples of 4-manifolds where non-existence of metrics with Sc >
follows from non-vanishing of Seiberg-Witten invariants are complex algebraic
surfaces X in CP 3 of degrees d ≥ 3. (If d is even and these X are spin, this also
follows from Lichnerowicz’ theorem from section 3.4.)

In fact, it was shown by LeBrun (see [Sal 199] and references therein) that
no minimal (no lines with self-intersections one) Kähler surface X admits a

Riemannin metric with Sc > 0, unless X is diffeomorphic to CP 2 or to a ruled
surface .

Furthermore, LeBrun shows in [LeB 1997] that
if such an X has Kodaira dimension 2, which is the case, for instance, for the

algebraic surfaces X ⊂ CP 3 of degree d ≥ 5, then
the total squared scalar curvature is bounded by the first Chern number of

X,

∫
X
Sc(X,x)2dx ≥ 32π2c2(X),

where, moreover this inequality is sharp.
One may only dream of this kind of a bound on ∫X Sc(X,x)

n
2 dx for a man-

ifolds X of dimension n > 4.
In fact the ideal bound, would be on ∫X ∣Sc−(X,x)∣

n
2 dx for Sc−(X,x)min(Sc(X,x).

Conceivably(?), if a closed orientable Riemannin n-manifold X admits a map
of non-zero degree to a closed locally symmetric manifold X with negative Ricci
curvature, e.g. with constant negative curvature, then

∫
X

∣Sc−(g, x)∣
n
2 dx ≥ ∫

X
∣Sc(X,x)∣

n
2 dx.

3.15 Topology and Geometry of Spaces of Metics with
Sc ≥ σ.

Non-triviality of the homotopy types of metrics with positive scalar curvatures,
which was first proven by Nigel Hitchin in [Hit 1974], starts with the following
observation.30

Let a closed n-manifold X be decomposed as X− ∪X+ where X− and X+ are
smooth domains (n-submanifolds) in X with a common boundary Y = ∂X− =
∂X+ and where X∓ are equal to regular neighbourhoods of disjoint polyhedral
subsets P∓ ⊂X of dimensions n∓ such that n− + n+ = n − 1.

If n∓ ≤ n−2, then, by an easy elementary argument, both manifolds X− and
X+ admit Riemannin metrics, say g∓, such that

the restrictions of these g∓ to Y , call them h∓, both have positive scalar curva-
tures.

And if X admits no metric with positive scalar curvature, e.g. if X is
homeomorphic to the n-torus or to product of two Kummer surfaces, then h−
and h+ can’t be joined by a homotopy of metrics with positive scalar curvatures.

30Hitchin himself argued differently.
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Indeed, such a homotopy, ht, t ∈ [−1,+1] could be easily transformed to
a metric on the cylinder Y × [−1,+1] with positive scalar curvature and with
relatively flat boundaries isometric to (Y,h−) and (Y,h+), which would then
lead in obvious way to a metric on X = X− ∪ Y × [−1,+1] ∪X+ with Sc > 0 as
well.

This kind of argument combined with surgery with Sc > 0 and empowered
by index theorem(s) for Dirac operators leads, to the following results.

[HaSchSt 2014]. If m is much greater than k then the kth homotopy group
of the space of metrics with Sc > 0 on the sphere S4m−k−1 is infinite.

[EbR-W 2017]. There exists a compact Spin 6-manifold such that its space
of positive scalar curvature metrics has each rational homotopy group infinite
dimensional. 31

However, there is no closed manifold of dimension n ≥ 4, which admits a
metric with Sc > 0 and where the (rational) homotopy type, or even the set of
connected components, of the space of such metrics is fully determined.
32

Question. Given a Riemannian manifold X and a pair of numbers (λ,σ) ∈
R2
+, letG(X;X,λ,σ) be the space of pairs (g, f) where g is a Riemannian metrics

on a X with Sc(g) ≥ σ and f ∶X →X is a λ-Lipschitz map.
What is the topology and geometry of this space and of the natural embed-

dings
G(X;X,λ1, σ1)↩ G(X;X,λ2, σ2)

for λ2 ≥ λ1 and σ2 ≥ σ1.

3.16 Manifolds with Corners.
Most (all?) theorems concerning closed manifolds X with Sc ≥ σ and, more
visibly, manifolds with smooth boundaries Y = ∂X, have (some proven, some
conjectural) counterparts for Riemannin manifoldsX with corners at the bound-
ary,

where the mean curvature mean.curv(∂X) for the smooth part of ∂X plays
the role of singular/distributional scalar curvature supported on ∂X and where
the dihedral angles ∠ along the corners, or rather π − ∠, can be regarded as
singular/distributional mean curvature supported on the corners.

Below are two examples illustrating this idea.
Let X be a compact n-dimensional manifold with simple, also called cosim-

plicial, corners. This means that X is locally diffeomorphic at all points x ∈ X
to the positive cone Rn+ at some points x′ ∈ Rn+ , where the simples example of
such an X is the n-cube [0,1]n.

Call such an X semihyperbolic if whenever three (n− 1)-faces of X pairwise
meet then all three meet at some point in X.

Weak ⌝-Reflection Rigidity. Let X be a semihyperbolic manifold X of
dimension n with corners, assume for safety sake that all faces of X are contractible
and let g be a Riemannin metric on X, such that

31It seems, judging by the references in [EbR-W 2017], that all published results in this
direction depend on the Dirac operator techniques which do not cover the above example, if
we take a Schoen-Yau-Schick manifold (see [G(inequalities) 2018 ]) for X.

32If n = 3 contractibility of this space, (if it is true) must follow from the known results on
the Ricci flow á la Perelman.

36



●n the scalar curvature of g is non-negative: Sc(g) ≥ 0;
●n−1 the mean curvatures of all (n − 1)-faces Fi of X are also non-negative :

mean.curvg(Fi) ≥ 0;
●n−2 The dihedral angles ∠ij of X at all points of all (n − 2)-faces, that are

intersection of certain (n − 1) faces Fi and Fj , satisfy ∠ij ≤ π
2
.

Then
Sc(X) = 0, mean.curv(Yreg) = 0, all α = π

2
and X itself admits a homeo-

morphism onto the n-cube [0,1]n, which sends the faces of X onto faces of the
cube.

About the Proof. This is shown by reflecting X around its (n − 1)-faces,
smoothing around the edges and applying the corresponding result for closed
manifolds as it was done in [G(billiard] 2014] for cubical X, and where the
general case needs an intervention of arguments from [G(inequalities) 2018],
where the (non-spin) case n ≥ 9 relies on [SY(singularities) 2017]. ( Also see
section 5.6).

Remarks. (a) There is little doubt that ⌝-strong rigidity also holds for our
X:

the conditions ●n, ●n−1, ●n−2 should imply that X is isometric to a rectan-
gular solid.

But there are few technical details still to settle in the proof.
(b) The weak ⌝-rigidity for cubical (i.e. topologically isomorphic to cubes)

yields, by an elementary argument, the C0-closeness of spaces of metrics with
Sc ≥ σ stated in section 3.1.

There are two major limitation to our ⌝:
/1 the semihypebolicity condition rules out many promising spaces X, e.g.

those isomorphic to n-simplices;
/2 condition ●n−2 is unrealistically strong, e.g. for such X as planar k-gons

with k ≥ 5.
Below is an instance of where /1 is partly appeased.

×▲
i-Inequality. Let X0 ⊂ Rn be a polytope, i.e. convex compact polyhedron

with non-empty interior, and let X ⊂ Rn be diffeomorphic to X0.
Let all (n − 1)-faces Fi of X have positive mean curvatures, e.g. the subset

X ⊂ Rn is convex.
Let the dihedral angles between (the tangent spaces of) the faces Fi and Fj of

X at all points in the (n − 2)-faces where/if these faces meet, are bounded by the
corresponding dihedral angles of X0,

∠ij(X) ≤∠ij(X0).

If all dihedral angles of X0 are ≤ π
2
, then

∠ij(X) =∠ij(X0).

This is shown, by doubling and smoothing X0 and X and then applying
[X→b] (see section 4.3 and 4.4).

Remarks/Exercises. (a) The only polytopes with ∠ij ≤ π
2
are products of

simplices, such as the n-cubes [0,1]n, for example.
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(b) If both X0 and X are n-simplices then the implication

∠ij(X) ≤∠ij(X0)⇒∠ij(X) =∠ij(X0)

follows from the Kirszbraun theorem with no need for the condition ∠ji ≤ π/2.

(c) There are cases where ×▲i-inequality is known to hold for certain
polytopes e.g. for k-gonal prisms, where (some) dihedral angles may be > π

2
(an

approach via minimal (hyper)surfaces is indicated in [G(billiards) 2014] and in
[Li 2017]) but this remains problematic in general even for simple n-polytopes,
where at most n faces of dimension n − 1 may meet at the vertices.

Motivations for Corners. Besides opening avenues for generalisations of what
is known for smooth manifolds, Riemannin manifolds with corners and Sc ≥ σ
may do good to the following.

1. Suggesting new techniques, (calculus of variations, Dirac operator) for
the study of Euclidean polyhedra.

2. Organising the totality of manifolds with Sc ≥ 0 (or, more generally with
Sc ≥ σ) into a nice category (A∞-category?) P◻, that would include, as objects
manifolds Y with Riemannian metrics h and functions M on them and where
morphisms are (co)bordisms (h-cobordisms?) (X,g), ∂X = Y0 ∪ Y1, where g is a
Riemannian metric on X with Sc ≥ 0, which restricts to h0 and to h1 on Y0 and
Y1 and where the the mean curvature of Y0 with inward coorientation is equal
to −M0 while the mean curvature of Y1 with the outward coorientation is equal
to M1.

Conceivably, the [SY]-variational techniques for "flags" of hypersurfaces or
its generalisation(s), may have a meaningful interpretation in P◻, while a suit-
ably adapted Dirac operator method may serve as a quantisation of P◻.

3.17 Who are you, Scalar Curvature?
There are two issues here.

1. What are most general geometric object that display features similar to
these of manifolds with positive (bounded from below) scalar curvatures?

2. Is there a direct link between Dirac operators and minimal varieties or
their joint appearance in the ambience of scalar curvature is purely accidental?

Notice in this regards that there are two divergent branches of the growing
tree of scalar curvature.

A. The first one is concerned with the effects of Sc > 0 on the differential
structure of spin (or spinC) manifolds X, such as their α̂ and Seiberg-Witten
invariants.

B. The second aspect is about coarse geometry and topology of X with
Sc(X) ≥ σ, the (known) properties of which are derived by means of minimal
varieties and twisted Dirac operators; here the spin condition, even when it is
present, must be redundant.

To better visualise separation between A and to B, think of possible singular
spaces X with Sc(X) ≥ 0 corresponding to A and to B – these must be grossly
different.

For instance, if X is an Alexandrov space with (generalised)sectional curva-
ture ≥ κ > −∞ then the inequality Sc ≥ 0 makes perfect sense and, probably
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most (all?) of B can be transplanted to these spaces. 33

But nothing, from spin on, of what we know of A makes sense in singular
Alexandrov spaces.

And if you start from the position of 2 you better go away from conventional
spaces and start dreaming of geometric magic glass ball with ghosts of harmonic
spinors and of minimal varieties dancing within.

In concrete terms one formulates two problems.
A. What is the largest class of spaces (singular, infinite dimensional ...) which

display the basic features of manifolds with Sc ≥ 0 and/or with Sc ≥ σ > −∞ and,
more generally, of spaces X, where the properly understood operator −∆+ 1

2
Sc(X)

is positive or, at least not too negative?
For instance, which (isolated) conical singularities and which singular volume

minimising hypersurfaces belong to this class?

B. Is there a partial differential equation, or something more general, the solu-
tions of which would mediate between twisted harmonic spinors and minimal hyper-
surfaces (flags of hypersurfaces?) and which would be non-trivially linked to scalar
curvature?

Could, for instance, one non-trivially couple the twisted Dirac D⊗L with some
equation on the connection in the bundle L the Dirac operator is twisted with in
the spirit of the Seiberg-Witten equation?

4 Dirac Operator Bounds on the Size and Shape
of Manifolds X with Sc(X) ≥ σ

4.1 Spinors, Twisted Dirac Operators, and Distance De-
creasing maps.

The Dirac operator D on a Riemannin manifold X tells you by itself preciously
little about the geometry of X, but the same D twisted with vector bundles L
over X carries the following message:

manifolds with scalar curvature Sc ≥ σ > 0
can’t be too large area-wise.

Albeit the best possible result of this kind (due to Marques and Neves, see
B in section 3.13), which is known for X homeomorphic to S3, which says that
if Sc(X) ≥ 6 = Sc(S3), then X can be "swept over" by 2-spheres of areas ≤ 4π,
was proven by means of minimal surfaces, all known bounds on "areas" of
Riemannin manifolds of dimensions ≥ 4 depend on Dirac operators D twisted
(or "non-linearly coupled" for n=4) with complex vector bundles L over X with
unitary connections in L, where, don’t forget it, the very definition of D needs
X to be spin.

Recall that the twisted Dirac operator, denoted

D⊗L ∶ C∞(S⊗L)→ C∞(S⊗L),
33It seems, much of the geometric measure theory extends to Alexandrov spaces but it is

unclear what would correspond to twisted Dirac operators on these spaces.
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acts on the tensor product of the spinor bundle S → X 34 with L → X, where
it is related to the (a priori, positive Bochner Laplace) operator in the bundle
S⊗L by the Schroedinger-Lichnerowicz-Weitzenboeck formula

D2
⊗L = ∇2

⊗L + 1
4
Sc(X) +R⊗L,

where ∇⊗L denotes the covariant derivative operator in S ⊗ L and R⊗L is a
certain (zero order) operator which acts in the fibers of the twisted spin bundle
S⊗L and which is derived from the curvature of the connection in L.

If we are not concerned with the sharpness of constants , all we have to know
is that R⊗L is controlled by

∣∣R⊗L∣∣ ≤ const ⋅ ∣∣curv(L)∣∣

for const = const(n, rank(L)), where a little thought (no computation is needed)
shows that, in fact, this constant depends only on n = dim(X). (See [MarMin
2012] for details and references.)

We regard an even dimensional Riemannin manifold X as area wise large, if
it carries a homologically essential bundle L over it with small curvature, where
"homologically essential" signifies that the Chern character in the index formula
guaranties non-vanishing of the cup product Â(X) ⌣ Ch(L) evaluated at [X],

(Â(X) ⌣ Ch(L))[X],

and, thus, by Atiyah-Singer theorem, the presence of non-zero harmonic twisted
spinors, that are sections s of the bundle S⊗L for which D⊗L(s) = 0.

If the dimension n of X is odd, the above applies to X ×S1 for a sufficiently
long circle S1.

For instance, n-manifolds, which admit area decreasing non-contractible
maps to spheres Sn(R) of large radii R are area wise large, where the rele-
vant bundles L are induced from non trivial bundles over the spheres.

But if the scalar curvature of X is ≥ σ for a large σ > 0, where this "large"
properly matches the above "small", then by the Schroedinger-Lichnerowicz-
Weitzenboeck formula the operator D⊗L is positive and no such harmonic
twisted exists; therefore, a suitably defined "area"(X) must be bounded by
const
σ

.
(Recall that

Â(X) = 1 − 1

24
p1 +

1

5760
(−4p2 + 7p2

1) + ... ∈H∗(X)

is a certain polynomial in Pontryagin classes pi ∈H4i(X) of X and

Ch(L) = rankC(L) + c1 +
1

2
(c21 − 2c2) + ... ∈H∗(X)

is a polynomial in Chern classes ci ∈ H2i(X) of L, while [X] ∈ Hn(X) denotes
the fundamental class of X.

34All you have to know about S(X) is that it is a vector bundle associated with the tangent
bundle T (X), which can be defined for spin manifolds X, where "spin" is needed, since the
structure group of S(X) is the double cover of the orthogonal group O(n) rather than O(n)
itself.
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If n = dim(X) is even, the spin bundle S naturally splits, S = S+ ⊕ S−, the
operator D⊗L also splits: D⊗L = D+⊗L ⊕D−⊗L, for

D±⊗L ∶ C∞(S± ⊗L)→ C∞(S∓ ⊗L)

and the index formula reads:

ind(D±⊗L) = ±(Â(X) ⌣ Ch(L))[X].)

==================================
A characteristic topological corollary of the above reads:
If a closed orientable spin n-manifold X admits a map to a complete Rie-

mannin manifold X with sect.curv(X) ≤ 0,

f ∶X →X,

such that the homology image f∗[X] ∈Hn(X;Q) doesn’t vanish, then X admits
no metric with Sc(X) > 0.

Two Words about the Proof. All we need of sect.curv ≤ 0 is the existence of
distance decreasing maps from the universal covering of X to (large) spheres,

Fx ∶X → Sn(R), n = dim(X), x ∈X,

which can be (trivially) obtained with a use of inverse exponential maps

exp−1
x ∶ X̃ → Tx(X), x ∈X.

To make the idea clear, let X be compact, the fundamental group of X be
residually finite, (e.g. X having constant sectional curvature or, more generally
being a locally symmetric space) and X be embedded to X.

Let X⊥ ⊂ X be a closed oriented submanifold of dimension m = n − n for
n = dim(X), which has non-zero intersection index with X ⊂X.

Also assume that the restriction of the tangent bundle of X to X⊥ ⊂ X is
trivial.

Then – this is rather obvious – there exist finite covers X̃i → X, such that
the products of the lifts (i.e. pull-backs) of X and of X⊥ to X̃i, denoted X̃i×X̃⊥i ,
admit smooth maps to the spheres of radii Ri,

Fi ∶ X̃i ×X⊥i → Sn(Ri),

where
●1 Ri →∞,
●2 deg(Fi) ≠ 0,
● the maps Fi are distance decreasing on the fibers X̃i × x⊥ for all x⊥ ∈ X⊥i

for the Riemannian metric in these fibers induced by the embedding X̃i × x⊥ =
X̃i ⊂ X̃i.

It follows that for arbitrary Riemannin metrics g and g⊥ on X and on X⊥

there exists (large) constants λ and C independent of i, such that
the maps Fi are C-Lipschitz with respect to the sum of the lift of the metric g

to X̃i and the lift of λ ⋅ g⊥ to X̃⊥i that is the metric

g̃i ⊕ λ ⋅ g̃⊥i on X̃i × X̃⊥i .
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If Sc(g) ≥ σ > 0, then also Sc(g̃i ⊕ λ ⋅ g̃⊥i ) ≥ σ′ > 0 for all sufficiently large
λ, which, for large Ri, rules out non-zero harmonic spinors on X̃i × X̃⊥i twisted
with the bundle L∗ = F ∗

i (L) induced from any given bundle L on Sn.
But if n = 2k and the Chern class ck(L) is non-zero, then non-vanishing of

deg(Fi) implies non-vanishing of of ind(D⊗L) via the index formula and the
resulting contradiction delivers the proof for even n and the odd case follows
with X × S1.

Remarks. This argument, which is rooted in Mishchenko’s proof of Novikov
conjecture for the fundamental group of the above X and which was general-
ized/formalised in [CGM 1993], doesn’t really need compactness of X, residual
finiteness of π1(X) and triviality of T (X)∣X⊥. Beside, the spin condition for X
can be relaxed to that for the universal cover of X.

Moreover, since the bound on the size of X̃i ×Tn−n by const√
σ

can be obtained
with the use of minimal hypersurfaces (see §12 in [GL 1983]), [G(inequalities)
2018] and section 5.4) the spin condition can be dropped altogether.

Question. Are there other topological non-spin obstructions to Sc > 0?
For instance, is the following true?
Conjecture. Let X be a closed orientable Riemannin n-manifold, such that

no closed orientable n-manifold X ′ which admits a map X ′ → X with non-zero
degree admits a metric with Sc > 0. Then there exists an integer m and a sequence
of maps

Fi ∶ X̃ ×Rm → Sn+m(Ri),

where X̃ is some (possibly infinite) covering of X, such that
● the maps Fi are constant at infinity and they have non-zero degrees,
● Ri →∞,
● the maps Fi are distance decreasing on the fibers X̃ × x⊥ for all x⊥ ∈ Rm.
Apparently, there is no instance of a specific homotopy class X of closed

manifolds X of dimension n ≥ 5, where a Dirac theoretic proof of non existence
of metrics with Sc > 0 on all X ∈ X couldn’t be replaced by a proof via minimal
hypersurfaces.

(This seems to disagree with what was said concerning ⊗ at the end of section
2.7.

In fact the general condition for Sc ≯ 0 in ⊗, can’t be treated, not as it stands,
with minimal hypersurfaces, but this may be possible in all specific examples,
where this condition was proven to be fulfilled.)

And it is conceivable when it comes to the Novikov conjecture, that its va-
lidity in all proven specific examples, can be derived by an elementary argument
from the invariance of rational Pontryagin classes under ε-homeomorphisms.35)

But even though the relevance of twisted Dirac theoretic methods is question-
able as far as topological non-existence theorems are concerned, these methods
seem irreplaceable when it comes to geometry of Sc ≥ σ as we shall see presently.

35The original proof of topological invariance of Pontryagin classes by Novikov, as well as
simplified versions and modifications of his proof in [G(positive) 1996) automatically apply to
ε-homeomorphisms and, sometimes, of homotopy equivalences
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4.2 Sharp Estimates for Maps to Spheres and to Convex
Surfaces.

Let us look closely at the last term in the Schroedinger-Lichnerowicz-Weitzenboeck
formula

D2
⊗L = ∇2

⊗L +
1

4
Sc(X) +R⊗L,

for the twisted Dirac operator,

D⊗L ∶ C∞(S⊗L)→ C∞(S⊗L),

and write (see formula 1.3 in [GL(fundamental group) 1980]) thus term as fol-
lows.

R⊗L(s⊗ l) =
1

2
∑
i,j

(ei ⋅ ej ⋅ s)⊗Rij(l),

where s and l are sections of the bundles S and L, where "⋅" denotes the Clifford
product, ei ∈ Tx(X), i=1,...n=dim(X), are orthonormal vectors at a point x ∈X
and Rij ∶ Lx → Lx is the curvature of the (connection in) L at x.

Example of L = S on Sn. Since the norm of the curvature operator of (the
Levi-Civita connection on) the tangent bundle is one, the norm of the curvature
operators Rij ∶ S→ S are at most ( in fact, are to) 1

2
,

∣∣Rij(s)∣∣ ≤
1

2
,

since the spin bundle S(X) serves as the "square root" of the tangent bundle
T (X), where this is literally true for n = dim(X) = 2, that formally implies the
inequality ∣∣Rij(s)∣∣ ≤ 1

2
for all n ≥ 2.

And since the Clifford multiplication operators s↦ ei ⋅ ej ⋅ s are unitary,

∣∣R⊗L(s⊗ l)∣∣ ≤
1

4
n(n − 1) = 1

4
Sc(Sn)

This doesn’t, a priori, imply this inequality for all (non-pure) vectors v on the
tensor product S⊗L for L = S, but, by diagonalising the Clifford multiplication
operators in a suitable basis and by employing the essential constancy36 of the
curvature Rij of Sn, Llarull [Ll 1998] shows that

∣∣⟨R⊗L(θ), θ⟩∣∣ ≥ −
1

4
n(n − 1)

for all unit vectors θ ∈ S(Sn)⊗ S(Sn).
This inequality for twisted spinors on Sn trivially yields the corresponding

inequality on all manifolds X mapped to Sn, where the bundle L → X is the
induced from the spin bundle S(Sn).

Namely, letX = (X,g) be an n-dimensional Riemannin manifold, f ∶X → Sn

be a smooth map, L = f∗(S(Sn)), let df ∶ T (X) → T (Sn) be the differential of
f and

∧2df ∶ ∧2T (X)→ ∧2T (Sn)
36Some eigenvalues of this operator are ±1 and some zero.
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be the exterior square of df .37

Then the operator

R⊗L ∶ S(X)⊗L→ S(X)⊗L

satisfies
∣∣⟨R⊗L(θ), θ⟩∣∣ ≥ −∣∣ ∧2 df ∣∣n(n − 1)

4
, L = f∗(S(Sn)),

for all unit vectors θ ∈ S(X)⊗ f∗(S(Sn)).
Moreover, – this is formula (4.6) in [Ll 1998]] –

∣∣⟨R⊗L(θ), θ⟩∣∣ ≥ −
1

4
∣trace ∧2 df ∣,

where trace ∧2 df at a point x ∈X stands for

∑
i≠j
λiλj ,

for the differential df ∶ Tx(X) → Tf(x)(Sn) diagonalised to the orthogonal sum
of multiplications by λi.

This inequality, restricted to L+ = f∗(S+(Sn)) together with the index for-
mula, which says for this L+ that

ind(D⊗L+) =
∣deg(f)∣

2
χ(Sn),

provided X is a closed oriented spin manifold.
Thus we arrive at Llarull’s theorem in the form suggested by Mario Listing

[List 2010].

⋆ trace ∧2 df -Inequality. Let X be a closed orientable Riemannian spin
n-manifold and f ∶X → Sn a smooth map of nonzero degree.

If

Sc(X,x) ≥ 1

4
∣trace ∧2 df(x)∣

at all points x ∈Xn then, in fact, Sc(X) = 1
4
∣trace ∧2 df ∣ everywhere on X.

About the proof. If n is even and χ(Sn) = 2 ≠ 0, this follows from the
above. And if n is odd, there are (at lest) three different reductions to the even
dimensional one (see [Ll 1998], [List 2010 ], [G(inequalities 2018]). Also see
see [Ll 1998] and [List 2010 ], for characterisation of maps f , where Sc(X) =
1
4
∣trace ∧2 df ∣.
llarull’s theorem, starting from his estimate for R⊗f∗(S(Sn), was generalized

by Goette and Semmelmann [GS 2002] to Riemannian manifolds X with non-
negative curvature operators instead of Sn. We state below their result only
the case of X homeomorphic to Sn, where our formulation follows that in [List
2010]

⋆⋆ ∧
2df -Inequality. Let X = (Sn, g) where g is a Riemannin metric with

non-negative curvature operator, let X be a closed orientable Riemannin spin n-
manifold and

f ∶X →X

37Recall that the norm ∣∣ ∧2 df ∣∣ measures by how f contracts/expands surfaces in X. For
instance the inequality ∣∣ ∧2 df ∣∣1 signifies that f decreases the areas of the surfaces in X.
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smooth map of non-zero degree.
If

Sc(X,x) ≥ ∣∣ ∧2 df ∣∣Sc(g, f(x))

at all x ∈X, then Sc(X,x) = ∣∣ ∧2 df ∣∣Sc(g, f(x)).
See [ GS 2002] and [List 2010] for the proof, where the authors also identify

the extremal cases, where f is an isometry or close to an isometry.
Examples. (a) The induced metrics on convex hypersurfaces X ⊂ Rn+1 have

non-negative positive curvature operators.
Thus, [X→b] from section 3.5 is a special case of⋆⋆.
(b) By a theorem of Alan Weinstein [Wein 1970], the above (a) remains

true for submanifolds Xn ⊂ Rn+2 with non-negative sectional curvatures of the
induced metrics.

In particular,
the induced Riemannin metrics on convex hypersurfaces in Sn+1 and, more

generally, on convex hypersurfaces Xn ⊂ Σn+1, where Σn+1 themselves are con-
vex in Rn+2, have non-negative curvature operators.

Accordingly, [X→b] generalizes to this case.

⋆⋆⋆Products and Stabilisation. We shall need (see section 5.5, 5.6)
a generalization of theorem⋆⋆ to maps

f ∶X →X = (Sm, g) ×Tn−m,

where g is a metric with non-negative curvature operator and Tn−m is the torus
with a Riemannin flat metric.

This is achieved (compare §5 4
9
in [G(positive) 1996]) by replacing the bundle

L = S+(Sn) in ⋆⋆ by S+(Sm) ⊗ Lp, where Lp are flat line bundles Lp over
Tn−m as in section 3.11.38

Furthermore, whenever this kind of argument applies to X1 and X2, it goes
over to maps X →X1 ×X2.

Almost Example. Let X1 = (Sm, g), where g is a metric with non-negative
curvature operator and let X2 be a manifold which admits a complete metric with
sect.curv(X2) ≤ 0.

Let X be a closed orientable Riemannian spin n-manifold and let

f ∶X →X →X1 ×X2

be a smooth map, such that the image of the fundamental class of X,

f∗[X] ∈Hn(X1 ×X2;Q), n = dim(X),

doesn’t vanish.
If the composition of f with the projection X1 ×X2 → X1, that is f1 ∶ X →

X1, satisfies
Sc(X,x) ≥ ∣∣ ∧2 df1∣∣Sc(g, f1(x))

at all x ∈X, then Sc(X,x) = ∣∣ ∧2 df1∣∣Sc(g, f1(x)).
38Instead of flat family Lp one can use individual almost flat bundles over the universal

cover Rn−m of Tn−m or any other, possibly infinite dimensional, flat or almost flat bundle
used in some proof of non-existence of metrics with Sc > 0 on tori.
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Non-Spin Remark. If X is not assumed spin, then, by the arguments from
section 5, one can prove the following rough bound on the Lipschitz constant of
f1.

Let X1 is the standard m-sphere with the metric of constant sectional curvature
1 and let Sc(X) ≥m(m − 1).

Then the X1-components f1 ∶ X → X1 = Sm of the maps f ∶ X → X1 ×X2,
such that f∗[X] ≠ 0, satisfy

∥∣df1∣∣ ≥
1

π
.

And if n = 4 then - this follows from 5.5 – the maps f ∶ X → S4 of non-zero
degrees satisfy the sharp inequality

∣∣df1∣∣ ≥ 1

(which is weaker than ∣∣ ∧2 df1∣∣ ≥ 1) which holds in the spin case.
Categorical Remark. The above suggests that the geometry of Riemannian

manifolds X = (X,g), where Sc(g) > 0 is well depicted by the Sc-normalised
metric Sc(X) ⋅ g and that maps, which are 1-Lipschitz with respect to the Sc-
normalised metrics can be taken for morphisms in the category of manifolds
with Sc > 0.

4.3 Bounds on Mean Convex Hypersurfaces
Recall that the hyperspherical radius RadSn−1(Y ) of a connected orientable
Riemannin manifold of dimension (n − 1) is the supremum of the radii R of
the spheres Sn−1(R), such that X admits a distance decreasing map f ∶ Y →
Sn−1(R) of non-zero degree, where this f for non-compact Y this map is sup-
posed to be constant at infinity.39

We already indicated in section 3.6 also see [G(boundary) 2019] that Goette-
Semmlenann’s theorem (above ⋆⋆), applied to smoothed doubles DDX and
DDX yields the following corollary.

#n−1Let X be a compact orientable Riemannin manifold with boundary
Y = ∂X.

If Sc(X) ≥ 0 and the mean curvature of Y is bounded from below bymean.curv(Y ) ≥
µ > 0, then the hyperspherical radius of Y for the induced Riemannin metric is
bounded by

RadSn−1(Y ) ≤ n − 1

µ
.

In fact, the proof of this indicated in section 3.6 (also see [G(boundary)
2019]) together with the above ⋆ ⋆ ⋆ yields the following more general
theorem.

cn,n−1 LetX andX be compact connected orientable Riemannian n-manifolds
with boundaries Y = ∂X and Y = ∂X, and let f ∶ X → X be a smooth proper40

map of non-zero degree.
39Alternatively, one might require f to be locally constant at infinity, or more generally, to

have the limit set of codimension≥ 2 in Sn−1(R).
40Here, "proper" means boundary→ boundary.
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LetX admit a locally convex isometric immersion to Tn+1 and let the bound-
ary Y of X be (geodesically) convex in X .

If X is spin, if

SCAL Sc(X,x) ≥ ∣∣ ∧2 df ∣∣Sc(X,f(x)) for all x ∈X

and if

MEAN mean.curv(Y, y) ≥ ∣∣df ∣∣mean.curv(Y , f(y)) for all y ∈ Y ,

then, in fact,
Sc(X,x) = ∣∣ ∧2 df ∣∣Sc(X,f(x))

and
mean.curv(Y, y) = ∣∣df ∣∣mean.curv(Y , f(y)).

Remarks. (a) If Sc(X) = 0, e.g. if X is a convex subset in Rn+1, then the
condition SCAL reduces to Sc(X) ≥ 0.

(b) The above also yields some information on manifolds X with negative
scalar curvatures bounded from below.

For instance, if Sc(X) ≥ −m(m − 1), then cn,n−1 applies to maps from
f ∶X × Sm to the (m + n)-balls Bm+n ⊂ Rm+n (see [G(boundary) 2019]).

However, the sharp inequalities for Sc(X) < 0, such, for instance, as opti-
mality of the hyperspherical radii of the boundary spheres of balls Bn(R) in the
hyperbolic spaces Hn−1, remain conjectural.41

(c) It is unknown if the spin condition on X is necessary, but it can be
relaxed by requiring the universal cover of X, rather than X itself, to be spin.
In fact,cn,n−1 generalizes to non-compact complete manifolds with an extra
attention to uniformity of the curvature inequalities involved.

And if one is content with a non-sharp bound

RadSn−1(Y ) ≤ constn
infmean.curv(Y )

,

then one and can prove this without the spin assumption by the "cubical type
argument" from section 5.4.

4.4 Lower Bounds on the Dihedral angles of Curved Poly-
hedral Domains.

We want to generalise the above cn,n−1 to manifolds X with non-smooth
boundaries with suitably defined mean curvatures bounded from below, where
we limit ourself to manifolds with rather simple singularities at their boundaries.

Namely, let X and X be Riemannian n-manifolds with corners, which means
that their boundaries Y = ∂X and Y = ∂X are decomposed into (n − 1)-faces
Fi and F i correspondingly, where, locally, at all points y ∈ Y , and y ∈ Y these
decompositions are is diffeomorphic to such decomposition of the boundary of
a convex n-dimensional polyhedron (polytope) in Rn.

41This "optimality" means that if Sc(X) ≥ −n(n − 1) and mean.curv(∂X) ≥
mean.curv(∂Bn(R)) than RadSn−1(∂X) ≤ RadSn−1(∂Bn(R)).
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Let f ∶ X ∶→ X be a smooth map, which is compatible with the corner
structures in X and X:

f sends the (n − 1)-faces Fi of X to faces F i of X.
Assume as earlier that

[≥]SCAL Sc(X,x) ≥ ∣∣ ∧2 df ∣∣ ⋅ Sc(X,f(x)) for all x ∈X

and replace MEAN by the corresponding condition applied to for all faces
Fi ⊂ Y individually,

[≥]MEAN
{i} , mean.curv(Fi, y) ≥ ∣∣df ∣∣ ⋅mean.curv(F i, f(y)) for all y ∈ Fi .

Let ∠i,j(y) be the dihedral angle between the faces Fi and Fj at y ∈ Fi ∩Fi
and let us impose our main inequality between these ∠i,j(y) for all Fi and F )j
and the dihedral angles between the corresponding faces faces F i and F j at the
points f(y) ∈ F i ∩ F j :

[≤]
∠ij ∠i,j(y) ≤∠i,j(f(y)) for all Fi, Fj and y ∈ Fi ∩ Fj .

Besides the above, we need to add the following condition the relevance of
which remains unclear.

Call a point y ∈ Y = ∂X suspicious if one of the following two conditions is
satisfied

(i) the corner structure of X at y is non-simple (not cosimplicial), where
simple means that a neighbourhood of y is diffeomorphic to a neighbourhood of
a point in the n-cube, which is equivalent to transversality of the intersection
of the (n − 1)-faces which meet at y;

(ii) there are two (n − 1)-faces in X which contain y, say Fi ∋ y and Fj ∋ y ,
such that the dihedral angle ∠ij =∠(Fi, Fj is > π

2
;

Then out final condition says that

[=]
∠ij ∠i,j(y) =∠i,j(f(y)).

for all suspicious points y.
p∠ij Theorem. Let f ∶ X → X be a smooth map between connected ori-

entable n-dimensional Riemannian manifolds with corners, where this map respects
the corner structure and satisfies the above conditions [≥]SCAL, [≥]MEAN

{i} , [≤]∠ij

and [=]
∠ij .

If X is spin, X admits a locally convex isometric immersion to Tn+1, the
boundary of X is convex and the map f has non-zero degree, then f satisfies
the equalities corresponding to the inequalities [≥]SCAL, [≥]MEAN

{i} and [≤]
∠ij :

Sc(X,x) = ∣∣ ∧2 df ∣∣ ⋅ Sc(X,f(x)) for all x ∈X,

mean.curv(Fi, y) = ∣∣df ∣∣ ⋅mean.curv(F i, f(y)) for all y ∈ Fi,

∠i,j(y) =∠i,j(f(y)) for all Fi, Fj and y ∈ Fi ∩ Fj .
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About the Proof. This is shown by smoothing the boundaries of X and
applyingcn,n−1 from the previous section, where an essential feature of non-
suspicious points follows from the following

Elementary Lemma. Let ∆ ⊂ Sn be a spherical simplex with all edges of
length ≥ l ≥ π

2
. Then there exists a continuous family of simplices ∆t ⊂ Sn, t ∈ [0,1]

with the following properties.
● ∆0 = ∆ and ∆1 is a regular simplex with the edge length l;
● all ∆t have the edges of length ≥ l;
● ∆t2 ⊂ ∆t1 for t2 ≥ t1;
● for each t < 1 there exists an ε > 0, such that n (out of n + 1) vertices of

∆t+ε coincide with those of ∆t.
The proof of the lemma is a high school exercise while construction of ad-

equate smoothing of X with the help of this lemma, which is straightforward
and boring, will be given elsewhere. p∠ij

Notice that the ×▲i-Inequality from section 3.10, which says that
convex polyhedra X ⊂ Rn with the dihedral angles ≤ π

2
admit no deformations

which would decrease their dihedral angles and simultaneously increase the mean
curvatures of their faces,
is an immediate corollary of p∠ij .

But it remains unclear what is the full class of polyhedra which enjoy this
property.

Fundamental Domains of Reflection Groups. What underlies the double DD-
construction, X ; DDX in the proof of the p∠ij theorem is the doubling Sn=
DDSn+ , which is associated with the reflection of Sn with respect to the equatorial
subsphere.

With this in mind, one can generalise everything from this section to general
reflection groups, including spherical, Euclidean, "abstract" (semi)hyperbolic
ones, (such as what we met in weak ⌝-reflection rigidity theorem in section
3.16.) and also products of these.

Example. Let X be a manifold with corners, where the (combinatorial)
corner structure is isomorphic to that of the product of an (n −m)-simplex ▲
with the rectangular fundamental domain ∎ (orbifold) of a reflection group in
an aspherical m-manifold which is non-diffeomorphic to Rm. (These exist for all
m ≥ 4 by Michael Davis 1983 theorem, see his lectures [Dav 2008] and references
therein.)

X admits no Riemannian metric with Sc ≥ 0, with all faces havingmean.curv ≥
0 and with the dihedral angles smaller than those in the product of a regular
Euclidean simplex ▲ by ∎ with π

2
dihedral angles.

On Necessity of Condition [=]
∠ij

4.5 Stability of Geometric Inequalities with Sc ≥ σ and
Spectra of Twisted Dirac Operators.

Sharp geometric inequalities beg for being accompanied by their nearest neigh-
bours.
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For instance, the Euclidean isoperimetric inequality for bounded domains
X ⊂ Rn, which says that

voln(X) ≤ γnvoln−1(∂X)
n
n−1 for γn =

vol(Bn)
voln−1(Sn−1) n

n−1
,

goes along with the following.

A. Rigidity. If voln(X) = γnvoln−1(∂X)
n
n−1 , then X is a ball.

B. Isoperimetric Stability. Let X ⊂ Rn be a bounded domain with
voln(X) = voln(Bn) and vol(∂X) ≤ voln−1(Sn) + ε.

Then there exists a ball B = Bnx (1 + δ) ⊂ Rn of radius δ with center x ∈ X,
where δ →

ε→0
0, such that the volume of the difference satisfies

voln(X ∖B) ≤ δ1,

and, moreover,

voln−1(∂B ∩X) ≤ δ2, and voln−2(∂B ∩ ∂X) ≤ δ3,

where
δ1, δ2, δ3 →

ε→0
0.

(Unless n = 2 and X is connected, there is no bound on the diameter of
X, but the constants δ, δ1, δ2, δ3 can be explicitly evaluated even for moderately
large ε.)

Turning to scalar curvature, observe, following Llarull, Min-Oo and Goette-
Semmelmann, that their proofs (see [Ll 1998], [Min(Hermitian) 1998], [GS 2002])
(more or less) automatically deliver rigidity. For instance,

⋆ if a manifold X homeomorphic to Sn, besides having curv.oper(X) ≥ 0
has Ricci(X) > 0 and if X is a closed orientable spin Riemannin manifold with
Sc(X) ≥ n(n− 1) then, all smooth 1-Lipschitz maps X →X of non-zero degrees
are isometries. 42

What we want to understand next is what happens if the inequality Sc(X) ≥
n(n − 1) is relaxed to Sc(X) ≥ n(n − 1) − ε for a small ε > 0, where one has to
keep in mind the following.

Example. (Compare [GL(classification) 1980], [BDS 2018] and section 2,
and 23 in [G(questions) 2017].) Let Σ ⊂ Sn be a compact smooth submanifold
of dimension ≤ n − 3. Then there exists an arbitrary small ε-neighbourhood
Uε = Uε(Σ) ⊂ Sn with a smooth boundary ∂ε = ∂Uε and a family of smooth
metrics gε,ε on the double

DD(Sn ∖Uε) = (Sn ∖Uε) ∪∂ε (Sn ∖Uε),
where Sc(gε,ε) ≥ n(n− 1)− ε− ε and which, for ε→ 0, uniformly converge to the
natural continuous Riemannian metric on DD(Sn ∖Uε(Σ).

42Even if Ricci vanishes somewhere, one still may have a satisfactory description of the
extremal cases. For instance, if X = (Sn−m × Rm)/Zm, e.g. X = Sn−m × Tm, then all
(orientable spin) X with Sc(X) ≥ Sc(X) = (n −m)(n −m − 1), which admit maps f ∶ X → X
with deg(f) ≠ 0, are locally isometric to X (albeit the map f itself doesn’t have to be a local
isometry.
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Moreover, if Σ ⊂ Sn is contained in a hemisphere, then – this follows from the
spherical Kirszbraun theorem – the (double) manifolds DD(Sn ∖ Uε, gε,ε) admit
1-Lipschitz maps to the sphere Sn with degrees one, for all sufficiently small
ε > 0 and , ε = ε(ε) →

ε→0
0.

For instance, if n ≥ 3 and Σ consists of a single point, then DD(Sn ∖ Uε),
that is the connected sum Sn#Sn = Sn#Sn−1(ε)S

n of the sphere Sn with itself
(where the ε-sphere Sn−1(ε) serves as ∂ε and Sn#Sn is homeomorphic to Sn),
admits, for small ε, a 1-Lipschitz map to Sn with degree 2.

Furthermore, iteration of the connected sum construction, delivers manifolds
(topologically spheres)

(Sn)k#ε = Sn#Sn−1(ε)S
n#...#Sn−1(ε)S

n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k

m

which carry metrics with Sc(Sn)k#ε ≥ n(n − 1) − ε − ε and, at the same time,
admit maps to Sn of degree k, where these maps are 1-Lipschitz everywhere and
which are locally isometric away from

√
ε-neighbourhoods of k − 1 ε-spherical

"necks" in (Sn)k#ε .
(For general Σ and even k one has such maps f with deg(f) = k/2.
Conjecturally, this example faithfully represents possible geometries of

closed Riemannian n-manifolds X with Sc(X) ≥ n(n − 1) − ε, which admit
1-Lipschitz maps to the unit sphere Sn, but only the following two, rather
superficial, results of this kind are available.

1. LetX = (X,g) be a closed oriented Riemannin spin n-manifold with Sc(X) ≥
n(n − 1) − ε and let f ∶X →X = Sn be a smooth 1-Lipshitz map of degree d ≠ 0.

Denote by g̃ the (possibly singular) Riemannin metric on X induced by f from
the spherical metric g on X = Sn and let l(f, x) be the minimum

lf(x) = min
∣∣τ ∣∣g=1

∣∣df(τ)∣∣g, τ ∈ Tx(X).

(Since f is 1-Lipschitz, l(f, x) ≤ 1 and (l(f, x))−1 measures the the distance from
the differential df(x) ∶ Tx(X)→ Tf(x)(X) to an isometry.)

Let
Ṽ = ṽol(X) = volg̃(X) = ∫

X
card(f−1(x))dx

be the g̃-volume of X.
Then the g̃-volume of the subset X≤λ ⊂X, λ < 1, where lf(x) ≤ λ satisfies

[∣X≤λ∣ ≤] ṽol(X≤λ) ≤ cλ,n,Ṽ (ε) →
ε→0

0.

Sketch of the Proof. Since the twisted Dirac operator D⊗ in Llarull’s rigid-
ity argument from [Ll 1998] has non-zero kernel, its square D2

⊗ is non-positive
(we assume here that n = dim(X) = dim(X) is even), and, by the Bochner-
Schrödinger-Lichnerowicz-Weitzenböck formula (that is above [D2

⊗]f ), this im-
plies non-positivity of

∇2 + 1

4
Sc(X) +R⊗.

Consequently, −∆g − 1
4
(ε + (1 − l(x))), where ∆g is an ordinary Laplace

operator on X = (X,g), also non-positive, since the coarse (Bochner) Laplacian
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∇2 is "more positive" than the (positive) Laplace(-Beltrami) operator −∆ as it
follows from the Kac-Feynman formula and/or from the Kato inequality.

(In general, this applies in the context of the above rigidity theorem ⋆
and yields non-positivity of −∆g − 1

4
(ε +C(1 − lf(x)) with C depending on the

smallest eigenvalue of Ricci(X).)
In order to extract required geometric information concerning the metric g̃

from this property of the metric g, we observe that the essential part of X, that
is the one, where we need to bound from below the L2-norms of the g-gradients
of functions φ(x) (to which the above ∆g applies) is where

λ ≥ lf(x) ≥ λṼ > 0

for some λṼ > 0, and where the geometries of g and of g̃ are mutually (λṼ )−1-
close.

Thus, the relevant lower g-gradient estimate for φ(x) comes from the isoperi-
metric inequality for g̃ which, in turn, follow from such an inequality in X, that
is the sphere in the present case. (Filling in the details is left to the reader.)

Remark. (a) The above example shows that the g-volume of X≤λ ⊂ X can
be large and that the bound on Ṽ concerns not only the subset X≤λ but its
complement X ∖X≤λ as well.

Corollary + Question. (a) Let X be a closed orientable Riemannin spin n-
manifold with Sc(X) ≥ n(n − 1) and let f ∶ X → Sn a (possibly non-smooth!)
1-Lipshitz map of degree ≠ 0.

If the map Y is a homeomorphism, then it is an isometry.
(b) Is this remain true for all 1-Lipshitz maps?

The inequality [∣X≤λ∣ ≤] doesn’t take advantage of deg(f) when this is large,
but the following proposition does just that.

2. Let X be a compact oriented Riemannian spin n-manifold with a boundary
Y = ∂X, such that Sc(X) ≥ n(n − 1) + ε, ε > 0.

Let f ∶ X → Sn be a smooth map, which is constant on Y , which is area
contracting away from the a neighbourhood U ⊂X of Y = ∂X ⊂X,

∣∣ ∧2 df(x)∣∣ ≤ 1 for all x ∈X ∖U,

and where

∣∣ ∧2 df(x)∣∣ ≤ Co for all x ∈X ∖U and some constant Co > 0.

Then the degree of f is bounded by a constant d depending only on U and on
Co,

∣deg(f)∣ ≤ d = constU,Co .

Sketch of the Proof. (Compare with §§5 1
2
and 6 in [G(positive) 1996].) Let

s(x) be the (Borel) function on X which equals to ε away from U and is equal
to E = −Cn ×Co on U for some universal Cn ≈ nn.

Then arguing (essentially) as in the first part of the above proof, we conclude
that the spectrum of the operator −∆ + s(x) on the (smoothed) double DD(X)
contains at least d = deg(f) negative eigenvalues.
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This an easy argument would deliver d eigenvalues λi of the operator −∆ on
DD(U), where the corresponding eigenfunctions vanish on the two copies of the
boundary of U in X (but not, necessarily on Y ), and such that λi ⪅ E.

This would yield the required bound on d. (Here again, the details are left
to the reader.)

Remark + Example + Two Problems. (a) If the boundary of Y = ∂X admits
an orientation reversing involution, then the constancy of f on Y can be relaxed
to dim(f(Y )) ≤ n−2, where the constant d will have to depend on the geometry
of this involution and of the map Y → Sn.

(It is unclear if the existence of such an involution is truly necessary.)
(b) This (a) apply, for instance, to coverings X = Σ2

d,δ of the 2-sphere minus
two δ-discs as well as to the products of these Σ2

d,δ with the Euclidean ball
Bn−1(R) of radius R > π.

(c) What are the sharp and/or comprehensive versions of these 1 and 2?
(d) Let Y be a homotopy sphere of dimension 4k−1, which bounds a Riemannin

manifold X with Sc ≥ ε > 0. Give an effective bound on the Â-genus of X in terms
of the geometry of Y and its second fundamental form h = II(Y ⊂ X) and study
the resulting invariant

Invε(Y,h) = sup
X

∣Â(X)∣, where ∂X = Y, Sc(X) ≥ ε, II(Y ⊂X) = h.

5 Stable µ-Bubbles in Manifolds with Sc ≥ σ

5.1 Variation of Minimal Bubbles and Modification of their
Metrics

Given a a Borel measure µ on an n-dimensional Riemannian manifold X, µ-
bubbles are critical points of the following functional on a topologically defined
class of domains U ⊂X with boundaries called Y = ∂U :

(U,Y )↦ voln−1(Y ) − µ(U).

Observe that in our examples, µ(U) = ∫U µ(x)dx for (not necessarily posi-
tive) continuous functions µ on X and that µ(U) can be regarded as a closed
1-form on the space of cooriented hypersurfaces Y ⊂X. Then voln−1(Y )−µ(U)
also comes as such an 1-form which we denote vol[−µ]n−1 (Y )(+const).

The first and the second variations of vol[−µ]n−1 (Y )(+const) are the sums of
these for V ol−1(Y ) and of vol(U) where the former were already computed in
section 2.5.

And turning to the latter, it is obvious that the first derivative/variation of
µ(U) under ψν, where ν is the outward looking unit normal normal field to Y
and ψ(y) is a function on Y , is

∂ψν ∫
U
µ(x)dx = ∫

Y
µ(y)ψ(y)dy

and the second derivative/variation is

∂2
ψν ∫

U
µ(x)dx = ∂ψν ∫

Y
µ(y)ψ(y)dy = ∫

Y
(∂νµ(y) +M(y)µ(y))ψ2(y)dy,
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where the field ν is extended along normal geodesics to Y , (compare section 2.5)
and where M(y) denotes the mean curvature of Y in the direction of ν.

It follows that µ-bubbles Y , (critical points of vol[−µ]n−1 (Y ) = voln−1(Y )−µ(U))
have

mean.curv(Y ) = µ(y)

and that
second variation of locally minimal bubbles Y ⊂X,

∂ψν(vol[−µ]n−1 (Y )) = ∂ψν (voln−1(Y ) − ∫
U
µ(x)dx)) ,

is non-positive.
Then we recall, the formula [○○] from section 2.5

∂2
ψνvoln−1(Y ) = ∫

Y
∣∣dψ(y)∣∣2dy +R−(y)ψ2(y)dy

for

R−(y) = −
1

2
(Sc(Y, y) − Sc(X,y) +M2(y) −

n−1

∑
i=1

αi(y)2) ,

where αi(y) are the principal curvatures of Y at y, and where ∑α2
i is related

to the mean curvature M = α1 + ... + αn−1, by the inequality

∑α2
i ≥

M2

n − 1
.

Thus, summing up all of the above, observing that

∂νµ(x) ≥ −∣∣dµ(x)∣∣

and letting

[R+ =] R+(x) =
nµ(x)2

n − 1
− 2∣∣dµ(x)∣∣ + Sc(X,x),

we conclude that
if Y locally minimises vol[−µ]n−1 (Y )(= voln−1(Y ) − µ(U)), then

∫ ∣∣dψ∣∣2dy + (1

2
Sc(Y ) − 1

2
R+(y))ψ2(Y )dy ≥ ∂ψνvol[−µ]n−1 (Y ) ≥ 0

for all functions ψ on Y .
Hence,
(≥0 the operator −∆+ 1

2
Sc(Y, y)− 1

2
R+(y), for ∆ = ∑i ∂2

ii is positive on Y .

Examples. (a) Let X = Rn and µ(x) = n−1
r
, that is the mean curvature of

the sphere of radius r. Then

R+(x) =
n(n − 1)

R
− 2

n − 1

r2
+ 0 = (n − 1)(n − 2)

r2
= Sc(Sn−1(r)).

(b) LetX = Rn−1×R be the hyperbolic space with the metric ghyp = e2rgEucl+
dr2 and let µ(x) = n − 1. Then

R+(x) = n(n − 1) − 0 + (−n(n − 1)) = 0 = Sc(Rn).
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(c) Let X = Y × (−π
n
, π
n
) with the metric ϕ2h + dt2, where the metric h is a

metric on Y and where

ϕ(t) = exp∫
t

−π/n
− tan

nt

2
dt, − π

n
< t < π

n
.

Then a simple computation shows that

R+(x) =
n(n − 1)

R
− 2

n − 1

r2
+ 0 = (n − 1)(n − 2)

r2
= Sc(Sn−1(r)).

nµ(x)2

n − 1
− 2∣∣dµ(x)∣∣ + n(n − 1) = 0.

Furthermore, if Sc(h) = 0, than Sc(X(= n(n − 1) and R+ = 0.
Two relevant corollaries to (≥0 are as follows.
Let X be a Riemannian manifold of dimension n, let µ(x) be a continuous

function and Y be a smooth minimal µ-bubble in X.
(conf If

R+(x) =
nµ(x)2

n − 1
− 2∣∣dµ(x)∣∣ + Sc(X,x) > 0,

then by Kazdan-Warner conformal change theorem (see section 2.6) Y admits
a metric with Sc > 0.
(warp There exists a metric ĝ on the product Y ×R of the form gY + φ2dr2

for the metric gY on Y induced from X, such that

Scĝ(y, r) ≥ R+(y).

Proof. Let φ(y) be the first, necessarily positive eigenfunction of the operator
−∆+ 1

2
Sc(gY , y)−R+(y) and recall (see section 2.4) that Sc(ĝ) = Sc(gY )−2∆φ

φ
.

Then
−∆φ + 1

2
Sc(gY , y)φ −

1

2
R+(y)φ = λφ, λ > 0,

∆φ

φ
= −λ + 1

2
Sc(gY , y) −

1

2
R+(y)

and
Sc(ĝ) = R+ + 2λ,

which implies that Scĝ(y, r) ≥ R+(y), since λ ≥ 0. QED.

5.2 On Existence and Regularity of Minimal Bubbles.
Let X be a compact connected Riemannian manifold of dimension n with boundary
∂X and let ∂− ⊂ ∂X and ∂+ ⊂ ∂X be disjoint compact domains in ∂X.

Example. Cylinders Y × [−1,1] naturally come with such a ∂∓-pair for ∂− =
Y × {−1} and ∂+ = Y × {1}, where, observe, ∂− ∪ ∂+ = ∂(Y × [−1,1]) if and only
if Y is a manifold without boundary.

Let us agree that the mean curvature of ∂− is evaluated with the incoming
normal field and mean.curv(∂+) is evaluated with the outbound field.
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For instance, if the boundary of X is concave, as for instance for X equal
to the sphere minus two small disjoint balls, t then mean.curv(∂−) ≥ 0 and
mean.curv(∂+) ≤ 0.

Barrier [≷ ∓mean]-Condition. A continuous function µ(x) on X is said to
satisfy [≷ ∓mean]-condition if

[≷ ∓mean] µ(x) ≥mean.curv(∂−, v) and µ(x) ≤mean.curv(∂+, x)

for all x ∈ ∂− ∪ ∂+.
It follows by the maximum principle in the geometric measure theory that
⋆ the [≷ ∓mean]-condition ensures the existence of a minimal µ-bubble

Ymin ⊂X. which separates ∂− from ∂−+.
If this condition is strict, i.e. if µ(x) >mean.curv(∂−) and µ(x) <mean.curv(∂+)

and if X has no boundary apart from ∂∓, then Ymin ⊂X doesn’t intersect ∂∓; in
general, the intersections Ymin∩∂∓ are contained in the side boundary of X that
is the closure of the complement ∂X ∖ (∂− ∪ ∂−). (This, slightly reformulated,
remains true for non-strict [≷ ∓mean].)

If dim(X) = n ≤ 7, then, (this well known and easy to see) Federer’s regu-
larity theorem(see section 2.7) applies to minimal bubbles as well as to minimal
subvarieties and the same can be said about Nathan Smale’s theorem on non-
stability of singularities for n = 8. Thus, in what follows we may assume our
minimal bubbles smooth for n ≤ 8.

Then, by the stability of Ymin (see section 5.1 above),
●ϕ○ : there exits a function φ○ = φ○(y) > 0 defined in the interior ○Y of Y ,

i.e. on Y ∖ ∂X, such that the metric

gϕ○ = ϕ2
○gY + dt2 on the cylinder ○Y ×R,

where gY is the Riemannin metric on Y induced from X, satisfies

e Scgϕ○ (y, t) ≥ Sc(X,y) +
nµ(y)2

n − 1
− 2∣∣dµ(y)∣∣

for all y ∈ ○Y .43

What if n ≥ 9?.

The overall logic of the proof indicated in [Loh(smoothing) 2018] leads one to
believe that, assuming strict [≷ ∓mean], there always exists a smooth Yo ⊂ X,
which separates ∂∓ and and which admits a function φ○ with the property e.

The proof of this, probably, is automatic, granted a full understanding
Lohkamp’s arguments. But since I have not seriously studied these arguments,
everything which follows in sections 5.3-5.8 should be regarded as conjectural
for n ≥ 9.

Barrier [≷mean = ∓∞]-Condition. Let X be a non-compact, possibly non-
complete, Riemannin manifold X and let the set of the ends of X is subdivided
to (∂∞)− = (∂∞)−(X) and (∂∞)+ = (∂∞)+(X), where this can be accomplished,
for instance, with a proper map from X to an open (finite or infinite) interval
(a−, a+) where "convergence" xi → (∂∞)∓, xi ∈X, is defined as e(xi)→ a∓.

43Since the metric gϕ○ is R-invariant its scalar curvature is constant in t ∈ R.
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For example, if X is the open cylinder, X = Y × (a, b), where Y is a
compact manifold, possibly with a boundary, this is done with the projection
Y × (a−, a+)→ (a−, a+).

Obvious Useful Observation. If a function µ(x) satisfies

µ(xi)→ ±∞ for xi → (∂∞)∓

then X can be exhausted by compact manifolds Xi with distinguished domains
(∂∓)i ⊂ ∂Xi, such that

● these (∂∓)i separate (∂∞)− from (∂∞)− for all i and

(∂∓)i → (∂∞)∓;

● restrictions of µ to (Xi, (∂∓)i) satisfy the barrier [≷ ∓mean]-condition.
This ensures the existence of locally minimising µ-bubbles in X which sepa-

rate (∂∞)− from (∂∞)+.

5.3 Bounds on Widths of Riemannin Bands.
Let us prove the following version of the 2π

n
-inequality from section 2.6.

2π
n -Inequality∗. Let X be an open, possibly non-complete Riemannian man-

ifold of dimension n and let
f ∶X → (−l, l)

be a proper (i.e. infinity → infinity) smooth distance non-increasing map, such that
the pullback f−1(to) ⊂X of a generic point to the interval (−l, l) is non-homologous
to zero in X.

If Sc(X) ≥ n(n−1) = Sc(Sn) and if the following condition Sc≯0 is satisfied,
then

l ≤ π
n
.

Sc≯0 No smooth closed cooriented hypersurface in X homologous to f−1(to)
admits a metric with Sc > 0.

Proof. Assume l > π
n
. and let µ(t) denote the mean curvature of the hy-

persurface Y × {t} in the warped product metric ϕ2h + dt2. on Y × (−π
n
, π
n
)

for
ϕ(t) = exp∫

t

−π/n
− tan

nt

2
dt, − π

n
< t < π

n

as in example (c) from the previous section.
Since µ(t) → ±∞ for t → ∓π

n
, the barrier [≷mean = ∓∞]-condition from the

section 5.2 guaranties the existence of a locally minimizing µ-bubble in X for µ
being a slightly modified f -pullback of µ to X.

Let us spell it out in detail.
Assume without loss of generality that the pullbacks Y∓ = f−1 (∓π

n
) ⊂X are

smooth, and let µ(x) be a smooth function on X with the following properties.
●1 µ(x) is constant on X on the complement of f−1 (−π

n
, π
n
) for (−π

n
, π
n
) ⊂

(−i, i);
●2 µ(x) is equal to µ ○ f in the interval (−π

n
+ ε, π

n
− ε) for a given (small)

ε > 0;
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●3 the absolute values of the mean curvatures of the hypersurfaces Y∓ are
everywhere smaller than the absolute values of µ;

●4
nµ(x)2
n−1

− 2∣∣dµ(x)∣∣ + n(n − 1) ≥ 0 at all points x ∈X.
In fact, achieving ●3 is possible, since µ(t) is infinite at ∓π

n
, while the mean

curvatures of the hypersurfaces Y∓ and what is needed for ●4 are the inequality
∣∣df ∣∣ ≤ 1 and the equality

nµ(t)2

n − 1
− ∣
dµ(t)
dt

∣ + n(n − 1) = 0

indicated in example(c) from section 5.1).
Because of ●3, the submanifolds Y∓ serve as barriers for µ-bubbles (see the

previous section) between them; this implies the existence of a minimal µ-bubble
Ymin in the subset f−1 (−π

n
, π
n
) ⊂X homologous to Yo. by⋆ in section 5.2.

Due to ●4, the operator ∆+ 1
2
Sc(Y ) is positive by (≥0 from the section 5.1 .

Hence, by (conf the manifold Ymin admits a metric with Sc > 0 and the
inequality l ≤ π

n
follows.

On Rigidity. A a close look at minimal µ-bubbles (see section 5.8) shows
that

if l = π
n
, then X is isometric to a warped product , X = Y × (−π

n
, π
n
) with the

metric ϕ2h + dt2, where the metric h on Y has Sc(h) = 0 and where

ϕ(t) = exp∫
t

−π/n
− tan

nt

2
dt, − π

n
< t < π

n
.

5.4 Bounds on Distances Between Opposite Faces of Cu-
bical Manifolds with Sc > 0

Let us see what kind of geometry Ymin may have if we drop the condition Sc≯0

and allow l > π
n
.

◻-Lemma. Let X be a compact connected Riemannian manifold of dimension
n with boundary ∂X and let ∂− ⊂ ∂X and ∂+ ⊂ ∂X be disjoint compact domains
in ∂X as in section 5.2.

Let
Sc(X) ≥ σ + σ1, ,

where σ1 > 0 is related to the distance d = distX(∂−, ∂+) by the inequality

σ1d
2 > 4(n − 1)π2

n
.

(If scaled to σ1 = n(n − 1), this becomes d > 2π
n
.)

Then there exists a smooth hypersurface Y−1 ⊂ X,which separates ∂− from
∂+, and a smooth positive function φ−1 on the interior of Y−1, such that the
scalar curvature of the metric g−1 = gY−1 + φ2

−1dt
2 on Y−1 × R is bounded from

below by
Sc(g−1) ≥ σ.
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Proof. The general case of this reduces to that of σ = n(n−1) by on obvious
scaling/rescaling argument and when σ = n(n − 1) we use the same µ as above
associated with ϕ(t) = exp ∫

t
−π/n − tan nt

2
dt, − π

n
< t < π

n
. Then, as earlier, since

Scgϕ○ (y, t) ≥ Sc(X,y) +
nµ(y)2

n − 1
− 2∣∣dµ(y)∣∣

bye from the previous section, the above equality
nµ(t)2

n−1
− ∣dµ(t)

dt
∣+n(n−1) = 0

implies the requited bound Sc(go) ≥ σ1. QED.
Example. Let X be an orientable spin manifold, let ∂− ∪ ∂+ = ∂X and let

f ∶X → Sn−1 × [−l, l] be a smooth map, such that ∂∓ → Sn−1 × {∓l}.
Let the following conditions be satisfied.
● deg(f) ≠ 0,
● the map X → Sn−1, that is the composition of f with the projection Sn−1 ×

[−l, l]→ Sn−1, is area decreasing;
● Sc(X) ≥ (n − 1)(n − 2) + σ1 for some σ1 ≥ 0.
Then the above lemma in conjunction with the (stabilised) Llarull theorem

shows that
dist(∂−, ∂+) ≤

2π

n

n(n − 1)√
σ1

= 2π(n − 1)√
σ1

.

Remark. This inequality if it looks sharp, then only for σ1 → 0, while
sharp(er) inequality of this kind need different functions µ.

Equivariant ◻-Lemma. Let X in the ◻-Lemma be free isometrically acted
upon by a unimodular Lie group G that preserves ∂∓.

Then there exists a submanifold Y−1 ⊂ X and a function φ−1 on Y , which,
besides enjoying all properties in the ◻-Lemma, are also invariant under the
action of G and the resulting metric on g−1 on Y−1 ×R is G ×R-invariant.

In fact, the proof of the ◻-Lemma applies to X/G.
Remark. This lemma may hold for all G, but what we need below is only

the case of G = Ri.
◻
n−m-Theorem. Let X be a compact connected orientable Riemannian

manifold with boundary and let X● is a closed orientable manifold of dimension
n −m, e.g. a single point ● if n =m.

Let
f ∶X → [−1,1]m ×X●

be a continuous map, which sends the boundary of X to the boundary of [−1,1]m×
X● and which has non-zero degree.

Let ∂i± ⊂ X, i = 1, ...,m, be the pullbacks of the pairs of the opposite faces of
the cube [−1,1]m under the composition of f with the projection [−1,1]m ×X● →
[−1,1]m.

Let X satisfy the following condition:
m
Sc≯0 No transversal intersection Y−m⋔ ⊂X of m-hypersurfaces Yi ∈X which

separates ∂i− from ∂i+, admits a metric with Sc > 0; moreover, the products Y−m⋔×
Tm admit no metrics with Sc > 0 either.44

44This "moreover" is unnecessary, since the relevant for us case of stability of the Sc ≯ 0
condition under multiplication by tori is more or less automatic. (The general case needs some
effort.)
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If Sc(X) ≥ n(n−1) that the distances di = dist(∂i−, ∂i+) satisfy the following
inequality (which generalise that from section 3.8).

◻∑
m

∑
i=1

1

d2
i

≥ n2

4π2

Consequently

◻min minidist(∂i−, ∂i+) ≤
√
m

2π

n
.

Proof. Let

σ′i = (2π

n
)

2 n(n − 1)
d2

= 4π2(n − 1)
nd2

and rewrite ◻∑ as
∑
i

σ′i ≥ n(n − 1).

Assume ∑i σ′i < n(n − 1) and let σi > σ′i be such that ∑i σi < n(n − 1).
Then, by induction on i = 1,2, ...,m and using Ri−1-invariant ◻-Lemma on

the ith step, construct manifolds X−i = Y−i × Ri with Ri-invariant metrics g−i,
such that

Sc(X−i) > n(n − 1) − σ1 − .. − σi.

The proof s concluded by observing that this for i = m would contradict to
m
Sc≯0.
Remarks. (a) As we mentioned earlier, this inequality is non-sharp starting

from m = 2, where where the sharp inequality

◻2
min mini=1,2dist(∂i−, ∂i+) ≤ π.

for squares with Riemannin metrics on them with Sc ≥ 2 follows by an elemen-
tary argument.

(b) One can show for all n that

minidist(∂i−, ∂i+) ≤
√
m

2π

n
− εm,n,

where εm,n > 0 for m ≥ 2.
(c) A possible way for sharpening ◻∑, say for the case m = n, is by using

n− 2 inductive steps instead of n and then generalizing the elementary proof of
◻2

min to Tn−2-invariant metrics on [−1,1]2 ×Tn−2.
In fact, all theorems for surfaces X with positive (in general, bounded from

below) sectional curvatures beg for their generalisations to Tm−2-invariant met-
rics on X ×Tm−2 with positive (and/or bounded from below) scalar curvatures.

5.5 Extremality and Rigidity of log-ConcaveWarped prod-
ucts.

The inequalities proven in section 5.3 say, in effect, that the metric

gφ = φ2gflat + dt2 on Tn−1 ×R for φ(t) = exp ∫
t
−π/n − tan nt

2
dt
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is extremal:
one can’t increase gφ without decreasing its scalar curvature,45

where the essential feature of φ (implicitly) used for this purpose was log-
concavity of φ:

d2 logφ(t)
dt2

< 0.

We show in this section that the same kind of extremality (accompanied by
rigidity) holds for other log-concave functions, notably for ϕ(t) = t2, ϕ(t) = sin t
and ϕ(t) = sinh t which results in

rigidity of punctured Euclidean, spherical and hyperbolic spaces. vspace1mm
More generally, let X = Y × R comes with the warped product metric gφ =

φ2dgy + dt2. Then the mean curvatures of the hypersurfaces Yt = Y × {t}, t ∈ R,
satisfy (see 2.4)

mean.curv(Yt) = µ(t) = (n − 1)d logφ(t)
dt

= φ
′(t)
φ(t)

,

and, obviously, are these Yt ⊂X are locally (non-strictly) minimizing µ-bubbles.
46

Now, clearly, φ is log-concave, if and only if

dµ

dt
= −∣dµ

dt
∣.

Thus, R+ defined in section 5.1 as

R+(x) =
nµ(x)2

n − 1
− 2∣∣dµ(x)∣∣ + Sc(X,x)

is equal in the present case to

nµ(t)2

n − 1
+ 2µ′(t) + Sc(gφ(t)) =

2(n − 1)φ′′(t)
φ(t)

+ (n − 1)(n − 2)(φ
′

φ
)

2

+ Sc(gφ(t))

which implies, (see 5.1) that

(R+)Yt =
1

φ2
Sc(gYt) = Sc(gYt) for gYt = φ2gY .

Thus our operators −∆Yt + 1
2
Sc(gYt) − (R+)Yt equal −∆Yt , the lowest eigen-

value of which are zero with constant corresponding eigenfunctions and the cor-
responding ( S1-invariant warped product) metrics on Yt ×S1 are (non-warped)
gYt + ds2 for Yt = Y × {t} ⊂X = Y ×R and all t ∈ R.

(We "warp" with the circle S1 rather than with R to avoid a confusion
between two different R.)

45To be precise, one should say that
one can’t modify the metric, such that the scalar curvature increases but the metric itself

doesn’t decrease.
The relevance of this formulation is seen in the example of X = Sn × S1, where one can

stretch the obvious product metric g in the S1-direction without changing the scalar curvature,
but one can’t increase the scalar curvature by deformations that increase g.

46If Y is non-compact, the minimization is understood here for variations with compact
supports.
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This computation together with (warp in section 5.1 yield the following.
Comparison Lemma. Let X = Y × [a, b] be an n-dimensional warped prod-

uct manifold with the metric

gX = gφ = φ2gY + dt2, t ∈ [a, b],

where φ(t) is a smooth positive log-concave function on the segment [a, b].
Let X be an n-dimensional Riemannian manifold, with a smooth function µ(x)

on it and let Y ⊂ X be a stable, e.g. locally minimising µ-bubble in X and let
gφ = φ2gY +ds2 be the metric on Y ×S1 where gY is the metric on Y induced from
X, and where φ is the first eigenfunction of the operator −∆+ 1

2
Sc(gY , y)−R+(y)

for R+(x) = nµ(x)2
n−1

− 2∣∣dµ(x)∣∣+Sc(X,x) (where φ is not assumed positive at this
point).

Let f ∶ X → X be a smooth map let fY ∶ X → Y denote the Y -component of
f , that is the composition of f with the projection Y × [a, b]→ Y .

Let
f[a,b] ∶X → [a, b]

be the [a, b]-component of f , let

µ∗(x) = µ ○ f[a,b](x) for µ(t) = (n − 1)
d logφ(t)

dt
=mean.curv(Y t), t = f[a,b](x)

and let

µ′∗ = µ′ ○ f[a,b](x) where µ′ = µ′(t) =
dµ(t)
dt

.

Let

R∗
+(x) =

nµ∗(x)2

n − 1
− 2∣∣dµ∗(x)∣∣ + Sc(X,f(x))

If
R+(x) ≥ R∗

+(x),

then the function φ is positive and the scalar curvature of the metric gφ on
Y × S1 satisfies

Scgφ(y, s) ≥
1

(f[a,b](y))2
Sc(Y , fY (y)) = Sc(Y t, f(y)) for Yt ∋ f(y).

The main case of this lemma, which we use below, is where
●df[a,b] the function f[a,b] ∶X → [a, b] is 1-Lipschitz, i.e. ∣∣df[a,b]∣∣ ≤ 1,

and
●µ µ(x) = µ ○ f[a,b], that is µ(x) =mean.curv(Y t, f(x)) for Y t ∋ f(x)
and where the conclusion reads:

[Sc ≥]. Scgφ(y, s) ≥
1

(f[a,b](y))2
Sc(Y , fY (y)) + Sc(X,y) − Sc(X,f(y)).

Corollary. Let X̂ denote the Riemannian (warped product) manifold (Y ×
S1, gφ) and let f̂ ∶X → Y is defined by (y, s)↦ fY (y).
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If besides ●df[a,b] and ●µ,

∣∣ ∧2 df ∣∣ ≤ 1, e.g. ∣∣df ∣∣ ≤ 1

and if
Sc(X,y) ≥ Sc(X,f(y)),

then the map f̂ satisfies

Sc(X̂, x̂) ≥ ∣∣df̂ ∣∣2Sc(Y , f̂(x̂)) ≥ ∣∣ ∧2 df̂ ∣∣Sc(Y , f̂(x̂)).

Now, the existence of minimal bubbles under barrier [≷mean = ∓∞]-condition
(see section 5.2) and a combination of the above with the Llarull trace ∧2 df -
inequality in section 4.2 yields the following.
⊙Sn. Extremality of Doubly Punctured Spheres. Let X be an ori-

ented Riemannian spin n-manifold, let X be the n-sphere with two opposite points
removed and let f ∶X →X be a smooth 1-Lipschitz map of non-zero degree.

If Sc(X) ≥ n(n − 1) = Sc(X) = Sc(Sn), then
(A) the scalar curvature of X is constant = n(n − 1);
(B) the map f is an isometry.
Proof. The spherical metric on X = Sn ∖ {s,−s} is the warped product

Sn−1 × (−π
2
, π

2
) where the warping factor φ(t) = sin t which is logarithmically

concave, where µ(t) = d logφ(t)
dt

→ ±∞ for t→ ∓π
2
. 47

This implies (A) while (B) needs a little extra argument indicated in section
5.8.

1-Lipschitz Remark. As it is clear from the proof, the 1-Lipshitz condition
can be relaxed to the following one.

The radial component f[−π2 ,π2 ] ∶ X → [−π
2
, π

2
] of f , which corresponds to the

signed distance function from the equator in Sn ∖ {s,−s} is 1-Lipschitz and the
differential of the Sn−1 component fSn−1 ∶X → Sn−1 satisfies

dfSn−1 ∧2 df(x) ≤ (sin f[−π2 ,
π
2
](x))

2
.

Non-Spin Remark. If n = 4, one can drop the spin condition, since µ-bubbles
Y ∈X, being 3-manifolds, are spin.

Similarly to ⊙Sn one shows the following.
⊙Rn. Let Let X be as above, let X be Rn with a point removed and let

f ∶X →X be a smooth 1-Lipschitz map of non-zero degree.
If Sc(X) ≥ n(n − 1) ≥ 0 and if X is an isometry at infinity, then
(A) Sc(X) = 0;
(B) the map f is an isometry.

47If a log-concave function φ on the segment [−l, l] is positive for −l < t < l and it vanishes
at −l, then the logarithmic derivative of φ goes to ∞ for t→ −l; similarly,

φ′

φ
→
t→l

−∞,

if φ vanishes at t = l.
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⊙Hn. Let Let X be as above, let X be the hyperbolic space with a point
removed and let f ∶X →X be a smooth 1-Lipschitz map of non-zero degree.

If Sc(X) ≥ −n(n − 1) and if X is an isometry at infinity, then
(A) Sc(X) = −n(n − 1);
(B) the map f is an isometry.
Question. Let d0(x) = dist(x,x0) be the distance function in X from ⊙Rn

or from ⊙Hn to the point x0, which was removed from Rn or from Hn, and let
df(x) = d0(f(x)).

Can one relax the 1-Lipschitz condition in ⊙Rn and in ⊙Hn by requiring that
not f but only the function df(x) is 1-Lipschitz?

5.6 On Extremality of Warped Products of Manifolds with
Boundaries and with Corners.

We explained in section 4.4 how reflection+ smoothing allows an extension of the
Llarull and Goette-Semmelmann theorems from section 4.2 to manifolds with
smooth boundaries and to a class of manifolds with corners. This, combined with
the above, enlarges the class of manifolds with corners to which the conclusion
of the extremality p∠ij theorem applies.

Here is an example.
Let △n−1 ⊂ Sn−1 be the regular spherical simplex with flat faces and the

dihedral angles π
2
and let S∗∗△n−1 ⊂ Sn ⊂ Sn−1 be the spherical suspension of

△n−1 and let X = Sba(△n−1) ⊂ S∗∗△n−1 be the region of S∗∗△n−1 between a pair
of (n − 1)-spheres concentric to our equatorial Sn−1 ⊂ Sn.

Let X be an n-dimensional orientable Riemannin spin manifold with corners and
let f ∶ X → X be a smooth 1-Lipschitz map which respects the corner structure
and which has non-zero degree.

Spherical Sba(△)-Inequality. If Sc(X) ≥ Sc(X) = n(n−1), if all (n−1)-
faces Fi ⊂ ∂X have their mean curvatures bounded from below by those of the
corresponding faces in X, 48

mean.curv(Fi) ≥mean.curv(F i),

and if all dihedral angle of X are bounded by the corresponding ones of X,

∠ij ≤∠ij
= π

2
,

then
Sc(X) = n(n − 1),

mean.curv(Fi) =mean.curv(F i)

and
∠ij =

π

2
.

Exercise. Formulate and prove the Euclidean and the hyperbolic versions of
the Sba(△)-inequality.

48All these but two have zero mean curvatures.
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5.7 Disconcerting Problem with Boundaries of non-Spin
Manifolds

Typically, µ-bubbles serve as well if not better than Dirac operators for mani-
folds with boundaries, but something goes wrong with a natural (naive?) ap-
proach to geometric bounds on Y = ∂X, where Sc(X) ≥ 0 and mean.curv(Y ) ≥
M > 0, via µ-bubbles for non-spin manifolds X.

Albeit the existence and regularity theorems from section 5.1 extend to man-
ifolds with boundaries, the second variation formula turns out a disappointment.

To see what happens, let X be a compact Riemannin manifolds with a
boundary Y , let µ(y) be a continuous function µ ∶ Y → (−1,1) and let Z be the
set of cooriented hypersurfaces Z ⊂X with boundaries Ω = ∂Z ⊂ Y = ∂X, where
the coorientation (unit normal) field ν is called upward.

Then such a Z is called a µ-bubble (compare 5.1), if it is extremal for

Z ↦ vol
[−µ]
n−1 (Z) =def voln−1(Z) − ∫

Y−
µ(y)dy,

in the class Z, where Y− ⊂ Y the region in Y "below" Ω = ∂Z ⊂ Y and where
our direction/coorientation/sign/angle convention is dictated by the following.

Encouraging Example. Let X = Bn ⊂ Rn = Rn−1 × R be the unit ball,
Y = ∂Bn = Sn−1 and let Zθ, θ ∈ (−π

2
, π

2
), where θ is the latitude parameter on

the sphere Y = Sn−1 ⊃ ∂Zθ, be the horizontal discs, that are the (Sn−2(R)-
spherical for R = cos θ) intersections

Ωθ = ∂Zθ = Bn ∩Rn−1 × {t}, t = sin θ ∈ (−1,1) ⊂ R,

where – this is a matter of convention– the latitude parameter θ ∈ (−π
2
, π

2
) is

related to the dihedral angle between the hypersurfaces Zθ and Y along their
intersection

Ωθ = ∂Zθ = Zθ ∩ Y, Y = ∂X = Sn−1, for X = Bn,

by
∠θ =∠Ωθ(Zθ, Y ) = θ + π

2
.

Next, let µ(y) for y = (x, t) ∈ Y ⊂ Rn−1 ×R be equal to the minus height t,
i.e. µ(x, θ) = −t = − sin θ.

Then the normal derivative ∂ν = d
dt

of the volume of Zt = Zsin θ is expressed
in terms of

∣Ωt∣ = voln−2(Ωt), t = sin θ, and the angle ∠θ ∈ (0, π)

as follows

∂νvoln−1(Zt) = −∣Ωt∣ tan θ = ∣Ωt∣ cot∠θ for θ = arcsin t,

while the derivative of the µ-measure of the region (Y−)t ⊂ Y below Zt for the
above µ(θ) = − sin θ = −t = cos∠θ is

∂νµ((Y−)t) =
∣Ωt∣µ(t)
sin∠θ

= ∣Ωt∣ cot∠θ.
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Thus, Zθ serves as µ-bubbles for this µ, and since they come in a "parallel"
family they are locally minimizing ones.

Let us return to the general Riemannin manifold X with boundary Y = ∂X,
a hypersurface Z ⊂ X, such that Ω = ∂Z ⊂ Y = ∂X and a function µ(y) on Y
and observe the following.

First Variation Formula for vol[−µ]n−1 (Z). . Let ∠ω ∈ (0, π) denote the
angle between Z and Y at ω ∈ Ω = ∂Z = Z ∩ Y and let us use the following
abbreviations

cscω = 1
sin∠ω and cosω = cos∠ω.

Then

∂νvoln−1(Z) = ∫
Z
mean.curv(Z, z)dz + ∫

Ω
scsωcosωdω,

and
∂νµ(Y−) = ∫

Ω
cscω µ(ω)dω.

and, since vol[−µ]n−1 (Z) = voln−1(Z) − µ(Y−),

Z is a (stationary) µ-bubble, i.e. ∂ψνvol
[−µ]
n−1 (Z) = 0 for all smooth functions

ψ(z), if and only if

mean.curv(Z) = 0 and µ(ω) = cosω.

Second Variation Formula for vol[−µ]n−1 (Z). If Z is stationary then the ω
contribution to the second variation/derivative ∂2

ψνvol
[−µ]
n−1 (Z) is as follows

∂ψν ∫
Ω
ψ(ω)(scsωcosωdω−cscω µ(ω))dω = ∫

Ω
ψ2(ω)(− cscω(%(ω)−∂νµ(ω)))dω,

where %(ω) is the curvature of Y ⊂ Z, i.e. the value of the second fundamental
form of Y ⊂X, on the unit tangent vector τ ∈ Tω(Y ) normal to Tω(Ω) ⊂ Tω(Y ).

(Our sign convention is such that this % is positive for convex Y = ∂X and
negative for concave ones.)

Let MY (ω) =M(Ω ⊂ Y,ω) denote the mean curvature of Ω ⊂ Y and observe
that % equals the difference between the mean curvature of Y ⊂X and the values
of the mean curvature (second fundamental form) of Ω on the unit normal bundle
of Y ⊂X, denotes M(Ω, T ⊥(Y ⊂X)),

% =M(Y ⊂X) −M(Ω, T ⊥(Y ⊂X)),

and that

M(Ω, T ⊥(Y ⊂X)) = csc ⋅M(Ω ⊂ Z) + cos ⋅ csc ⋅M(Ω ⊂ Y ).

The essential problem, as I see it here, is that the mean curvatureM(Ω ⊂ Y =
∂X) may (may not?) be uncontrollably ±large and, unless µ = 0, the positivity
of the second variation operator doesn’t yield a significant information on the
intrinsic geometry of Z ⊂X at the boundary Ω = ∂Z. (Am I missing something
obvious?)
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5.8 On Rigidity of Extremal Warped Products.
Let us explain, as a matter of example, that

doubly punctured sphere X = Sn ∖ {±s} is rigid.
This means (see (B) in ⊙Sn of section 5.5) that
if an oriented Riemannin spin n-manifold X with Sc(X) ≥ n(n−1) = Sc(X =

Sc(Sn) admits a smooth proper 1-Lipschitz map f ∶X →X such that deg(f) ≠ 0,
then, in fact, such an f is an isometry.

Proof. We know (see the the proof of ⊙Sn) that X contains a minimal
µ-bubble Y , which separates the two (union of) ends of X, where µ(x) is the
f -pullback of the mean curvature function of the concentric (n − 1)-spheres in
X = Sn ∖ {±s} between the two punctures and that this m-bubble must be
umbilic, where we assume at this point that Y is non-singular, e.g. n ≤ 7.

What we want to prove now is that these bubbles foliate all of X, namely
they come in a continuous family of mutually disjoint minimal µ-bubbles Yt,
t ∈ (−π

2
π2), which together cover X.

Indeed, if the maximal such family Yt wouldn’t cover X, then the would
exists a small perturbation µ′(x) of µ(x) in the gap between two Yt in the
maximal family, such that ∣µ′∣ > ∣µ∣ in this gap, while ∣∣dµ′∣∣ = ∣∣dµ∣∣ in there and
such that there would exist a minimal µ′-bubble Y ′ in this gap.

But then, by calculation in 5.5, the resulting warped product metric on
Y ′ × S1 would be > n(n − 1), thus proving "no gap property" by contradiction.

Therefore, X itself is the warped product, X = Y × (−π
2
π2) with the metric

dt2 = (sint)2gY , where Sc(gY ) = n(n−1) and which by Llarull’s rigidity theorem,
has constant sectional curvature. QED.

Remarks (a) On the positive side, this argument is quite robust, which makes
it compatible with approximation of bubble and metrics. For instance it nicely
works for n = 8 in conjunction with Smale’s generic regularity theorem and,
probably, for all n with Lohkamp’s smoothing theorem.

But it is not quite clear how to make this work for non-smooth limits of
smooth metrics.

For instance (this was already formulated in section 3.2),
let gi be a sequence of Riemannian metrics on the torus Tn , such that

Sc(gi) ≥ −εi →
i→∞

0

and such that gi uniformly converge to a continuous metric g.
Is this g, say for n ≤ 7, Riemannian flat?
(The above argument shows that, given an indivisible (n−1)-homology class

in Tn, there exists a foliation of Tn by g-minimal submanifolds from this class.
But it is not immediately clear how to show that these submanifolds are totally
geodesic.)

6 Problems, Generalisations, Speculations.
The most tantalising aspect of scalar curvature is it serving as a meeting point
between two different branches of analysis: the index theory and the geometric
measure theory, which suggests, on the one hand, the existence of a unified
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theory and, on the other hand a radical generalization of the concept of a space
with the scalar curvature bounded from below.

This is a dream. In what follows we indicate what seems realistic, something
lying within reach of the currently used techniques and ideas.

6.1 Moduli Spaces Everywhere
All topological and geometric constraints on metrics with Sc ≥ σ are
accompanied by non-trivial homotopy theoretic properties of spaces of
such metrics.

A manifestation of this principle is seen in how topological obstructions for
the existence of metrics with Sc > 0 on closed manifolds X of dimension n ≥ 5
give rise to

pairs (h0, h1) of metrics with Sc ≥ σ > 0 on closed hypersurfaces Y ⊂X which
can’t be joined by homotopies ht with Sc(ht) > 0.
The elementary argument used for the proof of this (see section 3.15) also

shows that (known) constraints on geometry, not only on topology, of manifolds
with Sc ≥ σ play a similar role.

For instance, assuming for notational simplicity, σ = n(n − 1), and recalling
the 2π

n
-inequality from sections 3.7, 5.3, we see that

(a) if l ≥ 2π
n
, then the pairs of metrics h0 ⊕ dt2 and h1 ⊕ dt2 on the cylinder

Y × [−l, l], for the above Y and l ≥ 2π
n
, can’t be joined by homotopies of metrics

ht with Sc(ht) ≥ n(n − 1) and with distht(Y × {−l}, Y × {l}) ≥ 2π
n
.

This phenomenon is also observed for manifolds with controlled mean curva-
tures of their boundaries, e.g. for Riemannian bands X withmean.curv(∂∓X) ≥
µ∓ and with Sc(X) ≥ σ, whenever these inequalities imply that dist(∂−X,∂+X) ≤
d = d(n,σ,µ∓). (One may have σ < 0 here in some cases.)

Namely,
(b) certain sub-bands Y ⊂X of codimension one with ∂∓(Y ) ⊂ ∂∓(X) admit

pairs of metrics (h0, h1), such that mean.curvh0,h1(∂∓Y ) ≥ µ∓ and Sch0,h1(Y ) ≥
σ while disth0,h1(∂−, ∂+) ≥D for a givenD ≥ d. But these metrics can’t be joined
by homotopies ht , which would keep these inequalities on the scalar and on the
mean curvatures and have distht(∂−, ∂+) ≥ d for all t ∈ [0,1].

(c) This seems to persist (I haven’t carefully checked it) for manifolds with
corners, e.g. for cube-shaped manifolds X: these, apparently contain hyper-
surfaces Y ⊂ X, the boundaries of which ∂Y ⊂ ∂X inherit the corner structure
from that in X, and which admit pairs of "large" metrics h0, h1, which also
have "large" scalar curvatures, "large" mean curvatures of the codimension one
faces Fi in Y and "large" complementary (π − ∠ij) dihedral angles along the
codimension two faces Fij , but where these h0, h1 can’t be joint by homotopies
of metrics ht with comparable "largeness" properties.

It is unclear, in general, how to extend the π0-non-triviality (disconnected-
ness) of our spaces of metrics to the higher homotopy groups, since the tech-
niques currently used for this purpose rely entirely on the Dirac theoretic tech-
niques (see [EbR-W 2017] and references therein), which are poorly adapted to
manifolds with boundaries. But some of this is possible for closed manifolds.

For instance, let Y be a smooth closed spin manifold, and hp, p ∈ P , be
a homotopically non-trivial family of metrics with Sc(hp) ≥ σ > 0, where,
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for instance, P can be a k-dimensional sphere and non-triviality means non-
contractibility.

Let Smσ (Sm × Y ) denote the space of pairs (g, f), where g is a Riemannian
metric on Sm × Y with Sc(g) ≥ σ and f ∶ (Sm × Y, g) → Sm is a distance
decreasing map homotopic to the projection fo ∶ Sm × Y → Sm.

If non-conractibility of the family hp follows from non-vanishing of the index
of some Dirac operator, then (the proof of) Llarull’s theorem suggests that the
corresponding family (hp + ds2, fo) ∈ Smσ+(S

m × Y ) for σ+ = σ +m(m − 1) is non-
contractible in the space

Smm(m−1)(S
m × Y ) ⊃ Smσ+(S

m × Y ).

This is quite transparent in many cases, e.g. if hp = {h0, h1} is an above
kind of pair of metrics with Sc > 0, say an embedded codimension one sphere
in a Hitchin’s homotopy sphere.

Remarks. (i) If "distance decreasing" of f is strengthened to "εn-Lipschitz"
for a sufficiently small εn > 0, then the above disconnectedness of the space of
pairs (g, f) follows for all X with a use of minimal hypersurfaces instead of
Dirac operators.

(ii) The above definition of the space Smσ makes sense for all manifolds X
instead of Sm × Y , where one may allow dim(X) <m as well as >m.

However, the following remains problematic in most cases.
For which closed manifolds X and numbers m, σ1 and σ2 > σ1 > 0 is the

inclusion Smσ2
(X) ≤ Smσ1

(X) homotopy equivalence?

Suggestion to the Reader. Browse through all theorems/inequalities
in the previous as well as in the following sections, formulate their possible
homotopy parametric versions and try to prove some of them.

6.2 Corners, Categories and Classifying Spaces.
It seems (I may be mistaken) that all known results concerning the homotopies
of spaces with Sc > 0 are about the iterated cobordisms of manifolds with Sc > 0
rather than about spaces of metrics per se.

Namely, given a smooth closed manifold X, consider "all" Riemannin man-
ifolds of the form (X × [0,1]i, g), i = 0,1,2, ..., such that Sc(g) > 0, and such
that all metrics g in a small neighbourhoods of all faces X ×Fj , where Fj is are
((i − 1)-cubical) codimension one faces in the cube [0,1]i), split as Riemannin
products: g = gX×Fj ⊗ dt2.

............... to be continued.
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