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Unlike manifolds with controlled sectional and Ricci curvatures, those with
their scalar curvatures bounded from below are not configured in specific rigid
forms but display an uncertain variety of flexible shapes similar to what one
sees in geometric topology.

Yet, there are definite limits to this flexibility, where determination of such
limits crucially depends, at least in the known cases, on two seemingly unrelated
analytic means: index theory of Dirac operators and the geometric measure
theory, 1 where there are two distinct aspects of the role of the Dirac operator
and two (less sharply) separate one from another aspects to applications of the
geometric measure theory.

I. Positivity of the scalar curvature of a metric g on a (closed spin) manifold
X implies, according to Lichnerowicz’ theorem, vanishing of the index of the
Dirac operator Dg, where this index, which is independent of g, identifies, by
the the Atiyah-Singer theorem, with a certain (smooth) topological invariant,
denoted α̂(X). Thus (see section 3.4).

Sc(g) > 0 implies that α̂(X) = 0.
II. Both, Lichnerowicz’ and Atiyah-Singer’s theorems apply to twisted Dirac

operators (Dg)⊗L = D⊗L that act on spinors with values in (coefficients with)
vector bundles L over X with unitary connections.

But now,
vanishing/non-vanishing of ind(D⊗L) depends on a balance between geometric
invariants of g and of (connections on) L,

thus delivering information on geometry of (X,g) issuing from positivity of the
scalar curvature. This in turn, yields non-trivial topological information for
non-simply connected manifolds X.2

I. Somewhat similarly, information concerning closedmanifoldsX with Sc(X) >

0, which is obtained with the use of the geometric measure theory–
Schoen-Yau’s inductive decent method with minimal hypersurfaces,

1Besides these, something is achieved with the Hamilton’s Ricci flow, especially in dimen-
sion n = 3, and specifically 4-dimensional results are derived with a use of the Seiberg-Witten
equations.

2The geometry of (X,g) may be hidden in algebraic constructions with the fundamental
groups of X, which deliver (finite or infinite dimensional) vector bundle L with flat unitary
connections in them (see section 3.11).
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which is mainly concerned with the (abelianised) fundamental groups of X,
albeit being quite different from what comes along with non-twisted Dirac op-
erators, is also of predominantly (not entirely) topological nature.

II. A variation of the method of minimal hypersurfaces, applied to manifolds
with boundaries, yields geometric information which is analogous (but not fully
identical) to that delivered by twisted Dirac operators (see section 3.5) and
additional information of the same kind follows with a use of stable µ-bubbles,
that are stable (in a subtle sense) hypersurfaces in Riemannian manifolds X
with prescribed mean curvatures µ = µ(x) (see sections 3.7-3.9).

(The emergent picture of manifolds with positive scalar curvature, where
topology and geometry are intimately intertwined, is reminiscent of what hap-
pens in symplectic geometry; but the former has yet to reach maturity enjoyed
by the latter.3

We start these lectures with a dozen pages (§§1 and 2) of elementary back-
ground material followed in §3 by a brief overview of the main topics in spaces
with their scalar curvatures bounded from below, that covers, I guess 70-80%
of currently pursued directions. Then, in §§4 and 5 we give a more detailed
exposition of several known and some new geometric constraints on spaces X
implied by the lower bound Sc(X) ≥ σ.

Finally, in §6, we sketch a few connective links between different faces of
the scalar curvature shown in the earlier sections and formulate several general
problems.
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1 Geometrically Deceptive Definition.
The scalar curvature of a C2-smooth Riemannian manifold X = (X,g), denoted
Sc = Sc(X) = Sc(X,g) = Sc(g) = Scg is a continuous function on X, which is

4



traditionally defined as
the sum of the values of the sectional curvatures at the n(n − 1) ordered

bivectors of an orthonormal frame in X,

Sc(X,x) = Sc(X)(x) =∑
i,j

κij(x), i ≠ j = 1, ..., n,

where this sum doesn’t depend on the choice of this frame by the Pythagorean
theorem.

But if you are geometrically minded, you want to have a geometric definition
where the first attempt to find such a definition relies on the following properties
of Sc(X).

●1 Additivity under Cartesian-Riemannian Products.

Sc(X1 ×X2, g1 ⊕ g2) = Sc(X1, g1) + Sc(X2, g2).

●2 Quadratic Scaling.

Sc(λ ⋅X) = λ−2Sc(X), for all λ > 0,

where

λ ⋅X = λ ⋅ (X,distX) =def (X,distλ⋅X) for distλ⋅X = λ ⋅ dist(X)

for all metric spaces X = (X,distX) and where dist ↦ λ ⋅ dist(X) corresponds
to g ↦ λ2 ⋅ g for the Riemannian quadratic form g.

(This makes the Euclidean spaces scalar-flat: Sc(Rn) = 0.)
●3 Volume Comparison. If the scalar curvatures of n-dimensional manifolds

X and X ′ at some points x ∈X and x′ ∈X ′ are related by the strict inequality

Sc(X)(x) < Sc(X ′
)(x′),

then the Riemannian volumes of the ε-balls around these points satisfy

vol(Bx(X,ε)) > vol(Bx′(X
′, ε))

for all sufficiently small ε > 0.
Observe that this volume inequality is additive under Riemannian products:

if

vol(Bxi(X,ε)) > vol(Bx′i(X
′
i, ε)), for ε ≤ ε0,

and for all points xi ∈Xi and x′l ∈X
′
i, i = 1,2, then

voln(B(x1,x2)(X1 ×X2, ε0)) > voln(B(x′1,x′2)(X
′
1 ×X

′
2, ε0)

for all (x1, x2) ∈Xi ×X2 and (x′1, x
′
2) ∈X

′
1 ×X

′
2.

This follows from the Pythagorean formula

distX1×X2 =
√
dist2X1

+ dist2X2
.

and the Fubini theorem applied to the "fibrations" of balls over balls:

B(x1,x2)(X1×X2, ε0))→ Bx1(X1, ε0) and B(x′1,x′2)(X
′
1×X

′
2, ε0))→ Bx1(X

′
1, ε0),
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where the fibers are balls of radii ε ∈ [0, ε0] in X2 and X ′
2.

●4 Normalisation/Convention for Surfaces with Constant Sectional Curva-
tures. The unit spheres S2(1) have constant scalar curvature 2 and the hy-
perbolic plane H2(−1) with the sectional curvature −1 has scalar curvature −2

It is an elementary exercise to prove the following.
⋆1 The function Sc(X,g)(x) which satisfies ●1-●4 exists and unique;
⋆2 The unit spheres and the hyperbolic spaces with sect.curv = −1 satisfy

Sc(Sn(1)) = n(n − 1) and Sc(Hn
−1) = −n(n − 1).

Thus,
Sc(Sn(1) ×Hn

−1) = 0 = Sc(Rn),

which implies that the volumes of the small balls in Sn(1)×Hn
−1 are "very close"

to the volumes of the Euclidean 2n-balls.
Also it is elementary to show that the definition of the scalar curvature via

volumes of balls agrees with the traditional Sc = ∑κij , where the definition via
volumes seem to have an advantage of being geometrically more usable.

But this is an illusion:
there is no single known (are there unknown?)

geometric argument which would make use of this definition.
The immediate reason for this is the infinitesimal nature of the volume com-

parison property: it doesn’t integrate to the corresponding property of balls of
specified, let them be small, radii r ≤ ε > 0. 4

Standard Examples of Manifolds with Positive Scalar Curvatures. Since com-
pact symmetric spaces X have non-negative sectional curvatures κ, they satisfy
Sc(X) ≥ 0, where the equality holds only for flat tori.

Since the inequality κ ≥ 0 is preserved under dividing spaces by isometry
groups, all compact homogeneous spaces G/H carry such metrics, since the bi-
variant metrics on Lie groups have κ ≥ 0.

Since the scalar curvature is additive, fibrations with compact non-flat ho-
mogeneous fiberes carry metrics with Sc > 0. (See §1 in [G(positive) 1996] for a
bit more about it.)

Since convex hypersurfaces in Rn and in general spaces with κ ≥ 0 have their
κ ≥ 0, their scalar curvatures are also non-negative.

2 Useful Formulas.
The logic of most (all?) arguments concerning the global geometry of manifolds
X with scalar curvatures bounded from below is, in general terms, as follows.

Firstly, one uses (or proves) the existence theorems for solutions Φ of certain
partial differential equations, where the existence of these Φ and their properties
depend on global, topological and/or geometric assumptions A on X, which are,
a priori, unrelated to scalar curvature.

4An attractive conjecture to the contrary appears in Volumes of balls in large Riemannian
manifolds by Larry Guth in Annals of Mathematics173(2011), 51-76.
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Secondly, one concocts some algebraic-differential expressions E(Φ, Sc(X)),
where the crucial role is played by certain algebraic formulae and issuing in-
equalities satisfied by E(Φ, Sc(X)) under assumptions A.

Then one arrives at a contradiction, by showing that
if Sc(X) ≥ σ, then the implied properties, e.g. the sign, of E(Φ, Sc(X))

are
opposite to those satisfied under assumption(s) A.

[I] Historically the first Φ in this story were harmonic spinors, that are
solutions s of D(s) = 0, where D is the Dirac operator.5

The existence of harmonic spinors on certain manifolds X follows by the
Atiyah-Singer index theorem of 1963, while the relevant formula involving Sc(X)

is the following algebraic identity between the squared Dirac operator and the, a
priori positive, (coarse) Bochner-Laplace operator ∇∗∇ also denoted ∇2.

Schroedinger-Lichnerowicz-Weitzenboeck-(Bochner)Formula6 Lich-
nerowicz

D
2
= ∇

2
+

1

4
Sc.

(see section 3.4).
Confronting these, André Lichnerowicz [Lich 1963] arrived at examples of
closed 4k-dimensional manifolds X, which admit no metrics with Sc > 0.7

[II] Next Φ to come [SY(structure) 1979] were smooth stable minimal hyper-
surfaces in X for n = dim(X) ≤ 7, the existence of which was proved by Federer
[Fed 1970] relying on the regularity of volume minimizing cones of dimensions
≤ 6 proved by Simons [Sim 1968], while the key algebraic identity employed by
Schoen and Yau in [SY(structure) 1979] was a suitably rewritten Gauss for-
mula, that led, in particular, to

non-existence theorem of metrics with Sc > 0 on the 3-torus.
[III] The third kind of Φ are solutions to the 4-dimensional Seiberg-Witten

equation of 1994, that is the Dirac equation coupled with a certain non-linear
equation and where the relevant formula is essentially the same as in [I].

Using these, LeBrun [LeB 1999] established a non-trivial (as well as sharp)
lower bound on ∫X Sc(X,x)

2dx for Riemannian manifolds X diffeomorphic
to algebraic surfaces of general type.
[IV] The Hamilton Ricci flow Φ = g(t) of Riemannin metrics on a manifold

X, that is defined by a parabolic system of equations, also delivers a geomet-
ric information on the scalar curvature, where the main algebraic identity for

5All you have to know at this stage about D is that D is a certain first order differential
operator on sections of some bundle over X associated with the tangent bundle T (X).

6All natural selfadjoint geometric second order operators differ from the Bochner Laplacians
by zero order terms, i.e. (curvature related) endomorphisms of the corresponding vector
bundles, but it is remarkable that this operator in the case of D2 reduces to multiplication by
a scalar function, which happens to be equal to 1

4
ScX(x). See section 3.2 for more about it.

7Prior to 1963, no such manifold was known and no simply connected manifold that would
admit no metric with positive sectional curvature was known either. But Lichnerowicz’ theo-
rem, saying, in fact, that

if X is spin, then Sc(X) > 0⇒ Â[X] = 0
delivered lots of simply connected manifolds that admitted no metrics with positive scalar
curvatures, see section 3.4.
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Sc(t) = Sc(g(t)) reads

dSc(t)

dt
= ∆g(t)Sc(t) + 2Ricci(t)2

≥ ∆g(t)Sc(t) +
2

3
Sc(t)2,

.which implies by the maximum principle that the minimum of the scalar cur-
vature grows with time as follows:

Scmin(t) ≥
Scmin(0)

1 − 2tScmin(0)
3

.

If X = (X,g) is a closed 3-manifold of constant sectional curvature −1, then,
using the Ricci flow, Pereleman proved that

all Riemannin metrics g on X with Sc(g) ≥ −6 = Sc(g) satisfy
V ol(X,g) ≥ V ol(X,g).8

(The logic of the Ricci flow, at least on the surface of things, is quite different
from how it goes in the above three cases that rely on elliptic equations:

the quantities Φ in the former are kind of residues of certain geometric or topo-
logical complexity of underlying manifoldsX, that is necessary for the very existence
of these Φ, while the Ricci flow, as a road roller, leaves a flat terrain behind itself
as it crawls along erasing all kinds of complexity.)

In what follows in this section, we enlist classical formulae involved with [II]
and indicate their (more or less) immediate applications.

2.1 Variation of the Metrics and Volumes in Families of
Equidistant Hypersurfaces

(2.1. A) Riemannian Variation Formula. Let ht, t ∈ [0, ε], be a family of
Riemannian metric on an (n−1)-dimensional manifold Y and let us incorporate
ht to the metric g = ht + dt2 on Y × [0, ε].

Notice that an arbitrary Riemannin metric on an n-manifold X admits such
a representation in normal geodesic coordinates in a small (normal) neighbour-
hood of any given compact hypersurface Y ⊂X.

The t-derivative of ht is equal to twice the second fundamental form of the
hypersurface Yt = Y × {t} ⊂ Y × [0, ε], denoted and regarded as a quadratic
differential form on Y = Yt, denoted

A∗
t = A

∗
(Yt)

and regarded as a quadratic differential form on Y = Yt.
In writing,

∂νh =
dht
dt

= 2A∗
t ,

or, for brevity,
∂νh = 2A∗,

where
8I recall this from reading Perelman’s papers time ago, but today, I can’t locate this

statement in the sources available on the net, where it is buried in plethora of technical
lemmas on Ricci flow.
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ν is the unit normal field to Y defined as ν = d
dt
.

In fact, if you wish, you can take this formula for the definition of the second
fundamental form of Y n−1 ⊂Xn.

Recall, that the principal values α∗i (y), i = 1, ..., n − 1, of the quadratic
form A∗

t on the tangent space Ty(Y ), that are the values of this form on the
orthonormal vectors τ∗i ∈ Ti(Y ), which diagonalize A∗, are called the principal
curvatures of Y , and that the sum of these is called the mean curvature of Y ,

mean.curv(Y, y) =∑
i

α∗i (y),

where, in fact ,
∑
i

α∗i (y) = trace(A
∗
) =∑

i

A∗
(τi)

for all orthonormal tangent frames τi in Ty(Y ) by the Pythagorean theorem.
Also observe that A∗ changes sign under reversion of the t-direction. Ac-

cordingly the sign of the quadratic form A∗(Y ) depends on the coorientation of
Y in X, where our convention is such that

the boundaries of convex domains have positive definite second fundamental
forms A∗, hence, positive mean curvatures.
(2.1.B) First Variation Formula. This concerns the t-derivatives of the

(n − 1)-volumes of domains Ut = U × {t} ⊂ Yt, which are computed by tracing
the above (I) and which are related to the mean curvatures as follows.

[○U] ∂νvoln−1(U) =
dht
dt
voln−1(Ut) = ∫

Ut
mean.curv(Ut)dyt

where dyt is the volume element in Yt ⊃ Ut.
This can be equivalently expressed with the fields ψν = ψ ⋅ ν for bounded

Borel functions ψ = ψ(y) as follows

[○ψ] ∂ψνvoln−1(Yt) = ∫
Yt
ψ(y)mean.curv(Yt)dyt

Now comes the first formula with the Riemannin curvature in it.

2.2 Gauss’ Theorema Egregium
Let Y ⊂ X be a smooth hypersurface in a Riemannin manifold X. Then the
sectional curvatures of Y and X on a tangent 2-plane τ = τ2 ⊂ Ty(Y ) ⊂ T )y(X)

y ∈ Y , satisfy
κ(Y, τ) = κ(X,τ) + ∧2A∗

(τ ),

where ∧2A∗(τ) stands for the product of the two principal values of the second
fundamental form form A∗ = A∗(Y ) ⊂X restricted to the plane τ ,

∧
2A∗

(τ) = α∗1(τ) ⋅ α
∗
2(τ).

This, with the definition the scalar curvature by the formula Sc = ∑κij ,
implies that

Sc(Y, y) = Sc(X,y) +∑
i≠j
α∗i (y)α

∗
j (y) −∑

i

κν,i,
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where:
● α∗i (y), i = 1, ..., n − 1 are the (principal) values of the second fundamental

form on the diagonalising orthonormal frame of vectors τi in Ty(Y );
● α∗-sum is taken over all ordered pairs (i, j) with j ≠ i;
● κν,i are the sectional curvatures of X on the bivectors (ν, τi) for ν being a

unit (defined up to ±-sign) normal vector to Y ;
● the sum of κν,i is equal to the value of the Ricci curvature of X at ν,

∑
i

κν,i = RicciX(ν, ν).

(Actually, Ricci can be defined as this sum.)
Observe that both sums are independent of coorientation of Y and that in the

case of Y = Sn−1 ⊂ Rn =X this gives the correct value Sc(Sn−1) = (n−1)(n−2).
Also observe that

∑
i≠j
αiαj = (∑

i

αi)

2

−∑
i

α2
i ,

which shows that

Sc(Y ) = Sc(X) + (mean.curv(Y ))
2
− ∣∣A∗

(Y )∣∣
2
−Ricci(ν, ν).

In particular, if Sc(X) ≥ 0 and Y is minimal, that is mean.curv(Y ) = 0,
then

(Sc ≥ −2Ric) Sc(Y ) ≥ −2Ricci(ν, ν).

Example. The scalar curvature of a hypersurface Y ⊂ Rn is expressed in
terms of the mean curvature of Y , the (point-wise) L2-norm of the second
fundamental form of Y as follows.

Sc(Y ) = (mean.curv(Y ))
2
− ∣∣A∗

(Y )∣∣
2

for ∣∣A∗(Y )∣∣2 = ∑i(α
∗
i )

2, while Y ⊂ Sn satisfy

Sc(Y ) = (mean.curv(Y ))
2
−∣∣A∗

(Y )∣∣
2
+(n−1)(n−2) ≥ (n−1)(n−2)−nmax

i
(c∗i )

2.

It follows that minimal hypersurfaces Y in Rn, i.e. these with mean.curv(Y ) =

0, have negative scalar curvatures, while hypersurfaces in the n-spheres with all
principal values ≤

√
n − 2 have Sc(Y ) > 0.

Let A = A(Y ) denote the shape operator that is the symmetric operator on
T (Y ) associated with A∗ via the Riemannin scalar product g restricted from
T (X) to T (Y ),

A∗
(τ, τ) = ⟨A(τ), τ⟩g for all τ ∈ T (Y ).

2.3 Variation of the Curvature of Equidistant Hypersur-
faces

(2.3.A)The Second Main Formula of Riemannian Geometry.9 Let Yt be a family
of hypersurfaces t-equidistant to a given Y = Y0 ⊂X. Then the shape operators
At = A(Yt) satisfy:

9The first main formula is Gauss’ Theorema Egregium.
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∂νA =
dAt
dt

= −A2
(Yt) −Bt,

where Bt is the symmetric operator associated with the quadratic differential
form B∗ on Yt, the values of which on the tangent unit vectors τ ∈ Ty,t(Yt) are
equal to the values of the sectional curvature of g at (the 2-planes spanned by)
the bivectors (τ, ν = d

dt
).

Remark. Taking this formula for the definition of the sectional curvature, or
just systematically using it, delivers fast clean proofs of the basic Riemannian
comparison theorems along with their standard corollaries, by far more efficiently
than what is allowed by the cumbersome language of Jacobi fields lingering on
the pages of most textbooks on Riemannin geometry. 10

Tracing this formula yields
(2.3.B) Hermann Weyl’s Tube Formula.

trace(
dAt
dt

) = −∣∣A∗
∣∣
2
−Riccig (

d

dt
,
d

dt
) ,

or
trace(∂νA) = ∂νtrace(A) = −∣∣A∗

∣∣
2
−Ricci(ν, ν),

where
∣∣A∗

∣∣
2
= ∣∣A∣∣

2
= trace(A2

),

where, observe,

trace(A) = trace(A∗
) =mean.curv =∑

i

α∗i

and where Ricci is the quadratic form on T (X) the value of which on a unit
vector ν ∈ Tx(X) is equal to the trace of the above B∗-form (or of the operator
B) on the normal hyperplane ν⊥ ⊂ Tx(X) (where ν⊥ = Tx(Y ) in the present
case).

Also observe – this follows from the definition of the scalar curvature as ∑κij
– that

Sc(X) = trace(Ricci)

and that the above formula Sc(Y, y) = Sc(X,y) + ∑i≠j α
∗
i α

∗
j − ∑i κν,i can be

rewritten as

Ricci(ν, ν) =
1

2

⎛

⎝
Sc(X) − Sc(Y ) −∑

i≠j
α∗i ⋅ α

∗
j

⎞

⎠
=

=
1

2
(Sc(X) − Sc(Y ) − (mean.curv(Y ))

2
+ ∣∣A∗

∣∣
2)

where, recall, α∗i = α
∗
i (y), y ∈ Y , i = 1, ..., n − 1, are the principal curvatures of

Y ⊂X, where mean.curv(Y ) = ∑i α
∗
i and where ∣∣A∗∣∣2 = ∑i(α

∗
i )

2.

10Thibault Damur pointed out to me that this formula, along with the rest displayed on
the pages in this section, are systematically used by physicists in books and in articles on
relativity. For instance, what we present under heading of "Hermann Weyl’s Tube Formula",
appears in [Darm 1927] with the reference to Darboux’ textbook of 1897.
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2.4 Umbilic Hypersurfaces and Warped Product Metrics
A hypersurface Y ⊂ X is called umbilic if all principal curvatures of Y are
mutually equal at all points in Y .

For instance, spheres in the standard (i.e. complete simply connected) spaces
with constant curvatures (spheres Snκ>0, Euclidean spaces Rn and hyperbolic
spaces Hn

κ<0) are umbilic.
In fact these are special case of the following class of spaces .
Warped Products. Let ϕ = ϕ(y) > 0 be a smooth positive function on a

Riemannian (n-1)-manifold Y = (Y,h), and let g = ht + dt2 = ϕ2h + dt2 be the
corresponding metric on X = Y × [0, ε].

Then the hypersurfaces Yt = Y × {t} ⊂ X are umbilic with the principal
curvatures of Yt equal to α∗i (t) =

ϕ′

ϕ
, i = 1, ..., n − 1 for

A∗
t =

ϕ′

ϕ
ht for ϕ′ = dϕ

dt
and At being multiplication by ϕ′

ϕ
.

The Weyl formula reads in this case as follows.

(n − 1)(
ϕ′

ϕ
)

′

= −(n − 1)2
(
ϕ′

ϕ
)

2

−
1

2

⎛

⎝
Sc(g) − Sc(ht) − (n − 1)(n − 2)(

ϕ′

ϕ
)

2
⎞

⎠
.

Therefore,

Sc(g) =
1

ϕ2
Sc(h) − 2(n − 1)(

ϕ′

ϕ
)

′

− n(n − 1)(
ϕ′

ϕ
)

2

=

(⋆) =
1

ϕ2
Sc(h) − 2(n − 1)

ϕ′′

ϕ
− (n − 1)(n − 2)(

ϕ′

ϕ
)

2

,

where, recall, n = dim(X) = dim(Y ) + 1 and the mean curvature of Yt is

mean.curv(Yt ⊂X) = (n − 1)
ϕ′(t)

ϕ(t)
.

Examples. (a) If Y = (Y,h) = Sn−1 is the unit sphere, then

Scg =
(n − 1)(n − 2)

ϕ2
− 2(n − 1)

ϕ′′

ϕ
− (n − 1)(n − 2)(

ϕ′

ϕ
)

2

,

which for ϕ = t2 makes the expected Sc(g) = 0, since g = dt2 + t2h, t ≥ 0, is the
Euclidean metric in the polar coordinates.

If g = dt2 + sin t2h, −π/2 ≤ t ≤ π/2, then Sc(g) = n(n − 1) where this g is the
spherical metric on Sn.

(b) If h is the (flat) Euclidean metric on Rn−1 and ϕ = exp t, then

Sc(g) = −n(n − 1) = Sc(Hn
−1).

What is slightly less obvious, is that if

ϕ(t) = exp∫
t

−π/n
− tan

nt

2
dt, −

π

n
< t <

π

n
,
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then the scalar curvature of the metric ϕ2h + dt2, where h is flat, is constant
positive, namely Sc(g) = n(n − 1) = Sc(Sn), by elementary calculation11

Higher Warped Products. Let Y and S be Riemannian manifolds with the
metrics denoted dy2 (which now play the role of the above dt2) and ds2 (instead
of h), let ϕ > 0 be a smooth function on Y , and let

g = ϕ2
(y)ds2

+ dy2

be the corresponding warped metric on Y × S,
Then

(⋆⋆)

Sc(g)(y, s) = Sc(Y )(y) +
1

ϕ(y)2
Sc(S)(s) −

m(m − 1)

ϕ2(y)
∣∣∇ϕ(y)∣∣2 −

2m

ϕ(y)
∆ϕ(y),

where m = dim(S) and ∆ = ∑∇i,i is the Laplace operator on Y .
To prove this, apply the above (⋆) to l × S for naturally parametrised

geodesics l ⊂ Y passing trough y and then average over the space of these l,
that is the unit tangent sphere of Y at y.

The most relevant example of (⋆⋆) is where S is the real line R or the circle
S1 also denoted T1 and where it reduces to

(⋆⋆)1 Sc(g)(y, s) = Sc(Y )(y) −
2

ϕ
∆ϕ(y).

(The roles of Y and S = R and notationally reversed here with respect to
those in (⋆).)

The basic feature of the metrics ϕ2(y)ds2 + dy2 on Y × R is that they are
R-invariant, where the quotients (Y × R)/Z = Y × T1 carry the corresponding
T1-invariant metrics, while the R-quotients are isometric to Y .

Besides R-invariance, a characteristic feature of warped product metrics is
integrability of the tangent hyperplane field normal to the R-orbits, where Y ×

{0} ⊂ Y ×R, being normal to these orbits, serves as an integral variety for this
field.

Also notice that Y = Y × {0} ⊂ Y ×R is totally geodesic with respect to the
metric ϕ2(y)ds2 + dy2, while the (R-invariant) curvature (vector field) of the
R-orbits is equal to the gradient field ∇ϕ extended from Y to Y ×R.

In what follows, we emphasize R-invariance and interchangeably speak of
R-invariant metrics on Y ×R and metrics warped with factors ϕ2 over Y .

2.5 Second Variation Formula
The Weyl formula also yields the following formula for the second derivative of
the (n − 1)-volume of a cooriented hypersurface Y ⊂ X under a normal defor-
mation of Y in X, where the scalar curvature of X plays an essential role.

The deformations we have in mind are by vector fields directed by geodesic
normal to Y , where in the simplest case the norm of his field equals one.

In this case we have an equidistant motion Y ↦ Yt as earlier and the second
derivative of voln−1(Yt), denoted here V ol = V olt, is expressed in terms of of

11See §12 in [GL 1983].
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the shape operator At = A(Yt) of Yt and the Ricci curvature of X, where, recall
trace(At) =mean.curv(Yt) and

∂νV ol = ∫
Y
mean.curv(Y )dy

by the first variation formula.
Then, by Leibniz’ rule,

∂2
νV ol = ∂ν ∫

Y
trace(A(y))dy = ∫

Y
trace2

(A(y))dy + ∫
Y
trace(∂νA(y))dy,

and where, by Weyl’s formula,

trace(∂νA) = −trace(A2
) −Ricci(ν, ν)

for the normal unit field ν.
Thus,

∂2
νV ol = ∫

Y
(mean.curv)2

− trace(A2
) −Ricci(ν, ν),

which, combining this with the above expression

Ricci(ν) =
1

2
(Sc(X) − Sc(Y ) − (mean.curv(Y ))

2
+ ∣∣A∗

∣∣
2) ,

shows that

∂2
νV ol = ∫

1

2
(Sc(Y ) − Sc(X) +mean.curv2

− ∣∣A∗
∣∣
2) .

In particular, if Sc(X) ≥ 0 and Y is minimal, then,

(∫ Sc ≥ 2∂2V) ∫
Y
Sc(Y, y)dy ≥ 2∂2

ν

(compare with the (Sc ≥ −2Ric) in 2.2).
Warning. Unless Y is minimal and despite the notation ∂2

ν , this derivative
depends on how the normal filed on Y ⊂ X is extended to a vector filed on (a
neighbourhood of Y in) X.

Illuminative Exercise. Check up this formula for concentric spheres of radii
t in the spaces with constant sectional curvatures that are Sn, Rn and Hn.

Now, let us allow a non-constant geodesic field normal to Y , call it ψν, where
ψ(y) is a smooth function on Y and write down the full second variation formula
as follows:

∂2
ψνvoln−1(Y ) = ∫

Y
∣∣dψ(y)∣∣2dy +R(y)ψ2

(y)dy

for

[○○] R(y) =
1

2
(Sc(Y, y) − Sc(X,y) +M2

(y) − ∣∣A∗
(Y )∣∣

2) ,

where M(y) stands for the mean curvature of Y at y ∈ Y and ∣∣A∗(Y )∣∣2 =

∑i(α
∗)2, i = 1, ..., n − 1.

Notice, that the "new" term ∫Y ∣∣dψ(y)∣∣2dy depends only on the normal field
itself, while the R-term depends on the extension of ψν to X, unless

14



Y is minimal, where [○○] reduces to

[∗∗] ∂2
ψνvoln−1(Y ) = ∫

Y
∣∣dψ∣∣2 +

1

2
(Sc(Y ) − Sc(X) − ∣∣A∗

∣∣
2)ψ2.

Furthermore, if Y is volume minimizing in its neighbourhood, then ∂2
ψνvoln−1(Y ) ≥

0; therefore,

[⋆⋆] ∫
Y
(∣∣dψ∣∣2 +

1

2
(Sc(Y ))ψ2

≥
1

2
∫
Y
(Sc(X,y) + ∣∣A∗

(Y )∣∣
2
)ψ2dy

for all non-zero functions ψ = ψ(y).
Then, if we recall that

∫
Y
∣∣dψ∣∣2dy = ∫

Y
⟨−∆ψ,ψ⟩dy,

we will see that [⋆⋆] says that

the operator ψ ↦ −∆ψ+ 1
2
Sc(Y )ψ is greater than12 ψ ↦ 1

2
(Sc(X,y)+∣∣A∗(Y )∣∣2)ψ.

Consequently,
if Sc(X) > 0, then the operator −∆ + 1

2
Sc(Y ) on Y is positive.

Justification of the ∣∣dψ∣∣2 Term. Let X = Y ×R with the product metric and
let Y = Y0 = Y × {0} and Yεψ ⊂X be the graph of the function εψ on Y . Then

voln−1(Yεψ) = ∫
Y

√
1 + ε2∣∣dψ∣∣2dy = voln−1(Y ) +

1

2
∫
Y
ε2

∣∣dψ∣∣2 + o(ε2
)

by the Pythagorean theorem
and

d2voln−1(Yεψ)

d2ε
= ∣∣dψ∣∣2 + o(1).

by the binomial formula.
This proves [○○] for product manifolds and the general case follows by

linearity/naturality/functoriality of the formula [○○].
Naturality Problem. All "true formulas" in the Riemannin geometry

should be derived with minimal, if any, amount of calculation – only on the
basis of their "naturality" and/or of their validity in simple examples, where
these formulas are obvious.

Unfortunately, this "naturality principle" is absent from the textbooks on
differential geometry, but, I guess, it may be found in some algebraic articles
(books?).

Exercise. Derive the second main formula (above (IV) by pure thought from
its manifestations in the examples in (VI).13

12A ≥ B for selfadjoint operators signifies that A −B is positive semidefinite.
13I haven’t myself solved this exercise.
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2.6 Conformal Modification of Scalar Curvature.
Let (X0, g0) be a compact Riemannian manifold of dimension n ≥ 3 and let ϕ = ϕ(x)
be a smooth positive function on X.

Then, by a straightforward calculation,14

G# Sc(ϕ2g0) = γ
−1
n ϕ−

n+2
2 L(ϕ

n−2
2 ),

where L is the conformal Laplace operator on (X0, g0)

L(f(x)) = −∆f(x) + γnSc(g0, x)f(x)

for the ordinary Laplace (Beltrami) ∆f = ∆g0f = ∑i ∂iif and γn = n−2
4(n−1) .

Thus, we conclude to the following.
Kazdan-Warner Conformal Change Theorem [KW 1975]. Let X = (X,g0)

be a closed Riemannin manifold, such the the conformal Laplace operator L is
positive.

Then X admits a Riemannin metric g (conformal to g0) for which Sc(g) > 0.
Proof. Since L is positive, its first eigenfunction, say f(x) is positive and

since L(f) = λf, λ > 0,

Sc(f
4
n−2 g0) = γ

−1
n L(f)f−

n+2
n−2 = γ−1

n f
2n
n−2 > 0.

Example: the Schwarzschild metric. If (X0, g0) is the Euclidean 3-space, and
f = f(x) is positive function, then

the sign of Sc(f4g0) is equal to that of −∆f .

In particular, since the function 1
r
= (x2

1 + x
2
2 + x

2
3)
− 1

2 , is harmonic, the

Schwarzschild metric gSw = (1 + 1
r
)

4
g0 has zero scalar curvature.

Question. What is the geometric/topological significance of positivity of the
operator −∆X + γSc(X) for particular numbers γ, e.g, for those smaller than the
above γn = n−2

4(n−1)?
For instance, do, for a given γ < γn, all n-manifolds X admit Riemannin metrics

g with positive operators −∆g + γScg?
(It is easy to see that all closed n-manifolds, n ≥ 2, admit Riemannin metrics

g with positive operators −∆g + γScg for all γ < 1
n10n .)

2.7 Schoen-Yau’s Proofs of [Sc ≯ 0]-Theorems via Minimal
Surfaces and Hypersurfaces

Let X be a three dimensional Riemannian manifold with Sc(X) > 0 and Y ⊂X be
a cooriented surface with minimal area in its homology class.

Then the inequality (∫ Sc ≥ 2∂2V ) from section 2.5, which says in the present
case that

∫
Y
Sc(Y, y)dy > 2∂2

νarea(Y ),

implies that
Y must be a topological sphere.

14There must be a better argument.
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In fact, minimality of Y makes ∂2
νarea(Y ) ≥ 0, hence ∫Y Sc(Y, y)dy > 0, and

the sphericity of Y follows by the Gauss-Bonnet theorem.
And since all integer homology classes in closed orientable Riemannin 3-

manifolds admit area minimizing representatives by the geometric measure the-
ory developed by Federer, Fleming and Almgren, we arrive at the following
conclusion.

☀3 Schoen-Yau 3d-Theorem. All integer 2D homology classes in closed
Riemannian 3-manifolds with Sc > 0 are spherical.

For instance, the 3-torus admits no metric with Sc > 0.
The above argument appears in Schoen-Yau’s 15-page paper [SY(incompressible)

1979], most of which is occupied by an independent proof of the existence and
regularity of minimal Y .

In fact, the existence of minimal surfaces and their regularity needed for
the above argument has been known since late (early?) 60s15 but, what was,
probably, missing prior to the Schoen-Yau paper was the innocuously looking
corollary of Gauss’ formula in 2.2,

Sc(Y ) = Sc(X) + (mean.curv(Y ))
2
− ∣∣A∗

(Y )∣∣
2
−Ricci(ν, ν)

and the issuing inequality

Sc(Y ) > −2Ricci(ν, ν)

for minimal Y in manifolds X with Sc(X) > 0.
For example, Burago and Toponogov, come close to the above argument in

[BT 1973], where, they bound from below the injectivity radius of Riemannian
3-manifolds X with sect.curv(X) ≤ 1 and Ricci(X) ≥ ρ > 0 by

inj.rad(X) ≥ 6e−
6
ρ ,

where this is done by carefully analysing minimal surfaces Y ⊂ X bounded by,
a priori very short, closed geodesics in X, and where an essential step in the
proof is the lower bound on the first eigenvalue of Y by

√
Ricci(X).

Exercises. Let X be homeomorphic to Y ×S1, where Y is a closed orientable
surface with the Euler number χ.

(a) Let χ > 0, Sc(X) ≥ 2 and show that there exists a surface Yo ⊂ X
homologous to Y × {s0}, such that area(Yo) ≤ 4π.

(b) Let χ < 0, Sc(X) ≥ −2 and show that all surfaces Y∗ ∈ X homologous to
Y × {s0} have area(Y∗) ≥ −2πχ.

(c) Show that (a) remains valid for complete manifolds X homeomorphic to
Y ×R.16

Schoen-Yau Codimension 1 Descent Theorem. [SY(structure) 1979] . Let X
be a compact orientable n-manifold with Sc > 0.

If n ≤ 7, then all integer homology classes h ∈ Hn−1(X) are representable
by compact oriented (n − 1)-submanifolds Y in X, which admit a metrics with
Sc > 0.

15Regularity of volume minimizing hypersurfaces in manifolds X of dimension n ≤ 7, as we
mentioned earlier, was proved by Herbert Federer in [Fed 1970], by reducing the general case
of the problem to that of minimal cones resolved by Jim Simons in [Sim 1968].

16I haven’t solved this exercise.
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Proof. Let Y be a volume minimizing hypersurface representing h, the ex-
istence and regularity of which is guaranteed by [Fed 1970] and recall that by
[⋆⋆] in 2.5 the operator −∆+ 1

2
Sc(Y ) is positive. Hence, the conformal Laplace

operator −∆ + γnSc(Y ) is also positive for γn = n−2
4n−1

≤ 1
2
and the proof follows

by Kazdan-Warner conformal change theorem.
☀nCorollary. If a closed orientable n-manifold X admits a map to the torus

Tn with non-zero degree, then X admits no metric with Sc > 0.

Indeed, if a closed submanifold Y n−1 is non-homologous to zero in this X
then it (obviously) admits a map to Tn−1 with non-zero degree. Thus, the
above allows an inductive reduction of the problem to the case of n = 2, where
the Gauss-Bonnet theorem applies.

Remarks. (a) The original argument by Schoen and Yau yields the following
stronger topological constraints on X.

Call a closed orientable n-manifold Schoen-Yau-Schick if it admits a smooth
map f ∶ X → Tn−2, such that the homology class of the pullback of a generic
point,

h = [f−1
(t)] ∈H2(X)

is non-spherical, i.e. it is not in the image of the Hurewicz homomorphism
π2(X)→H2(X).

What the above argument actually shows, is that
☀☀n SYS-manifolds of dimensions n ≤ 7 admit no metrics with Sc > 0.
(b) Exercise. Construct examples of SYS manifolds of dimension n ≥ 4,

where all maps X → Tn have zero degrees.
Hint: apply surgery to Tn.
(c) The limitation n ≤ 7 of the above argument is due a presence of singu-

larities of minimal subvarieties in X for dim(X) ≥ 8.
If n = 8, these singularities were proven to be unstable, (see [Smale 1993]

and section 5.2), which improve n ≤ 7 to n ≤ 8 in ☀☀n

More recently, the dimension restriction was fully removed in [SY(singularities)
2017] and in [Loh(smoothing) 2018]; the arguments in both papers are difficult
and I have not mastered them.

On the other hand, there are several short and technically simple (modulo
standard index theorems) proofs of☀n (but not of☀☀n) for spin 17 manifolds
X, e.g. for X homeomorphic to Tn. (see section 3.2).

Also notice, that besides being short, the Dirac operator arguments deliver in
some cases obstructions to Sc > 0 that lie fully beyond the range of the minimal
surface techniques. For instance (see [G (positive) 1996] and [G(inequalities),
2018])
⊗∧ω Quasisymplectic Non-Existence Theorem. If a closed orientable manifold

of dimension dim(X) = 2k carries a closed 2-form ω (e.g. a symplectic one),
such that ∫X ω

k ≠ 0, and if the universal cover X̃ is contractible,18 then X
admits no metric with Sc > 0.

17A smooth connected n-manifolds X is spin if the frame bundle over X admits a double
cover extending the natural double cover of a fiber, where such a fiber is equal to the linear
group, (each of the two connected components of) which admits a a unique non-trivial double
cover G̃L(n)→ GL(n). For instance, all manifolds X with H2(X;Z2) = 0 are spin.

18It’s enough to have X̃ spin and the lift ω̃ to X̃ exact.
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This applies, for instance, to even dimensional tori, to aspherical 4-manifolds
with H2(X,R) ≠ 0 and to products of such manifolds.

3 Topics, Results, Problems
We present in this section a (very) brief overview of what is known and what
is unknown about scalar curvature, where we illustrate general results by their
simplest instances. The general formulations and the proofs will appear in the
sections to come.

3.1 C0-Closures of Spaces of Metrics g with Sc(g) ≷ σ
LetX be a smooth Riemannian manifold, letG = G2(X) the space of C2-smooth
Riemannin metrics g on X and let GSc≥σ ⊂ G and GSc≤σ ⊂ G, −∞ < σ <∞, be
the subsets of metrics g with Sc(g) ≥ σ and with Sc(g) ≤ σ respectively.

Then:
A: C0-Closure Theorem. The subset GSc≥σ ⊂ G is closed in G with respect

to C0-topology:
uniform limits g = lim gi of metric gi with Sc(gi) ≥ σ have Sc ≥ σ, provided

these g are C2-smooth in order to have their scalar curvature defined.
B: C0-Density Theorem. The subset GSc≤σ ⊂ G is dense in G with respect

to C0-topology.
Moreover, all g ∈ G admit fine (which is stronger than uniform for non-

compact X) approximations by metrics with scalar curvatures ≤ σ.
There are two proofs of A. The first one in [G(billiards) 2014] depends on

non-existence of metrics with Sc > 0 on tori and the second one in [Bamler 2016]
uses Ricci flow.

In fact, the proof in [G(billiards) 2014] delivers the following geometric in-
terpretation of Sc(g) ≥ σ, which for σ = 0 reads as follows.

∎-Criterion. A Riemannian n-manifold (not assumed compact or complete)
X has

Sc(X,x0) < 0 at some point x0 ∈X,

if and only if there exists is a domain ∎n ⊂X diffeomorphic to the cube [−1,1]n,
such that all codimension one faces Fi ⊂ ∎n have positive mean curvatures and
all dihedral angles between (the tangent spaces of) these faces along the "edges"
of ∎n, that are codimension two faces, satisfy

∠ij =∠(Fi, Fj) <
π

2
.

(This, when applied to manifolds X multiplied by surfaces with scalar curvatures
−σ, yields a geometric criterion for Sc(X) ≥ σ ≠ 0.)

Exercise. Prove ∎-criterion. the for n = 2.
What is essential here, is that, unlike the "small volume of the ball"-definition

from section 1, the characterisation of Sc(X) ≥ 0 by non-existence of cubes
∎n ⊂ X with mean.curv(Fi) > 0 and ∠ij < π

2
doesn’t require these cubes
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to be small, which makes this criterion stable under C0-limits of metrics (see
[G(billiards) 2014]).

The proof of B is achieved by a (more or less) direct and elaborate geometric
construction in [Lohkamp 1994], where it is, in fact, shown that the metics with
Ricci < 0 are C0-dense as well.

Observe that if contrary to A the space of metrics with Sc ≥ 0 were dense,
there would be no hope for a non-trivial geometry of such metrics, whileA leads
us to the following.

C0-Limit Problem. Study continuous Riemannian metrics which are C0-limits
of smooth gi, such that lim infi→∞ Sc(gi) ≥ 0.

Notice that the experience with a similar problem concerning C0-limits of
symplectic diffeomorphisms offers little expectations on geometry of such limits,
but stability (see below) of basic geometric inequalities with Sc ≥ 0 (we shall
meet these later on) points toward a more optimistic solution.

Remark. Non-existence of cubes with
Sc(∎n) ≥ 0, mean.curv(Fi) > 0 and ∠ij <

π
2
,

which is derived in [G(billiards) 2014] from non-existence of metric with Sc > 0

on tori, also follows from the×▲i -Inequality in section 3.16, which is a corollary
of the Goette-Semmelmann theorem applied to 1-Lipschitz and area contracting
maps from manifolds X with Sc(X,x) ≥ σ(x) to convex hypersurfaces in the
Euclidean space Rn+1 (see [X→b] in sections 3.5 and 4).

This suggests a more direct application of this theorem, similarly to how
Llarull’s inequality for area contracting maps X → Sn (see sections 3.5 and 4)
was used in [G(positive 1996)] for the proof of the following special case of A:

Riemannian metrics with constant sectional curvatures κ on n-dimensional man-
ifolds can’t be C0-approximated by metrics with Sc ≥ n(n − 1)κ + ε0, for ε0 > 0.

3.2 TnSc≯0: No Metrics with Sc > 0 on Tori

We have already explained (see section 2.7) Schoen-Yau’s proof from [SY(structure)
1979] by an inductive descent argument with minimal hypersurfaces of the fact
that

The tori Tn, n ≤ 7, admit no metrics with Sc > 0,
Schoen and Yau also show that
Riemannin metrics on these tori with Sc ≥ 0 are Riemannin flat: the univer-

sal coverings of these tori are isometric to Rn. (We shall explain this in section
5.7)

And as we mentioned earlier, the condition n ≥ 7 was removed in the difficult
papers [SY(singularities) 2017] and [Loh(smoothing) 2018].

An alternative proof of TnSc≯0, albeit very short and simple but lacking the ge-
ometric transparency of the Schoen-Yau argument, was given in [GL(fundamental
group) 1980] for all n with a use of twisted Dirac operators19 D on Tn.

19The "untwisted" Dirac operator acts on the spin bundle S(X) and a "twisted" one operates
on the tensor product of S(X) with some vector bundle L over X, see section 4.1.
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At the present moment there are (at least) five such proofs which rely on
different versions of the Atiyah-Singer index theorem which guarantees the ex-
istence of non-zero harmonic representatives in various spaces of sections of
twisted spinors on Tn (or on Rn which cover Tn) with arbitrary metrics .

Then non-existence of a metric on Tn with Sc > 0 (eventually) follows from
Schroedinger-Lichnerowicz-Weitzenboeck algebraic identity

D
2
= ∇

2
+

1

4
Sc

for a positive (coarse Bochner Laplace) operator ∇2,
that implies that no non-zero harmonic spinor exists if Sc > 0. (see §4 for

more about it).
∇2 Versus ∣∣∇∣∣2. Here and everywhere in our lectures, ∇2 is an abbreviation

for ∇∗∇ = −∑i∇i∇i, where ∇ is the covariant differentiation operator in a
Euclidean vector bundle L→X with an orthogonal connection, that is

∇ ∶ C∞
(L)→ C∞

(L⊗ T ∗(X)),

where the cotangent bundle T ∗(X)) is customary interchanged for the tangent
one via the Riemannin metric on X and where positivity of ∇2 is seen via the
identity ∫X⟨∇2ψ,ψ⟩dx = ∫X ∣∣∇ψ∣∣2dx for the sections ψ of L.

Notice that this identity, unlike D2 = ∇2 + 1
4
Sc, is it by no means algebraic:

⟨∇2ψ1, ψ2⟩ is not equal to ∣∣∇ψ∣∣2 pointwise.
In fact, it follows by the analytic Green’s-Stokes’ formula applied to the

following algebraic one:

⟨∇
∗
∇ψ1, ψ2⟩ − ⟨∇ψ1,∇ψ2⟩ = −div⟨∇ψ1, ψ2⟩T (X)

(here T ∗(X) is interchanged for T (X)), where div ∶ C∞(T (X))→ C∞(X) is the
divergence operator and where ⟨..., ...⟩T (X) is the obvious T (X)-valued coupling
(L ⊗ T (X)) ⊗ L = T (X) ⊗ (L ⊗ L) → T (X) associated with the scalar product
in L.

From Even to Odd. The index theorem involved in the above argument
delivers non-zero twisted harmonic spinors on manifolds X homeomorphic to
Tn only for even n, where the case of n odd follows by taking X × T2k+1 (e.g.
with k = 0) or X ×X instead of X.

Albeit logically simple, not to say naive, these passages X ; X ×T2k+1 and
X ; X ×X, if you stop to think of it, strike you as mathematically nontrivial
and conceptually unsatisfactory.

To appreciate the depth of mathematical structures behind these, think of
(twisted) Dirac operators on X ×Tm for m→∞, even better for m =∞ and/or
of such operators on X × ... ×X

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m

for large (infinite?) m.

And this is unsatisfactory, since it artificially and non-canonically shifts a
K1-theoretic situation to K0, where this kind of "shift" in more complicated
cases, besides getting more elaborate, may lead to weakening of the final results.

Toric Stability Problem for [Sc ≥ −ε]. Let a metric g on the torus have
Sc(g) > −ε. Find additional conditions on g that would make it close to a flat
metric.

The simplest expected result of this kind would be as follows:
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if a sequence of smooth metrics gi with Sc(gi) ≥ −εi →
i→∞

0 uniformly converges

to a continuous metric g, then this g is Riemannian flat.
(Compare with the C0-Limit Problem stated in the previous section and see

section 5.7 for a possible approach to the proof.)

3.3 Asymptotically Flat Spaces with Sc ≥ 0

It was conjectured by Geroch for n = 3 [Ger 1975] that
The Euclidean metric on Rn admits no compactly supported perturbations with

increase of the scalar curvature. Moreover,
If a metric g on Rn with Sc(g ≥ 0 is equal to gEucl outside a compact subset

in Rn, then (Rn, g) is isometric to (Rn, gEucl).
This, of course, trivially follows from the above TnSc≯0, since compactly sup-

ported perturbations of the flat metric on Rn yields similar perturbations of flat
metrics on tori.

In fact, a more general version of this was originally proven by Schoen and
Yau in [SY(positive mass) 1979] for a class of metrics g on 3-manifolds asymp-
totic to gEu under the name of positive mass/energy theorem (see sections 3.13)
with a use of minimal surfaces.

Then Witten in [Witten 1981] (also see [Bartnik 1986]) suggested a proof
with a use of a perturbation argument in the space of invariant (non-twisted)
harmonic spinors on Rn and Min-Oo [Min(hyperbolic) 1989] adapted Witten’s
argument to the hyperbolic spaces Hn (see section 3.10).

Later, Lohkamp [Loh(hammocks) 1999] found a (relatively) simple reduc-
tion of the general, and technically more challenging, case of the positive mass
theorem to that of compactly supported perturbations, that in turn, (trivially)
reduces to TnSc≯0.

Also notice that the doubling property formean convex manifolds with bound-
aries (see [GL(fundamental group) 1980]) allows a reduction of the Geroch Con-
jecture and of similar more general results to the Goette-Semmelmann theorem
[GS 2002] concerning extremality/rigidity of the metrics g with positive curva-
ture operators (see [X→b] in section 3.5).

Problems. What are other (homogeneous?) Riemannian spaces that admit no
(somehow) localised deformations with increase of the scalar curvatures?

What are most general asymptotic (or boundary) conditions on such deforma-
tions that would allow their localization?

Here is a definite result along these lines due to Michael Eichmair, Pengzi
Miao and Xiadong Wang, [ EMW 2009] generalizing an earlier result by Yuguang
Shi and Luen-Fai Tam[ ST 2002]

STEMW Rigidity Theorem. Let X ⊂ Rn be a star convex domain, e.g. a
convex one, such as the unit ball, for example, and let X be a compact Riemannin
manifold the boundary Y = ∂X of which is isometric to the boundary Y = ∂X.

If Sc(X) ≥ 0 and if the total scalar curvature of Y is bounded from below by
that of Y ,

∫
Y
mean.curv(Y, y)dy ≥ ∫

Y
mean.curv(Y , y)dy,

then X is isometric to X.

22



Remark. Originally, this was proven for n ≤ 7 but this restriction can be now
removed in view of [SY(singularities) 2017] and/or of [Loh(smoothing) 2018].

Conjecture. Let X be a compact Riemannin manifold with Sc ≥ σ. Then the
integral mean curvature of the boundary Y = ∂X is bounded by

∫
Y
mean.curv(Y, y)dy ≤ const,

where this const depends on σ and on the (intrinsic) Riemannian metric on Y
induced from that of X ⊃ Y .

(See section 3.6 for description of some results in this direction.)

3.4 Simply Connected Manifolds with and without Sc > 0

As we already stated earlier, according to Lichnerowicz [Lich 1963], the Atiyah-
Singer index theorem for the Dirac operator D and the identity D2 = ∇2 + 1

4
Sc,

imply that
there are smooth closed simply connected manifolds X of all dimensions n = 4k,

k = 1,2, ..., that admit no metrics with Sc > 0.
The simplest example of these for n = 4 is the Kummer surface XKu given

by the equation
z4

1 + z
4
2 + z

4
3 + z

4
4 = 0

in the complex projective space CP 3.
Also by Lichnerowicz’ theorem, other complex surfaces of even degrees d ≥ 4

as well as their Cartesian products, e.g XKu × ... ×XKu admit no metrics with
Sc > 0.

A decade later, using a more general index theorem by Atiyah and Singer,
Hitchin [Hit 1974] pointed out that

there exist manifolds Σ homeomorphic (but no diffeomorphic!) to the spheres
Sn, for all n = 8k + 1,8k + 2, k = 1,2,3..., which admit no metrics with Sc > 0.

Notice that, by Yau’s solution of the Calabi conjecture, the Kummer surface
admits a metric with Sc = 0, even with Ricci = 0, but, probably, (I guess this
must be known) there is no metrics with Sc = 0 on these Σ.

The actual Lichnerowicz-Hitchin theorem says that if a certain topological
invariant α̂(X) doesn’t vanish, then X admits no metric with Sc > 0, since, by
the Atiyah and Singer index formulae,20

α̂(X) ≠ 0⇒ Ind(D∣X) ≠ 0⇒ ∃ harmonic spinor ≠ 0 on X.

Conversely,
if X is a simply connected manifold of dimension n ≠ 4, and if α̂(X) = 0 then

it admits a metric with positive scalar curvature [GL(classification) 1980], [Stolz
1992].

Thus, for instance
20The Dirac operator is defined only on spin manifolds and to avoid entering into this at

the present moment we postulate α̂(X) = 0 for non-spin manifolds X.
Also notice that in the Lichnerowicz’ case, where n = dim(X) = 4k, this α̂(X) is a certain

linear combination of the Pontryagin numbers of X, called Â-genus and denoted Â[X].
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all simply connected manifolds of dimension n ≠ 0,1,2,4 mod 8 admit met-
rics with Sc > 0, since α̂(X) = 0 is known to vanish for these n.21

A Few Words on n = 4 and on π1 ≠ 0. (See sections 3.11, 3.14) more about it.)
If n = 4 then, besides vanishing of the α̂-invariant (which is equal to a non-zero
multiple of first Pontryagin number for n = 4), positivity of the scalar curvature
also implies the vanishing of the Seiberg-Witten invariants (See lecture notes by
Dietmar Salamon, [Sal 1999]; also we say more about it in section 3.14).

If X is a closed spin manifold of dimension n ≥ 5 with the fundamental group
π1(X) = Π , then

the existence/non-existence of a metric g on X with Sc(g) > 0 is an invariant
of the spin bordism class [X]sp ∈ bordsp(BΠ) in the classifying space BΠ,
where, recall, that (by definition of "classifying") the universal covering of BΠ
is contractible and π1(BΠ) = Π. (See lecture notes [Stolz(survey) 2001].)

There is an avalanche of papers, most of them coming under the heading of
"Novikov Conjecture", with various criteria for the class [X]sp, and/or for the
corresponding homology class [X] ∈ Hn (BΠ) (not) to admit g with Sc(g) > 0
on manifolds in this class, where these criteria usually (always?) linked to
generalized index theorems for twisted Dirac operators on X with several levels
of sophistication in arranging this "twisting". Yet, despite a significant progress
in this direction, the following remains unsettled for n ≥ 4.

(Naive?) Conjecture. No closed aspherical22 manifold X admits a metric with
Sc > 0.

Moreover,
if a closed oriented n-manifold X admits a continuous map to an aspherical

space, that is BΠ for some group Π, such that the image of the rational fundamental
homology class of [X]Q in the rational homology23 homology (BΠ;Q) doesn’t
vanish, then X admits no metic g with Sc(g) > 0.

(We shall briefly describe the status of this conjecture in section 3.11.)

3.5 1-Lipschitz and Area Contracting Maps, Hyperspher-
ical Radii RadSn and Rad∧

2

Sn, Extremality, Rigidity.
The inequality Sc(X) ≥ σ > 0, as it becomes a positive curvature condition,
imposes an upper bound on the size of X, where an instance of this can be
expressed in terms of the hyperspherical radius RadSn(X), defined for closed
Riemannian n-manifolds X as

the supremum of the radii R > 0 of n-spheres, such that X admits a non-
contractible 1-Lipschitz, i.e. distance non-increasing, map f ∶X → Sn(R).

More generally, if X is an open manifold, this definition still make sense if it
exclusively applies maps f ∶X → Sn which are locally constant outside compact

21As far as the exotic spheres Σ are concerned, these Σ admit metrics with Sc > 0 if and
only if α̂(Σ) = 0, i.e. if Σ bound spin manifolds, which directly follows by the codimension 3
surgery of manifolds with Sc > 0 described in [SY(structure) 1979] and in [GL(classification)
1980]. Moreover, many of these Σ, e.g. all 7-dimensional ones, admits metrics with non-
negative sectional curvatures but the full extent of "curvature positivity" for exotic spheres
remains problematic (see [JW(exotic) 2008] and references therein.

22Aspherical means that the universal covering is contractible.
23Bernhard Hanke pointed out to me that the role of homology with finite coefficients

in prohibiting Sc > 0 , especially for finite groups Π, remains obscure even on the level of
conjectures.
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subsets in X, i.e. constant at all ends of X. Similarly, if X allowed a boundary,
then f should be constant on all components of this boundary.

Notice that a (locally constant at infinity if X is open) map f from an
orientable n-manifold X to the sphere Sn is contractible (in the space of locally
constant at infinity maps in the open case) if and only if f has zero degree.

Examples. Let X be a complete simply connected manifold of dimension n
with non-positive sectional curvature. Then

●B the balls B(R) ⊂X of radii R satisfy

RadSn(B(R)) =
R

π
;

●∂ the spheres ∂B(R) endowed with the induced Riemannian metric satisfy

RadSn−1(∂B(R)) ≥ R;

●−1 if the sectional curvature of X satisfy κ(X) ≤ −1, then

RadSn−1(∂B(R)) ≥
eR − 1

2π
.

The existence of
a non-trivial bound,

RadSn(X) ≤
constn
√
σ

, σ = inf
x∈X

Sc(X,x),

for orientable spin24 manifolds X of even dimensions n 25

follows by confronting the index theorem with a "twisted version" of the
formula D2 = ∇2 + 1

4
Sc for the Dirac operator on X twisted with the f -pullback

of a suitable vector bundle L over Sn [GL(spin) 1980], where

the optimal constant constn =
√
n(n − 1) =

√
Sc(Sn) is achieved with L

being the (complexified) positive spin bundle over Sn, (see [Llarull 1998] and
section 4.2)

This sharp inequality, says, in particular, that one can’t enlarge the spherical
metric gsphr on Sn without making the scalar curvature smaller at some point.
That is if a metric g on Sn satisfies

g ≥ gsphr and Sc(g) ≥ n(n − 1) = Sc(gsphr)

then, necessarily, Sc(g) = n(n− 1), which we express by saying that spheres are
extremal.

24All surfaces are spin and an orientable manifold X of dimension n ≥ 3 is spin if and
only if the restriction of the tangent bundle T (X) to all surfaces Y 2 ⊂ X are trivial, e.g. if
H2(X;Z2) = 0. The simplest examples or spin n-manifolds are smooth hypersurfaces in Rn+1,
such as product of spheres.

More interesting in this respect are complex projective spaces CPm and smooth complex
hypersurfaces X ⊂ CPm of degree d: these X are spin if and only if m + d is odd, as it the
case for the Kummer surface, for instance.

25A trivial (and ungraceful) reduction to the even dimensional one follows taking X times
the circle, but there is a better way of doing it.

25



In fact, Llarull’s argument (we say a few words about it in section 4.2) shows
that spheres are rigid:

[g ≥ gsph]&[Sc(g) ≥ Sc(gsph)] implies that g = gsph.
This extremality/rigidity property of spheres was generalised by Goette and

Semmelmann to manifolds X with positive curvature operators, where the ex-
amples of such manifolds we are concerned with now are smooth locally convex
hypersurfaces in Riemannin flat (n + 1)-manifolds, e.g. products of convex hy-
persurfaces in Rm+1 by the flat tori Tn−m.

The (proof of the) main result in [GS 2002] implies in this case the following.

[X→b]: Corollary to Goette-Semmelmann’s Theorem. Let X be a compact
connected orientable Riemannian n-manifold without boundary, let X ⊂ Rn+1 be a
smooth closed locally convex hypersurface in a Riemannin flat (n+1)-manifold and
let f ∶X →X be a smooth map.

Let the norm of the differential of f and the scalar curvatures of X and X
be related by the inequality

Sc(X,x) ≥ Sc(X,f(x)) ⋅ ∣∣df(x)∣∣2, x ∈X.

If X is orientable and the degree of f is non-zero, then, provided X is spin, this
inequality becomes an equality:

Sc(X,x) = Sc(X,f(x)) ⋅ ∣∣df(x)∣∣2,

at all points x ∈X.
Notice that the above mentioned sharp Llarull’s inequality for metrics g on

Sn with Sc(g) ≥ n(n−1), as well as non-existence of metrics with Sc > 0 on tori
are special cases of [X→b].

Questions. What are further examples of extremal/rigid manifolds X with
Sc(X) > 0? (We shall meet a few later on.)

For instance, are biinvarinat metrics on compact Lie groups extremal?
(This is already problematic for SO(5).)
Can products of spaces of positive and of negative curvatures, e.g. of spheres

and hyperbolic spaces, be extremal/rigid in some sense?
Is there a meaningful combination of the above with the Ono-Davaux spectral

inequality (see section 3.10)?
How do non-compact semisimple Lie groups G fare in this regard?
(There may be a non-trivial interplay between positivity of the scalar curva-

tures of the maximal compact subgroups H ⊂ G and negativity of the sectional
curvatures κ of G/H, where negativity of κ serves as an obstruction to Sc > 0,
e.g. via Mishchenko’s construction of the Fredholm-Bott class in the K-theory
of spaces with κ ≤ 0.)

Do all closed manifolds which admit metrics with Ricci > 0 admit extremal/rigid
metrics with Sc > 0?

(The products X of negatively and positively curved manifolds a manifestly
non-extremal, since one can indefinitely enlarge their negative factors and in-
crease their scalar curvatures at the same time, but it is unclear that no metric
on such an X is extremal.)
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∧2-Hyperspherical Radius Rad∧2

Sn. This is defined similarly to RadSn
with "area non-increasing" instead of "distance non-increasing":

Rad∧
2

Sn(X) is the supremum of the radii R > 0 of n-spheres, such that X admits
a non-contractible C1-smooth26 map f ∶X → Sn(R), which doesn’t increase the
areas of smooth (rectifiable if you wish) surfaces in X.

Examples. (a) Orientable surfaces S satisfy

Rad∧
2

S2(X) =

√
area(S)

4π
.

(b) The rectangular solids

X =
n

⨉
i=1

[0, li]

satisfy
mini≠j

√
lilj

2π
≤ Rad∧

2

Sn(X) ≤ min
i≠j

√
lilj

4π
.

(The lower bound is obvious and the upper one follows from the waist inequality
for Sn, see [Guth(waist) 2014].)

(c) The R-balls in the n-spaces X with κ(X) ≤ 0 from the above examples
●B , ●∂ , ●−1 satisfy:

●∧
2

B Rad∧
2

Sn(B(R)) ≥ R
2

;

●∧
2

−1 If κ(X) ≤ −1, then

Rad∧
2

Sn(B(R)) ≥
eR − 1

4π
,

that is much greater, than RadSn(B(R)) = R
π

for large R;

●∧
2

rank≥2 the balls B(R) in the symmetric spaces X (of non-compact type)
with rank(X) ≥ 2 satisfy

Rad∧
2

Sn(B(R)) =
R

2
≈
R

π
= RadSn(B(R));

●∧
2

∂,rank=2 the R-spheres in the symmetric spaces X with rank(X) = 2 have

Rad∧
2

Sn(∂B(R)) ≥ εX ⋅ (eδX ⋅R − 1)

for (small) positive constants εX , δX > 0;

●∧
2

∂,rank≥3 the symmetric spaces X with rank(X) ≥ 3 satisfy

Rad∧
2

Sn(∂B(R)) = R.

26It is unclear what happens if C1-smooth is replaced by continuous or by Lipschitz.
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Albeit, typically, Rad∧
2

Sn(X) > RadSn(X) and oftenRad∧
2

Sn(X) >> RadSn(X)

(obviously, Rad∧
2

Sn(X) ≥ RadSn(X) for all X) the above bounds on RadSn(X)

by the scalar curvature of X, remain valid for Rad∧
2

Sn(X). For instance,

Rad∧
2

Sn(X) ≤

¿
Á
ÁÀ n(n − 1)

infx∈X Sc(X,x)

for all complete orientable spin n-manifolds X with Sc(X) > 0 [Llarull 1998].
In fact, the proofs of these bounds via twisted Dirac operators depend on the

Schroedinger-Lichnerowicz-Weitzenboeck formula that expresses the zero order
terms in these operators in terms of the curvatures of certain auxiliary vector
bundles L → X, where these curvatures, being 2-forms on X, are related to
areas of surfaces rather than to distances recorded by lengths of curves X.

But no bounds on Rad∧
2

Sn(X) is known for non-spin manifolds, where the
available methods, that rely on minimal hypersurfaces (and/or on stable µ-
bubbles, see section 5.1), do depend on distances, but even then they deliver
only a non-sharp bound, namely,

RadSn(X) ≤ constn

¿
Á
ÁÀ n(n − 1)

infx∈X Sc(X,x)

with constn > 1 for n ≥ 5.
Remarks, (a) The sharp bound on RadSn(X) for 4-manifolds X follows by

reduction to n = 3 with a use of stable µ-bubbles in section 5.5. where we prove
this inequality/extremality for punctured spheres.

(b) "Area sizes" of higher dimensional non-spin manifoldsX are also bounded
by their scalar curvatures but in a limited way. Namely,

let X and X be closed orientable Riemannian n-manifolds and f ∶ X → X a
smooth spin27 map of non-zero degree, Then

there exists a smooth surface S ⊂X such that

area(f(S)) ≥ R2
⋅
infx∈X Sc(X,x)

n(n − 1)
⋅ area(S),

where R = R(X) is a positive constant that depends only on X.
In fact, since f is spin, (the total space of) the f -pullback to X of the unit

sphere bundle of X is a spin manifold, to which the twisted Dirac operator
method applies. (See §5 3

4
in [G(positive) 1996] and section 10 in [G(101) 2017]

for details and for another proof.)
Notice that this tells you nothing new in the most interesting case of X = Sn,

where it does’t even give a realistic lower bound on R. (We know that R(Sn) = 1
by Llarull’s inequality.)

27A continuous map between smooth manifolds, say f ∶ X → X, is spin if the second Stiefel-
Whitney class of X goes to that of X:

f∗(w2(X)) = w2(X).

For instance,
● a homotopy equivalences, e.g. homeomorphisms, f between manifolds are spin;
● if X is spin, e.g. X = Sn, then f ∶ X → X is spin if and only if the manifold X is spin.
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3.6 Doubles of Manifolds with Boundaries and Bounds on
RadSn−1 of Mean Convex Hypersurfaces

The above Dirac theoretic arguments extend to non-compact complete Rieman-
nian manifolds, where the existence of (twisted) harmonic spinors follows in the
relevant cases from the relative index theorem(s) (see [GL 1983], [Roe 1996],
[Roe 2012]).

It is unclear what should be a suitable version of this theorem for non-
complete manifolds and/or for manifolds with boundaries, but the original
Atiyah-Singer theorem, when applied to the double DD(X) of a compact mani-
fold X with boundary does deliver a non-trivial geometric information on X as
well as on the boundary Y = ∂X.

For instance, if mean.curv(Y ) > 0,28 then the natural, a priori continuous,
metric g on DD(X) can be approximated by C2-metrics g′ by smoothing g along
the "Y -edge" without a decrease of the scalar curvature (see [GL(spin) 1980]29),
where a particular such smoothing described below (which is similar to the the
one in ([GL(spin) 1980]) leads to the following

sharp purely Euclidean inequality accompanied by rigidity.
T Mean Curvature Rigidity Theorem. Let Y ⊂ Rn be a smooth closed

hypersurface with the mean curvature bounded from below by µ > 0.
Then the hyperspherical radius of Y is bounded by

RadSn−1(Y ) ≤
µ

n − 1
,

that is (locally) 1-Lipschitz maps Y → Sn(r), where "Lipschitz" is understood
with respect to the intrinsic, i.e. induced Riemannian, metric in Y , are con-
tractible for all r > µ

n−1
.

Moreover, if RadSn−1(Y ) =
µ
n−1

, i.e. Y admits a smooth30 non-contractible
1-Lipschitz map Y → Sn(r) for r = µ

n−1
, then mean.curv(Y, y) = µ for all y ∈ Y ,

which, by a theorem of A.D. Alexandrov, implies that
Y is the sphere of radius µ

n−1
.

This is shown (see section 4.3) by applying [X→b] from the previous section
to a smoothed double DDε(X) defined as follows.

Let µ = n − 1 and let
X1/2 ⊂ Rn ⊂ Rn+1

be the (closed) domain in ⊂ Rn bounded by Y and let Xε =DDε(X) ⊂ Rn+1

be a (more or less) naturally/canonically C2-smoothed boundary of the ε-
neighbourhood (which is only C1-smooth) of X1/2 ⊂ Rn+1.

Then let X1/2 ⊂ Rn+1 be the unit n-ball Bn ⊂ Rn ⊂ Rn+1 and let, accordingly,
DDε(X) = Xε ⊂ Rn+1 be a (more or less) naturally/canonically C2-smoothed
boundary of its ε-neighbourhood.

Then maps f ∶ Y → Sn−1 define maps

Fε ∶Xε →Xε,

28Some results, where the inequality mean.curv(∂X) > 0 is not, at least not immediately,
available are indicated in section 4.6.

29Similar smoothing with a control on the scalar curvature is possible for isometric gluingX1

to X2 by isometries ∂X1 ↔ ∂X2 ifmean.curv(∂X1, x1)+mean.curv(∂X2, x2).0 for x1 ↔ ∂x2,
see [EMW 2009, [G(billiard) 2014] and references therein.

30This "smooth" is, probably, redundant.
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to which [X→b] applies and, when ε→ 0, it yields the inequality
RadSn−1(Y ) ≤ 1

n−1
. (See [G(boundary) 2019] and section 4.3.)

Questions. Is there a direct proof of this inequality?
What exactly happens in the limit when ε → 0 to the Dirac operator used

in the proof of [X→b]?
Exercise + Problem. Let Y0 ⊂ Rn be a smooth compact cooriented subman-

ifold with boundary Z = ∂Y0.
If the mean curvature of Y0 with respect to its coorientation satisfies

mean.curv(Y ) ≥ n − 1 =mean.curv(Sn−1
),

then every distance decreasing map

f ∶ Z → Sn−2
⊂ Rn−1

is contractible, where "distance decreasing"refers to the distance functions on
Z ⊂ Rn and on Sn−2 ⊂ Rn−1 coming from the ambient Euclidean spaces Rn and
Rn−1.

Hint. Observe that the maximum of the principal curvatures of Y0 is ≥ 1
and show that the filling radius of Z ⊂ Rn is ≤ 1.31

Question. Does contractibility of f remains valid if the distance decreasing
property of f is defined with the (intrinsic) spherical distance in Sn−2 and with
the distance in Z ⊂ Y0 associated with the intrinsic metric in Y0 ⊃ Z, where
distY0(y1, y2) is defined as the infimum of length of curves in Y0 between y1 and
y2?

Bringing Scalar Curvature into the Open. Our proof of the inequality

inf
y∈Y

mean.curv(Y, y) ≤
1

RadSn−1(Y )

applies not only to hypersurfaces in Rn but to
the boundaries Y = ∂X of all compact Riemannin spin manifolds X with

Sc(X) ≥ 0.
This, suggests the following version of the conjecture following STEMW

Rigidity Theorem in section 3.3.
Let the above Y = ∂X be λ-bi-Lipschitz homeomorphic to the unit sphere Sn.
Then, conjecturally,

∫
Y
mean.curv(Y, y)dy ≤ C(λ)(n − 1)vol(Sn),

where – this might follows from the STEMW proof – C(λ)→ 1 for λ→ 1.

3.7 Widths of Riemannian Bands X with Sc(X) ≥ Sc(Sn)
Bands, sometime we call them capacitors, are manifolds X with two distin-

guished disjoint non-empty subsets in the boundary ∂(X), denoted

∂− = ∂−X ⊂ ∂X and ∂+ = ∂+X ⊂ ∂X.

31This means that Z is homologous to zero in its 1-neighbourhood.
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A band is called proper if ∂± are unions of connected components of ∂X and

∂− ∪ ∂+ = ∂X.

The basic instance of such a band is the segment [−1,1], where ±∂ = {±1}.
Furthermore, cylinders X =X0×[−1,1] are also bands with ±∂ =X0×{±1},

where such a band is proper if X0 has no boundary.
Riemannian bands are those endowed with Riemannin metrics and
the width of a Riemannin band X = (X,∂±) is defined as

width(X) = dist(∂−, ∂+),

where this distance is understood as the infimum of length of curves in V be-
tween ∂− and ∂+.

We are concerned at this point with proper compact Riemannin bands X of
dimension n, such that

no closed hypersurface Y ⊂ X, which separates ∂− from ∂+, admits a metric
with strictly positive scalar curvature.

Simplest Examples of such bands are (we prove this in section 5.2)
●Tn−1 toric bands which are homeomorphic to X = Tn−1 × [−1,1];
●α̂ these, called α̂ bands, are diffeomorphic to Y−1 × ×[−1,1], where the

Y−1 is a closed spin (n− 1)-manifold with non-vanishing α̂-invariant (see the IV
above);

●Tn−1×α̂ these are bands diffeomorphic to productsXn−k×Tk, where α̂(Xn−k) ≠

0.
2π
n -Inequality. Let X be a proper compact Riemannin bands X of dimen-

sion n with Sc(X) ≥ n(n − 1) = Sc(Sn).
If no closed hypersurface in X which separates ∂− from ∂+ admits a metric

with positive scalar curvature, then

[�± ≤
2π
n
] width(V ) ≤

2π

n
.

Moreover, the equality holds only for warped products X = Y × (−π
n
, π
n
)32

with metrics ϕ2h + dt2, where the metric h on Y has Sc(h) = 0 and where

ϕ(t) = exp∫
t

−π/n
− tan

nt

2
dt, −

π

n
< t <

π

n
,

as in section 2.4.
Corollary. Let Y be a closed manifold of dimension ≠ 4 (see 3.15 below about

n = 4). Then the following three conditions are equivalent.
1: the open cylinder Y × R admits a complete metric g1 with uniformly

positive scalar curvature, i.e. with infx∈X Sc(g1, x) > 0;
2: the open cylinder Y ×R admits a complete metric g2 with positive scalar

curvature which decays subquadratically:

lim inf
x→∞

Sc(g2, x) ⋅ dist(x,x0)
2
=∞.

32Here, since X is non-compact, the width is understood as the distance between the two
ends of X.
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3: the closed cylinder Y × [−1,1] admits a metric g3 with Sc(g2) ≥ n(n − 1)
and such that

distg3(Y × {−1}, Y × {1}) ≥
2π

n
.

There are two somewhat different proofs (see section 5.2) of [�± ≤
2π
n
] which

use the calculus of variation but advance along slightly different routes.
The first route follows an inductive descent with minimal hypersurfaces á

la Schoen-Yau adapted to manifolds with boundaries similarly to that in [GL
1983]. This applies only to the toric and to similar bands, but not to α̂-bands.
(See [G(inequalities) 2018].)

The second route proceeds with a use of stable µ-bubbles which are closed
hypersurfaces in X with (prescribed) mean curvature µ, where µ = µ(x) is a
signed measure on X as in §5 5

6
of [G(positive) 1996].

This applies to all bands and it also improves certain results from [G(inequalities)
2018] obtained with the first proof.

Both proof, when it comes to dim(X) = n ≥ 9 have to face the problem of
(possibly) stable singularities of minimal ( and minimal-like) hypersurface in X.

I feel more comfortable in this respect with the first proof, where a direct
application of theorem 4.6 from the recent Schoen-Yau paper [SY(singularities)
2017], (also see [Sch 2017]) is possible.

And as far the second proof for n ≥ 9 is concerned, the argument from
[Loh(smoothing) 2018] seems to be applicable to our case, but this seems harder
than the analysis in [SY(singularities) 2017] (which, honestly, I haven’t carefully
studied, either).

3.8 Bound on Widths of Riemannian Cubes
Let g be a Riemannin metric on the cube X = [−1,1]n and let di, i = 1,2, ..., n,
denote the g-distances between the pairs of the opposite faces denoted ∂i± = ∂i±(X)

in this cube X, that are the length of the shortest curves between ∂i− and ∂i+ in
X.

◻n-Inequality. If Sc(g) ≥ n(n − 1) = Sc(Sn), then

◻∑

n

∑
i=1

1

d2
i

≥
n2

4π2

In particular,

◻min min
i
dist(∂i−, ∂i+) ≤

2π
√
n
.

About the Proof. On the surface of things, this inequality is purely geometric
with no topological strings attached. But in truth, the combinatorics of the cube
fully reflects toric topology in it.

The proof of ◻∑ indicated in section 5.4 proceeds along the above second
route which, in fact, applies to more general "cube-like" manifolds X, such as
Y−m×[−1,1]n−m and yields inequalities mediating between the above [�± ≤

2π
n
]

and ◻∑.
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But the proof of ◻∑ as it stands for m = n is also possible closely follow-
ing t the first route, where the argument from [SY(singularities) ] seems easily
adaptable.

This makes the proof of ◻∑ for n ≥ 9 more tractable.
Corollary. Let X be a Riemannin manifold with Sc(X) ≥ n(n − 1) =

Sc(Sn), which admits a λn-Lipschitz33 homeomorphism onto the hemisphere
Sn+ ,

f ∶X → Sn+ .

Then
λn ≥

arcsinβn
πβn

>
1

π
for βn =

1
√
n
.

Proof. The hemisphere Sn+ admits an obvious cubic decomposition with
the (geodesic) edge length 2 arcsin 1√

n
and ◻min applies to the pairs of the f -

pullbacks of the faces of this decomposition.
Remarks. (a) This lower bound on λn improves those in §12 of [GL 1983]

and in §3 of [G(inequalities) 2018].
Moreover the sharp inequality for Lipschitz maps to the punctured sphere

stated in the next section implies that λn ≥ 1
2
for all n.

But it remains problematic if, in fact, λ ≥ 1.
Exercise. Show that λ2 ≥ 1.
(b) The proof of the inequality ◻∑ in section 5.4 applies to proper ((boundary→

boundary) λ-Lipschitz maps with non-zero degrees from all compact connected
orientable manifolds X to Sn+ , while the proof via punctured spheres needs X
to be spin.

Additional Exercises. (i) Show that the Riemannin metrics with sectional
curvatures ≥ 1 on the square [−1,1]2 satisfy

◻2
min. min

i=1,2
dist(∂i−, ∂i+) ≤ π.

(ii) Construct iterated warped product metrics gn on the n-cubes [−1,1]n

with Sc(gn) = n(n − 1), where, for n = 2, both di, i = 1,2, are equal to π and
such that

di > 2 arcsin
1

√
n
, i = 1, ..., n, for all n = 3,4, ..., .

(iii) Show, that ◻min is equivalent to the over-torical case of 2π
n -Inequality.

modulo constants. Namely,
A. If a Riemannin n-cube X has mini dist(∂i−, ∂i+) ≥ d, then it contains an

n-dimensional Riemannin band X○ ⊂ X, where dist(∂−X○, ∂+X○) ≥ εn ⋅ d, εn > 0,
and where X○ admits a continuous map to the (n− 1) torus, f○ ∶X○ → Tn−1, such
that all closed hypersurfaces Y○ ⊂ X○ which separate ∂−X○ from ∂+X○ are sent by
f○ to Tn−1 with non-zero degrees.

B. Conversely, let Xo be a band, where dist(∂−Xo, ∂+Xo) ≥ d) and which
admits a continuous map to the (n−1) torus, such that the hypersurfaces Yo ⊂Xo,
which separate ∂−Xo from ∂−Xo, are sent to this torus with non-zero degrees.

33A map f between metric spaces is λ-Lipschitz if dist(f(x)f(y)) ≤ dist(x, y).
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Then there is a (finite if you wish) covering X̃o of Xo, which contains a
domain X◽ ⊂ X̃o, where this domain admits a continuous proper map of degree
one onto the d-cube f◽ ∶X◽ → (0, d)n, such that the n coordinate projections of
this map, (f◽)i ∶X◽ → (0, d), are distance decreasing.

3.9 Extremality and Rigidity of Punctured Spheres
Let (X,g) be the unit sphere Sn minus two opposite points with the spherical
Riemannin metric g = gsphe.

Double Puncture Rigidity Theorem. If a smooth metric g on X satisfies

g ≥ g and Sc(g) ≥ n(n − 1) = Sc(g),

then g = g.
About the Proof. By following the above second route, one can reduce this to

(a version of) Llarull’s theorem (see section 5.5, where again I can fully vouch
only for n ≤ 8.

Remark. It follows by Llarull’s argument for all n that
no complete metric g on the n-sphere minus a finite subset Σ satisfies the

inequalities g ≥ g and Sc(g) ≥ n(n − 1) at the same time.
Moreover, this applies to piecewise smooth 1-dimensional subsets (graphs)

Σ ⊂ Sn, such that the monodromy transformations of the principal tangent
Spin(n)-bundle (that is double cover of the orthonormal tangent frame-bundle
over all closed curves in Σ are trivial (e.g. Σ is contractible).

But if one makes no completeness assumption, our result is limited to Σ
being either empty, or consisting of a single point or of a pair of opposite points.

Exercise. Prove with the above that no metric g on the hemisphere (Sn+ , g)
can satisfy the inequalities g ≥ 4g and Sc(g) > n(n−1). Then directly show that
if n = 2 then the inequality g ≥ g and Sc(g) ≥ 2 imply that g = g.

Question. Does the implication

[g ≥ g]&[Sc(g) ≥ n(n − 1)]⇒ g = g

ever hold for Sn ∖Σ apart from the above cases?

3.10 Manifolds with Negative Scalar Curvature Bounded
from Below

If a "topologically complicated" closed Riemannin manifolds X, e.g. an aspher-
ical one with a hyperbolic fundamental group, has Sc(X) ≥ σ for σ < 0, then a
certain "growth" of the universal covering X̃ ofX is expected to be bounded from
above by const

√
−σ and accordingly, the "geometric size" – ideally n

√
vol(X)–

must be bounded from below by const′/
√
−σ.

If n = 3 this kind of lower bound are easily available for areas of stable
minimal surfaces of large genera via Gauss Bonnet theorem by the Schoen-Yau
argument from [SY(incompressible) 1979].

Also Perelman’s proof of the geometrization conjecture delivers a sharp
bound of this kind for manifolds X with hyperbolic π1(X) and similar results
for n = 4 are possible with the Seiberg-Witten theory for n = 4 (see section 3.14).
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No such estimate has been established yet for n ≥ 5 but the following results
are available.

Min-Oo Hyperbolic Rigidity Theorem [Min(hyperbolic) 1989]. Let X
be a complete Riemannin manifold, which is isometric at infinity (i.e. outside a
compact subset in X) to the hyperbolic space Hn

−1.
If Sc(X) ≥ −n(n − 1) = Sc(Hn

−1), then X is isometric to Hn
−1.

About the Proof. The original argument by Min-Oo, which generalizes Dirac-
theoretic Witten’s proof of the positive mass/energy theorem for asymptotically
Euclidean (rather than hyperbolic) spaces, needs X to be spin.

But granted spin, Min-Oo’s proof allows more general asymptotic (in some
sense) agreement between X and Hn

−1 at infinity.
In order to get rid of spin, one may use here either minimal hypersur-

faces with boundaries (as in [G(inequalities) 2018]) or stable µ-bubbles (as in
[G(positive) 1996]).

To accomplish this it is convenient, here as in the flat case, to pass to a
quotient space Hn

−1/Γ, where, instead of letting Γ = Zn that allows a reduction of
the rigidity of Rn to that of the torus Tn = Rn/Zn, one takes a parabolic isometry
group isomorphic to Zn−1 for Γ, for which the quotient Hn

−1/Γ is the hyperbolic
cusp-space, that is Tn−1 ×R with the metric e2rdt2 +dr2. (Here as earlier, when
it comes to n ≥ 9, I feel more comfortable with minimal hypersurfaces to which
Schoen-Yau’s theorem 4.6 from [SY(singularities) 2017] directly applies.)

Finally, a derivation of the hyperbolic positive mass theorem from the rigidity
theorem follows by an extension of the Euclidean Lohkamp’s argument from
[Loh(hammocks) 1999] to the hyperbolic spaces (see [AndMinGal 2007]).

Ono-Davaux Spectral Inequality [Ono 1988], [Dav 2002]. Let X be
a closed Riemannian manifold and let all smooth functions f(x̃) with compact
supports on X̃ satisfy

∫
X̃
f(x̃)2dx̃ ≤

1

λ̃2
0

∫
X̃

∣∣df(x̃)∣∣2dx̃.

(The maximal such λ̃0 ≥ 0 serves as the lower bound on the spectrum of the
Laplace operator on the universal covering X̃ of X).

If X̃ is spin and if one of the following two conditions (A) or (B) is satisfied,
then

[Sc/λ̃0] inf
x∈X

Sc(X,x) ≤
−4nλ̃0

n − 1
.

Condition (A). The dimension ofX is n = 4k and the α̂-invariant from section
3.4 (that is a certain linear combination of Pontryagin numbers called Â-genus)
doesn’t vanish. Condition (B). The manifold X is enlargeable: there exists a

covering X̃ ′ of X, which admits a proper distance decreasing map X̃ ′ → Rn of
non-zero degree.

Remarks. (a) The inequality [Sc/λ̃0] is sharp: if X has constant negative
curvature −1, then

−n(n − 1) = Sc(X) = −4nλ̃0

n−1

for λ̃0 =
(n−1)2

4
, that is the bottom of the spectrum of Hn

−1 = X̃.
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(b) The rigidity sharpening of [Sc/λ̃0] is proved in [Dav 2002] in the case A
and it seems that a minor readjustment of the argument from [Dav 2002] would
work in the case B as well. If so it would yield yet another proof of Min-Oo
rigidity theorem in the spin case.

Question. Can one put the index theoretic and associated Dirac-spectral
considerations on equal footing with Witten’s and Min-Oo’s kind of arguments
on stability of harmonic spinors with a given asymptotic behavior under defor-
mation/modifications of manifolds away from infinity?

Three conjectures

[#−n(n−1)] Let X be a closed orientable Riemannin manifold of dimension
n with Sc(X) ≥ −n(n − 1).

Then the following topological invariants of X must be bounded by the
volume of X, and, even more optimistically, (and less realistically), where the
constants are such that the equalities are achieved for compact hyperbolic man-
ifolds with sectional curvatures −1.

1. Simplicial Volume Conjecture. There exist orientable n-dimensional pseu-
domanifolds X▵i and continuous maps f▵i ∶ X

▵
i →X with degrees

deg(f▵i ) →
i→∞

∞,

such that the numbers Ni of simplices in the triangulations of X▵i and the degrees
deg(f▵i ) are related to the volume of X by the following inequality:

Ni ≤ C
▵
n ⋅ deg(f

▵
i ) ⋅ vol(X).

2. The L-Rank Norm Conjecture: There exist, for all sufficiently large i ≥
i0 = i0(X), smooth orientable n-dimensional manifolds X○i and continuous maps
fi ∶ X

○
i →X, with degrees

deg(f▵i ) →
i→∞

∞,

such that the minimal possible numbersNi of the cells in the cellular decompositions
of X○i and the degrees of the maps f▵i are related to the volume ofX by the following
inequality:

Ni ≤ C
○
n ⋅ deg(f

○
i ) ⋅ vol(X).

3. Characteristic Numbers Conjecture. if, additionally to [#−n(n−1)], the
manifold X is aspherical, then the Euler characteristic χ(X) and the Pontryagin
numbers pI of X are bounded by

∣χ(X)∣, ∣pI(X)∣ ≤ C◽
n ⋅ vol(X).

Remarks. (i) Conjecture 1 makes sense for an X, in so far as X has non-
vanishing simplicial volume ∣∣X ∣∣△, e.g. if X admits a metric with negative
sectional curvature or a locally symmetric metric with negative Ricci curvature
[LS(simplicial) 2017]. (See the monograph [Frigero(Bounded Cohomology) 2016]
for the definition and basic properties of the simplicial volume.)
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(ii) The L-rank norm ∣∣[X]L∣∣ is defined in §8 1
2
of [G(positive) 1996] via the

Witt-Wall L-groups of the fundamental group of X.
This ∣∣[X]L∣∣ is known to be non-zero for compact locally symmetric spaces

with non-zero Euler characteristic as it follows from [Lusztig(cohomology) 1996].34

In fact, all known manifolds X with ∣∣[X]L∣∣ ≠ 0 admit maps of non-zero
degrees to locally symmetric spaces with non-zero Euler characteristics.

And nothing is known about zero/non-zero possibility for the values of the
L-rank norm for manifolds with negative sectional curvatures of odd dimensions
> 3.

(Vanishing of ∣∣[X]L∣∣ for all 3-manifolds X trivially follows from the Agol-
Wise theorem on virtual fibration of hyperbolic 3-manifolds over S1.)

Questions. What are realtions between the ∣∣X ∣∣△ and ∣∣[X]L∣∣? Are there
natural invariants mediating between the two?

(It is tempting to suggest that ∣∣X ∣∣△ ≤ ∣∣[X]L∣∣, but it is unlikely to be true
in general.)

[#∫ ] Integral Strengthening of the Three Conjectures. The above conjectural
inequalities 1,2,3, for the three topological invariants, call them here invi, i =
1,2,3, may, for all we know, hold (with no a priori assumption Sc(X) ≥ −n(n−
1)) in the following integral form,

invi ≤ consti ⋅ ∫
X

∣Sc−(X,x)∣
n
2 dx,

where Sc−(x) = min(Sc(x),0), but no lower bound on this integral is anywhere
in sight for n ≥ 5. 35 (See section 3.14. for what is known for n = 4.)

3.11 Positive Scalar Curvature, Index Theorems and the
Novikov Conjecture

Given a proper (infinity goes to to infinity) smooth map between smooth ori-
ented manifolds, f ∶X ↦X of dimensions n = dim(X) = 4k +n for n = dim(X),
let sign(f) denote the signature of the pullback Y 4k

x = f−1(x) of a generic point
x ∈X, that is the signature of the (quadratic) intersection form on the homology
H2(Y

4k
x ;R), where observe orientations of X and X define an orientation of Y 4k

x

which is needed for the definition of the intersection index.
Since the f -pullbacks of generic (curved) segments [x1, x2] ⊂X are manifolds

with boundaries Y 4k
x1

− Y 4k
x2

, (the minus sign means the reversed orientation),

sign(Y 4k
x1

) = sign(Y 4k
x2

),

34In the simplest case, whereX is the product of k closed surfaces S1, S2, ..., Sk with negative
Euler characteristics, non-vanishing of ∣∣[X]L∣∣ is proven in [G(positive 1996]:

If a manifold X○ admits a map of degree d to such an X, then X○ can’t be decomposed
into less than

N = constk ⋅ d ⋅ ∣χ(S1)∣ ⋅ ∣χ(S2) ⋅ ... ⋅ ∣χ(Sk)∣, constk > 0,

cells.
35One doesn’t even know if there are such bounds for ∣∣X ∣∣△ and/or ∣∣[X]L∣∣ in terms of the

full Riemannian curvature tensor R(X,x), namely the bounds

∣∣X ∣∣△, ∣∣[X]L∣∣ ≤ constn ∫
X

∣∣R(X,x)∣∣n2 dx.
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as it follows from the Poincaré duality for manifolds with boundary by a two-
line argument. Similarly, one sees that sign(f) depends only on the proper
homotopy class [f]hom of f .

Thus, granted X and a proper homotopy class of maps f , the signature
sign[f]hom serves as a smooth invariant denoted sign[f](X), (which is actually
equal to the value of some polynomial in Pontryagin classes ofX at the homology
class of Y 4k

x2
in the group H4k(X)).

If X and X are closed manifolds, where dim(X) > dim(X) > 0, and if X,
is simply connected, then, by the Browder-Novikov theory, as one varies the
smooth structure of X in a given homotopy class [X]hom of X, the values of
sign[f](X) run through all integers i = sign[f](X) mod 100n! (we exaggerate
for safety’s sake), provided dim(X) > 0 and Y 4k

x ⊂X is non-homologous to zero.
However, according to the (illuminating special case of the) Novikov conjec-

ture,
if X is a closed aspherical manifold36 then this sign[f](X) depends only on

the homotopy type of X. 37

Originally, in 1966, Novikov proved this, by an an elaborated surgery ar-
gument, for the torus X = Tn, where X = Y × Tn and f is the projection
Y ×Tn → Tn.

Then in 1971, Gheorghe Lusztig [Lusztig(Novikov) 1972] found a proof for
general X and maps f ∶ X → Tn based on the Atiyah-Singer index theorem for
families of differential operators Dp parametrised by topological spaces P , where
the index takes values not in Z anymore but in the K-theory of P , namely,
this index is defined as the K-class of the (virtual) vector bundle over P with
the fibers ker(Dp) − coker(Dp), p ∈ P , (Since the operators Dp are Fredholm,
this makes sense despite possible non-constancy of the ranks of ker(Dp) and
coker(Dp).)

The family P in Lusztig’s proof is composed of the signature operators on X
twisted with complex line bundles Lp, p = P , over X, where these L are induced
by a map f ∶ X → Tn from flat complex unitary line bundles Lp over Tn

parametrised by P (which is the n-torus of homomorphism π1(T
n) = Zn → T).

Using the the Atiyah-Singer index formula, Lusztig computes the index of
this operator, shows that it is equal to sign(f) and deduce from this the homo-
topy invariance of sign[f](X).

What is relevant for our purpose is that Lusztig’s computation equally ap-
plies to the Dirac operator twisted with Lp and shows the following.

Let X be a closed orientable spin manifolds of even dimension n and f ∶X →
Tn be continuous map of non-zero degree. Then

ind(D⊗{Lp}) ≠ 0.

Therefore, there exits a point p ∈ P , such that X carries a harmonic Lp-
twisted spinor

36Aspherical means that the universal cover of X is contractible
37Our topological formulation, which is motivated by the history of the Novikov conjecture,

is deceptive: in truth, Novikov conjecture is 90% about infinite groups, 9% about geometry
and only 1% about manifolds.
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But if Sc(X) > 0, this is incompatible with the the Schroedinger-Lichnerowicz-
Weitzenboeck formula (see sections 3.4, 4.1) which says for flat Lp that

D⊗Lp = ∇
2
⊗Lp +

1

4
Sc(X).

Thus, the existence of a map f ∶ X → Tn with deg(f) ≠ 0 implies that X
carries no metric with Sc > 0.

Moreover, Lusztig’s computation applies to manifolds X of all dimensions
n = n + 4k, shows that if a generic pullback manifold Y 4

p = f−1(p) ⊂ X (here f
is smooth) has non-vanishing α̂-invariant defined in section 3.4 (that is the Â-
genus for 4k-dimensional manifolds), then the index ind(D⊗{Lp}) doesn’t vanish
either and, assuming X is spin, it can’t carry metrics with Sc > 0.

Remark on X = (X,g0) = Tn. If (X,g0) is isometric to the torus, then
the only g0-harmonic Lp-twisted spinors on X are parallel ones, which allows a
direct computation of the index of D⊗{Lp}. Then the result of this computation
extends to all Riemannin metrics g on Tn by the invariance of the index of
D⊗{Lp} under deformations of D, where the essential point is that, albeit the
harmonic spinors of the (untwisted) D may (and typically do) disappear under a
deformation Dg0 ; Dg, they re-emerge as harmonic spinors of Dg twisted with
a non-trivial flat bundle Lp.

The index theorem for families can be reformulated with P being replaced by
the algebra cont(P ) of all continuous functions on P , where in Lusztig’s case the
algebra cont(Tn) is Fourier isomorphic to the algebra C∗(Zn) of bounded linear
operators on the Hilbert space space l2(Zn) of square-summarable functions on
the group Zn, which commute with the action of Zn on this space.

A remarkable fact is that a significant portion of Lusztig’s argument general-
izes to all discrete groups Π instead of Zn, where the algebra C∗(Π) of bounded
operators on l2(Π) regarded as algebra of functions on a "non-commutative
space" dual to Π (that is the actual space, namely that of of homomorphisms
Π→ T for commutative Π.)

This allows a formulation of what is called in [Ros 1984] the strong Novikov
Conjecture, the relevant for us special case of which reads as follows.
D⊗C∗-Conjecture. If a smooth closed orientable Riemannin spin n-manifold X

for n even admits a continuous map F to the classifying space BΠ of a group Π,
such that the homology homomorphism F∗ sends the fundamental homology class
[X] ∈Hn(X;R) to non-zero element h ∈Hn(BΠ;R), then

the Dirac operator on X twisted with some flat unitary Hilbert bundle over
X has non-zero kernel.

(Here "unitary" means that the monodromy action of π1(X) on the Hilbert
fiber H of this bundle is unitary and where an essential structure in this H is
the action of the algebra C∗(Π), which commute with the action of π1(X).)

This, if true, would imply, according to the Schroedinger-Lichnerowicz-Weitzenboeck
formula, the spin case of the conjecture stated in section 3.4. saying that

X admits no metric with Sc > 0.
Also "Strong Novikov" would imply, as it was proved by Rosenberg, the

validity of the
Zero in the Dirac Spectrum Conjecture. Let X̃ be a complete contractible

Riemannin manifold the quotient of which under the action of the isometry group
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iso(X̃) is compact.
Then the spectrum of the Dirac operator D̃ on X̃ contains zero, that is, for

all ε > 0, there exist L2-spinors s̃ on X̃, such that

∣∣D̃(s̃∣∣ ≤ ε∣∣s̃∣∣.

This, confronted with the Schroedinger-Lichnerowicz-Weitzenboeck formula,
would show that X̃ can’t have Sc > 0.

Are we to Believe in these Conjectures. A version of the Strong Novikov
conjecture for a rather general class of groups, namely those which admit discrete
isometric actions on spaces with non-positive sectional curvatures, was proven
by Alexander Mishchenko in 1974.

Albeit this has been generalized since 1974 to many other cases groups Π
and/or representatives h ∈ Hn(BΠ;R), the sad truth is that one has a poor
understanding of what these classes actually are, how much they overlap and
what part of the world of groups they fairly represent.

At the moment, there is no basis for believing in this conjecture and there
is no idea where to look for a counterexample either.38

3.11.1 Almost Flat Bundles, ⊗ε-Twist Principle and the Relative
index theorem on Complete Manifolds

Let X be a Riemannin manifold and L = (L,∇) be a complex vector bundle L
with unitary connection. If the curvature of L is ε-close to zero,

∣∣RL∣∣ ≤ ε,

then, locally, L looks, approximately as the flat bundle X ×Cr, r = rankC(L),
and the Dirac operator twisted with L, denoted D⊗L, that acts on the spinors
with values in L, is locally approximately equal to the direct sum D ⊕ ...⊕D

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
r

.

It follows that if Sc(X) ≥ σ > 0 and if ε is much smaller than σ, then by the
(obvious) continuity of the Schroedinger-Lichnerowicz-Weitzenboeck formula,
this twisted Dirac operator has trivial kernel, ker(D⊗L) = 0 and, accordingly,

ind(D+⊗L) = 0, 39

where, by the Atiyah-Singer index theorem, this index is equal to a certain
topological invariant

ind(D+⊗L) = α̂(X,L).

For instance, if X is an even dimensional topological torus, and if the top
Chern class of L doesn’t vanish, cm(L) ≠ 0 for m =

dim(X)
2

, then α(X,L) ≠ 0 as
well.

On the other hand, given a Riemannin metric g on the torus Tn, n = 2m,
and ε > 0,

38Geometrically most complicated groups are those which represent one way or another
universal Turing machines; a group, the k-dimensional homology (L-theory?) of which, say
for k = 3, models such a "random" machine, would be a good candidate for a counterexample.

39Here we assume that n = dim(X) is even, which makes D split as D = D+⊕D−, such that
ind(D+) = ind(D−), see section 4.1.
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there exists a finite covering T̃n of the torus, which admits an ε-flat vector
bundle L̃→ T̃n of C-rank r =m = n

2
with cm(L) ≠ 0,

where the "flatness" of L̃, that is the norm of the curvature RL̃ regarded as a 2-
form with the values in the Lie algebra of the unitary group U(r), r = rankC(L̃),
is measured with the lift g̃ of the metric g to T̃n.

Indeed, let L̂→ Rn, n = 2m, be a vector bundle with a unitary connection, such
that L̂ is isomorphic (together with it connection) at infinity to the trivial bundle and
such that cm(L̂) ≠ 0, where such an L̂ may be induced by a map Rn → Sn, which
is constant at infinity and has degree one, from a bundle L→ Sn with cm(L) ≠ 0.

Let L̂ε be the bundle induced from L̂ by the scaling map x ↦ εx, x ∈ Rn.
Clearly, the curvature of L̂ε tends to 0 as ε→ 0.

Since the finite coverings T̃n of the torus converge to the universal covering
Rn → Tn this L̂ε can be transplanted to a bundle L̃ε → T̃n over a sufficiently large
finite covering T̃n of the torus, where the top Chern number remains unchanged
and where the curvature of L̃ with respect to the flat metric on T̃n can be assumed
as small as you wish, say ≤ ε.

But then this very curvature with respect to the lift g̃ of a given Riemannin
metric g on Tn also will be small, namely ≤ constgε and our claim follows.40

Thus, we obtain
yet another proof of nonexistence of metrics g with Sc(g) > 0 on tori.

Seemingly Technical Conceptual Remark. The above rough qualita-
tive argument admits a finer quantitative version, which depends on the twisted
Schroedinger-Lichnerowicz-Weitzenboeck formula (see 4.1),

D2
⊗L = ∇2

⊗L +
1
4
Sc(X) +R⊗L,

where R⊗L is an operator on twisted spinors, i.e. on the bundle S⊗L, associated
with the curvature of L and where an essential feature of R⊗L is a bound on its
norm by the it operator norm ∣∣RL∣∣, with a constant independent of the rank of
L.

Thus, for instance the above proof of nonexistence of metrics g with Sc(g) > 0
on tori, that was performed with the twisted Dirac operator D⊗L̃ over a finite
covering X̃ of our torical X, can be brought back to X by pushing forward L̃
from the X̃ to X, where this push forward bundle (L̃)∗ →X has

rank(L̃)∗ = N ⋅ rank(L̃)

for N being the number of sheets of the covering.
(The lift of (L̃)∗ to X̃ is the Whitney’s sum of N -bundles obtained from L̃

by the deck transformations of L̃.)
This property of R⊗L, in conjunction with the shape of the Atiyah-Singer

index formula, fo Dirac operator twisted with Whitney’s N -multiples

40Why do we need twelve lines to express, not even fully at that, so an obvious idea? Is
it due to an imperfection of our mathematical language or it is something about our mind
that makes instantaneous images of structurally protracted objects? Probably both, where
the latter depends on the parallel processing in the human subliminal mind, which can’t be
well represented by any sequentially structured language that follows our conscious mind and
where besides "parallel" there are many other properties of "subliminal" hidden from our
conscious mind eye.
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L⊕ ...⊕L = L⊕ ...⊕L
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

N

,

which implies that in the relevant cases

ind(D+⊗(L⊕...⊕L)) = α(X,L⊕ ...⊕L) = N ⋅ α̂(X,L) +O(1),

allows N → ∞ and even N = ∞ in a suitable sense, e.g. in the context of
infinite coverings (see section 4.1.1) and/or of C∗-algebras as was mentioned in
the previous section.

What is also crucial, is that twisting with almost flat bundles is a functorial
operation, where this functoriality yields the following.

⊗ε-Twist Principle. All (known) arguments with Dirac operators for non-
existence of metrics with Sc ≥ σ > 0 under specific topological conditions on X
can be (more or less) automatically transformed to inequalities between σ and
certain geometric invariants of X defined via ε-flat bundles over X.

From Compact to Complete Via the Relative Index Theorem

Most (probably, not all) bounds on the scalar curvature of closed Riemannian
manifolds derived with twisted Dirac operators D⊗L have their counterparts for
complete manifolds X, where one uses a relative version of the Atiyah-Singer
theorem for pairs of Dirac operators which agree at infinity (see [GL 1983],
[Bunke 1992], [Roe 1996]), where the simplest and the most relevant case of this
theorem applies to vector bundles L → X with unitary connections which are
flat trivial at infinity.

In this case the pair in question is (D⊗L,D⊗∣L∣), where ∣L∣ denotes the trivial
flat bundle X ×Ck →X for k = rankC(L), which comes along with an isometric
connection preserving isomorphism between L and ∣L∣ outside a compact subset
in X.

f∗-Example. Let f ∶ X → Sn be a smooth map which is locally constant
at infinity (i.e. outside a compact subset) and let L → Sn be a bundle with a
unitary connection on Sn.

Then the pullback bundle f∗(L)→X is an instance of such an L.
The relative index theorem, similarly to its absolute counterpart implies that

if the scalar curvature of X is uniformly positive (i.e. Sc ≥ σ > 0) at infinity and
if

a certain topological invariant, call it α̂(X,L),41 doesn’t vanish, then either X
admits a non-zero (untwisted) harmonic L2-spinor s on X, that is a solution of
D(s) = 0, or there is a non-zero L-twisted harmonic L2-spinor on X.42

For instance,
if L = f∗(L) as in the above example, where n = dim(X) is even, the bundle

L has a non-zero top Chern class (e.g. L is the bundle of spinors on the sphere,
L = S(Sn)) and if the map f ∶X → Sn has non-zero degree, then α̂(X,L) ≠ 0.

41See section for the definition of this invariant.
42If we don’t assume that Sc(X) is uniformly positive at infinity, then one can only claim

the existence of either non-zero untwisted or non-zero twisted almost harmonic L2-spinors,
i.e. satisfying ∫X D2(s)dx ≤ ε ∫X ∣∣s(x)∣∣2 or ∫X D2

⊗L(s)dx ≤ ε ∫X ∣∣s(x)∣∣2, for arbitrarily small
ε > 0.
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Finally, since the twisted Schroedinger-Lichnerowicz-Weitzenboeck formula
(obviously) applies to L2-spinors, one obtains, for example, as an application
of the ⊗ε-Twist Principle the following relative version of the Lichnerowicz’
theorem for k-dimensional manifolds from section 3.4, that, let us remind it,
says that

Â[X] ≠ 0⇒ Sc(X) ≯ 0 for closed spin manifolds X.
If a complete Riemannian orientable spin manifolds X (of dimension n+4k)

admits a proper λ -Lipschitz map f ∶X → Rn for some λ <∞, then the pullbacks
of generic points y ∈ Rn satisfy Â[f−1(y)] = 0.

This, in the case dim(X) = n, shows that
the existence of proper Lipschitz map X → Rn implies that infx Sc(X,x) ≤ 0.
This rules out, in particular, metrics with Sc > 0 on tori.
(See [GL(spin) 1980], [GL 1983], [Roe 2012] for further examples and refer-

ences.)
Remark. Recent regularization theorems by Lohkamp and Schoen-Yau al-

lows proof by means of minimal hypersurfaces with the advantage of dropping
the spin condition in certain cases. But analytic technicalities behind these
proofs are significantly more complicated than what is needed for the Dirac
operator proofs.

Besides – this is non-automatic and, geometrically, most amusing – a linear-
algebraic analysis of the L-curvature termR⊗L in the above twisted Schroedinger-
Lichnerowicz-Weitzenboeck formula, may lead to sharp geometric inequalities
for Riemannin manifolds X with Sc ≥ σ, such as Llarull’s, Min-Oo’s and Goette-
Semmelmann’s inequalities.

For instance, a certain sharp version of ⊗ε-Twisting Principle turns Lich-
nerowicz theorem to the following (see [Llarull 1998]).

If a complete Riemannian orientable spin manifolds X (of dimension n+4k)
with Sc(X) > n(n − 1) admis a locally constant at infinity 1 -Lipschitz map
f ∶X → Sn, then the pullbacks of generic points y ∈ Sn satisfy Â[f−1(y)] = 0.

(See sections 3.5, 4.5 and also 4.1.1 where we outline a functorial perspective
on such inequalities).

Notice that the spin condition is essential here if dim(X) > n, but it is,
probably, redundant in many cases, e.g. for equidimensional maps f .

What is even more annoying is compactness or, at least, completeness of
manifolds, where Dirac operators reside. 43

But at the present day, Llarull’s and similar sharp, and certain non-sharp,
inequalities with scalar curvature, remains beyond of what can be achieved with
the geometric measure theory.

Remark/Question. Llarull’s inequality in conjunction with the relative index
theorem shows that

if a complete orientable spin n-manifold X admits an area contracting locally
constant at infinity (i.e. outside a compact subset) map f ∶ X → Sn, which has
non-zero degree, and if the scalar curvature of X on the support of the differential
of f (where df ≠ 0) is bounded from below by that of Sn,

inf
s∈supp(df)

Sc(X,x) ≥ n(n − 1),

43Albeit indirectly, Dirac operators do apply to scalar curvature problems on manifolds with
boundaries, as we shall see in the next section and in section 4.6.
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then X can’t have uniformly positive scalar curvature,

inf
x∈X

Sc(X,x) ≤ 0.

However, since the relative index theorem needs uniformly positive scalar
curvature at infinity,

it remains unclear if, in fact, X can’t even have non-negative scalar curva-
ture, that is if

inf
s∈X

Sc(X,x) < 0.

(Possibly, the argument from [Cecchini 2018] may be useful here, also see
section 4.6)

⊗ε-Problem. Can one turn ⊗ε-Twisting Principle to a ⊗ε-theorem?
At the present moment, an application of the⊗ε-principle necessitates track-

ing step by step, let it be in a purely mechanical/algorithmic fashion, a particular
Dirac theoretic argument, rather than a direct application of this principle to
the conclusion of such an argument.

What, apparently, happens here is that the true outcomes of Dirac operator
proofs are not the geometric theorems they assert, but certain linearized/hilbertized
generalization(s) of these, possibly, in the spirit of Connes’ non-commutative ge-
ometry.

To understand what goes on, one needs, for example, to reformulate (re-
prove?) Llarull’s, Min-Oo’s and Goette-Semmelmann’s inequalities in such a
"linearized" manner.

Twists with non-Unitary Bundles. Available (rather limited) results con-
cerning scalar curvature geometry of manifolds X, which support almost flat
non-unitary bundles and of (global spaces of possibly) non-linear fibrations with
almost flat connections over X, are discussed in section 6.4.

Flat or Almost Flat? Lusztig’s approach to the Novikov conjecture via
the signature operators twisted with (families of) finite dimensional non-unitary
flat bundles was superseded, starting with the work by Mishchenko and Kas-
parov, by more general index theorems, for infinite dimensional flat unitary
bundles.

Then it was observed in [GL(spin) 1980] and proven in a general form in [Ros
1984]) that all these results can be transformed to the corresponding statements
about Dirac operators on spin manifolds, thus providing obstructions to Sc > 0
essentially for the same kind of manifolds X, where the generalized signature
theorems were established.

Besides following topology, the geometry of the scalar curvature suggested
a quantitive version of these topological theorems by allowing twisted Dirac
and signature operators with non-flat vector bundles with controllably small
curvatures, thus providing geometric information on X with Sc ≥ σ > 0, which
complements the information on pure topology of X.

At the present moment, there are two groups of papers on twisted (sometimes
untwisted) Dirac operators on manifolds with Sc > σ.

The first and a most abundant one goes along with the work on the Novikov
conjecture, where it is framed into the KK-theoretic formalism.

A notable achievement of this is
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Alain Connes’ topological obstruction for leaf-wise metrics with Sc > 0
on foliations,

where
a geometric shortcut through the KK-formalism of Connes’ proof is unavailable
at the present moment.
Another direction is a geometrically oriented one, where we are not so much

concerned with the K-theory of the C∗-algebras of fundamental groups π1(X),
but with geometric constraints on X implied by the inequality Sc(X) ≥ σ.

This goes close to what happens in the papers inspired by the general rela-
tivity, where one is concerned with specified (and rather special, e.g. asymptot-
ically flat) geometries at infinity of complete Riemannian manifolds and where
one plays, followingWitten and Min-Oo, with Dirac operators, which are asymp-
totically adapted at infinity to such geometries. (In this context, the Schoen-Yau
and the related methods relying of the mean curvature flows are also used.)

In the present paper, we are primarily concerned with geometry of manifolds,
while topology is confined to an auxiliary, let it be irreplaceable, role.

3.11.2 Roe’s Translation Algebra and Dirac Operators on Complete
Manifolds with Compact Boundaries

C∗-algebras bring forth the following interesting perspective on coarse geometry
of non-compact spaces proposed by John Roe following Alain Connes’ idea of
non-commutative geometry of foliations.

Given a metric space Ξ, e.g. a discrete group with a word metric, let T =

Tra(Ξ) be the semigroup of translations of M that are maps τ ∶ Ξ → Ξ, such
that

sup
ξ∈Ξ

dist(ξ, τ(ξ)) <∞.

The (reduced) Roe C∗-algebra R∗(Ξ) is a certain completion of the semi-
group algebra C[T ]. For instance if Ξ is a group with a word metric for which,
say the left action of Ξ on itself is isometric, then the right actions lie in T and
R∗(Ξ) is equal to the (reduced) algebra C∗(Ξ).44

Using this algebra, Roe proves in [Roe 1996], (also see [Hig 1991], [Roe 2012])
a partitioned index theorem, which implies, for example, that.
� the toric half cylinder manifold X = Tn−1 ×R+ admits no complete Rie-

mannin metric with Sc ≥ σ > 0.45

The subtlety here is twofold:
(i) the presence of non-empty boundary which is poorly tolerated by Dirac op-

erators,
(ii) the metric on this X may (can it if Sc ≥ sigma > 0 at infinity?), similarly to

the hyperbolic metric dr2 + e−2rdt2, exponentially (even super-exponentially, if you
wish) contracts at infinity.

Notice, that � can be also proved with the techniques of minimal hyper-
surfaces and/or of stable µ-bubbles.

44"Reduced" refers to a minor technicality not relevant at the moment. A more serious
problem – this is not joke – is impossibility of definition of "right" and "left" without an
appeal to violation of mirror symmetry by weak interactions.

45I must admit I haven’t fully understood Roe’s argument.
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In fact, the 2π
n

-inequality from section 3.7 implies that the scalar curvature
on T1 ×R+

not only approaches zero for r →∞ but it must decay quadratically fast.
(Compare with corollary in section 3.7 and exercise (a) in 5.2.)

But the Dirac theoretic proof of� reveals certain geometric features of the
scalar curvature, which are non-detectable by minimal hypersurfaces and which
are interesting in their own rights.

(Unlike C∗-algebraically and K-theoretically oriented papers on scalar cur-
vature, which are focused on non-existence theorems for Sc > 0, these theorems
serve only a preparatory purpose in the geometric picture we develop in these
lectures.)

Also notice in this regard that if X is sufficiently "thick at infinity", then
� follows by a simple argument with twisted Dirac operators and the standard
bound on the number of small eigenvalues in the spectrum of the Laplace (or
directly of the Dirac) operator in vicinity of ∂X, which applies to all manifolds
with boundaries and which yields, in particular, (see sections 4.5, 4.6?????) the
following.
� Let X be a complete oriented Riemannin spin n-manifold with compact

boundary, such that
there exists a sequence of smooth area decreasing maps fi ∶X → Sn, which are

constant in a (fixed) neighbourhood V ⊂ X of the boundary ∂X as well as away
from compact subsets Wi ⊂ V , and such that

deg(fi) →
i→∞

∞.

Then the scalar curvature of X satisfies

inf
x∈X

Sc(X,x) ≤ n(n − 1).

Conclude by formulating the following.
Coarse D-Spectrum Conjecture. Let X̂ be a complete uniformly contractible

Riemannian manifold, i.e. there exists a function R(r) ≥ r, such that the ball
Bx̂(r) ⊂ X̂, x ∈ X, of radius r is contractible in the concentric ball Bx̂(R(r)) for
all x̂ ∈ X̂ and all radii r > 0.

Then the spectrum of the Dirac operator on X̂ contains zero.
This conjecture, as it stands, must be, in view of [DRW 2003], false, but

finding a counterexample becomes harder if we require the bounds vol(Bx̂(r)) ≤
exp r for all x̂ ∈ X̂ and r > 0.

3.12 Foliations With Positive Scalar Curvature
According to the philosophy (supported by a score of theorems) of Alain Connes
much of the geometry and topology of manifolds with discrete group actions,
notably, those concerned with index theorems for Galois actions of fundamen-
tal groups on universal coverings of compact manifolds, can be extended to
foliations.

In particular, Connes shows in [Con 1986] that compact manifolds X which
carry foliations L with leaf-wise Riemannin metrics with positive scalar curva-
tures behave in many respects as manifold which themselves admit such metrics.
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For instance,
⋆ if L is spin, i.e. the tangent (sub)bundle T (L ) ⊂ T (X) of such an L is

spin,then,
by Connes’ theorem, Â[X] = 0.
This generalises Lichnerowicz’ theorem from section 3.4. for oriented spin

manifolds of dimensions n = 4k , where, recall, Â[X] is the value of a certain
rational polynomial Â(pi) in the Pontryagin classes pi ∈H4i(X ∶ Z) (see section
4.1) on the fundamental homology class [X] ∈Hn(X).46

In fact, the full Connes’ theorem implies among other things
vanishing of the ⌣-products of the Â-genus Â(pi), j = 0,1, ..., k = n

4
, with

all polynomials in the Pontryagin classes of the "normal" bundle T ⊥(L ) =

T (X)/T (L ), in the case where L is spin.
Connes’ argument, which relies on Connes-Scandalis longitudinal index the-

orem for foliations), delivers a non-zero almost harmonic spinor on some leaf of
L and an alternative and simpler proof of the existence of such spinors under
suitable conditions was given in [BM 2018], where L , besides being spin, is
required to have Hausdorff homotopy groupoid.47

Another simplified proof of (a part of) Connes’ theorem was also suggested
in [Zhang 2016], where the manifold X itself, rather than the tangent bundle
T (L ) is assumed spin 48 and where the existence of almost harmonic spinor is
proven on some auxiliary manifolds associated with X.

One can get more mileage from the index theoretic arguments in these papers
by applying the ⊗ε-Twisting Principle (see the previous section), but this needs
honest checking all steps in the proofs in there. This was (partly) done in [BM
2018] and in [Zhang 2018] in the context of the index theorems used by the
authors in their papers.

Also I recall going through Connes’ paper for this purpose long time ago
and deriving the following proposition by applying this principle to Connes’
argument (see §9 2

3
in [G(positive) 1996]).

Closed manifolds X with infinite K-waist2 (called "K-area" in [G(positive)
1996]) , e.g. tori Tn, carry no spin foliations which admit leaf-wise Riemannin
metric with Sc > 0.

Since my memory is uncertain at this point, I wouldn’t claim this as a proven
result, but rather formulate a geometrically more attractive conjecture that also
must follow from ⊗ε-Twisting Principle applied to Connes’ argument.

Sharp Foliated ⊗ε-Twisting Conjecture. Let X be a complete oriented n-
dimensional Riemannin manifold with a smooth m-dimensional, 2 ≤ m ≤ n, spin
foliation L , such that the induced Riemannin metrics on the leaves of L have
their scalar curvatures > n(n − 1).

Then X admits no smooth area decreasing locally constant at infinity map
f ∶X → Sn with deg(f) ≠ 0.

46By definition, the values of the pi-monomials Pd =⌣j pij ∈ Hd(X), 4∑i ij = d, on [X]
equals zero for all d ≠ n.

47One finds a helpful explanation of the meaning this condition in [Con 1983] and in the
lectures [Mein 2017].

48In the ambience of Connes’ arguments [Con 1986], these two spin conditions reduce one
to another.
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All of the above, however, leaves the following question open.
[⋆?] Let (X,g) be a (possibly non-complete) Riemannin n-manifold with a

smooth foliation, such that scalar curvature of the induced metric on the leaves
satisfies Sc ≥ σ > 0.

Does the product of X by a Euclidean space, X ×RN , admit an RN -invariant
Riemannin metric g̃, such that Sc(g̃) ≥ σ and the quotient map (X ×RN , g̃)/RN →
(X,g) is 1-Lipschitz, or, at least, constn-Lipschitz?

(See §1 7
8

in [G(positive) 1996] and section 6.3 for partial results in this
direction based on the geometry of Connes’ fibrations.)

Notice that even the complete (positive) resolution of [⋆?] wouldn’t yield the
entire Connes’ vanishing theorem from [Con 1986], nor would this fully reveal
the geometry of foliated Riemannian manifolds X with scalar curvatures of the
leaves bounded from below.

For instance,
do compact Riemannian n-manifolds with constant curvature −1 admit k-dimensional

foliations, 2 ≤ k ≤ n − 1, such that the scalar curvatures of the induced Riemannian
metrics in the leaves are bounded from below by −ε for a given ε > 0?

3.13 Scalar Curvature in Dimension 3
If n ≥ 4, then then all known bounds on the size of n-manifolds X with
Sc(X) ≥ σ > 0 are expressed by non-existence of "topologically complicated
but geometrically simple" maps from these X to "standard manifolds" X.

But if n = 3 the following two more satisfactory results are available.
Let X be a complete Riemannin 3-manifold with scalar curvature ≥ 6 = Sc(S3).
Then
A. There exists a continuous map f ∶ X → P 1, where P is a 1-dimensional

polyhedral space (topological graph) such that the diameters of the pullback of
all points are bounded by

[width3−2] diam(f−1
(p)) ≤ 2π

√
6.

B. If X is homeomorphic to S3, R3, S2×R or S2×S1 then there exists a map
Φ ∶ S2 × T → X, where, either T = R or T = S1 of degree 149 and such that the
areas (counted with multiplicities if you wish) of the images Φ(S2 × {t}, t ∈ S1

satisfy

[waist3−2] area(Φ(S2
× {t}) ≤ 4π.

Remarks and Conjectures. (a) The proof of A (corollary 10.11 in [GL 1983])
relies on stable minimal surfaces in X, while B follows from the Marques-Neves
estimate in [MN 2011] on the areas of surfaces with Morse index 1.

(b) The inequality [waist3−2], unlike [width3−2], is sharp, with the equality
for the unit sphere S3.

49If T = R then "degree 1" here presupposes here that there are at most two points in X,
such that if a compact subset C ⊂ X doesn’t contain either of these points, then the pullback
Φ−1(C) ⊂ S2 × T is compact.
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(c) The factor
√

6 in [width3−2] is, probably redundant, but even without
this factor it wouldn’t look as pretty as [waist3−2].50

(d) Proposition A, as it stands, (obviously) fails to be true for compact
manifolds X with non-empty boundaries but, by the argument in §10 from [GL
1983], it remains valid for the part of X within distance d > 2

√
6π from the

boundary .
(e) Conjecturally, all complete n-manifolds X with Sc(X) ≥ n(n − 1) admit

continuous maps to polyhedral spaces of dimension n− 2, say, F ∶X → Pn−2, such
that

diam(F −1
(p)) ≤ constn and voln−2(F

−1
(p)) ≤ const′n for all p ∈ Pn−2.

Probably, this can be shown for n = 3 by combining the arguments from [GL
1983] and [MN 2011].

For instance if X is a connected sum of copies of S2 × S1, then it can’t
be "sliced" entirely by spheres but, this becomes possible if we allow singular
slices homeomorphic to joins of spheres S2 ⋆ S2. However, it is not obvious if
Sc(X) ≥ 6 would allow such a slicing with the areas of the slices bounded by 4π
or some other constant for this matter.

(d) Let X be a complete Riemannin n-manifolds with a 3-dimensional foli-
ation such that the scalar curvature of the induced leaf-wise metric is bounded
from below by 6.

Does X admit a continuous map F ∶ X → Pn−2 with diam(F −1(p)) ≤ constn,
p ∈ Pn−2?

(If so, this would provide yet another geometric proof of ???? [⋆] from the
previous section for 3-dimensional foliations.)

Penrose Inequality. Start with recalling that
the (space slice of the) Schwarzschild metric with mass m

is defined on R3 minus the origin in polar coordinates as

gSwm = gSw = (1 +
ρ

r
)

4

gEucl, for ρ = ρm = m
2
,

and that the
scalar curvature of this metric is zero

by the conformal change formula from section 2.6.
Since the function s(r) = r2 (1 + ρ

r
)

4
is invariant under the transformation

r ↦
ρ2

r
,

this gSw is invariant under the (conformal) reflection of R3 around the sphere
S2(Rm) ⊂ R3 of radius ρ = m

2
, that is

(s, r)↦ (s,
ρ2

r
) .

50The inequality [width3−2] says that X can be "sliced" by surfaces of small diameters,
but it doesn’t tell anything about topologies and/or areas and intrinsic diameters of thees
surfaces.
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Thus the sphere S(ρ) is totally geodesic in geometry of gSw with area

areagSw(S(ρ) = πρ
2
(1 +

ρ

ρ
)

4

= 16πm2.

In 1973 Penrose formulated in [Pen 1973] a conjecture concerning black holes
in general relativity with an evidence in its favour, that would, in particular
imply the following.

Special case of the Riemannian Penrose Inequality. Let X be complete Rie-
mannin 3-manifolds with compact boundary Y = ∂X, such that

● X is isometric at infinity to the Schwarzschild space of mass m at one of its
two ends at infinity;

● the scalar curvature of X is everywhere non-negative: Sc(X) ≥ 0;
● the boundary Y of X has zero mean curvature;51

● no minimal surface in X separates a connected component of Y from infinity.
Then the area of Y = ∂X is bounded by the mass of the Schwarzschild space

as follows.52

area(Y ) ≤ 16πm2.

.
This, in a greater generality was proven by Hubert Bray in [Bray 2009].
On Geometric Meaning of Mass. The Schwarzschild metric at infinity fast

approaches the Euclidean metric, where the greater the mass the slower is the
growth rate of this metric.

To get a rough idea, let is compare gSw with the conical metrics

ga = a
2
⋅ r2ds2

+ dr2.

If a < 1 these metrics have positive scalar curvatures (zero for a = 1) and if you
compare them with gSw these have infinite masses, and would violate any kind
of Penrose-like inequality.

But if a > 1, then these ga have masses −∞ and one can show, e.g. using the
bound on RadS2 from section 3.6 for suitable surfaces at infinity, that such a
fast growth rate of general Riemannian manifolds is incompatible with Sc > 0.

Moreover, the positive mass theorem says that even finite but negative mass
of an asymptotically Euclidean metric needs a bit of negativity in its scalar
curvature.

But I must admit I haven’t thought through further the geometric meaning
of what physicists call "mass" in general relativity.

3.14 Scalar Curvature in Dimension 4
The simplest examples of 4-manifolds where non-existence of metrics with Sc >
follows from non-vanishing of Seiberg-Witten invariants are complex algebraic
surfaces X in CP 3 of degrees d ≥ 3. (If d is even and these X are spin, this also
follows from Lichnerowicz’ theorem from section 3.4.)

51It suffices to assume that the the boundary is mean convex, i.e. its mean curvature relative
to the normal field pointing outward is positive.

52This version of the Penrose conjecture is taken from the modern literature. It is unclear,
at least to the present author, when, where and by whom an influence of positivity of scalar
curvature in 3D on geometry of surfaces, which was, probably, known to physicists since the
early 1970s (1960s?) was explicitly formulated in mathematical terms for the first time.
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In fact, it was shown by LeBrun (see [Sal 1999] and references therein) that
no minimal (no lines with self-intersections one) Kähler surface X admits a

Riemannin metric with Sc > 0, unless X is diffeomorphic to CP 2 or to a ruled
surface .

Furthermore, LeBrun shows in [LeB 1997] that
if such an X has Kodaira dimension 2, which is the case, for instance, for the

algebraic surfaces X ⊂ CP 3 of degree d ≥ 5, then
the total squared scalar curvature is bounded by the first Chern number of

X,

∫
X
Sc(X,x)2dx ≥ 32π2c2(X),

where, moreover this inequality is sharp.
One may only dream of this kind of a bound on ∫X Sc(X,x)

n
2 dx for a man-

ifolds X of dimension n > 4.
In fact the ideal bound, would be on ∫X ∣Sc−(X,x)∣

n
2 dx for Sc−(X,x)min(Sc(X,x).

Although one doesn’t expect anything comparable to the Seiberg-Witten
equations for n = dim(x) > 4, one wonders if some coupling between the twisted
Dirac D⊗L and an energy like functional in the space of connections in L may
be instrumental in the study of the scalar curvature of X.

For instance,
Let a closed orientable Riemannin n-manifold X admits a map of non-zero

degree to a closed locally symmetric manifold X with negative Ricci curvature, e.g.
with constant negative curvature.

Does then the scale invariant integral of the negative part of the scalar
curvature is bounded from below as follows:

∫
X

∣Sc−(g, x)∣
n
2 dx ≥ ∫

X
∣Sc(X,x)∣

n
2 dx?

(Three conjectures related to this one are formulated in section 3.10.)

3.15 Topology and Geometry of Spaces of Metics with
Sc ≥ σ.

Non-triviality of the homotopy types of metrics with positive scalar curvatures,
which was first proven by Nigel Hitchin in [Hit 1974], starts with the following
observation.53

Let a closed n-manifold X be decomposed as X− ∪X+ where X− and X+ are
smooth domains (n-submanifolds) in X with a common boundary Y = ∂X− =

∂X+ and where X∓ are equal to regular neighbourhoods of disjoint polyhedral
subsets P∓ ⊂X of dimensions n∓ such that n− + n+ = n − 1.

If n∓ ≤ n−2, then, by an easy elementary argument, both manifolds X− and
X+ admit Riemannin metrics, say g∓, such that

the restrictions of these g∓ to Y , call them h∓, both have positive scalar curva-
tures.

And if X admits no metric with positive scalar curvature, e.g. if X is
homeomorphic to the n-torus or to product of two Kummer surfaces, then h−

53Hitchin himself argued differently.
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and h+ can’t be joined by a homotopy of metrics with positive scalar curvatures.

Indeed, such a homotopy, ht, t ∈ [−1,+1] could be easily transformed to
a metric on the cylinder Y × [−1,+1] with positive scalar curvature and with
relatively flat boundaries isometric to (Y,h−) and (Y,h+), which would then
lead in obvious way to a metric on X = X− ∪ Y × [−1,+1] ∪X+ with Sc > 0 as
well.

This kind of argument combined with surgery with Sc > 0 and empowered
by index theorem(s) for Dirac operators leads, to the following results.

[HaSchSt 2014]. If m is much greater than k then the kth homotopy group
of the space of metrics with Sc > 0 on the sphere S4m−k−1 is infinite.

[EbR-W 2017]. There exists a compact Spin 6-manifold such that its space
of positive scalar curvature metrics has each rational homotopy group infinite
dimensional. 54

However, there is no closed manifold of dimension n ≥ 4, which admits a
metric with Sc > 0 and where the (rational) homotopy type, or even the set of
connected components, of the space of such metrics is fully determined.
55

Let us formulate two specific questions motivated by the following vague
one:

What is the "topology of the geometric shape" of the (sub)space of metrics
with Sc ≥ σ?

Question 1. Given a Riemannian manifold X and a pair of numbers
(λ,σ) ∈ R2

+, letG(X;X,λ,σ) be the space of pairs (g, f) where g is a Riemannian
metrics on a X with Sc(g) ≥ σ and f ∶X →X is a λ-Lipschitz map.

What is the topology and geometry of this space and of the natural embed-
dings

G(X;X,λ1, σ1)↩ G(X;X,λ2, σ2)

for λ2 ≥ λ1 and σ2 ≥ σ1.
Question 2. Let D be some natural distance function on the space G of

smooth Riemannin metrics g on a closed manifold X. For instance D(g1, g2)

may be defined as log of the infimum of λ > 0, such that

λ−1g1 ≤ g2 ≤ λg1.

Let Dσ(g) denote the D-distance from g ∈ G to the subspace of metrics
with Sc ≥ σ and D̃σ(g) be the D-distance from the diff(X)-orbit of g to this
subspace.

What are topologies, e.g. homologies, of the a-sublevels, a ≥ 0, of the func-
tions Dσ ∶ G→ [0,∞) and D̃σ ∶ G→ [0,∞) and of the inclusions

D−1
σ (0, a]↪D−1

σ (0, b], and D̃−1
σ (0, a]↪ D̃−1

σ (0, b] for b > a?

54It seems, judging by the references in [EbR-W 2017], that all published results in this
direction depend on the Dirac operator techniques which do not cover the above example, if
we take a Schoen-Yau-Schick manifold (see [G(inequalities) 2018 ]) for X.

55If n = 3 contractibility of this space, (if it is true) must follow from the known results on
the Ricci flow á la Perelman.
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3.16 Manifolds with Corners.
Most (all?) theorems concerning closed manifolds X with Sc ≥ σ and, more
visibly, manifolds with smooth boundaries Y = ∂X, have (some proven, some
conjectural) counterparts for Riemannin manifoldsX with corners at the bound-
ary,

where the mean curvature mean.curv(∂X) for the smooth part of ∂X plays
the role of singular/distributional scalar curvature supported on ∂X and where
the dihedral angles ∠ along the corners, or rather the complementary angles
π −∠, can be regarded as singular/distributional mean curvature supported on
the corners.

Below are two examples illustrating this idea.
Let X be a compact n-dimensional manifold with simple, also called cosim-

plicial, corners. This means that X is locally diffeomorphic at all points x ∈ X
to the positive cone Rn+ at some points x′ ∈ Rn+ , where an example of such an X
is the n-cube [0,1]n.

Call such an X semihyperbolic if whenever three 1-faces of X pairwise meet
then all three meet at some point in X.

Example. The n-cube is semihyperbolic but the n simplex, n ≥ 2, is not.
Semitopological ⌝-Reflection Rigidity Theorem. Let X be a semi-

hyperbolic manifold X of dimension n with corners, assume for safety sake that all
faces of X are contractible and let g be a Riemannin metric on X, such that

●n the scalar curvature of g is non-negative: Sc(g) ≥ 0;
●n−1 the mean curvatures of all (n − 1)-faces Fi of X are also non-negative :

mean.curvg(Fi) ≥ 0;
●n−2 The dihedral angles ∠ij of X at all points of all (n − 2)-faces, that are

intersection of certain (n − 1) faces Fi and Fj , satisfy ∠ij ≤
π
2
.

Then
Sc(X) = 0, mean.curv(Yreg) = 0, all α = π

2
and X itself admits a homeo-

morphism onto the n-cube [0,1]n, which sends the faces of X onto faces of the
cube.

About the Proof. This is shown by reflecting X around its (n − 1)-faces,
smoothing around the edges and applying the corresponding result for closed
manifolds as it was done in [G(billiard] 2014] for cubical X, and where the
general case needs an intervention of arguments from [G(inequalities) 2018],
where the (non-spin) case n ≥ 9 relies on [SY(singularities) 2017]. (Also see
section 5.6).

Remarks. (a) There is little doubt that ⌝-geometric rigidity also holds for
our X:

the conditions ●n, ●n−1, ●n−2 should imply that X is isometric to a rectan-
gular solid.

But there are several technical details (especially for n ≥ 4) still to settle in
the proof.

(b) The semitopological ⌝-rigidity for cubical (i.e. topologically isomorphic
to cubes) yields, by an elementary argument, the C0-closeness of spaces of met-
rics with Sc ≥ σ stated in section 3.1.

There are two major limitation to our ⌝:
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/1 the semihypebolicity condition rules out many promising spaces X, e.g.
those isomorphic to n-simplices;

/2 condition ●n−2 is unrealistically strong, e.g. for such X as planar k-gons
with k ≥ 5.

Below is an instance of where /1 is partly appeased.

×▲i-Inequality. Let X0 ⊂ Rn be a polytope, i.e. a convex compact polyhe-
dron with non-empty interior, and let X ⊂ Rn be diffeomorphic to X0.

Let all (n − 1)-faces Fi of X have positive mean curvatures, e.g. the subset
X ⊂ Rn is convex.

Let the dihedral angles between (the tangent spaces of) the faces Fi and Fj of
X at all points in the (n − 2)-faces where/if these faces meet, are bounded by the
corresponding dihedral angles of X0,

∠ij(X) ≤∠ij(X0).

If all dihedral angles of X0 are ≤ π
2
, then

∠ij(X) =∠ij(X0).

This is shown, by doubling and smoothing X0 and X and then applying
[X→b] (see section 4.3 and 4.4).

Remarks/Exercises. (a) The only polytopes with ∠ij ≤
π
2
are products of

simplices, such as the n-cubes [0,1]n, for example.
(b) If both X0 and X are affine n-simplices then the implication

∠ij(X) ≤∠ij(X0)⇒∠ij(X) =∠ij(X0)

follows from the Kirszbraun theorem with no need for the condition ∠ji ≤ π/2.

(c) There are cases where ×▲i-inequality is known to hold for certain
polytopes e.g. for k-gonal prisms, where (some) dihedral angles may be > π

2
(an

approach via minimal (hyper)surfaces is indicated in [G(billiards) 2014] and in
[Li 2017]) but this remains problematic in general even for simple n-polytopes,
where at most n faces of dimension n − 1 may meet at the vertices.

(d) It is unknown which pairs of combinatorially equivalent polytopes P and
P ′ (convex polyhedra) may have their corresponding dihedral angles satisfying
∠ij ≥∠

′
ij without all corresponding angles being mutually equal.56

Motivations for Corners. Besides opening avenues for generalisations of what
is known for smooth manifolds, Riemannin manifolds with corners and Sc ≥ σ
may do good to the following.

1. Suggesting new techniques, (calculus of variations, Dirac operator) for
the study of Euclidean polyhedra.

2. Organising the totality of manifolds with Sc ≥ 0 (or, more generally with
Sc ≥ σ) into a nice category (A∞-category?) P◻, that would include, as objects
manifolds Y with Riemannian metrics h and functions M on them and where

56Recently, Karim Adiprasito told me he proved that no convex polytope admits an in-
finitesimal deformation simultaneously decreasing all its dihedral angles.
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morphisms are (co)bordisms (h-cobordisms?) (X,g), ∂X = Y0 ∪ Y1, where g is a
Riemannian metric on X with Sc ≥ 0, which restricts to h0 and to h1 on Y0 and
Y1 and where the the mean curvature of Y0 with inward coorientation is equal
to −M0 while the mean curvature of Y1 with the outward coorientation is equal
to M1.

Conceivably, the [SY]-variational techniques for "flags" of hypersurfaces or
its generalisation(s), may have a meaningful interpretation in P◻, while a suit-
ably adapted Dirac operator method may serve as a quantisation of P◻.

3.17 Who are you, Scalar Curvature?
There are two issues here.

1. What are most general geometric objects that display features similar to
these of manifolds with positive and more generally, bounded from below, scalar
curvatures?

2. Is there a direct link between Dirac operators and minimal varieties or
their joint appearance in the ambience of scalar curvature is purely accidental?

Notice in this regards that there are two divergent branches of the growing
tree of scalar curvature.

A. The first one is concerned with the effects of Sc > 0 on the differential
structure of spin (or spinC) manifolds X, such as their α̂ and Seiberg-Witten
invariants.

B. The second aspect is about coarse geometry and topology of X with
Sc(X) ≥ σ, the (known) properties of which are derived by means of minimal
varieties and twisted Dirac operators; here the spin condition, even when it is
present, must be redundant.

To better visualise separation between A and to B, think of possible singular
spaces X with Sc(X) ≥ 0 corresponding to A and to B – these must be grossly
different.

For instance, if X is an Alexandrov space with (generalised) sectional cur-
vature ≥ κ > −∞ then the inequality Sc ≥ 0 makes perfect sense and, probably
most (all?) of B can be transplanted to these spaces. 57

But nothing, from spin on, of what we know of A makes sense in singular
Alexandrov spaces.

And if you start from the position of 2 you better go away from conventional
spaces and start dreaming of geometric magic glass ball with ghosts of harmonic
spinors and of minimal varieties dancing within.

In concrete terms one formulates two problems.
A. What is the largest class of spaces (singular, infinite dimensional ...) which

display the basic features of manifolds with Sc ≥ 0 and/or with Sc ≥ σ > −∞ and,
more generally, of spaces X, where the properly understood operator −∆+ 1

2
Sc(X)

is positive or, at least not too negative?
For instance, which (isolated) conical singularities and which singular volume

minimising hypersurfaces belong to this class?

57It seems, much of the geometric measure theory extends to Alexandrov spaces but it is
unclear what would correspond to twisted Dirac operators on these spaces.
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B. Is there a partial differential equation, or something more general, the solu-
tions of which would mediate between twisted harmonic spinors and minimal hyper-
surfaces (flags of hypersurfaces?) and which would be non-trivially linked to scalar
curvature?

Could one, as it was suggested in section 3.14, non-trivially couple the twisted
Dirac D⊗L with some equation EL on the connections in the bundle L the Dirac
operator in the spirit of the Seiberg-Witten equation?58

4 Dirac Operator Bounds on the Size and Shape
of Manifolds X with Sc(X) ≥ σ

4.1 Spinors, Twisted Dirac Operators, and Area Decreas-
ing maps.

The Dirac operator D on a Riemannin manifold X tells you by itself preciously
little about the geometry of X, but the same D twisted with vector bundles L
over X carries the following message:

manifolds with scalar curvature Sc ≥ σ > 0
can’t be too large area-wise.

Albeit the best possible result of this kind (due to Marques and Neves, see
B in section 3.13), which is known for X homeomorphic to S3, which says that
if Sc(X) ≥ 6 = Sc(S3), then X can be "swept over" by 2-spheres of areas ≤ 4π,
was proven by means of minimal surfaces, all known bounds on "areas" of
Riemannin manifolds of dimensions ≥ 4 depend on Dirac operators D twisted
(or "non-linearly coupled" for n=4) with complex vector bundles L over X with
unitary connections in L, where, don’t forget it, the very definition of D needs
X to be spin.

Recall (compare with section 3.11.1) that the twisted Dirac operator, denoted

D⊗L ∶ C
∞
(S⊗L)→ C∞

(S⊗L),

acts on the tensor product of the spinor bundle S → X 59 with L → X,
where it is related to the (a priori, positive Bochner Laplace) operator ∇2

⊗L =

∇2
⊗L = ∇∗

⊗L∇⊗L in the bundle S⊗L, by the twisted Schroedinger-Lichnerowicz-
Weitzenboeck formula

D2
⊗L = ∇2

⊗L +
1
4
Sc(X) +R⊗L,

where ∇⊗L denotes the covariant derivative operator in S ⊗ L and R⊗L is a
certain (zero order) operator which acts in the fibers of the twisted spin bundle
S⊗L and which is derived from the curvature of the connection in L.

58Natural candidates for EL are equations for critical points of energy-like functional on
spaces of connections, where, observe, L-twisted harmonic spinors s ∶ X → S ⊗ L themselves
minimize s↦ ∫X ⟨D⊗L(s(x))D⊗L(s(x)⟩dx.

59All you have to know about S(X) is that it is a vector bundle associated with the tangent
bundle T (X), which can be defined for spin manifolds X, where "spin" is needed, since the
structure group of S(X) is the double cover of the orthogonal group O(n) rather than O(n)
itself.
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If we are not concerned with the sharpness of constants, all we have to know
is that R⊗L is controlled by

∣∣R⊗L∣∣ ≤ const ⋅ ∣∣curv(L)∣∣

for const = const(n, rank(L)), where a little thought (no computation is needed)
shows that, in fact, this constant depends only on n = dim(X). (The actual
formula for R⊗L is written down in the next section, also see [MarMin 2012] for
further details and references.)

We regard a closed orientable even dimensional Riemannin manifold X area
wise large, if it carries a homologically substantial or essential bundle L over
it with small curvature, where "homologically substantial" signifies that some
Chern number of L doesn’t vanish. It is easy in this case60 that there exists an
associated bundle L∧, such that

∣curv∣(L∧) ≤ constn∣curv∣(L)

and such that the Chern character in the index formula guaranties non-vanishing
of the cup product Â(X) ⌣ Ch(L∧) evaluated at [X],

(Â(X) ⌣ Ch(L∧))[X] ≠ 0

and, thus, by Atiyah-Singer theorem, the presence of non-zero harmonic twisted
spinors: sections s of the bundle S⊗L∧ for which D⊗L∧(s) = 0.

If the dimension n of X is odd, the above applies to X ×S1 for a sufficiently
long circle S1.

For instance, n-manifolds, which admit area decreasing non-contractible
maps to spheres Sn(R) of large radii R are area wise large, where the rele-
vant bundles L are induced from non trivial bundles over the spheres. (One
may take L∧ = L for these L.)

But if the scalar curvature of X is ≥ σ for a large σ > 0, where this "large"
properly matches the above "small", then by the Schroedinger-Lichnerowicz-
Weitzenboeck formula the operator D⊗L∧ is positive and no such harmonic
twisted exists; therefore, a suitably defined "area"(X) must be bounded by
const
σ

. (See the next section for a definition of this "area".)
(Recall that

Â(X) = 1 −
1

24
p1 +

1

5760
(−4p2 + 7p2

1) + ... ∈H
∗
(X)

is a certain polynomial in Pontryagin classes pi ∈H4i(X) of X and

Ch(L) = rankC(L) + c1(L) +
1

2
(c1(L)

2
− 2c2(L)) + ... ∈H

∗
(X)

is a polynomial in Chern classes ci(L) ∈ H2i(X) of L, while [X] ∈ Hn(X)

denotes the fundamental class of X.
If n = dim(X) is even, the spin bundle S naturally splits, S = S+ ⊕ S−, the

operator D⊗L also splits: D⊗L = D+⊗L ⊕D
−
⊗L, for

D
±
⊗L ∶ C

∞
(S± ⊗L)→ C∞

(S∓ ⊗L)
60See (L∧) in section 4.1.3 and references therein.
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and the index formula reads:

ind(D±⊗L) = ±(Â(X) ⌣ Ch(L))[X].)

Relative Index Theorem on Complete Manifolds. Let X be a complete Rie-
mannin manifold the scalar curvature of which is uniformly positive at infinity.
Then the Schroedinger-Lichnerowicz-Weitzenboeck formula implies that

the Dirac operator is positive at infinity, i.e. outside some compact subset
V ⊂X:

∫
X
⟨D

2s(x), s(x)⟩dx ≥ ε∫
X

∣∣s(x)∣∣2dx

for some ε = ε(X) > 0 and all L2-spinors s supported outside V . This (easily)
implies, in turn, that the operators D± are Fredholm but the indices of these
operators depend on delicate information on geometry of X at infinity and no
simple formula for ind(D±) is available.

However if there are two operators D1 and D2, which are equal at infinity,
e.g. D+⊗L, and D

+
⊗∣L∣, where L→X is a bundle with a unitary connection, where

∣L∣ is the trivial bundle of rank k = rankCL over X and where L comes with an
isometric connection preserving isomorphism with ∣L∣ at infinity, as in section
3.11.1, then the difference of their indices – both are Fredholm for the same
reason as D±– satisfy the Atiyah-Singer formula:

ind(D+⊗L) − ind(D
+
⊗∣L∣) = (Â(X) ⌣ (Ch(L) −Ch∣L∣))[X].

where,

Ch(L) −Ch∣L∣ = c1(L) +
1

2
(c1(L)

2
− 2c2(L)) + ...

is understood as a cohomology class with compact supports and [X] is the
fundamental homology class with infinite supports.

More generally, if Di = D⊗Li , i = 1,2, where L1 is equated with L2 at infinity,
then

ind(D+1 ) − ind(D
+
2 ) = (Â(X) ⌣ (Ch(L1) −Ch(L2))[X],

where one needs the operators Di be positive at infinity.
The proof of this can be obtained by adapting any version of the local proof

of the compact Atiyah-Singer theorem (see (see [GL 1983], [Bunke 1992], [Roe
1996]).

Namely, the index is represented by the difference of the traces of families
of auxiliary operators K+

1,t −K
+
2,t and K

−
1,t −K

−
2,t, t > 0, where

(i) these K...,t-operators are given by continuous kernels K...,t(x, y) which are
supported in the t-neighbourhood of the diagonal in X × X, i.e. where

dist(x, y) ≤ t;
(ii) K±

1,t(x, y) =K
±
2,t(x, y) for x and y in the complement of a compact subset

Vt ⊂X, where Vt1 ⊂ Vt2 for t2 > t1 and where ⋃t Vt =X;

(iii) trace(K+
1,t −K

+
2,t)− trace(K

1
1,t −K

1
2,t) = (Â(X) ⌣ (Ch(L1)−Ch(L2))[X];

for all t > 0;
(iv) the operators K±

i,t, i = 1,2, weakly converge61 for t→∞ to the projection

61The corresponding functions K...,t(x, y) uniformly converge on compact subsets in X×X.
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operators on the kernels of D±i.
The quickest way to get such K...,t is by taking suitable functions ψt of the

corresponding Dirac operators, where the Fourier transforms of ψt have compact
supports, and where (as in all arguments of this kind) the essential issue is the
proof of uniform bounds on the traces of the operators K±

1,t −K
±
2,t for t→∞.62

4.1.1 Negative Sectional Curvature against Positive Scalar Curva-
ture.

A characteristic topological corollary of the above is as follows.
[κ ≤ 0] ; [Sc ≯ 0]: If a closed orientable spin n-manifold X admits a

map to a complete Riemannin manifold X with sect.curv(X) ≤ 0,

f ∶X →X,

such that the homology image f∗[X] ∈Hn(X;Q) doesn’t vanish, then X admits
no metric with Sc(X) > 0.

Two Words about the Proof. All we need of sect.curv ≤ 0 is the existence of
distance decreasing maps from the universal covering of X to (large) spheres,

Fx ∶X → Sn(R), n = dim(X), x ∈X,

which can be (trivially) obtained with a use of inverse exponential maps

exp−1
x ∶ X̃ → Tx(X), x ∈X.

To make the idea clear, let X be compact, the fundamental group of X be
residually finite, (e.g. X having constant sectional curvature or, more generally
being a locally symmetric space) and X be embedded to X.

Let X⊥ ⊂ X be a closed oriented submanifold of dimension m = n − n for
n = dim(X), which has non-zero intersection index with X ⊂X.

Also assume that the restriction of the tangent bundle of X to X⊥ ⊂ X is
trivial.

Then – this is rather obvious – there exist finite covers X̃i → X, such that
the products of the lifts (i.e. pull-backs) of X and of X⊥ to X̃i, denoted X̃i×X̃

⊥
i ,

admit smooth maps to the spheres of radii Ri,

Fi ∶ X̃i ×X
⊥
i → Sn(Ri),

where
●1 Ri →∞,
●2 deg(Fi) ≠ 0,
● the maps Fi are distance decreasing on the fibers X̃i × x

⊥ for all x⊥ ∈ X⊥i
for the Riemannian metric in these fibers induced by the embedding X̃i × x

⊥ =

X̃i ⊂ X̃i.
It follows that for arbitrary Riemannin metrics g and g⊥ on X and on X⊥

there exists (large) constants λ and C independent of i, such that
62Specific bounds for particularK...,t are crucial for an (approximate) extension of the index

theory to non-complete manifolds (e.g. needed for the problem discussed in sections 4.6) but
these bounds are often buried in the K-theoretic formalism of the recent papers. Also, I must
admit, this point was not explained (overlooked?) in the exposition of Roe’s argument in my
paper [G(positive) 1996].
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the maps Fi are C-Lipschitz with respect to the sum of the lift of the metric g
to X̃i and the lift of λ ⋅ g⊥ to X̃⊥i that is the metric

g̃i ⊕ λ ⋅ g̃
⊥
i on X̃i × X̃

⊥
i .

If Sc(g) ≥ σ > 0, then also Sc(g̃i ⊕ λ ⋅ g̃⊥i ) ≥ σ′ > 0 for all sufficiently large
λ, which, for large Ri, rules out non-zero harmonic spinors on X̃i × X̃

⊥
i twisted

with the bundle L∗ = F ∗
i (L) induced from any given bundle L on Sn.

But if n = 2k and the Chern class ck(L) is non-zero, then non-vanishing of
deg(Fi) implies non-vanishing of of ind(D⊗L) via the index formula and the
resulting contradiction delivers the proof for even n and the odd case follows
with X × S1.

Remarks. This argument, which is rooted in Mishchenko’s proof of Novikov
conjecture for the fundamental group of the above X, which was adapted to
scalar curvature in [GL 1983]) and further [generalized/formalised in [CGM
1993], doesn’t really need compactness of X, residual finiteness of π1(X) and
triviality of T (X)∣X⊥. Beside, the spin condition for X can be relaxed to that
for the universal cover of X.

Moreover, since the bound on the size of X̃i ×Tn−n by const√
σ

can be obtained
with the use of minimal hypersurfaces (see §12 in [GL 1983]), [G(inequalities)
2018] and section 5.4) the spin condition can be dropped altogether.

Question. Are there other topological non-spin obstructions to Sc > 0?
For instance, is the following true?
Conjecture. Let X be a closed orientable Riemannin n-manifold, such that

no closed orientable n-manifold X ′ which admits a map X ′ → X with non-zero
degree admits a metric with Sc > 0. Then there exists an integer m and a sequence
of maps

Fi ∶ X̃ ×Rm → Sn+m(Ri),

where X̃ is some (possibly infinite) covering of X, such that
● the maps Fi are constant at infinity and they have non-zero degrees,
● Ri →∞,
● the maps Fi are distance decreasing on the fibers X̃ × x⊥ for all x⊥ ∈ Rm.
Apparently, there is no instance of a specific homotopy class X of closed

manifolds X of dimension n ≥ 5, where a Dirac theoretic proof of non existence
of metrics with Sc > 0 on all X ∈ X couldn’t be replaced by a proof via minimal
hypersurfaces.

(This seems to disagree with what was said concerning ⊗∧ω at the end of
section 2.7.

In fact the general condition for Sc ≯ 0 in ⊗∧ω, can’t be treated, not as
it stands, with minimal hypersurfaces, but this may be possible in all specific
examples, where this condition was proven to be fulfilled.)

And it is conceivable when it comes to the Novikov conjecture, that its va-
lidity in all proven specific examples, can be derived by an elementary argument
from the invariance of rational Pontryagin classes under ε-homeomorphisms.63)

63The original proof of topological invariance of Pontryagin classes by Novikov, as well as
simplified versions and modifications of his proof in [G(positive) 1996) automatically apply to
ε-homeomorphisms and, sometimes, of homotopy equivalences
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But even though the relevance of twisted Dirac theoretic methods is question-
able as far as topological non-existence theorems are concerned, these methods
seem irreplaceable when it comes to geometry of Sc ≥ σ as we shall see presently.

4.1.2 Global Negativity of the Sectional Curvature, Singular Spaces
with κ ≤ 0, and Bruhat-Tits Buildings.

The non-existence theorem [κ ≤ 0] ; [Sc ≯ 0] from the previous section
generalizes to singular spaces X with κ(X) ≤ 0,roughly as follows.

In fact, an essential feature of complete simply connected (non-singular)
manifolds X with κ ≤ 0 64 is as follows,

[↺ε] Self-contraction Property. X admits a family of proper ε-Lipschitz
selfmaps φε ∶X →X, for all ε > 0, where these maps are properly homotopic to
the identity map id. 65 This property implies the existence of proper Lipschitz
maps X → Rn of degree one, but unlike the latter it makes sense for singular
spaces that are not topological manifolds or pseudomanifolds.

On the other hand, if a possibly singular, say finite dimensional polyhedral
space X has this property↺ε, then there exists a manifold X+

⊃X, which also
satisfies↺ε, where the most transparent case is that of spaces X which come
with free isometric actions by discrete groups Γ with compact quotients X.

To derive X+ from X in this case, embed X/Γ ↪ RN , take a small regular
neighbourhood U ⊂ RN of X+

/Γ ⊂ RN and let Ũ → U . be the universal covering
of U .

Then this Ũ with a suitably blown-up metric serves for X+, where the sim-
plest such blow up is achieved by multiplying the (locally Euclidean) metric in
Ũ by the function 1

dist(ũ,∂U) .

In fact, what is truly needed for the non-existence argument, and what is
satisfied by complete simply connected spaces X with κ < 0 is the following
parametric version of [↺ε].

[↺ε↺ε]. There exist a continuous map Φε ∶ X ×X → X with the following
properties.

●ε the maps φε,x0
= Φε ∶X = x0×X →X are proper ε-Lipschitz for all x0 ∈X

and all ε > 0;
●n the restrictions of these maps φε,x0

∶ X → X to the n-skeleton X(n)
⊂ X

are proper homotopic to the inclusions X(n)
⊂X;66

●Γ the family φε,x0
is equivariant under the isometry group of X:

if γ ∶X →X is an isometry, then

φε,γ(x0) = γ ○ φε,x0
.

The above argument combined with that in the previous section yields the
following generalization of the non-existence theorem [κ ≤ 0] ; [Sc ≯ 0].

64The only geometric feature of the space X with κ ≤ 0 (these often come under heading of
CAT(0)-spaces) needed here is (something less than) strict geodesic convexity of the balls in
X .

65See [G(large) 1986] for more about such manifolds.
66Here we assume that X is triangulated and n denotes the dimension of a manifold X we

are going to map to X;
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[κ ≤ 0]global ; [Sc ≯ 0]: If a complete Riemannian spin manifold X̃ of
dimension n with a discrete (not necessarily free) co-compact isometric action of
a group Γ admits a proper Γ-equivariant map to an X which satisfies↺ε↺ε,
then infx(Sc(X,x) ≤ 0.

Corollary. Let Γ be a finitely generated subgroup in the linear groupGLN(C),67

let X be a compact oriented Riemannin spin n-manifold with Sc(X) > 0 and
let f ∶ X → B(Γ) be a continuous map, where B(Γ) denotes the classifying
(Eilenberg MacLane) space of Γ.

Then the image
f∗[X]Q ∈Hn(B(Γ);Q)

of the rational fundamental class

[X]Q ∈Hn(X;Q) for f∗ ∶H∗(X;Q)→H∗(B(Γ);Q)

is zero.
Proof. A finite index subgroup in Γ freely,68 discretely and isometrically acts

on the product X of Riemannian symmetric spaces and Bruhat-Tits buildings,
where such products, according to Bruhat-Tits are

complete simply connected polyhedral space with κ(X) ≤ 0.
Since↺ε↺ε apply to such spaces, the proof of the corollary follows.

Historical Remark. A.D. Alexandrov and H. Busemann, who suggested (two
somewhat different) definitions of κ ≤ 0 applicable to singular metric spaces, and
their followers focused on essentially local geometric properties of these spaces
X, and tried to alleviate effects of singularities by adding extra assumptions on
X.

The theory of κ ≤ 0 has acquired a global mathematical status with the
discovery of Bruhat-Tits buildings. (Bruhat and Tits independently developed
the local and global theory of their spaces being unaware of definitions of κ ≤ 0
suggested by differential geometers.)

This has eventually led to the modern perspective on CAT(0)-spaces, i.e.
those with κ ≤ 0, the main interest in which is due to a multitude of signifi-
cant examples of singular CAT(0)-spaces with interesting fundamental groups
inspired by the ideas behind the construction(s) and applications of the Bruhat-
Tits buildings

Hyperbolic Remark. "ε-Lipschitz" in the theorem [κ ≤ 0]global ; [Sc ≯ 0]
is only needed on the large scale, that is expressed by the inequality

dist(fε,x0(x1), fε,x0(x2)) ≤ εdist(x1, x2) + const.

Thus, for instance,
the non-existence conclusion for metrics with Sc > 0 on X applies, where X is

the Rib complex of a hyperbolic group.
It follows, that the conclusion of the above corollary holds for hyperbolic

groups Γ:
67One may place here any field instead of C.
68Finite index was needed for his "freely"
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Let X be a closed orientable Riemannian spin manifold with Sc(X) > 0 and
let Γ be a hyperbolic group. Then the class f∗[X]Q ∈Hn(B(Γ);Q) vanishes for
all continuous maps f ∶X → B(Γ).

"ε-Area" Remark. Instead of "ε-Lipschitz" one may require "ε-area con-
tracting" or some large scale counterpart to this condition.

This may be significant, because the ε-area version of [κ ≤ 0]global ; [Sc ≯
0] is not-approachable with the (known) techniques of minimal hypersurfaces
and/or of stable µ-bubbles, while the above "ε-Lipschitz" [κ ≤ 0]global ;
[Sc ≯ 0] can be proved in many, probably in all, cases with these techniques
having an advantage of not requiring manifolds X to be spin.

On the other hand, for all I know, there is no example of an X, say with a
cocompact action of an isometry group Γ which satisfies a version of↺ε↺ε

with the ε-contracting area property but not with the ε-Lipschitz one.69

4.1.3 Curvatures of Unitary Bundles, Virtual Bundles and Fredholm
Bundles.

Let us try to formalise the concept of
"area", of a Riemannian manifold X, where this "area" is associated with cur-

vatures of vector bundles over X and which has the property of being bounded by
const ⋅ 1

σ
, for σ = infx Sc(X,x) > 0.

∣∣curv(L)∣∣. Given a vector bundle (L,∇) with an orthogonal (unitary in
the complex case) connection, over a Riemannian manifold X, let

∣∣curv(L)∣∣(x) = ∣∣curv(∇)∣∣(x) = ∣∣curv(L,∇)∣∣(x)

denote
the infimum of positive functions C(x), such that the maximal rotation an-

gles α ∈ [−π,π] of the parallel transports along the boundaries of smooth discs
D in X satisfy

∣α∣ = ∣αD ∣ ≤ ∫
D
C(d).70

(The holonomy operator splits into the direct sum of rotations z ↦ αiz,
z ∈ C, αi ∈ T ⊂ C, i = 1,2, ..., rank(L), and our α = maxi αi.)

For instance, if D is a geodesic digon in S2 with the angles βπ, β ≤ 1, then
the holonomy of the tangent vectors around the boundary of D satisfies:

∣αD ∣ = 2βπ = area(D),

which agrees with the equality ∣curv∣(T (S2)) = 1.
It follows the curvature of the tangent bundle (complexified if you wish) of

the product of spheres, satisfies

∣∣curv (T (⨉
i

Snj(Rj)))∣∣ =
1

minj R2
j

.

69Neither, it seems, there are examples of X with compact quotients X/Γ, which satisfy
↺ε but not↺ε↺ε.

70This definition is adapted to vector bundles over rather general metric spaces, e.g. poly-
hedra with piecewise smooth metrics.
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What is more amusing is that the even dimensional spheres Sn, n = 2m,
support unitary bundles L with with twice smaller curvatures and non-zero top
Chern classes,

∣curv∣(L) = 1
2
and cm(L) ≠ 0.

For instance, if n = 2, then the Hopf bundle, that is the square root of the
tangent bundle, has these properties and in general, the positive C-spin bundle
S+ can be taken for such an L.

This is the smallest curvature a non-trivial bundle over Sn may have:
Unitary vector bundles over Sn with ∣curv∣ < 1

2
are trivial.

Proof. Follow the parallel transport of tangent vectors from the north to the
south pole.

More generally
there are bundles L on the products of even dimensional spheres ⨉i Snj(Rj),

which are induced by λ-Lipschitz maps to Sn, n = ∑nj , λ = 1
minj R2

j
, such that

∣curv∣ ≤ 1
2 minj R2

j
and such that some Chern numbers of these L are non-zero,

and this is the best one can do.
In fact,
If a unitary vector bundle L = (L,∇) over a product manifold Sn × Y has

∣curv∣(L) < 1
2
, then all Chern numbers of L vanish. (see §13 in [G(101) 2017]).

The role of the Chern numbers here is motivated by the following observation
(see [GL (spin) 1980, [G(positive) 1996]).

Let X be a closed orientable spin manifold of dimension n = 2m and L =

(L,∇) a unitary vector bundle, such that some Chern number of L doesn’t
vanish. Then

(L∧) there exists an associated bundle L∧, which is a polynomial in the
exteriors powers of L, such that

ind(D⊗L∧) ≠ 0

.
Since (it is easy to see) the degree and the coefficients of such a polynomial

must be bounded by a constant depending only on n, the curvature of L∧ satisfies

∣curv∣(L∧) ≤ constn∥curv∣(L);

Therefore,
● if the scalar curvature of a closed orientable 2m-dimensional spin manifold

satisfies Sc(X) ≥ σ > 0, then – this is explained in the previous section – non-
vanishing cm(L) ≠ 0, implies the following lower bound on the curvature of the
bundle L:

∣curv∣(L) ≥ ε ⋅ σ, ε = ε(n) > 0.

Open Problem. Prove ● without the spin condition.
The above suggest the definition of "area"(X) of a Riemannin manifold X

as the supremum of 1
∣curv∣(L) over all unitary vector bundles (L = L,∇) with

non-zero Chern numbers.

64



However, the "area" terminology we introduced in [G(positive) 1996], despite
several natural/functorial properties of this "area" (see [G(positive) 1996] and
[G(101 2017]), seems inappropriate, since this "area" is by no means additive. A
more adequate word , which we prefer to use from now on is K-theoretic waist.

Virtual Hilbert and Fredholm. To define this, we represent the (Grothendieck)
classes h of vector bundles over X, which are also called virtual (Fredholm)
bundles, by Fredholm homomorphisms between Hilbert bundles with unitary
connections Li = (Li,∇i), i = 1,2,

h ∶ L1 → L2,

where these h must almost commute, i.e. commute modulo compact operators,
with the parallel transports in in L1 and L2 along smooth paths in X.

(This idea for flat bundles goes back to [Atiyah(global) 1969], [Kasp 1973],
[Kasp 1975], [Mishch 1974] and where non-flat generalizations and applications
are discussed in §9 1

6
of [G(positive) 1996].)

(Such an h represents the finite dimensional virtual (not quite) bundle
ker(h) − coker(h).)

Define

∣curv∣(h) = max(∣curv∣∥(L1), ∣curv∣(L2))

and let
∣curv∣(h) = inf ∣curv∣(h)

where the infimum is taken over all h in the class h.
Why Hilbert? If one limits the choice of representatives of h to virtual finite

dimensional bundles L → X, then the resulting curvature function on K0(X)

may only increase:
∣curv∣(h)fin.dim ≥ ∣curv∣(h).

Apparently, this must be standard, the Hilbert spaces in the definition of Fred-
holm bundles can be approximated by finite dimensional Euclidean ones, 71 that
implies that

∣curv∣(h)fin.dim = ∣curv∣(h),

but even so "Hilbert" allows greater flexibility of certain constructions, example
of which we shall see below.

Naive (Strong Novikov) Conjecture. Let Y be a compact aspherical72 Rie-
mannian manifold, possibly with a boundary. Then

all (classes of complex vector bundles) h ∈K0(Y ) satisfy:

inf
N

∣curv∣(N ⋅ h) = 0, N = 1,2,3, ..., .

Exercises. (a) Show that the equalities ∣curv∣(h) = 0 and infN ∣curv∣(N ⋅h) =

0 are homotopy invariants of Y .
(b) Show that if Y satisfies this naive conjecture and X is a closed Rie-

mannian orientable spin n-manifold with Sc(X) > 0, then all continuous maps
f ∶ X → Y send the fundamental rational homology class [X]Q ∈ Hn(X,Q) to
zero in Hn(Y,Q).

71This is an exercise that the author delegates to the reader.
72The universal covering of X is contractible.
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4.1.4 Area, Curvature and K-Waist.

K-Theoretic Waist. Given a Riemannin manifold Y (or a more general space,
e.g. a polyhedral one with a piecewise smooth metric), define the K-waist on
the homology classes h∗ ∈ H∗(Y ), denoted K-waist2(h) 73 as the infimum of
∣curv∣(h) over all h ∈K0(Y ), such that h(h∗) ≠ 0, where this equality serves as
an abbreviation for the value of the Chern character of h on h∗,

h(h∗) =def Ch(h)(h∗).

In these terms the above ● can be reformulated as follows.
K-Waist Inequality for Closed Manifolds. The K-waists of (the fundamental

classes of) closed orientable 2m-dimensional spin manifolds X with Sc(X) ≥ σ >

0 satisfy:

K-waist2[X] ≤
constm
σ

.

Notice, that conjecturally, a similar inequality also holds for the ordinary
2-waist, (see [Guth(waist) 2014] for an exposition of this "waist") where it is
confirmed for 3-manifold by the Marques-Neves theorem (see B in section 3.13)

Exercises. Show that the K-waist is bounded by the hyperspherical radius
defined in section 3.5 as follows,

K-waist2[X] ≤ 4πRad2
S2m(X)

(b) Show that K-waist2(Sn) = 4π.
Almost Flat Bundles Over Open Manifolds. If X is a non-compact manifold,

then we deal with the K-theory with compact support that is represented by
Fredholm homomorphisms

h ∶ L1 → L2

which are isometric and connection preserving isomorphisms at infinity, i.e.
away from compact subsets in X where the corresponding K-group is denoted
K0(X/∞). (If X is compact then K0(X/∞) =K0(X)

Here the Hilbertian nature of "Fredholm" allows a painless (and obvious
by deciphering terminology) definition of the pushforward homomorphism for
possibly infinitely sheeted covering maps F ∶X1 →X2,

F⋆ ∶K
0
(X1/∞)→K0

(X2/∞),

where, clearly,
∣curv∣(F⋆(h)) ≤ ∣curv∣(h)

for all h ∈K0(X1/∞).

It follows that Therefore,

K-waist2[X1] ≤K-waist2[X1]

for coverings X1 →X2 between orientable Riemannian manifolds.
73Subindex 2 is to remind that curvature of bundle L over Y is seen on restrictions of L to

surfaces in Y .
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On K-Wast Contravariance. The compact support property of (virtual) bun-
dles L → X2 is preserved under pullbacks by proper maps F ∶ X1 → X2, e.g.
by finite coverings, but it fails, for instance, for infinitely sheeted coverings
F ∶X1 →X2.

This makes the inequality

K-waist2[X1] ≥K-waist2[X1]

(that is obvious for finitely sheeted coverings) problematic for infinite covering
maps F ∶X1 →X2.

This should be compared with the covariance problem for max-scalar curva-
ture which is defined in section 5.4.2 and which obviously lifts under covering
maps,

Scmax
prop[X1] ≥ Sc

max
prop[X2],

while the opposite inequality causes a problem (see section 5.4.2).
Question. Can one match the covariance of Scmax by a somehow generalized

K-waist2 that would be invariant under (finite and infinite) covering maps F ∶

X1 →X2?
Specifically, one looks for almost flat (virtual) infinite dimensional Hilbert

bundles in a suitableK-theory, which would be compatible with the index theory
and with the Schroedinger-Lichnerowicz-Weitzenboeck formula in the spirit of
Roe’s C∗-algebras.

Amenable Cutoff Subquestion. Let X2 be a closed orientable Riemannin
manifold of dimension n = 2k and let L→X2 be a vector bundle induced by an
ε-Lipschitz map f ∶X2 → Sn from the positive spinor bundle L = S+ = S+(Sn)→
Sn.

Suppose that the fundamental group π1(X2) is amenable, let X1 = X̃2 →X2

be the universal covering map and let

L̃ = F ∗
(L)→X1

be the pullback of L.
When do there exist unitary bundles L̃i → X1, i = 1,2, ..., with unitary

connections, such that
●∞ the bundles L̃i are flat trivial at infinity;
●∣L̃ there is an exhaustion of X1 by compact Følner subsets

V1 ⊂ ... ⊂ Vi ⊂ ... ⊂X1,

such that the restrictions of L̃i to Vi are equal to the restrictions of L̃,

(L̃i)∣Vi = L̃∣Vi ;

●∫ the integrals of the k-th powers of the curvatures of Li are dominated by
such integrals for L̃ over Vi,

∫X1
∣curv∣k(L̃I)dx1

∫Vi ∣curv∣
k(L̃)dx1

→
i→∞

0;

●ε the curvatures of all L̃i are bounded by

∣curv∣(L̃i) ≤ ε,
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where ε = εn(ε)→ 0 for ε→ 0.
(The Federer Fleming isoperimetric/filling inequality in the rendition of [MW

2018] may be useful here.)
Non-Amenable Cutoff Example. Let X(= X2) be a closed orientable Rie-

mann surface of genus ≥ 0 and L → X a complex line bundle with a unitary
connection, e.g. L is the tangent bundle T (X), the Chern number of which
c1(T (X))[X] = χ(X) doesn’t vanish for genus(X) > 0.

Let L̃→ X̃ be the lift (pullback) of L to the universal covering X̃(=X1) of X
and observe that there exit disks D̃2(R) ⊂ X̃, such that the parallel translates
over the boundary circles S̃1(R) = ∂D̃2(R) are a multiples of 2π and where the
radii R of such disks can be arbitrary large.

Then the restriction of L̃→ X̃ to such a disk D̃2(R) ⊂ X̃ extends to a bundle,
call it L̃R → X̃, which is trivial outside D̃2(R) and such that

c1(L̃R/S̃
1
(R)) ∼ area(D̃2

(R)) →
R→∞

∞,

provided the curvature of L (that is a closed 2-form on X) doesn’t vanish.
Problem for n > 2. The main difficulty in similarly trivializing at infinity

bundles over n-dimensional Riemannian manifolds X for n = dim(X) ≥ 3 seems
to be associated with the following questions.

Let Ub(k) = Ub(k,X), b ≥ 0, be the space of the unitary connections ∇ on a
trivial bundle L→X of rank k, such that ∣curv∣(∇) ≤ b.

(a) For which values b1 and b2 > b1 are the connections from Ub1(k) homo-
topic in Ub2(k) ⊃ Ub1(k)?

(b) When do the homomorphisms of the homotopy groups

πi(Ub1(k))→ πi(Ub2(k)), i ≥ 1,

induced by the inclusions Ub1(k)↪ Ub2(k) vanish?
(c) How do the Whitney sum homomorphisms

Ub(k1) × Ub(k2)→ Ub(k1 + k2)

behave in this respect?
In particular, what happens to the homomorphisms πi(Ub1(k))→ πi(Ub2(k))

under stabilization
Ub(k) × ... × Ub(k)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

N

; (Ub(Nk))

for N →∞?
Exercise. Let X be a complete orientable even dimensional Riemannin man-

ifold with nonpositive sectional curvature. Show that there exists a K-class
h ∈K0(X/∞), such that

∣curv∣(h) = 0 and h[X] ≠ 0,

where [X] denotes the fundamental homology class of X with infinite supports.
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4.1.5 Twisted Schroedinger-Lichnerowicz-Weitzenboeck formula, Nor-
malization of Curvature and Sharp Algebraic Inequalities.

Normalization of Curvature. In so far as the scalar curvature is concerned we
are interested not in the curvature ∣curv∣(L) per se but rather in the norm of
the endomorphism(operator)

R⊗L ∶ S⊗L→ S⊗L

in the Schroedinger-Lichnerowicz-Weitzenboeck formula for the twisted Dirac
operator,

D2
⊗L = ∇2

⊗L +
1
4
Sc(X) +R⊗L,

(see the previous section) where this R⊗L is as following linear/tensorial com-
bination of the values of the curvature of L on the tangent bivectors in the
manifold X, (see [GL(spin) 1980])

R⊗L(s⊗ l) =
1

2
∑
i,j

(ei ○ ej ○ s)⊗R
L
ei∧ej(l),

where
ei ∈ Tx(X), i = 1, ...n = dim(X) is an orthonormal frame of tangent vectors at

a point x ∈X,
s ∈ S, are spinors,
l ∈ L vectors in the bundle L,
RL(ei ∧ ej) ∶ L→ L is the curvature of L (written down as the operator valued

2-form on X)
and
"○" denotes the Clifford multiplication.
This suggest the definition of

λmin[curv]⊗S(L)

as the smallest (usually negative) eigenvalue of the operator ∣∣R⊗L∣∣.∗ Example: Llarull’s algebraic inequality. [Llarull 1996] Let f ∶ X →
Sn be a smooth 1-Lipschitz, or more generally, an area non-increasing map
and let L → X be the pullback the spinor bundle S(Sn). Then this minimal
eigenvalue of the operator R⊗L satisfies:

λmin[curv]⊗S(L) = −
1

4
(n(n − 1) = −

1

4
Sc(Sn).

(We return to this in next section,)
Using this λmin[curv] instead of the ∣curv∣ one defines

λmin[curv]⊗S(h), h ∈K0(X),

as the supremum of λmin[curv]⊗S(L) for all (virtual) bundles L in the class of
h,

Accordingly one modifies the above K-waist2(h) and define the correspond-
ing K-waist coupled with spinors, denoted K-waist⊗S,2(h∗), h∗ ∈H∗(X), as the
supremum of λmin[curv]⊗S(h) over over all h ∈K0(Y ), such that h(h∗) ≠ 0.
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Then, for instance, the above ●wst for spin manifolds X takes more elegant
form:

K-waist⊗S,2[X] ≤
4

σ
for σ = inf

x
Sc(X,x) > 0.

Notice that this inequality, combined with the above∗, implies Llarull’s
geometric inequality RadSn(X) ≤

√
n(n−1)
σ

, which we discuss at length in the
next section.

Also this may give better formulae for K-waists of product of manifolds.
(See section 5.4.1 and also [G(positive) 1996] and [G(101) 2017] for other

known and conjectural properties of ∣curv∣(h) formulated in these papers in the
language of the K-area.)

4.2 Llarull’s and Goette-Semmelmann’s Sc-Normalised Es-
timates for Maps to Spheres and to Convex Surfaces
.

Let us now look closer at the above

R⊗L(s⊗ l) =
1

2
∑
i,j

(ei ○ ej ○ s)⊗Rij(l),

that is the endomorphism of (operator on) the bundle S⊗L→X, which appears
in the zero order term in the twisted Dirac operator

D
2
⊗L = ∇

2
⊗L +

1

4
Sc(X) +R⊗L,

for
D⊗L ∶ C

∞
(S⊗L)→ C∞

(S⊗L).
Example of L = S on Sn. Since the norm of the curvature operator of (the

Levi-Civita connection on) the tangent bundle is one, the norm of the curvature
operators Rij ∶ S→ S are at most ( in fact, are to) 1

2
,

∣∣Rij(s)∣∣ ≤
1

2
,

since the spin bundle S(X) serves as the "square root" of the tangent bundle
T (X), where this is literally true for n = dim(X) = 2, that formally implies the
inequality ∣∣Rij(s)∣∣ ≤

1
2
for all n ≥ 2.

And since the Clifford multiplication operators s↦ ei ⋅ ej ⋅ s are unitary,

∣∣R⊗L(s⊗ l)∣∣ ≤
1

4
n(n − 1) =

1

4
Sc(Sn)

This doesn’t, a priori, imply this inequality for all (non-pure) vectors v on the
tensor product S⊗L for L = S, but, by diagonalising the Clifford multiplication
operators in a suitable basis and by employing the essential constancy74 of the
curvature Rij of Sn, Llarull [Ll 1998] shows that

∣∣⟨R⊗L(θ), θ⟩∣∣ ≥ −
1

4
n(n − 1)

74Some eigenvalues of this operator are ±1 and some zero.
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for all unit vectors θ ∈ S(Sn)⊗ S(Sn).
This inequality for twisted spinors on Sn trivially yields the corresponding

inequality on all manifolds X mapped to Sn, where the bundle L → X is the
induced from the spin bundle S(Sn).

Namely, letX = (X,g) be an n-dimensional Riemannin manifold, f ∶X → Sn

be a smooth map, L = f∗(S(Sn)), let df ∶ T (X) → T (Sn) be the differential of
f and

∧
2df ∶ ∧2T (X)→ ∧

2T (Sn)

be the exterior square of df .75

Then the operator

R⊗L ∶ S(X)⊗L→ S(X)⊗L

satisfies
∣∣⟨R⊗L(θ), θ⟩∣∣ ≥ −∣∣ ∧

2 df ∣∣
n(n − 1)

4
, L = f∗(S(Sn)),

for all unit vectors θ ∈ S(X)⊗ f∗(S(Sn)).
Moreover, – this is formula (4.6) in [Ll 1998]] –

∣∣⟨R⊗L(θ), θ⟩∣∣ ≥ −
1

4
∣trace ∧2 df ∣,

where trace ∧2 df at a point x ∈X stands for

∑
i≠j
λiλj ,

for the differential df ∶ Tx(X) → Tf(x)(S
n) diagonalised to the orthogonal sum

of multiplications by λi.
This inequality, restricted to L+ = f∗(S+(Sn)) together with the index for-

mula, which says for this L+ that

ind(D⊗L+) =
∣deg(f)∣

2
χ(Sn),

provided X is a closed oriented spin manifold.
Thus we arrive at a formulation of Llarull’s theorem suggested by Mario

Listing in [List 2010] and in a coarser form in §5 4
9
(D) of [G(positive) 1996].

⋆ trace ∧2 df -Inequality. Let X be a closed orientable Riemannian spin
n-manifold and f ∶X → Sn a smooth map of nonzero degree.

If

Sc(X,x) ≥
1

4
∣trace ∧2 df(x)∣

at all points x ∈Xn then, in fact, Sc(X) = 1
4
∣trace ∧2 df ∣ everywhere on X.

About the proof. If n is even and χ(Sn) = 2 ≠ 0, this follows from the
above. And if n is odd, there are (at lest) three different reductions to the even
dimensional case (see [Ll 1998], [List 2010 ], [G(inequalities) 2018]), all three
being artificial and conceptually unsatisfactory as it was explained for TnSc≯0 in
section 3.2.

75Recall that the norm ∣∣ ∧2 df ∣∣ measures by how f contracts/expands surfaces in X. For
instance the inequality ∣∣ ∧2 df ∣∣1 signifies that f decreases the areas of the surfaces in X.
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Also see see [Ll 1998] and [List 2010 ], for characterisation of maps f , where
Sc(X) = 1

4
∣trace ∧2 df ∣.

llarull’s theorem, starting from his estimate for R⊗f∗(S(Sn), was generalized
by Goette and Semmelmann [GS 2002] to Riemannian manifolds X with non-
negative curvature operators instead of Sn. We state below their result only
the case of X homeomorphic to Sn, where our formulation follows that in [List
2010].

⋆⋆ ∧2df -Inequality. Let X = (Sn, g) where g is a Riemannin metric with
non-negative curvature operator, let X be a closed orientable Riemannin spin n-
manifold and

f ∶X →X

smooth map of non-zero degree.
If

Sc(X,x) ≥ ∣∣ ∧
2 df ∣∣Sc(g, f(x))

at all x ∈X, then Sc(X,x) = ∣∣ ∧2 df ∣∣Sc(g, f(x)).
See [ GS 2002] and [List 2010] for the proof, where the authors also identify

the extremal cases, where f is an isometry or close to an isometry.
Examples. (a) The induced metrics on convex hypersurfaces X ⊂ Rn+1 have

non-negative positive curvature operators.
Thus, [X→b] from section 3.5 is a special case of⋆⋆.
(b) By a theorem of Alan Weinstein [Wein 1970], the above (a) remains

true for submanifolds Xn
⊂ Rn+2 with non-negative sectional curvatures of the

induced metrics.
In particular,
the induced Riemannin metrics on convex hypersurfaces in Sn+1 and, more

generally, on convex hypersurfaces Xn
⊂ Σn+1, where Σn+1 themselves are con-

vex in Rn+2, have non-negative curvature operators.
Accordingly, [X→b] generalizes to this case.

⋆ ⋆ ⋆Products and Stabilisations. We shall need (see section 5.5,
5.6) a generalization of theorem⋆⋆ to maps

f ∶X →X = (Sm, g) ×Tn−m,

where g is a metric with non-negative curvature operator and Tn−m is the torus
with a Riemannin flat metric.

This is achieved (compare §5 4
9
in [G(positive) 1996]) by replacing the bundle

L = S+(Sn) in ⋆⋆ by S+(Sm) ⊗ Lp, where Lp are flat line bundles Lp over
Tn−m as in section 3.11.76

Furthermore, whenever this kind of argument applies to X1 and X2, it goes
over to maps X →X1 ×X2.

Almost Example. Let X1 = (Sm, g), where g is a metric with non-negative
curvature operator and let X2 be a manifold which admits a complete metric with
sect.curv(X2) ≤ 0.

76Instead of flat family Lp one can use individual almost flat bundles over the universal
cover Rn−m of Tn−m or any other, possibly infinite dimensional, flat or almost flat bundle
used in some proof of non-existence of metrics with Sc > 0 on tori.
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Let X be a closed orientable Riemannian spin n-manifold and let

f ∶X →X →X1 ×X2

be a smooth map, such that the image of the fundamental class of X,

f∗[X] ∈Hn
(X1 ×X2;Q), n = dim(X),

doesn’t vanish.
If the composition of f with the projection X1 ×X2 → X1, that is f1 ∶ X →

X1, satisfies
Sc(X,x) ≥ ∣∣ ∧

2 df1∣∣Sc(g, f1(x))

at all x ∈X, then Sc(X,x) = ∣∣ ∧2 df1∣∣Sc(g, f1(x)).
Non-Spin Remark. If X is not assumed spin, then, by the arguments from

section 5, one can prove the following rough bound on the Lipschitz constant of
f1.

Let X1 is the standard m-sphere with the metric of constant sectional curvature
1 and let Sc(X) ≥m(m − 1).

Then the X1-components f1 ∶ X → X1 = S
m of the maps f ∶ X → X1 ×X2,

such that f∗[X] ≠ 0, satisfy

∥∣df1∣∣ ≥
1

π
.

And if n = 4 then - this follows from 5.5 – the maps f ∶ X → S4 of non-zero
degrees satisfy the sharp inequality

∣∣df1∣∣ ≥ 1

(which is weaker than ∣∣ ∧2 df1∣∣ ≥ 1) which holds in the spin case.
Category Theoretic Perspective on the Sc-normalization of Riemannin met-

rics.The above suggests that the geometry of Riemannian manifolds X = (X,g),
where Sc(g) > 0 is well depicted by the Sc-normalised metric Sc(X) ⋅g and that
maps, which are 1-Lipschitz with respect to the Sc-normalised metrics can be
taken for morphisms in the category of manifolds with Sc > 0.

4.2.1 Stabilized Hyperspherical Radius and Families of Dirac Oper-
ators

It is clear that

RadSn+1(X ×R) ≥ RadSn+1(X) as well as Rad∧
2

Sn+1(X ×R) ≥ Rad∧
2

Sn+1(X)

(these radii are defined in section 3.5), since maps f ∶ X → Sn suspends to
(locally) constant at infinity maps f∨R ∶ X × R → Sn+1, such that deg(f∨R) =
deg(f) and which can be made with

∣∣df∨R∣∣ ≤ ∣∣df ∣∣ + ε and ∣∣ ∧
2 df∨R∣∣ ≤ ∣∣ ∧

2 df ∣∣ + ε

for all ε > 0by shrinking these maps along the R-direction.
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It is also obvious that RadS1+N (X ×RN) = RadS1(X for n = dim(X) = 1 and
one knows that RadS2+N (X ×RN) = RadS2+N (X) for n = 2.77

But apart from this dependence of RadSn+N (X×Rn) and of Rad∧
2

Sn+2(X×Rn)
on n remains obscure.

Conceivably, one may have RadSn+N+1(X ×RN+1) significantly greater than
RadSn+N (X ×RN), even for large N , but I don’t clearly see any example, where
RadS3(X ×R1) > RadS2(X)) for n = dim(X) = 2.

Non-Example. A C2-small symmetric perturbation X ⊂ S3 of the equatorial
S2 ⊂ S3, possibly, may have RadS3(X ×R1) > 1 and RadS2(X) < 1).

Now, let X be a closed orientable manifold (or pseudomanifold) X of dimen-
sion n and let us indicated two Dirac theoretic arguments for bounds on the
scalar curvature of closed orientable spin n-manifolds X, which admit

stabilized proper homologically substantial 1-Lipshitz maps to X,
that are 1-Lipshitz maps of non-zero degrees:

f×R
N

∶X ×RN →X ×RN ,

(In the language of section 5.4.1 these are bounds on Scmax
prop,sp(X ×RN).)

1. Dirac on the Products. Since Sc(X ×RN) = Sc(X),

Sc(X) ≤
(n +N)(n +N − 1)

RadSn+N (X ×RN)2

by Llarull’s inequality applied to the Dirac operator on X × RN twisted with
the (virtual)78 vector bundle L∗ →X ×RN with a unitary connection, which is
induced by the composition of the the maps

X ×RN →X ×RN → Sn+N

from the positive spinor bundle S+(Sn+N).
2. Families of Dirac Operators. Let Dp = D⊗L∗p , p ∈ RN , be the family of

Dirac operators on X twisted with the (virtual) vector bundles L∗p → X, that
are the restrictions of the above bundle L∗ →X ×RN to X =X × {p} ⊂X ×RN .

The Atiyah-Singer theorem for families (if one is uncomfortable with non-
compact manifolds and prefer actual, rather than virtual bundles, one can re-
place RN by a sphere SN(R) of very large radius R) yields non-vanishing of the
index of this family.

Since the curvature of this bundle satisfies,

∣∣curv∣∣(L∗) ≤ ∣∣curv∣∣(S+(Sn+N) =
1

2

(see section 4.1.1), the existence of an Lp-twisted harmonic spinor on X for some
tRN in conjunction with the twisted Schroedinger-Lichnerowicz-Weitzenboeck
formula formula shows that

inf
x∈X

Sc(X,x) ≤ constn
n(n − 1)

RadSn+N (X ×RN)2
.

77According to the waist inequality Rad∧
n

Sn+N
(X ×RN ) = Rad∧n

Sn+N
(X) for all n.

Two different proofs of this, a geometric and a topological one, are explained in [Guth
(waist) 2014] and [G(101) 2017]. Also, if n = 2 there is an "analytic" proof with a use of
families of Dirac operators on X as we shall see below.

78"Virtual" is needed, since X ×RN is non-compact and L∗, which represent an element in
K0(X ×RN )/∞, must be trivial at infinity.
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Remarks and Questions. (a) Probably, Llarull’s computation adapted to L∗p
would yield the above inequality with constn = 1.

This is instantaneous form = 2 and, in the case of 3-manifolds X, this follows
from the bound

waist2(X) ≤ 4π
6

infx∈X Sc(X,x)

which, for X homeomorphic to S3, is a corollary of the Marques-Neves theorem
and which, probably holds true for all 3-manifolds X with Sc(X) > 0 by a
similar argument (see section 3.13).

(b) Non-product families. Let Xp be a continuous family of Riemannian
manifolds parametrized by a topological space P ∋ p, that is represented by
fibration X = {Xp}→ P .

Let the manifolds Xp be complete for all p ∈ P and let Sc(Xp) ≥ σ > 0.
Let f ∶ X → Sn+N , where n = dim(Xp) and N = dim(P ), be a (locally)

constant at infinity map of non-zero degree, the restrictions of which to all Xp are
smooth area non-decreasing, e.g. 1-Lipschitz.

Notice that this makes sense if P is a psedomanifold (e.g. a manifold) and
X is orientable (also a pseudomanifold).

1P. If X is a smooth orientable spin manifold, then

σ ≤ (n +N)(n +N − 1).

2P. If the fiberwise tangent bundle {T (Xp)} of X is spin, then

σ ≤ constn ⋅ n(n − 1).

On Spin Discrepancy. Even if P is a smooth manifold and we ignore for con-
stants, the propositions 1P and 2P differ by the locations of the spin conditions
in them.

However, one can reduce one to another as follows.
∗1⇒2 If {T (Xp)} is spin but X is non-spin, replace P by the (total space of

the) tangent bundle T (P ) and observe that the total space Y = {Xt}, t ∈ T (P ),
of the pullback of T (P ) to X is spin.∗2⇒1 Let P be orientable; if not, pass to its oriented double covering. If
X is orientable spin but {T (Xp)} is non-spin, replace the manifolds Xp by the
total spaces Yp of their tangent bundles T (Xp). These Yp are spin.

Two Words about Foliations. The above generalizes further to Alain Connes’
non-commutative parameter spaces P e.g. (spaces of leaves of) foliations, where
the counterparts of the above 1P and 2P remain valid (see sections 3.12, 6.3
and references therein).

(c) Problem with Singularities. Is there a meaningful version of the above for
families Xp, where some Xp are singular, as it happens, for instance, for Morse
functions X → R?

Notice in this regard that Morse singularities, are, essentially, conical, where
positivity of Sc(Xp) for singular Xp in the sense of section 5.4.1 can be enforced
by a choice of a Riemannin metric in X . 79

79These are cones over Sk × Sn−k−1, n = dimXp, where the scalar curvature of such a cone
can be made positive, unless k ≤ 1 and n − k − 1 ≤ 1.

75



Conversely, positivity of Sc(Xp), for all Xp including the singular ones,
probably, yields a smooth metric with Sc > 0 on X .

And it must be more difficult (and more interesting) to decide if/when a
manifolds with Sc > 0 admits a Morse function, where all, including singular,
fibers have positive scalar curvatures or, at least, positive operators −∆ + 1

2
Sc.

.

4.3 Bounds on Mean Convex Hypersurfaces
Recall that the spherical radius RadSn−1(Y ) of a connected orientable Rieman-
nin manifold of dimension (n−1) is the supremum of the radii R of the spheres
Sn−1(R), such that X admits a distance decreasing map f ∶ Y → Sn−1(R) of
non-zero degree, where this f for non-compact Y this map is supposed to be
constant at infinity.80

We already indicated in section 3.6 also see [G(boundary) 2019] that Goette-
Semmlenann’s theorem (above ⋆⋆), applied to smoothed doubles DDX and
DDX yields the following corollary.

#n−1Let X be a compact orientable Riemannin manifold with boundary
Y = ∂X.

If Sc(X) ≥ 0 and the mean curvature of Y is bounded from below bymean.curv(Y ) ≥

µ > 0, then the hyperspherical radius of Y for the induced Riemannin metric is
bounded by

RadSn−1(Y ) ≤
n − 1

µ
.

In fact, the proof of this indicated in section 3.6 (also see [G(boundary)
2019]) together with the above ⋆ ⋆ ⋆ yields the following more general
theorem.

cn,n−1 LetX andX be compact connected orientable Riemannian n-manifolds
with boundaries Y = ∂X and Y = ∂X, and let f ∶ X → X be a smooth proper81

map of non-zero degree.
LetX admit a locally convex isometric immersion to Tn+1 and let the bound-

ary Y of X be (geodesically) convex in X .
If X is spin, if

SCAL Sc(X,x) ≥ ∣∣ ∧
2 df ∣∣Sc(X,f(x)) for all x ∈X

and if

MEAN mean.curv(Y, y) ≥ ∣∣df ∣∣mean.curv(Y , f(y)) for all y ∈ Y ,

then, in fact,
Sc(X,x) = ∣∣ ∧

2 df ∣∣Sc(X,f(x))

and
mean.curv(Y, y) = ∣∣df ∣∣mean.curv(Y , f(y)).

80Alternatively, one might require f to be locally constant at infinity, or more generally, to
have the limit set of codimension≥ 2 in Sn−1(R).

81Here, "proper" means boundary→ boundary.
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Remarks. (a) If Sc(X) = 0, e.g. if X is a convex subset in Rn+1, then the
condition SCAL reduces to Sc(X) ≥ 0.

(b) The above also yields some information on manifolds X with negative
scalar curvatures bounded from below.

For instance, if Sc(X) ≥ −m(m − 1), then cn,n−1 applies to maps from
f ∶X × Sm to the (m + n)-balls Bm+n ⊂ Rm+n (see [G(boundary) 2019]).

However, the sharp inequalities for Sc(X) < 0, such, for instance, as opti-
mality of the hyperspherical radii of the boundary spheres of balls Bn(R) in the
hyperbolic spaces Hn−1, remain conjectural.82

(c) It is unknown if the spin condition on X is necessary, but it can be
relaxed by requiring the universal cover of X, rather than X itself, to be spin.
In fact,cn,n−1 generalizes to non-compact complete manifolds with an extra
attention to uniformity of the curvature inequalities involved.

And if one is content with a non-sharp bound

RadSn−1(Y ) ≤
constn

infmean.curv(Y )
,

then one and can prove this without the spin assumption by the "cubical type
argument" from section 5.4.

4.4 Lower Bounds on the Dihedral angles of Curved Poly-
hedral Domains.

We want to generalise the above cn,n−1 to manifolds X with non-smooth
boundaries with suitably defined mean curvatures bounded from below, where
we limit ourself to manifolds with rather simple singularities at their boundaries.

Namely, let X and X be Riemannian n-manifolds with corners, which means
that their boundaries Y = ∂X and Y = ∂X are decomposed into (n − 1)-faces
Fi and F i correspondingly, where, locally, at all points y ∈ Y , and y ∈ Y these
decompositions are is diffeomorphic to such decomposition of the boundary of
a convex n-dimensional polyhedron (polytope) in Rn.

Let f ∶ X ∶→ X be a smooth map, which is compatible with the corner
structures in X and X:

f sends the (n − 1)-faces Fi of X to faces F i of X.
Assume as earlier that

[≥]SCAL Sc(X,x) ≥ ∣∣ ∧
2 df ∣∣ ⋅ Sc(X,f(x)) for all x ∈X

and replace MEAN by the corresponding condition applied to for all faces
Fi ⊂ Y individually,

[≥]MEAN
{i} , mean.curv(Fi, y) ≥ ∣∣df ∣∣ ⋅mean.curv(F i, f(y)) for all y ∈ Fi .

Let ∠i,j(y) be the dihedral angle between the faces Fi and Fj at y ∈ Fi ∩Fi
and let us impose our main inequality between these ∠i,j(y) for all Fi and F )j

82This "optimality" means that if Sc(X) ≥ −n(n − 1) and mean.curv(∂X) ≥
mean.curv(∂Bn(R)) than RadSn−1(∂X) ≤ RadSn−1(∂Bn(R)).
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and the dihedral angles between the corresponding faces faces F i and F j at the
points f(y) ∈ F i ∩ F j :

[≤]∠ij ∠i,j(y) ≤∠i,j(f(y)) for all Fi, Fj and y ∈ Fi ∩ Fj .

Besides the above, we need to add the following condition the relevance of
which remains unclear.

Call a point y ∈ Y = ∂X suspicious if one of the following two conditions is
satisfied

(i) the corner structure of X at y is non-simple (not cosimplicial), where
simple means that a neighbourhood of y is diffeomorphic to a neighbourhood of
a point in the n-cube, which is equivalent to transversality of the intersection
of the (n − 1)-faces which meet at y;

(ii) there are two (n − 1)-faces in X which contain y, say Fi ∋ y and Fj ∋ y ,
such that the dihedral angle ∠ij =∠(Fi, Fj is > π

2
;

Then out final condition says that

[=]∠ij ∠i,j(y) =∠i,j(f(y)).

for all suspicious points y.
p∠ij Theorem. Let f ∶ X → X be a smooth map between connected ori-

entable n-dimensional Riemannian manifolds with corners, where this map respects
the corner structure and satisfies the above conditions [≥]SCAL, [≥]MEAN

{i} , [≤]∠ij
and [=]∠ij .

If X is spin, X admits a locally convex isometric immersion to Tn+1, the
boundary of X is convex and the map f has non-zero degree, then f satisfies
the equalities corresponding to the inequalities [≥]SCAL, [≥]MEAN

{i} and [≤]∠ij :

Sc(X,x) = ∣∣ ∧
2 df ∣∣ ⋅ Sc(X,f(x)) for all x ∈X,

mean.curv(Fi, y) = ∣∣df ∣∣ ⋅mean.curv(F i, f(y)) for all y ∈ Fi,

∠i,j(y) =∠i,j(f(y)) for all Fi, Fj and y ∈ Fi ∩ Fj .

About the Proof. This is shown by smoothing the boundaries of X and
applyingcn,n−1 from the previous section, where an essential feature of non-
suspicious points follows from the following

Elementary Lemma. Let ∆ ⊂ Sn be a spherical simplex with all edges of
length ≥ l ≥ π

2
. Then there exists a continuous family of simplices ∆t ⊂ S

n, t ∈ [0,1]
with the following properties.

● ∆0 = ∆ and ∆1 is a regular simplex with the edge length l;
● all ∆t have the edges of length ≥ l;
● ∆t2 ⊂ ∆t1 for t2 ≥ t1;
● for each t < 1 there exists an ε > 0, such that n (out of n + 1) vertices of

∆t+ε coincide with those of ∆t.
The proof of the lemma is a high school exercise while construction of ad-

equate smoothing of X with the help of this lemma, which is straightforward
and boring, will be given elsewhere. p∠ij

Notice that the ×▲i-Inequality from section 3.10, which says that
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convex polyhedra X ⊂ Rn with the dihedral angles ≤ π
2
admit no deformations

which would decrease their dihedral angles and simultaneously increase the mean
curvatures of their faces,
is an immediate corollary of p∠ij .

But it remains unclear what is the full class of polyhedra which enjoy this
property.

Fundamental Domains of Reflection Groups. What underlies the double DD-
construction, X ; DDX in the proof of the p∠ij theorem is the doubling Sn=
DDSn+ , which is associated with the reflection of Sn with respect to the equatorial
subsphere.

With this in mind, one can generalise everything from this section to general
reflection groups, including spherical, Euclidean, "abstract" (semi)hyperbolic
ones, (such as what we met in weak ⌝-reflection rigidity theorem in section
3.16.) and also products of these.

Example. Let X be a manifold with corners, where the (combinatorial)
corner structure is isomorphic to that of the product of an (n −m)-simplex ▲

with the rectangular fundamental domain ∎ (orbifold) of a reflection group in
an aspherical m-manifold which is non-diffeomorphic to Rm. (These exist for all
m ≥ 4 by Michael Davis 1983 theorem, see his lectures [Dav 2008] and references
therein.)

X admits no Riemannian metric with Sc ≥ 0, with all faces havingmean.curv ≥
0 and with the dihedral angles smaller than those in the product of a regular
Euclidean simplex ▲ by ∎ with π

2
dihedral angles.

On Necessity of Condition [=]∠ij???

4.5 Stability of Geometric Inequalities with Sc ≥ σ and
Spectra of Twisted Dirac Operators.

Sharp geometric inequalities beg for being accompanied by their nearest neigh-
bours.

For instance, the Euclidean isoperimetric inequality for bounded domains
X ⊂ Rn, which says that

voln(X) ≤ γnvoln−1(∂X)
n
n−1 for γn =

vol(Bn)

voln−1(Sn−1)
n
n−1

,

goes along with the following.

A. Rigidity. If voln(X) = γnvoln−1(∂X) n
n−1 , then X is a ball.

B. Isoperimetric Stability. Let X ⊂ Rn be a bounded domain with
voln(X) = voln(B

n) and vol(∂X) ≤ voln−1(S
n) + ε.

Then there exists a ball B = Bnx (1 + δ) ⊂ Rn of radius δ with center x ∈ X,
where δ →

ε→0
0, such that the volume of the difference satisfies

voln(X ∖B) ≤ δ1,

and, moreover,

voln−1(∂B ∩X) ≤ δ2, and voln−2(∂B ∩ ∂X) ≤ δ3,
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where
δ1, δ2, δ3 →

ε→0
0.

(Unless n = 2 and X is connected, there is no bound on the diameter of
X, but the constants δ, δ1, δ2, δ3 can be explicitly evaluated even for moderately
large ε.)

Turning to scalar curvature, observe, following Llarull, Min-Oo and Goette-
Semmelmann, that their proofs (see [Ll 1998], [Min(Hermitian) 1998], [GS 2002])
(more or less) automatically deliver rigidity. For instance,

⋆ if a manifold X homeomorphic to Sn, besides having curv.oper(X) ≥ 0
has Ricci(X) > 0 and if X is a closed orientable spin Riemannin manifold with
Sc(X) ≥ n(n− 1) then, all smooth 1-Lipschitz maps X →X of non-zero degrees
are isometries. 83

What we want to understand next is what happens if the inequality Sc(X) ≥

n(n − 1) is relaxed to Sc(X) ≥ n(n − 1) − ε for a small ε > 0, where one has to
keep in mind the following.

Example. (Compare [GL(classification) 1980], [BDS 2018] and section 2,
and 23 in [G(questions) 2017].) Let Σ ⊂ Sn be a compact smooth submanifold
of dimension ≤ n − 3. Then there exists an arbitrary small ε-neighbourhood
Uε = Uε(Σ) ⊂ Sn with a smooth boundary ∂ε = ∂Uε and a family of smooth
metrics gε,ε on the double

DD(Sn ∖Uε) = (Sn ∖Uε) ∪∂ε (S
n ∖Uε),

where Sc(gε,ε) ≥ n(n− 1)− ε− ε and which, for ε→ 0, uniformly converge to the
natural continuous Riemannian metric on DD(Sn ∖Uε(Σ).

Moreover, if Σ ⊂ Sn is contained in a hemisphere, then – this follows from the
spherical Kirszbraun theorem – the (double) manifolds DD(Sn ∖ Uε, gε,ε) admit
1-Lipschitz maps to the sphere Sn with degrees one, for all sufficiently small
ε > 0 and , ε = ε(ε) →

ε→0
0.

For instance, if n ≥ 3 and Σ consists of a single point, then DD(Sn ∖ Uε),
that is the connected sum Sn#Sn = Sn#Sn−1(ε)S

n of the sphere Sn with itself
(where the ε-sphere Sn−1(ε) serves as ∂ε and Sn#Sn is homeomorphic to Sn),
admits, for small ε, a 1-Lipschitz map to Sn with degree 2.

Furthermore, iteration of the connected sum construction, delivers manifolds
(topologically spheres)

(Sn)k#ε = Sn#Sn−1(ε)S
n#...#Sn−1(ε)S

n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k

m

which carry metrics with Sc(Sn)k#ε ≥ n(n − 1) − ε − ε and, at the same time,
admit maps to Sn of degree k, where these maps are 1-Lipschitz everywhere and
which are locally isometric away from

√
ε-neighbourhoods of k − 1 ε-spherical

"necks" in (Sn)k#ε .
(For general Σ and even k one has such maps f with deg(f) = k/2.

83Even if Ricci vanishes somewhere, one still may have a satisfactory description of the
extremal cases. For instance, if X = (Sn−m × Rm)/Zm, e.g. X = Sn−m × Tm, then all
(orientable spin) X with Sc(X) ≥ Sc(X) = (n −m)(n −m − 1), which admit maps f ∶ X → X
with deg(f) ≠ 0, are locally isometric to X (albeit the map f itself doesn’t have to be a local
isometry.
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Conjecturally, this example faithfully represents possible geometries of
closed Riemannian n-manifolds X with Sc(X) ≥ n(n − 1) − ε, which admit
1-Lipschitz maps to the unit sphere Sn, but only the following two, rather
superficial, results of this kind are available.

1. LetX = (X,g) be a closed oriented Riemannin spin n-manifold with Sc(X) ≥

n(n − 1) − ε and let f ∶X →X = Sn be a smooth 1-Lipshitz map of degree d ≠ 0.
Denote by g̃ the (possibly singular) Riemannin metric on X induced by f from

the spherical metric g on X = Sn and let l(f, x) be the minimum

lf(x) = min
∣∣τ ∣∣g=1

∣∣df(τ)∣∣g, τ ∈ Tx(X).

(Since f is 1-Lipschitz, l(f, x) ≤ 1 and (l(f, x))−1 measures the the distance from
the differential df(x) ∶ Tx(X)→ Tf(x)(X) to an isometry.) Let

Ṽ = ṽol(X) = volg̃(X) = ∫
X
card(f−1

(x))dx

be the g̃-volume of X.
Then the g̃-volume of the subset X≤λ ⊂X, λ < 1, where lf(x) ≤ λ satisfies

[∣X≤λ∣ ≤] ṽol(X≤λ) ≤ cλ,n,Ṽ (ε) →
ε→0

0.

Sketch of the Proof. Since the twisted Dirac operator D⊗ in Llarull’s rigid-
ity argument from [Ll 1998] has non-zero kernel, its square D2

⊗ is non-positive
(we assume here that n = dim(X) = dim(X) is even), and, by the Bochner-
Schrödinger-Lichnerowicz-Weitzenböck formula (that is above [D2

⊗]f ), this im-
plies non-positivity of

∇
2
+

1

4
Sc(X) +R⊗.

Consequently, −∆g −
1
4
(ε + (1 − l(x))), where ∆g is an ordinary Laplace

operator on X = (X,g), also non-positive, since the coarse (Bochner) Laplacian
∇2 is "more positive" than the (positive) Laplace(-Beltrami) operator −∆ as it
follows from the Kac-Feynman formula and/or from the Kato inequality.

(In general, this applies in the context of the above rigidity theorem ⋆
and yields non-positivity of −∆g −

1
4
(ε +C(1 − lf(x)) with C depending on the

smallest eigenvalue of Ricci(X).)
In order to extract required geometric information concerning the metric g̃

from this property of the metric g, we observe that the essential part of X, that
is the one, where we need to bound from below the L2-norms of the g-gradients
of functions φ(x) (to which the above ∆g applies) is where

λ ≥ lf(x) ≥ λṼ > 0

for some λṼ > 0, and where the geometries of g and of g̃ are mutually (λṼ )−1-
close.

Thus, the relevant lower g-gradient estimate for φ(x) comes from the isoperi-
metric inequality for g̃ which, in turn, follow from such an inequality in X, that
is the sphere in the present case. (Filling in the details is left to the reader.)
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Remark. (a) The above example shows that the g-volume of X≤λ ⊂ X can
be large and that the bound on Ṽ concerns not only the subset X≤λ but its
complement X ∖X≤λ as well.

Corollary + Question. (a) Let X be a closed orientable Riemannin spin n-
manifold with Sc(X) ≥ n(n − 1) and let f ∶ X → Sn a (possibly non-smooth!)
1-Lipshitz map of degree ≠ 0.

If the map Y is a homeomorphism, then it is an isometry.
(b) Is this remain true for all 1-Lipshitz maps?

The inequality [∣X≤λ∣ ≤] doesn’t take advantage of deg(f) when this is large,
but the following proposition does just that.

2. Let X be a compact oriented Riemannian spin n-manifold with a boundary
Y = ∂X, such that Sc(X) ≥ n(n − 1) + ε, ε > 0.

Let f ∶ X → Sn be a smooth map, which is constant on Y , which is area
contracting away from the a neighbourhood U ⊂X of Y = ∂X ⊂X,

∣∣ ∧
2 df(x)∣∣ ≤ 1 for all x ∈X ∖U,

and where

∣∣ ∧
2 df(x)∣∣ ≤ Co for all x ∈X ∖U and some constant Co > 0.

Then the degree of f is bounded by a constant d depending only on U and on
Co,

∣deg(f)∣ ≤ d = constU,Co .

Sketch of the Proof. (Compare with §§5 1
2
and 6 in [G(positive) 1996].) Let

s(x) be the (Borel) function on X which equals to ε away from U and is equal
to E = −Cn ×Co on U for some universal Cn ≈ nn.

Then arguing (essentially) as in the first part of the above proof, we conclude
that the spectrum of the operator −∆ + s(x) on the (smoothed) double DD(X)

contains at least d = deg(f) negative eigenvalues.
This an easy argument would deliver d eigenvalues λi of the operator −∆ on

DD(U), where the corresponding eigenfunctions vanish on the two copies of the
boundary of U in X (but not, necessarily on Y ), and such that λi ⪅ E.

This would yield the required bound on d. (Here again, the details are left
to the reader.)

Remark + Example + Two Problems. (a) If the boundary of Y = ∂X admits
an orientation reversing involution, then the constancy of f on Y can be relaxed
to dim(f(Y )) ≤ n−2, where the constant d will have to depend on the geometry
of this involution and of the map Y → Sn.

(It is unclear if the existence of such an involution is truly necessary.)
(b) This (a) apply, for instance, to coverings X = Σ2

d,δ of the 2-sphere minus
two δ-discs as well as to the products of these Σ2

d,δ with the Euclidean ball
Bn−1(R) of radius R > π.

(c) What are the sharp and/or comprehensive versions of these 1 and 2?
(d) Let Y be a homotopy sphere of dimension 4k−1, which bounds a Riemannin

manifold X with Sc ≥ ε > 0. Give an effective bound on the Â-genus of X in terms
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of the geometry of Y and its second fundamental form h = II(Y ⊂ X) and study
the resulting invariant

Invε(Y,h) = sup
X

∣Â(X)∣, where ∂X = Y, Sc(X) ≥ ε, II(Y ⊂X) = h.

4.6 Dirac Operators on Manifolds with Boundaries
As far as the scalar curvature is concerned, all the index theorems are needed
for is delivering non-zero harmonic or approximately harmonic (often twisted)
spinors on Riemannian manifolds X under certain certain geometric/topological
conditions on X, which, a priori, have nothing to do with the scalar curvature
but which are eventually used to obtain upper bounds on Sc(X) via the (usually
twisted) Bochner-Schrödinger-Lichnerowicz-Weitzenböck formula.

Albeit all(?) known index theorems for (twisted) Dirac operators D used for
this purpose directly apply only to complete Riemannin manifolds, these theo-
rems can yield a non-trivial information on existence of approximately harmonic
spinors on non-complete manifolds as well as on manifolds with boundaries,
where the main issue, say for manifolds with boundaries, can be formulated as
follows.

Spectral D2-Problem. Let X be a compact Riemannian spin manifold with
a boundary and L → X be a (possibly infinite dimensional Hilbert) vector bundle
with a unitary connection. Under which geometric/topological conditions does X
support a smooth non-zero twisted spinor s ∶ X → S(X) ⊗ L, which vanishes on
the boundary of X and such that

�λ ∫
X
⟨D

2
⊗L(s), s⟩ ≤ λ

2
∫
X

∣∣s∣∣2dx

for a given constant λ ≥ 0?
Motivating Example. If X is obtained from a complete manifold X+ ⊃X by

cutting away X+ ∖X, and if X+ carries a non-vanishing (twisted) L2-spinor s+
delivered by applying the relative index theorem, then the cut-off spinor s = φ⋅s+,
for a "slowly decaying" positive function φ with supports in X satisfies�λ with
"rather small " λ.

Potential Corollary. Since

D
2
⊗L(s) ≥ ∇

2
⊗L(s) +

1

4
Sc(X)(s) − const′n∣curv∣(L)

by the Bochner-Schrödinger-Lichnerowicz-Weitzenböck formula and since

∫ ⟨∇
2
⊗L(s), s⟩ = ∫

X
⟨∇⊗L(s),∇⊗L(s)⟩ ≥ 0

for s∣∂X = 0, the inequality�λ implies

�Sc inf
x
Sc(X,x) ≤

4constn
ρ2

+ 4const′n∣curv∣(∇).
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for some universal positive constants constn and const′n.
From a geometric perspective, the role of above is to advance the solution

of the following.
Long Neck Problem. Let X be an orientable (spin?) Riemannian n-

manifold with a boundary and f ∶ X → Sn be a smooth area decreasing map.

What kind of a lower bound on Sc(X,x) and a lower bound on the "length
of the neck" of (X,f), that is
the distance between the support of the differential of f and the boundary of X,

would make deg(f) = 0?
An instance of a desired result would be

[Sc(X) ≥ n(n − 1)]&[dist(supp(df), ∂X) ≥ constn]⇒ deg(f) = 0,

but it is more realistic to expect a weaker implication

[Sc(X) ≥ n(n − 1)]&[dist(supp(df), ∂X) ≥ constn⋅ sup
x∈X

∣∣∣df(x)∣∣]⇒ deg(f) = 0.

In fact, Roe’s proof of the partitioned index theorem as well as the proof
of the relative index theorem, e.g. via the finite propagation speed argument,
combined with Vaffa-Witten kind spectral estimates (see 6 1

2
in [G(positive)

1996]) suggest that
if a compact orientable Riemannian spin manifold of even dimension n with

boundary admits a a smooth map f ∶ X → Sn, which is locally constant on the
boundary of X and which has non-zero degree, then there exists a non-zero spinor
s, twisted with the pullback bundle L = f∗(S(Sn)) such that s vanishes on the
boundary ∂X and which satisfies�λ,

∫
X
⟨D

2
⊗L(s), s⟩ ≤ λ

2
∫
X

∣∣s∣∣2dx,

where
λ ≤ constn

supx∈X ∣∣df(x)∣∣

dist(supp(f), ∂X)
.

This still remains problematic, but we prove in the sections below some inequali-
ties in this regard for manifolds X with certain restrictions on their local geometries.

4.6.1 Bounds on Geometry and Riemannian Limits..

Some properties of manifolds X with boundaries trivially follow by a limit argument
from the corresponding properties of complete manifolds as follows.

A sequence of manifolds Xi marked with distinguished points xi ∈Xi is said to
Lipschitz converge to a marked Riemannin manifold (X∞, x∞), if

there exist (1 + εi)-bi-Lipschitz maps 84 from the balls Bxi(Ri) ⊂ Xj to the
balls Bx

∞
(Ri) ⊂X∞, say

αi ∶ Bxi(Ri)→ Bx
∞
(Ri + 1),

84Here and below "λ-bi-Lipschitz" is understood as the λ-bound on the norms of the dif-
ferentials of our maps and their inverse.
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which send xi → x∞ and where

εi → 0 for i→∞.

Observe that if
dist(xi, ∂Xi)→∞ for i→∞,

then the limit manifold X∞ is complete.
☀ Cheeger Convergence Theorem. If the (local) Ck-geometries of Riemannian

manifolds Xi at the points xi ∈ Bxi(Ri) for Ri →∞ are bounded (as defined below)
by c(dist(xi, xi)) for some continuous function b(d), d ≥ 0 independent of i, then
some subsequence of Xi converges to a Ck−1-smooth Riemannian manifold X∞.

See [Boileau 2005] for the proof and further references.
Definition of Bounded Geometry. The Ck-geometry of a smooth Riemannian

n-manifold X is bounded by a constant g
¯
eq0 at a point x ∈X, if the ρ-ball Bx(ρ) ⊂

X for ρ = 1
b
admits a smooth (1 + b)2-bi-Lipschitz map β ∶ Bx(ρ)→ Rn, such that

the norms of the kth covariant derivatives of β in Bx(ρ) are bounded by b.
Notice that the traditionally defined bound on geometry in terms of the curva-

ture and the injectivity radius of X, implies the above one:
if the norms of the curvature tensor of X and its kth-covariant derivatives

are bounded by β2 and there is no geodesic loop in X based at x of length ≤ 1
β
,

then (the proof is very easy) the Ck+1-geometry of X at x is bounded by b(β)
for some universal continuous function b(β) = bn,k(β).
: Application of ☀ to Scalar Curvature. Let b = b(d) ≥ 0, d > 0, be

a continuous function and let (X,x ∈ X) be a marked compact Riemannian n-
manifold with a boundary, such that the local geometry of X at x ∈ X is bounded
by b(dist(x,x)) and let

R = dist(x, ∂X).

Let d0 be a positive number and let f ∶ X → Sn be a smooth area decreasing
map which is constant within distance ≥ d0 from x ∈ X and which has non-zero
degree.

A. If X is spin and n = dim(X) is even, then there exists a spinor s on X
twisted with the induced spinor bundle L = f∗(S(Sn))→X, such that s vanishes
on the boundary ∂X of X and such that

∫
X
⟨D

2
⊗L(s), s⟩ ≤ λ(R)

2
∫
X

∣∣s∣∣2dx

where λ = λn,b,d0(R) is a certain universal function in R, which asymptotically
vanishes at infinity,

λ(R) →
R→∞

0.

B. The scalar curvature of X is bounded by

inf
x∈X

≤ n(n − 1) + λ′n,b,d0(R),

where, similarly to the above λ, this λ′(R) → 0 for R → ∞.(One can actually
arrange λ′ = λ.)
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Proof. According to Cheeger’s theorem, if R = dist(x, ∂X) is sufficiently
large , then X can be well approximated by a complete manifold X∞, where
such an X∞ supports a non-zero L-twisted harmonic spinor s∞ by the relative
index theorem (we say more about it in section ???).

Then this s can be truncated to si by multiplying it with a slowly decaying
function on X with compact support and then transporting it to the required
spinor on X.

This takes care of A and B follows by Llarull’s inequality.
Remarks. (a) The major drawback of : is an excessive presence and non-

effectiveness of the bounded geometry condition.
We don’t know what the true dependence of λ on the geometry of X is, but

we shall prove several inequalities in the following sections that suggest what
one may expect in this regard.

(b) If the "area decreasing" property of the above map f ∶ X → Sn is
strengthened to "1-Lipschitz", then a version of B follows from the double punc-
ture theorem (see sections 3.9 and 5.4), which needs neither spin nor the bounded
geometry conditions.

4.6.2 Construction of Mean Convex Hypersurfaces and Applications
to Sc > 0.

Since doubling of manifolds with mean convex boundaries preserves positivity
of the scalar curvature (see section 3.6), some problems concerning Sc > 0 for
manifoldsX with boundaries can be reduced to the corresponding ones for closed
manifolds by doubling mean convex domains X∯ ⊂ X across their boundaries
∂X∯ .

To make use of this, we shall present below some a simple criterion for the
existence of such X∯ and apply this for establishing effective versions of the
above B.

Let X be a compact n-dimensional Riemannian band (capacitor), that is the
boundary of X is divided into two disjoint subsets, that are certain unions of
boundary components of X,

∂X = ∂− ∪ ∂+

and let us give a condition for the existence of a domain X∯ ⊂X which contains
∂− and the boundary of which is smooth and has positive mean curvature.

Lemma. Let the boundaries of all domains U ⊂ X, which contain the d0-
neighbourhood of ∂X− for a given d0 < dist(∂−, ∂+), satisfy

[∗1] voln−1(∂U) > voln−1(∂−)

and let all minimal85 hypersurfaces Y ⊂X, the boundaries of which are contained
in ∂+ and which themselves contain points y ∈ Y far away from ∂+, namely, such
that

dist(y, ∂+) ≥ dist(∂−, ∂+) − d0,

satisfy

[∗2] voln−1(Y ) > voln−1(∂−).

85Here "minimal" means "volume minimizing" with a given boundary.
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Then there exists a domain X∯ ⊂ X which contains ∂− and such that the
boundary of which is smooth with positive mean curvature.

Proof. Let X0 ⊂ X minimises voln−1(∂X0) among all domains in X which
contain ∂− and observe that, because of [∗1], the boundary of X0 contains a
point y ∈ ∂X0 with dist(y, ∂+) ≥ dist(∂−, ∂+) − d0 and, because of [∗2], this X0

doesn’t intersect ∂+.
Then, by an elementary argument (see [G(Plateau-Stein) 2014]) the hyper-

surface ∂X0 can be smoothed and its mean curvature made everywhere positive.

[⋆⋆] Two Words about [∗2]. There are several well known cases of manifolds
where the lower bound on the volumes of minimal hypersurfaces Y ⊂ X, where
∂Y ⊂ partialX and where dist(y, ∂)X ≥ R for some y ∈ Y , are available.

For instance if X is λ-bi-Lipschitz to the R-ball in the simply connected
space Xn

κ with constant curvature κ, then the volume of Y is bounded from
below in terms of the volume of the R-ball Bn−1

0 (R) ⊂Xn−1
κ as follows.

Let g = dr2+φ2(r)ds2, r ∈ [0,R], be the metric in the ball B(R) = Bn−1
0 (R) ⊂

Xn−1
κ in the polar coordinates where ds2 is the metric on the unit sphere Sn−1

and let gλ = dr2 + φ2
λ(r)ds

2 be the metric (which is typically singular at R = 0),
such that the volumes of the concentric balls and of their boundaries satisfy

[⋆]
volgλ,n−1B(r)

volgλ,n−2(∂B(r))
= Ψλ(r) = λ

2n−3 volg,n−1B(r)

volg,n−2(∂B(r))
.

Then the standard relation between vol(Y ) and the filling volume bound in
X says that,

the volume of the above Y is bounded by volgλ,n−1(B(R)).86

Notice that [⋆] uniquely and rather explicitly defines the function φλ.
In fact, since

volgλ,n−2(∂B(r)) = φn−2
λ σn−2

for σn−2 = vol(S
n−2), and since

dvolgλ,n−1(B(r)

dr
= volgλ,n−2(∂B(r))

this [⋆] can be written as the following differential equation on φλ

φn−2
λ =

d(φn−2
λ Ψλ)

dr
,

where our φλ satisfies φλ(0) = 0.
.

Examples of Corollaries.
A. Let X be a complete Riemannian n-manifold with infinite (n − 1)-volume

at infinity, which means that the boundaries of compact domains which exhaust
X,

U1 ⊂ U2 ⊂ ... ⊂ Ui ⊂ ... ⊂X,

86The quickest way to show this is with a use of Almgren’s sharp isoperimetric inequality.
But since this still remains unproved for κ < 0, one needs a slightly indirect argument in this
case, which, possibly – I didn’t check it carefully – gives a slightly weaker inequality, namely
V ol(Y ) ≥ cn ⋅ volgλ,n−1(B(R)) for some cn > 0.
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have voln−1(Ui)→∞.
If X contains no complete non-compact minimal hypersurface with finite

(n − 1)-volume, then X can be exhausted by compact smooth domains the
boundaries of which have positive mean curvatures.

Notice that according to [⋆⋆],
no such minimal hypersurface exists in manifolds with uniformly bounded,

or even, slowly growing, local geometries.
Also notice that
infinite non-virtually cyclic coverings X̃ of compact Riemannian manifolds X,

besides having uniformly bounded local geometries, also have infinite (n − 1)-
volumes at infinity; hence they can be exhausted by compact smooth mean convex
domains.

And even the virtually cyclic coverings X̃ admit such exhaustions unless
they are isometric cylinders Y ×R.

Also notice that if X̃ is a Galois (e.g. universal) covering with non-amenable
deck transformation (Galois) group, then it can be exhausted by Ui with
mean.curv(∂Ui) ≥ ε > 0. (See 1.5(C) in [G(Plateu-Stein) 2014].)

Exercises. (a) Show that if a complete connected non-compact Riemannin
n-manifold X has uniformly bounded local geometry, then X × R has infinite
n-volume at infinity.

(b) Show that if X has Ricci(X) > −(n − 1), then X × H2
−1 has infinite

(n + 1)-volume at infinity and that it can be exhausted by compact smooth
mean convex domains.

B. Let A be λ-bi-Lipschitz to the annulus A = A(r, r+R) between two concentric
spheres of radii r and r +R in the Euclidean space Rn. 87

If R ≥ 100λr, then A contains a hypersurface Y which separates the two
boundary components of A and such that

mean.curv(Y ) ≥
100

r
.

C. Let X be a complete simply connected n-dimensional manifold with non-
positive sectional curvature and such that Ricci(X) ≤ −(n− 1), e.g. an irreducible
symmetric space with Sc(X) = −n(n − 1).

Let A be a compact Riemannin manifold which is λ-bi-Lipschitz to the annulus
between two concentric balls B(r) and B(r +R) in X.

There exists a (large) constant constn > 0, such that if R ≥ constn ⋅ logλ,
then there exists a smooth closed hypersurface Y ⊂ A, which separates the two
boundary components in A and such that

mean.curv(Y ) ≥
n − 1

λ + constn(λ − 1)
.88

About the Proof. If κ(X) ≤ −1 this follows from [∗∗], while the general case
needs a minor generalization of this.

87This means the existence of a λ-Lipschitz homeomorphism from A onto A, the inverse of
which A→ A is also λ-Lipschitz.

88The sign convention for the mean curvature is such that the mean convex part of V
bounded by Y is the one which contains the boundary component corresponding to the sphere
∂B(r) in X.
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First Application to Scalar Curvature. Since

RadSn−1(Y ) ≥ λ−1RadSn−1(∂B(r)) ⪆ exp r,

the above inequality together with Remark (b) after #n−1 from section 4.3.
yields the following.

If a Riemannin manifold X is λ-bi-Lipschitz to the ball B(R) ⊂ X, where
R ≥ constn logλ, then the scalar curvature of X is bounded by:

inf
x∈X

Sc(X,x) ≤ −
1

constn ⋅ λ2
.

Second Application to Scalar Curvature. It may happen that a man-
ifold X with Sc(X) > 0 itself contains no mean convex domain, but it may
acquire such domains after a modification of its metric that doesn’t change the
sign of the scalar curvature. Below is an instance of this.

Let X = (X,g) be a compact n-dimensional Riemannian band, as in the
above Lemma, where the boundary of a compact Riemannin manifold X =

(X,g) with Sc(X) ≥ 0 is decomposed as earlier, ∂X = ∂− ∪ ∂+.
Let Sc(X) > 0 and let us indicate possible modifications of the Riemannin

metric g, that would enforce the conditions [∗1] and [∗2] in the Lemma, while
keeping the scalar curvature positive.

We will show below that this can be achieved in some cases by multiplying
g by a positive function e = e(x) , which is equal one near ∂− ⊂ X and which is
as large far from ∂− as is needed for [∗1] and where we also need the Laplacian
of e(x) to be bounded from above by εnSc(X,x) in order to keep Sc > 0 in
agreement with the Kazdan-Warner conformal change formula from section 2.6.

The simplest case, where there is no need for any particular formula, is where
the sectional curvatures of X are pinched between ∓b2, no geodesic loop in X
of length< 1

b
exists, while the scalar curvature of X is bounded from below by

σ > 0.
In this case, let

e0(x) = c

√
σ

b + 1
distg(x, ∂−0)

and observe that if c = cn > 0 is sufficiently small, then e0(x) has a small
(generalized) gradient ∇(e0) and, because the the geometry of X is suitably
bounded, the function e0 can be approximated by a smooth function e(x) with
second derivatives significantly smaller than σ,

thus, ensuring the inequality Sc(eg) > 0.
On the other hand, if

dist(∂−, ∂+) ≥ C(b + 1)∣∣∇(e)∣∣−1vol(∂−)
1
n−1 ,

for a large C = Cn, then
the condition [∗1] is satisfied, say with d0 =

1
2
dist(∂−, ∂+),

and, due to the bound on the geometry of X,
the condition [∗2] is satisfied as well.

Now let us look closer at what kind e(x) we need and observe the following
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[1] The bound on the geometry of X is needed only, where the gradient of e
doesn’t vanish.

Thus, it suffices to have the geometry of X
bounded only in the 1

b
-neighbourhoods of the boundaries of domains Ui,

∂− ⊂ U1 ⊂ ... ⊂ Ui ⊂ ... ⊂ Uk ⊂X,

where dist(Ui, ∂Ui+1) ≥
1
b
and where k

b
is sufficiently large.

[2] Since, the by the standard comparison theorem(s),
Laplacians of the distance-like functions are bounded from above in terms of the

Ricci
curvature,
the b-bound on the full local geometry can be replaced by Ricci(X,x) ≥ −b2g.
Summing up, this yields the following refinement of B in: from the previous

section.
Let X = (X,g) be a, possibly non-complete Riemannian n-manifold, such that

Sc(X) ≥ 0,

and let
f ∶X → Sn

be an area non-increasing map, such that the support of the differential of f is
compact and the scalar curvature of X in this support is bounded from below by
that of Sn,

inf
x∈supp(df)

Sc(X,x) ≥ n(n − 1).

Let Ai be disjoint "bands" in X, that are ai-neighbourhoods of the boundaries
of compact domains Ui, such that

supp(df) ⊂ U1 ⊂ ... ⊂ Ui... ⊂ Uk ⊂X.

Let us give an effective criterion for vanishing of the degree of the map f in
terms of the geometries of Ai.

Proposition. Let the scalar and the Ricci curvatures ofX in Ai for i = 2, ...k−1
be bounded from below by

Sc(Ai) ≥ σi and Ricci(Ai) ≥ −b2g, 2 ≤ i ≤ k − 1,

and set

βi =

√
σi
bi

.

Let the sectional curvatures of Uk outside Uk−1 be bounded from above by

κ(Uk ∖Uk−1) ≤ c
2, c > 0,

and let the complement Uk ∖Uk−1 contains no geodesic loop of length ≤ 1
c
.

If the following weighted sum of ai (that are half-widths of the bands Ai) is
sufficiently large,

∑
1<i<k

βiai ≥ constn
(voln−1(∂U1))

1
n−1

ak
c

,
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and if X is orientable spin, then

deg(f) = 0.

Proof. Arguing as above, one finds a smooth function e(x), the differential
of which is supported in the union of Ai, 1 < i < k, such that Sc(e ⋅ g) remains
nonnegative (and even can be easily made everywhere positive) and such that
Uk satisfy the assumptions [∗1] and [∗2] of the above Lemma, that yields a
subdomain

X∯ ⊂ Uk,

which is mean convex with respect to the metric eg and to a smoothed double
of which compact Llarull’s theorem applies.

Remarks. (a) Even in the case of complete manifolds X, this doesn’t (seem
to) directly follow from Llarull’s theorem, since the latter, unlike the former,
needs uniformly positive scalar curvature at infinity.

(b) The above proposition, as well construction of mean-convex hypersur-
faces in general, doesn’t advance, at least not directly, the solution of the spec-
tral D2-problem formulated at the beginning of section 4.6.

4.6.3 Enhancing Positivity of the Scalar Curvature by Crossing with
Spheres.

Let X = (X,g) be a complete Riemannian n-manifold, let f ∶X → Sn be a smooth
area contracting map the differential df of which has compact support.

Let
∣d∣ = sup

x∈X
∣∣df(x)∣∣

and
r = r(x) = dist(x, supp(df)).

Let the Ricci curvature of X outside supp(df) be bounded from below by

Ricci(x) ≥ −b(r(x))2g(x)

for some continuous function b(r), r ≥ 0.
If the function b(r) grows sufficiently slowly for r → ∞, e.g. σ(r) ≤ 3

√
r for

large r, then there is an effective lower bound

Sc(X,x) ≥ σ(r(x)),

which implies that
the map f has zero degree,

where σ(r), r ≥ 0, is a certain "universal" function, which is "small negative"
at infinity.

More precisely, there exists a universal effectively computable family of func-
tions in r,

σ(r) = σb,∣d∣,N,(r), r ≥ 0, N = 1,2, ....,

with the following five properties
(i) the functions σ(r) are monotone decreasing in r ≥ 0,
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(ii) σb,∣d∣,N,(r) is monotone decreasing in N ,
(iii) σb,∣d∣,N,(r) is monotone increasing in b and in ∣d∣,

(iv) σ(0) = N(N − 1), while σ(r) →
r→∞

−∞

(v) σN(r) = σb,∣d∣,N,(r) →
N→∞

−∞ for fixed b, |d| and r > 0,

such that
[⨉#N−n] if Sc(X,x) ≥ σb,∣d∣,N,(r(x)) for all x ∈ X and some N ≥ n + 2,

then, assuming X is orientable and spin, the degree of f is zero.89

Proof. The bound on ∆ϕ(x) for Ricci ≥ −b2 (compare with [2] from the
previous section) shows that there exists σb,∣d∣,N,(r) with the above properties
(i)-(v) and a positive function ϕ(x) on X, such that

(a) ϕ is equal to ∣d∣ on the support supp(df) ⊂X
and such that

(b) σ(r(x))+
m(m − 1)

ϕ(x)2
−
m(m − 1)

ϕ2(x)
∣∣∇ϕ(x)∣∣2−

2m

ϕ(x)
∆ϕ(x) ≥ ε > 0 for r(x) > 0.

Therefore, by the formula (⋆⋆) from section 2.4 for the scalar curvature of
the warped product metrics gϕ = g + ϕ2ds2 on X × Sm, m = N − n,

Sc(gϕ)(x, s) = Sc(g)(x) +
m(m − 1)

ϕ(x)2
−
m(m − 1)

ϕ2(x)
∣∣∇ϕ(x)∣∣2 −

2m

ϕ(x)
∆ϕ(x),

the metric gϕ has uniformly positive curvature and because of (a) the map
f ∶ X → Sn suspends to an area decreasing map (X × Sm, gϕ) → Sn+m of the
same degree as f . Then Llarull’s theorem applies and the proof follows.

On Manifolds with Boundaries. If X is a compact manifold with a bound-
ary, the above can be applies to the smoothed double X ∪∂X X , where the
scalar curvature of such a double near the smoothed boundary can be bounded
from below by the geometry of X near the boundary and the (mean) curvature
of the boundary ∂X ⊂X.

Thus, the above yields a condition for deg(f) = 0 in terms of the lower bound
on Sc(X,x) and on dist(x, supp(df)), which is similar to, yet is different from
such a condition from the previous section.

(A similar but somewhat different result follows by the argument in section
5.4)

4.6.4 Amenable Boundaries

If the volume of the boundary of a compact manifold X is significantly smaller
than the volume of X and if it is additionally supposed that the manifold is not
very much curved near the boundary, then we shall see in this section that

the index theorem applied to the double of such an X with a smoothed
metric, yield geometric bounds on the area-wise size of X in terms of the lower
bound on the scalar curvature of X.

89Compare with "inflating balloon" used in 7.36 of [GL 1983].
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Elliptic Preliminaries. Let V be a (possibly non-compact) Riemannian man-
ifold with a boundary, and let l be a section of a bundle L → V with a uni-
tary connection ∇, such that l satisfy the following (elliptic) Gårding (δ○,C○)-
inequality: the C1-norm of l at v ∈ V is bounded at by the L2-norm of l in the
δ○-ball B = Bv(δ○) ⊂ V as follows

∣∣l(v)∣∣ + ∣∣∇l(v)∣∣ ≤ C○

√

∫
B
∣∣(l)∣∣2dv

for all points v ∈ V , where
dist(v, ∂V ) ≥ δ○.

Let
ρ(v) = dist(v, ∂V ) and β = sup

v∈V
vol(Bv(δ○))

Lemma. If l vanishes on an ε-net Z ⊂ V , then

∣∣l(v)∣∣ + ∣∣∇l(v)∣∣ ≤ (10C○εβ)
ρ(x)−2δ○

√

∫
V
l2(v)dv

Moreover, if V can be covered by 2δ○-balls with the multiplicity of the covering
at most m, then the L2-norms of l and ∇l on the subset V−ρ ⊂ V of the points
ρ-far from the boundary, that is

V−ρ = V ∖Uρ(∂V ) = {v ∈ V }dist(v,∂V )≥ρ,

satisfies

[�]
√

∫
V−ρ

∣∣l∣∣2(v)dv ≤ ε

√

∫
V
∣∣l∣∣2(v)dv

for ε =m (10C○εβ)
ρ(x)−2δ○ .

Proof. Combine Gårding’s inequality with the following obvious one:

∣∣l∣∣ ≤ ε∣∣∇∣∣l

and iterate the resulting inequality i times insofar as ρ − iδ○ remains positive.
Remark. A single round of iterations suffices for our immediate applications.
Corollary. Let X be a complete orientable Riemannian manifold of dimension

n with compact boundary (e.g. X is compact or homeomorphic to X0 ×R+, where
X0 is a closed manifold), and let, y for some ρ > 0 and 0 < δ○ <

1
4
ρ,

the ρ-neighbourhood of the boundary of X, denoted U = Uρ(∂X) ⊂X, has
(local) geometry bounded by 1

δ○
,

where we succumb to tradition and define this bound on geometry as follows:
the sectional curvatures κ of U are pinched between − 1

δ2○
and 1

δ2○
and the injectivity

radii are bounded from below by δ○ at all points x ∈ U , for which dist(x, ∂X) ≥ δ○,
that is, in formulas,

∣κ(X,x)∣ ≤ 1
δ2○

for dist(x, ∂X) ≤ ρ and injrad(X,x) ≥ δ○ for δ○ ≤ dist(x, ∂X) ≤ ρ.

Let the scalar curvature of X be non-negative 1
2
ρ-away from the boundary,

Sc(X,x) ≥ 0 for dist(x, ∂X) ≥
1

2
ρ.
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Let f ∶ X → Sn(R), where Sn(R) is the sphere of radius R, be a smooth area
decreasing map , which is constant on Uρ, and, if X is non-compact, also locally
constant at infinity.

Let the degree of this map be bounded from below by the volume of Uρ =

Uρ(∂X) as follows.
d > Cvol(Uρ) for some C ≥ 0.

If δ○, ρ and C are sufficiently large, then, provided X is spin, the scalar
curvature of the complement

X−ρ =X ∖Uρ = {x ∈X}dist(x,∂X>ρ

can’t be everywhere much greater than Sc(Sn(R)) =
n(n−1)
R2 . Namely

[ ] inf
x∈X−ρ

Sc(X,x) ≤ σ+
n(n − 1)

R2
+ σ,

where σ = σn(δ○, ρ,C) is a positive function, which may be infinite for small δ○
and/or ρ and/or C and which has the following properties.

● the function σ is monotone decreasing in δ○, ρ and C;
● σn(δ○, ρ,C)→ 0 for C →∞ and arbitrarily fixed δ○ > 0 and ρ > δ○.
Proof. Let 2X =DDX be a smoothed double of X and L → 2X the vector

bundle induced from S+(Sn) by f applied to a copy (both copies, if you wish)
of X ⊂ 2X.

Assume n = dim(X) is even, apply the index theorem and conclude that the
dimension of the space of L-twisted harmonic spinors on 2X is ≥ d.

Therefore, there exists such a non-zero spinor l that vanishes at given d − 1
points in 2X.

Let such points make a ε-net on the subset 2Uρ○ = DDUρ○ ⊂ 2X with a minimal
possible ε.

If d is much larger then vol(2Uρ) ≈ 2vol(Uρ), then this ε becomes small
and, consequently, ε in the above inequality [�] also becomes small. Then, the
inequality [�] applied to the domain 2Uρ ⊂ 2X, shows that the integral

∫
2Uρ

∣∣l∣∣2(x)dx

is much smaller then the integral of ∣∣l∣∣2 over the complement 2X0 = 2X ∖ 2Uρ.
Therefore, if σ+ is large then the sign of the full integral

∫
2X

Sc(X,x)∣∣l∣∣2(x)dx = ∫
2Xρ

Sc(X,x)∣∣l∣∣2(x)dx + ∫
Uρ
Sc(X,x)∣∣l∣∣2(x)dx

is equal to the sign of ∫2Xρ Sc(X,x)∣∣l∣∣
2(x)dx, which contradicts the Schroedinger-

Lichnerowicz-Weitzenboeck formula for harmonic l.
Thus, modulo simple verifications and evaluations of constants left to the

reader, the proof is completed.
Example 1. Let a complete non-compact orientable spin Riemannian n-manifold

X with compact boundary admits smooth area decreasing maps fi ∶ X → Sn of
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non-zero degrees,90 such that the "supports" of fi, i.e. the subsets where these
maps are non-constant, may lie arbitrarily far from the boundary of X,

dist ("supp"fi, ∂X)→∞ for i→∞.

Then the scalar curvature of X can’t be uniformly positive at infinity:

lim inf
x→∞

Sc(X,x) ≤ 0.

Moreover, the same conclusion holds, if
there exist i-sheeted coverings X̃i → X, which admit smooth area decreasing

maps fi ∶ X̃i → Sn, such that

deg(fi)

i
→∞ for i→∞.

Example 2. Let Yk be a k-sheeted covering of the unit 2-sphere S2 = S2(1)
minus two opposite balls of radii 1

km
, for some m ≥ 1.

Then the product manifold X0 = Yk × S
n−2(k) admits an area decreasing

map f ∶X0 → Sn(R) constant on the boundary and such that

deg(f) ≥
k

10d

and it follows from the above corollary that the Riemannin metric on X0 can’t
be extended to a larger manifold X ⊃ X0, with bounded geometry and Sc ≥
0 without adding much volume to X0, say in the case m = n − 1, although
voln−1(∂X0) remains bounded for R →∞.

Melancholic Remarks. Rather than indicating the richness of the field, the
diversity of the results in the above sections 4.6.1-4.6.4 is due to our inability
to formulate and to prove the true general theorem(s).

4.6.5 Almost Harmonic Spinors on Locally Homogeneous and and
Quasi-homogeneous Manifolds with Boundaries

Let X be a complete Riemannian manifold with a transitive isometric action of
a group G, let L → X be a vector bundle with a unitary connection ∇ and let
the action of G equivariantly lifts to an action on (L,∇).

Let the L2-index of the twisted Dirac operator D⊗L (see [Atiyah(L2) and
[ConMos 1982] 1976], be non zero. For instance, if X admits a free discrete
isometry group Γ ⊂ G with compact quotient, then this is equivalent to this
index to be non-zero on X/Γ.

The main class of examples of suchX are symmetric spaces with non-vanishing
"local Euler characteristics (compare with [AtiyahSch 1977]) i.e. where the corre-
sponding (G-Invariant) n-forms, n = dim(X) don’t vanish.

The simplest instances of these are hyperbolic spaces H2m
−1 , where the indices

of the Dirac operators twisted with the positive spinor bundles don’t vanish. In
90Here as everywhere in this paper, when you you speak of deg(f) the map f is supposed

to be locally constant at infinity as well as on the boundary of X.
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fact, such an index for a compact quotient manifold H2m
−1 /Γ is equal to ±one half

of the Euler characteristics of this manifold by the Atiyah-Singer formula (compare
[Min(K-Area) 2002]).

Let (X,L) be an above homogeneous pair with ind(D⊗L) ≠ 0 and letXR ⊂X
be a ball of radius R. Then the restrictions of L2-spinors on X (delivered by
the L2-index theorem) to XR can be perturbed (by taking products with slowly
decaying cut-off functions) to ε-harmonic spinors that vanish on the boundary
of XR, where ε→ 0 for R →∞ and where "ε-harmonic" means that

∫
XR

⟨D
2
⊗L(s), s⟩ ≤ ε

2
∫
XR

∣∣s∣∣2dx

as in�λ in section 4.6.
In fact, it follows from the local proof of the L2-index theorem in [Atiyah(L2)

1976] or, even better, from its later version(s) relying on the finite propagation
speed, that these ε-harmonic spinors can be constructed internally in XR with
no reference to the ambient X ⊃XR.

Moreover, a trivial perturbation (continuity) argument shows that
similar spinors exist on manifolds X ′

R with these metrics close to these on
XR.

but it is unclear "how close" they should be. Here is a specific problem of
this kind.

Let XR be a compact Riemannian spin manifold with a boundary, such that

sup
x∈X

dist(x, ∂XR) ≥ R

and let the sectional curvatures of X are everywhere pinched between −1 and −1−δ.

(A) Under what conditions on R, δ and ε does XR support a non-vanishing
ε-harmonic spinor twisted with the spin bundle S(XR)?

Besides, one wishes to have
(B) similar spinors on manifolds X mapped to XR with non-zero degrees and

with
controlled metric distorsions
in order to get bounds on the scalar curvatures of such X
(See section 6.4.3 for continuation of this discussion to fibrations with quasi-

homogeneous fibers.)

5 Variation of Minimal Bubbles and Modifica-
tion of their Metrics

Given a a Borel measure µ on an n-dimensional Riemannian manifold X, µ-
bubbles are critical points of the following functional on a topologically defined
class of domains U ⊂X with boundaries called Y = ∂U :

(U,Y )↦ voln−1(Y ) − µ(U).

Observe that in our examples, µ(U) = ∫U µ(x)dx for (not necessarily posi-
tive) continuous functions µ on X and that µ(U) can be regarded as a closed
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1-form on the space of cooriented hypersurfaces Y ⊂X. Then voln−1(Y )−µ(U)

also comes as such an 1-form which we denote vol[−µ]n−1 (Y )(+const).

The first and the second variations of vol[−µ]n−1 (Y )(+const) are the sums of
these for V ol−1(Y ) and of vol(U) where the former were already computed in
section 2.5.

And turning to the latter, it is obvious that the first derivative/variation of
µ(U) under ψν, where ν is the outward looking unit normal normal field to Y
and ψ(y) is a function on Y , is

∂ψν ∫
U
µ(x)dx = ∫

Y
µ(y)ψ(y)dy

and the second derivative/variation is

∂2
ψν ∫

U
µ(x)dx = ∂ψν ∫

Y
µ(y)ψ(y)dy = ∫

Y
(∂νµ(y) +M(y)µ(y))ψ2

(y)dy,

where the field ν is extended along normal geodesics to Y , (compare section 2.5)
and where M(y) denotes the mean curvature of Y in the direction of ν.

It follows that µ-bubbles Y , (critical points of vol[−µ]n−1 (Y ) = voln−1(Y )−µ(U))
have

mean.curv(Y ) = µ(y)

and that
second variation of locally minimal bubbles Y ⊂X,

∂ψν(vol
[−µ]
n−1 (Y )) = ∂ψν (voln−1(Y ) − ∫

U
µ(x)dx)) ,

is non-positive.
Then we recall, the formula [○○] from section 2.5

∂2
ψνvoln−1(Y ) = ∫

Y
∣∣dψ(y)∣∣2dy +R−(y)ψ

2
(y)dy

for

R−(y) = −
1

2
(Sc(Y, y) − Sc(X,y) +M2

(y) −
n−1

∑
i=1

αi(y)
2
) ,

where αi(y) are the principal curvatures of Y at y, and where ∑α2
i is related

to the mean curvature M = α1 + ... + αn−1, by the inequality

∑α2
i ≥

M2

n − 1
.

Thus, summing up all of the above, observing that

∂νµ(x) ≥ −∣∣dµ(x)∣∣

and letting

[R+ =] R+(x) =
nµ(x)2

n − 1
− 2∣∣dµ(x)∣∣ + Sc(X,x),

we conclude that
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if Y locally minimises vol[−µ]n−1 (Y )(= voln−1(Y ) − µ(U)), then

∫ ∣∣dψ∣∣2dy + (
1

2
Sc(Y ) −

1

2
R+(y))ψ

2
(Y )dy ≥ ∂ψνvol

[−µ]
n−1 (Y ) ≥ 0

for all functions ψ on Y .
Hence,
(≥0 the operator −∆+ 1

2
Sc(Y, y)− 1

2
R+(y), for ∆ = ∑i ∂

2
ii is positive on Y .

Examples. (a) Let X = Rn and µ(x) = n−1
r
, that is the mean curvature of

the sphere of radius r. Then

R+(x) =
n(n − 1)

R
− 2

n − 1

r2
+ 0 =

(n − 1)(n − 2)

r2
= Sc(Sn−1

(r)).

(b) LetX = Rn−1×R be the hyperbolic space with the metric ghyp = e2rgEucl+
dr2 and let µ(x) = n − 1. Then

R+(x) = n(n − 1) − 0 + (−n(n − 1)) = 0 = Sc(Rn).

(c) Let X = Y × (−π
n
, π
n
) with the metric ϕ2h + dt2, where the metric h is a

metric on Y and where

ϕ(t) = exp∫
t

−π/n
− tan

nt

2
dt, −

π

n
< t <

π

n
.

Then a simple computation shows that

R+(x) =
n(n − 1)

R
− 2

n − 1

r2
+ 0 =

(n − 1)(n − 2)

r2
= Sc(Sn−1

(r)).

nµ(x)2

n − 1
− 2∣∣dµ(x)∣∣ + n(n − 1) = 0.

Furthermore, if Sc(h) = 0, than Sc(X(= n(n − 1) and R+ = 0.
Two relevant corollaries to (≥0 are as follows.
Let X be a Riemannian manifold of dimension n, let µ(x) be a continuous

function and Y be a smooth minimal µ-bubble in X.
(conf If

R+(x) =
nµ(x)2

n − 1
− 2∣∣dµ(x)∣∣ + Sc(X,x) > 0,

then by Kazdan-Warner conformal change theorem (see section 2.6) Y admits
a metric with Sc > 0.
(warp There exists a metric ĝ on the product Y ×R of the form gY + φ2dr2

for the metric gY on Y induced from X, such that

Scĝ(y, r) ≥ R+(y).

Proof. Let φ(y) be the first, necessarily positive eigenfunction of the operator
−∆+ 1

2
Sc(gY , y)−R+(y) and recall (see section 2.4) that Sc(ĝ) = Sc(gY )−2∆φ

φ
.

Then
−∆φ +

1

2
Sc(gY , y)φ −

1

2
R+(y)φ = λφ, λ > 0,
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∆φ

φ
= −λ +

1

2
Sc(gY , y) −

1

2
R+(y)

and
Sc(ĝ) = R+ + 2λ,

which implies that Scĝ(y, r) ≥ R+(y), since λ ≥ 0. QED.

5.1 On Existence and Regularity of Minimal Bubbles.
Let X be a compact connected Riemannian manifold of dimension n with boundary
∂X and let ∂− ⊂ ∂X and ∂+ ⊂ ∂X be disjoint compact domains in ∂X.

Example. Cylinders Y × [−1,1] naturally come with such a ∂∓-pair for ∂− =
Y × {−1} and ∂+ = Y × {1}, where, observe, ∂− ∪ ∂+ = ∂(Y × [−1,1]) if and only
if Y is a manifold without boundary.

Let us agree that the mean curvature of ∂− is evaluated with the incoming
normal field and mean.curv(∂+) is evaluated with the outbound field.

For instance, if the boundary of X is concave, as for instance for X equal
to the sphere minus two small disjoint balls, t then mean.curv(∂−) ≥ 0 and
mean.curv(∂+) ≤ 0.

Barrier [≷ ∓mean]-Condition. A continuous function µ(x) on X is said to
satisfy [≷ ∓mean]-condition if

[≷ ∓mean] µ(x) ≥mean.curv(∂−, v) and µ(x) ≤mean.curv(∂+, x)

for all x ∈ ∂− ∪ ∂+.
It follows by the maximum principle in the geometric measure theory that
⋆ the [≷ ∓mean]-condition ensures the existence of a minimal µ-bubble

Ymin ⊂X. which separates ∂− from ∂−+.
If this condition is strict, i.e. if µ(x) >mean.curv(∂−) and µ(x) <mean.curv(∂+)

and if X has no boundary apart from ∂∓, then Ymin ⊂X doesn’t intersect ∂∓; in
general, the intersections Ymin∩∂∓ are contained in the side boundary of X that
is the closure of the complement ∂X ∖ (∂− ∪ ∂−). (This, slightly reformulated,
remains true for non-strict [≷ ∓mean].)

If dim(X) = n ≤ 7, then, (this well known and easy to see) Federer’s regu-
larity theorem(see section 2.7) applies to minimal bubbles as well as to minimal
subvarieties and the same can be said about Nathan Smale’s theorem on non-
stability of singularities for n = 8. Thus, in what follows we may assume our
minimal bubbles smooth for n ≤ 8.

Then, by the stability of Ymin (see section 5.1 above),
●ϕ○ : there exits a function φ○ = φ○(y) > 0 defined in the interior ○Y of Y ,

i.e. on Y ∖ ∂X, such that the metric

gϕ○ = ϕ
2
○gY + dt2 on the cylinder ○Y ×R,

where gY is the Riemannin metric on Y induced from X, satisfies

e Scgϕ○ (y, t) ≥ Sc(X,y) +
nµ(y)2

n − 1
− 2∣∣dµ(y)∣∣
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for all y ∈ ○Y .91

What if n ≥ 9?.

The overall logic of the proof indicated in [Loh(smoothing) 2018] leads one to
believe that, assuming strict [≷ ∓mean], there always exists a smooth Yo ⊂ X,
which separates ∂∓ and and which admits a function φ○ with the property e.

The proof of this, probably, is automatic, granted a full understanding
Lohkamp’s arguments. But since I have not seriously studied these arguments,
everything which follows in sections 5.3-5.7 should be regarded as conjectural
for n ≥ 9.

Barrier [≷mean = ∓∞]-Condition. Let X be a non-compact, possibly non-
complete, Riemannin manifold X and let the set of the ends of X is subdivided
to (∂∞)− = (∂∞)−(X) and (∂∞)+ = (∂∞)+(X), where this can be accomplished,
for instance, with a proper map from X to an open (finite or infinite) interval
(a−, a+) where "convergence" xi → (∂∞)∓, xi ∈X, is defined as e(xi)→ a∓.

For example, if X is the open cylinder, X = Y × (a, b), where Y is a
compact manifold, possibly with a boundary, this is done with the projection
Y × (a−, a+)→ (a−, a+).

Obvious Useful Observation. If a function µ(x) satisfies

µ(xi)→ ±∞ for xi → (∂∞)∓

then X can be exhausted by compact manifolds Xi with distinguished domains
(∂∓)i ⊂ ∂Xi, such that

● these (∂∓)i separate (∂∞)− from (∂∞)− for all i and

(∂∓)i → (∂∞)∓;

● restrictions of µ to (Xi, (∂∓)i) satisfy the barrier [≷ ∓mean]-condition.
This ensures the existence of locally minimising µ-bubbles in X which sepa-

rate (∂∞)− from (∂∞)+.

5.2 Bounds on Widths of Riemannin Bands.
Let us prove the following version of the 2π

n
-inequality from section 2.6.

2π
n -Inequality∗. Let X be an open, possibly non-complete Riemannian man-

ifold of dimension n and let
f ∶X → (−l, l)

be a proper (i.e. infinity → infinity) smooth distance non-increasing map, such that
the pullback f−1(to) ⊂X of a generic point to the interval (−l, l) is non-homologous
to zero in X.

If Sc(X) ≥ n(n−1) = Sc(Sn) and if the following condition Sc≯0 is satisfied,
then

l ≤
π

n
.

Sc≯0 No smooth closed cooriented hypersurface in X homologous to f−1(to)
admits a metric with Sc > 0.

91Since the metric gϕ○ is R-invariant its scalar curvature is constant in t ∈ R.
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Proof. Assume l > π
n
. and let µ(t) denote the mean curvature of the hy-

persurface Y × {t} in the warped product metric ϕ2h + dt2. on Y × (−π
n
, π
n
)

for
ϕ(t) = exp∫

t

−π/n
− tan

nt

2
dt, −

π

n
< t <

π

n

as in example (c) from the previous section.
Since µ(t) → ±∞ for t → ∓π

n
, the barrier [≷mean = ∓∞]-condition from the

section 5.2 guaranties the existence of a locally minimizing µ-bubble in X for µ
being a slightly modified f -pullback of µ to X.

Let us spell it out in detail.
Assume without loss of generality that the pullbacks Y∓ = f−1 (∓π

n
) ⊂X are

smooth, and let µ(x) be a smooth function on X with the following properties.
●1 µ(x) is constant on X on the complement of f−1 (−π

n
, π
n
) for (−π

n
, π
n
) ⊂

(−i, i);
●2 µ(x) is equal to µ ○ f in the interval (−π

n
+ ε, π

n
− ε) for a given (small)

ε > 0;
●3 the absolute values of the mean curvatures of the hypersurfaces Y∓ are

everywhere smaller than the absolute values of µ;
●4

nµ(x)2
n−1

− 2∣∣dµ(x)∣∣ + n(n − 1) ≥ 0 at all points x ∈X.
In fact, achieving ●3 is possible, since µ(t) is infinite at ∓π

n
, while the mean

curvatures of the hypersurfaces Y∓ and what is needed for ●4 are the inequality
∣∣df ∣∣ ≤ 1 and the equality

nµ(t)2

n − 1
− ∣
dµ(t)

dt
∣ + n(n − 1) = 0

indicated in example(c) from section 5.1).
Because of ●3, the submanifolds Y∓ serve as barriers for µ-bubbles (see the

previous section) between them; this implies the existence of a minimal µ-bubble
Ymin in the subset f−1 (−π

n
, π
n
) ⊂X homologous to Yo. by⋆ in section 5.2.

Due to ●4, the operator ∆+ 1
2
Sc(Y ) is positive by (≥0 from the section 5.1 .

Hence, by (conf the manifold Ymin admits a metric with Sc > 0 and the
inequality l ≤ π

n
follows.

On Rigidity. A a close look at minimal µ-bubbles (see section 5.7) shows
that

if l = π
n
, then X is isometric to a warped product , X = Y × (−π

n
, π
n
) with the

metric ϕ2h + dt2, where the metric h on Y has Sc(h) = 0 and where

ϕ(t) = exp∫
t

−π/n
− tan

nt

2
dt, −

π

n
< t <

π

n
.

Exercises. (a) Let X be an open manifolds with two ends, Show that if no
closed hypersurface in X that separates the ends admits a metric with positive
scalar curvature then X admits no metric with Sc > 0 either.92

(b) Let X be a complete Riemannian manifold, and let

S(R) = min
B(R)

Sc(X)

92This, for a class of spin manifolds X, was shown in [GL [1983] by applying a relative index
theorem for suitably twisted Dirac operators on X × S2(R).
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denote the minimum of the scalar curvature (function) of X on the ball B(R) =

Bx0(R) ⊂X for some centre point x0 ∈X. Show that
ifX is homeomorphic to Tn−2×R2, then there exists a constant R0 = R0(X,x0),

such that

[≍ 4π2

R2 ] S(R) ≤
4π2

(R −R0)
2
for all R ≥ R0.

93

Hint. Since the bands between the concentric spheres of radii r and r +R,
call them X(r, r + R) = B(r + R) ∖ B(r), are, for large r, quite similar to the
cylinders TN−1×[0,R], the 2π

n -Inequality∗ applies to them and says that their
scalar curvatures satisfy

S(R) = inf Scx(X(r, r +R), x) ≤
4(n − 1)π2

nR2
.

5.3 Bounds on Distances Between Opposite Faces of Cu-
bical Manifolds with Sc > 0

Let us see what kind of geometry Ymin may have if we drop the condition Sc≯0

from the previous section and allow l > π
n
.

◻-Lemma. Let X be a compact connected Riemannian manifold of dimension
n with boundary ∂X and let ∂− ⊂ ∂X and ∂+ ⊂ ∂X be disjoint compact domains
in ∂X as in section 5.2.

Let
Sc(X) ≥ σ + σ1, ,

where σ1 > 0 is related to the distance d = distX(∂−, ∂+) by the inequality

σ1d
2
>

4(n − 1)π2

n
.

(If scaled to σ1 = n(n − 1), this becomes d > 2π
n
.)

Then there exists a smooth hypersurface Y−1 ⊂ X,which separates ∂− from
∂+, and a smooth positive function φ−1 on the interior of Y−1, such that the
scalar curvature of the metric g−1 = gY−1 + φ

2
−1dt

2 on Y−1 × R is bounded from
below by

Sc(g−1) ≥ σ.

Proof. The general case of this reduces to that of σ = n(n−1) by on obvious
scaling/rescaling argument and when σ = n(n − 1) we use the same µ as above
associated with ϕ(t) = exp ∫

t
−π/n − tan nt

2
dt, − π

n
< t < π

n
. Then, as earlier, since

Scgϕ○ (y, t) ≥ Sc(X,y) +
nµ(y)2

n − 1
− 2∣∣dµ(y)∣∣

bye from the previous section, the above equality
nµ(t)2

n−1
− ∣

dµ(t)
dt

∣+n(n−1) = 0
implies the requited bound Sc(go) ≥ σ1. QED.

93We shall indicate in section ??? a Dirac operator proof of a rough version of this for a
class of spin manifolds X.
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Example. Let X be an orientable spin manifold, let ∂− ∪ ∂+ = ∂X and let
f ∶X → Sn−1 × [−l, l] be a smooth map, such that ∂∓ → Sn−1 × {∓l}.

Let the following conditions be satisfied.
● deg(f) ≠ 0,
● the map X → Sn−1, that is the composition of f with the projection Sn−1 ×

[−l, l]→ Sn−1, is area decreasing;
● Sc(X) ≥ (n − 1)(n − 2) + σ1 for some σ1 ≥ 0.
Then the above lemma in conjunction with the (stabilised) Llarull theorem

shows that
dist(∂−, ∂+) ≤

2π

n

n(n − 1)
√
σ1

=
2π(n − 1)

√
σ1

.

Remark. This inequality if it looks sharp, then only for σ1 → 0, while
sharp(er) inequality of this kind need different functions µ.

Equivariant ◻-Lemma. Let X in the ◻-Lemma be free isometrically acted
upon by a unimodular Lie group G that preserves ∂∓.

Then there exists a submanifold Y−1 ⊂ X and a function φ−1 on Y , which,
besides enjoying all properties in the ◻-Lemma, are also invariant under the
action of G and the resulting metric on g−1 on Y−1 ×R is G ×R-invariant.

In fact, the proof of the ◻-Lemma applies to X/G.
Remark. This lemma may hold for all G, but what we need below is only

the case of G = Ri.
◻n−m-Theorem. Let X be a compact connected orientable Riemannian

manifold with boundary and let X● is a closed orientable manifold of dimension
n −m, e.g. a single point ● if n =m.

Let
f ∶X → [−1,1]m ×X●

be a continuous map, which sends the boundary of X to the boundary of [−1,1]m×
X● and which has non-zero degree.

Let ∂i± ⊂ X, i = 1, ...,m, be the pullbacks of the pairs of the opposite faces of
the cube [−1,1]m under the composition of f with the projection [−1,1]m ×X● →

[−1,1]m.
Let X satisfy the following condition:
m
Sc≯0 No transversal intersection Y−m⋔ ⊂X of m-hypersurfaces Yi ∈X which

separates ∂i− from ∂i+, admits a metric with Sc > 0; moreover, the products Y−m⋔×
Tm admit no metrics with Sc > 0 either.94

If Sc(X) ≥ n(n−1) that the distances di = dist(∂i−, ∂i+) satisfy the following
inequality (which generalise that from section 3.8).

◻∑

m

∑
i=1

1

d2
i

≥
n2

4π2

Consequently

◻min minidist(∂i−, ∂i+) ≤
√
m

2π

n
.

94This "moreover" is unnecessary, since the relevant for us case of stability of the Sc ≯ 0
condition under multiplication by tori is more or less automatic. (The general case needs some
effort.)
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Proof. Let

σ′i = (
2π

n
)

2 n(n − 1)

d2
=

4π2(n − 1)

nd2

and rewrite ◻∑ as
∑
i

σ′i ≥ n(n − 1).

Assume ∑i σ′i < n(n − 1) and let σi > σ′i be such that ∑i σi < n(n − 1).
Then, by induction on i = 1,2, ...,m and using Ri−1-invariant ◻-Lemma on

the ith step, construct manifolds X−i = Y−i × Ri with Ri-invariant metrics g−i,
such that

Sc(X−i) > n(n − 1) − σ1 − .. − σi.

The proof s concluded by observing that this for i = m would contradict to
m
Sc≯0.
Remarks. (a) As we mentioned earlier, this inequality is non-sharp starting

from m = 2, where where the sharp inequality

◻2
min mini=1,2dist(∂i−, ∂i+) ≤ π.

for squares with Riemannin metrics on them with Sc ≥ 2 follows by an elemen-
tary argument.

(b) One can show for all n that

minidist(∂i−, ∂i+) ≤
√
m

2π

n
− εm,n,

where εm,n > 0 for m ≥ 2.
(c) A possible way for sharpening ◻∑, say for the case m = n, is by using

n− 2 inductive steps instead of n and then generalizing the elementary proof of
◻2

min to Tn−2-invariant metrics on [−1,1]2 ×Tn−2.
In fact, all theorems for surfaces X with positive (in general, bounded from

below) sectional curvatures beg for their generalisations to Tm−2-invariant met-
rics on X ×Tm−2 with positive (and/or bounded from below) scalar curvatures.

5.3.1 Max-Scalar Curvature with and without Spin.

It remains a big open problem of making sense of the inequality Sc(X) ≥ σ,
e.g. for σ = 0, for non-Riemannian metric spaces, e.g. for piecewise smooth
polyhedral spaces P .

But lower bounds on Lipschitz constants of homologically substantial maps
X → P entailed by the inequality Sc(X) ≥ σ > 0, that, for a fixed P , tell you
something about the geometry of X, can be used the other way around for
the definition of scalar curvature-like invariants of general metric spaces P as
follows.

Given a metric space P 95 and a homology class h ∈Hn(P ) define Scmax(h) as
the supremum of the numbers σ ≥ 0, such that, there exists a closed orientable

95To be specific we assume that P is locally compact and locally contractible, e.g. it is
locally triangulable space
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Riemannian n-manifold X and a 1-Lipschitz map f ∶ X → P , such that the
fundamental homology class [X] goes to h,

f∗[X] = h.

Similarly, one defines Scmax
sp (h) by allowing only spin manifolds X, where,

for instance, the discussion in section 4.1.1 shows that

Scmax
sp (h) ≤ constn ⋅K-waist2(h).

Below are a few observations concerning these definitions.
●1 Sc

max[X] ≥ infx Sc(X,x) for all closed Riemannian manifolds X, where
the equality Scmax[X] = Sc(X,x), x ∈X, holds for what we call extremal mani-
folds X.

●2 More generally, the product homology class h ⊗ [X] ∈ Hn+m(P × X),
m = dim(X), where P ×X is endowed with the Pythagorean product metric,
satisfies

Scmax
(h⊗ [X]) ≥ Scmax

(h) + inf
x
Sc(X,x).

●3 Possibly,

Scmax
(h⊗ [Sm]) = Scmax

(h) +m(m − 1),

but even the rough inequality

Scmax
(h⊗ [Sm]) ≤ Scmax

(h) + constm.

remains beyond splitting techniques from section 5.3. 96

●4 If F ∶ X1 → X2 is a finitely sheeted covering between closed orientable
Riemannian manifolds, then

Scmax
sp [X1] ≥ Sc

max
sp [X2] as well as Scmax

sp [X1] ≥ Sc
max
sp [X2],

but the equality may fail to be true, e.g. for SYS-manifolds X2 defined in
section 2.7.

(It is less clear when/why this happens to infinitely sheeted coverings, where
the problem can be related to possible failure of contravariance of K-waist2, see
section 4.1.1.)

Non-Compact Spaces and Scmax
prop. The above definitions naturally extends to

homology with infinite supports in non-compact spaces , e.g. to the fundamen-
tal classes [P ] of open manifolds and pseudomanifolds P , where the Riemannin
manifolds X mapped to these spaces are now non-compact and not even com-
plete.

Also we use the notation Scmax
prop for fundamental classes of (psedo)manifolds

P with boundaries, where proper maps X → P are those sending ∂X → ∂P .
Stabilized max-Scalar Curvatures. These for a space P are defined as

stabScmax... (P ) = Scmax... (P ×TN)

96These techniques deliver such an inequality for the stabilized max-scalar curvature:
Scmaxstab(h) = limm→∞(h ⊗ [Tm]), where one may additionally require the manifolds X
mapped to P × Tm to be isometrically acted upon by the m-tori
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where TN is flat torus that may be assumed arbitrarily large (this proves im-
material at the end of day), where N is also large and where the implied metric
in the product is the Pythagorean one:

dist((p1, t1), (p2, t2)) =
√
dist(p1, p2)

2 + dist(t1, t2)2.

Examples. (a) Llarull’s and Goette-Semmelmann’s inequalities from section
4.2 can be regarded as sharp bounds on Scmax

sp for (the fundamental homology
classes of) spheres and convex hypersurfaces.

(b) The ◻-inequalities from the previous section provide similar bounds on
stabilised Scmax

prop(P ) for the fundamental homology classes of the rectangular
solids P = ⨉

n
i=1[0, ai].

(It seems, there are interesting examples in the spirit of SYS-spaces from
section 2.7, where one needs to allow f∗[X]Z/lZ ≠ 0, at least for for odd l.

Also one may ask in this regard if Scmax
prop of the universal covering of a closed

orientable manifold X with a residually finite fundamental group is equal to the
limit of Scmax

prop of the finite coverings of X.)
(c) Spaces with S-Conical Singularities and Sc ≥ σ. Let us define classes

S n
≥σ, n = 2,3, ... of piecewise Riemannian spaces with Sc ≥ σ > 0 by induction

on dimension n ≥ 2 as follows.
Let Y = Y n−1 from S n−1

≥σ be isometrically realized by a piecewise smooth
(n − 1)-dimensional subvariety in a (N − 1)-dimensional sphere, N >> n, that
serves as the boundary of the N -dimensional hemisphere,

Y ⊂ SN−1
(R) = ∂SN+ (R),

where the radius of the sphere satisfies,

R ≥

√
(n − 1)(n − 2)

σ

and where "isometrically" means preservation of the lengths of piecewise smooth
curves in Y .

Then the spherical cone of Y , that is the union of the geodesic segments
which the center of the spherical n-ball SN+ ⊂ SN to all y ∈ Y is, by definition,
belongs to S n

≥σ′ for
σ′ = σ

n

n − 2

and, more generally, a piecewise smooth Y is in S n
≥σ′ if its scalar curvature at

all non-singular points is ≥ σ′ and near singularities Y is isometric to a spherical
cone over a space from S n−1

≥σ .
To conclude the definition, we agree to start the induction with n − 1 = 1,

where our admissible spaces are circles of length ≤ 2π and, if we allow boundaries,
segments of any length.

Y ⊂ SN−1 be a closed submanifold of dimension n − 1 ≥ 2, and let S(Y ) ⊂

SN ⊃ SN−1 be the spherical suspension of Y , that is the union of the geodesic
segments which go from the north and the south poles of SN to Y .

Notice that this S(Y ) with the induced Riemannian metric is smooth away
from the poles, where it is singular unless the induced Riemannian metric in Y
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has constant sectional curvature +1 and Y is simply connected (hence, isometric
to Sn−1).

Let Y be a space from S n
≥σ with k isolated singular points yi ∈ Y where X is

locally isometric to S-cones over (n − 1)-manifolds, call them Vi, i = 1, ...k such
that every such Vi bounds a Riemannian manifold Wi, where Sc(Wi) > 0 and
the mean curvature of Vi = ∂Wi is positive. Then

Scmax
prop(Y ) ≥ σ.

Sketch of the Proof. Arguing as in [GL(classification) 1980], one can, for all
ε > 0, deform the metric in X near singularities keeping Sc ≥ σ−ε, such that the
resulting metric on Y minus the singular points yi becomes complete, where its
k ends are isometric to the cylinders εVi × [∞), where εV stands for an V with
its Riemannin metric multiplied by ε2.

This complete manifold, call it Yε, admits a locally constant at infinity 1-
Lipschitz map Yε → Y of degree 1, and then the closed manifold Ȳε, obtained
from Yε by attaching εWi to εVi × {ti}, for large ti ∈ [0,∞] admits a required
1-Lipschitz map to Y as well. QED

Remark. Instead of filling Vi by Wi individually it is sufficient to fill in their
(correctly oriented!) disjoint union V = ⊔i Vi by W . For instance, if there are
only two singular points, where V1 and V2 are isometric and admit orientation
reversing isometries then V1 ⊔ −V2 bounds the cylinder W between them.

This kinds of "desingularization by surgery" also applies to Y , where the
singular loci Σ ⊂ Y have dimensions dim(Σ) ≥ 1, similarly to how it is done
to manifolds with corners (see section 1.1 in [G(billiard0 2014]) but the filling
condition becomes less manageable.

In fact even if dim(Σ) = 0, it is unclear how essential our filling truly is,
especially for evaluation Scmax of a multiple of the fundamental class of an Y ;
yet, the spaces Y ∈ S n

≥σ with isolated singularities seem to enjoy the same metric
properties as smooth manifolds with Sc ≥ σ filling or no filling.

For instance, if the non-singular locus of such an Y is spin then the hyper-
spherical radius Y is bounded in the same way as it is for smooth manifolds:

RadSn(Y ) ≤

√
n(n − 1)

σ
,

as it follows from Llarull’s theorem for complete manifolds.
In fact, the construction from [GL(classification) 1980] for connected sums of

manifolds with Sc > 0, when applied to Y ∖Σ, achieves a blow-up of the metric
g of Y on Y ∖Σ to a complete one, say g+, such that g+ ≥ g and infx Sc(g+, x) ≥
infx Sc(g, x) − ε for an arbitrarily small ε > 0.

Also mean convex cubical domains U in Y with none of the singular yi ∈ Y
lying on the boundary ∂U satisfy the constraints on the dihedral angles similar
to those for smooth Riemannin manifolds with Sc ≥ σ

But the picture becomes less transparent for dim(Σ) > 0, as it is exemplified
by the following.

Question. Does the inequality Rad2
Sn(Y ) ≤ constn

n(n−1)
σ

hold true for all
Y ∈ S n

≥σ?
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Perspective. In view of [Ch 1983], [GSh 1993] and [AlbGell 2017 ], it is
tempting to use the Dirac operator on the non-singular locus Y ∖ Σ with a
controlled behavior for y → Σ, but it remains unclear if one can actually make
this work for dim(Σ) > 0.

The only realistic approach at the present moment is offered by the method
of minimal hypersurfaces (and/or of stable µ-bubbles), which may be addition-
ally aided by surgery desingularization, such as multi-doubling similar to that
described in [G(billiards) 2014] for manifolds with corners.

Max-Scalar Curvature Defined via Sc-Normalized Manifolds . Given a Rie-
mannin manifold X = (X,g) with positive scalar curvature, let g∼ = Sc(g) ⋅ g,
consider Lipschitz maps f of closed oriented Riemannian manifolds X = (X,g)
with Sc(X) > 0 to P , such that f∗[X] = h, for a given h ∈ Hn(P ), let λmin∼ be
the infimum of the Lipschitz constants of these maps with respect to the metrics
g∼ and let

Scmax
∼ (h) =

1

(λmin∼ )2
.

And if P is a a piecewise smooth polyhedral space (e.g. a Riemannian mani-
fold), define Scmax

∧2
∼

(h) by taking the infimum inff supx∈X ∣∣ ∧2 df(x)∣∣ instead of
the λmin∼ (as in ∧2-inequality from section 4.297):

Scmax
∧2
∼

(h) =
1

inff supx∈X ∣∣ ∧2 df(x)∣∣
.

Clearly,
Scmax

≤ Scmax
∼ ≤ Scmax

∧2
∼
.

(Similar inequalities are satisfied by the spin and by proper versions of
Scmax), where most bounds on Scmax we prove and/or conjecture below can
be more or less automatically sharpened to their Scmax

∼ and Scmax
∧2
∼

(as well as to
their spin and proper) counterparts.)

Problem. Evaluate Scmax
prop of (the fundamental classes of) "simple" metric

space, such as products of mi-dimensional balls of radii ai where ∑imi = n and the
product distance is lp, i.e. distlp((xi), (yi)) =

p
√
∑i dist(xi, yi)

p, e.g. for p = 2.
This is related to the problem of a general nature of evaluating Scmax(h1⊗h2)

of h1 ⊗ h2 ∈ Hn1+n2(P1 × P2) in terms of Scmax(h1) ∈ Hn1(P1) and Scmax(h2) ∈

Hn2(P2).
It follows from the additivity of the scalar curvature (see section 1) that

Scmax
(h1 ⊗ h2) ≥ Sc

max
(h1) + Sc

max
(h2),

but it is unrealistic (?) to expect that, in general

Scmax
(h1 ⊗ h2) ≤ constn1+n2 ⋅ (Sc

max
(h1) + Sc

max
(h2)),

97The definition of ∣∣ ∧2 df(x)∣∣ makes sense for Lipschitz maps (at almost all x) but the
arguments with Dirac operators need smoothness of the maps. But it may be interesting to
go beyond smooth manifolds and maps to general continues maps with bounded area dilations,
where, probably, the most adequate definition of "area" in non-smooth metric spaces P is the
Hilbertian one in the sense of [G(Hilbert) 2012].
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albeit the geometric method from the section 5.4 does deliver non-trivial bounds
on Scmax

prop of product spaces whenever lower bounds on the hyperspherical radii
of the factors are available.98

5.4 Extremality and Rigidity of log-ConcaveWarped prod-
ucts.

The inequalities proven in section 5.3 say, in effect, that the metric

gφ = φ
2gflat + dt

2 on Tn−1 ×R for φ(t) = exp ∫
t
−π/n − tan nt

2
dt

is extremal: one can’t increase gφ without decreasing its scalar curvature,99

where the essential feature of φ (implicitly) used for this purpose was log-
concavity of φ:

d2 logφ(t)

dt2
< 0.

We show in this section that the same kind of extremality (accompanied by
rigidity) holds for other log-concave functions, notably for ϕ(t) = t2, ϕ(t) = sin t
and ϕ(t) = sinh t which results in

rigidity of punctured Euclidean, spherical and hyperbolic spaces.
More generally, let X = Y × R comes with the warped product metric gφ =

φ2dgy + dt
2. Then the mean curvatures of the hypersurfaces Yt = Y × {t}, t ∈ R,

satisfy (see 2.4)

mean.curv(Yt) = µ(t) = (n − 1)
d logφ(t)

dt
=
φ′(t)

φ(t)
,

and, obviously, are these Yt ⊂X are locally (non-strictly) minimizing µ-bubbles.
100

Now, clearly, φ is log-concave, if and only if

dµ

dt
= − ∣

dµ

dt
∣ .

Thus, R+ defined (see section 5) as

R+(x) =
nµ(x)2

n − 1
− 2∣∣dµ(x)∣∣ + Sc(X,x)

is equal in the present case to

nµ(t)2

n − 1
+ 2µ′(t) + Sc(gφ(t)) =

2(n − 1)φ′′(t)

φ(t)
+ (n − 1)(n − 2)(

φ′

φ
)

2

+ Sc(gφ(t))

98One may define RadSn(h), h ∈ Hn(P ), as the suprema of the radii R of the n-spheres,
for which P admits a 1-Lipschitz map f ∶ P → Sn(R), such that f∗(h) ≠ 0.

99To be precise, one should say that
one can’t modify the metric, such that the scalar curvature increases but the metric itself

doesn’t decrease.
The relevance of this formulation is seen in the example of X = Sn × S1, where one can

stretch the obvious product metric g in the S1-direction without changing the scalar curvature,
but one can’t increase the scalar curvature by deformations that increase g.
100If Y is non-compact, the minimization is understood here for variations with compact
supports.
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which implies (see section 5) that

(R+)Yt =
1

φ2
Sc(gYt) = Sc(gYt) for gYt = φ

2gY .

Thus our operators −∆Yt +
1
2
Sc(gYt) − (R+)Yt equal −∆Yt , the lowest eigen-

value of which are zero with constant corresponding eigenfunctions and the cor-
responding ( S1-invariant warped product) metrics on Yt ×S1 are (non-warped)
gYt + ds

2 for Yt = Y × {t} ⊂X = Y ×R and all t ∈ R.
(We "warp" with the circle S1 rather than with R to avoid a confusion

between two different R.)
This computation together with (warp in section 5 yield the following.
Comparison Lemma. Let X = Y × [a, b] be an n-dimensional warped prod-

uct manifold with the metric

gX = gφ = φ
2gY + dt2, t ∈ [a, b],

where φ(t) is a smooth positive log-concave function on the segment [a, b].
Let X be an n-dimensional Riemannian manifold, with a smooth function µ(x)

on it and let Y○ ⊂X be a stable, e.g. locally minimising µ-bubble in X.
Let g○ = gφ○ = φ

2
○gY○ + ds

2 be the metric on Y○ × S1 where gY is the metric on
Y induced from X, and where φ○ is the first eigenfunction of the operator

−∆ + 1
2
Sc(gY , y) −R+(y) for R+(x) =

nµ(x)2
n−1

− 2∣∣dµ(x)∣∣ + Sc(X,x)

(where φ○ is not assumed positive at this point).
Let f ∶ X → X be a smooth map let fY ∶ X → Y denote the Y -component of

f , that is the composition of f with the projection X = Y × [a, b]→ Y .
Let

f[a,b] ∶X → [a, b]

be the [a, b]-component of f , let

µ∗(x) = µ ○ f[a,b](x) for µ(t) = (n − 1)
d logφ(t)

dt
=mean.curv(Y t), t = f[a,b](x)

and let

µ′∗ = µ′ ○ f[a,b](x) where µ′ = µ′(t) =
dµ(t)

dt
.

Let

R∗
+(x) =

nµ∗(x)2

n − 1
− 2∣∣dµ∗(x)∣∣ + Sc(X,f(x))

If
R+(x) ≥ R

∗
+(x),

then the function φ○ is positive and the scalar curvature of the metric g○ = gφ○
on Y○ × S1 satisfies

Scg○(y○, s) ≥
1

∣∣df[a,b](y○)∣∣2
Sc(Y , fY (y○)) = Sc(Y t, f(y○)) for Yt ∋ f(y○).
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The main case of this lemma, which we use below, is where
●df[a,b] the function f[a,b] ∶X → [a, b] is 1-Lipschitz, i.e. ∣∣df[a,b]∣∣ ≤ 1,

and
●µ µ(x) = µ ○ f[a,b], that is µ(x) =mean.curv(Y t, f(x)) for Y t ∋ f(x)
and where the conclusion reads:

[Sc ≥]. Scgφ(y, s) ≥
1

(f[a,b](y))2
Sc(Y , fY (y)) + Sc(X,y) − Sc(X,f(y)).

Corollary. Let X○ denote the above Riemannian (warped product) manifold
(Y○ × S

1, g○ = gφ○) and let f○ ∶X○ → Y be defined by (y○, s)↦ fY (y○).
If besides ●df[a,b] and ●µ,

∣∣ ∧
2 df ∣∣ ≤ 1, e.g. ∣∣df ∣∣ ≤ 1

and if
Sc(X,y) ≥ Sc(X,f(y)),

then the map f○ satisfies

Sc(X○, x○) ≥ ∣∣df○∣∣
2Sc(Y , f○(x○)) ≥ ∣∣ ∧

2 df○∣∣Sc(Y , f○(x○)).

Now, the existence of minimal bubbles under the barrier [≷ mean = ∓∞]-
condition (see section 5.2) and a combination of the above with the Llarull
trace ∧2 df -inequality from section 4.2 yields the following.
⊙Sn. Extremality of Doubly Punctured Spheres. Let X be an ori-

ented Riemannian spin n-manifold, let X be the n-sphere with two opposite points
removed and let f ∶X →X be a smooth 1-Lipschitz map of non-zero degree.

If Sc(X) ≥ n(n − 1) = Sc(X) = Sc(Sn), then
(A) the scalar curvature of X is constant = n(n − 1);
(B) the map f is an isometry.
Proof. The spherical metric on X = Sn ∖ {s,−s} is the warped product

Sn−1 × (−π
2
, π

2
) where the warping factor φ(t) = cos t which is logarithmically

concave, where µ(t) =
d logφ(t)

dt
→ ±∞ for t→ ∓π

2
. 101

This implies (A) while (B) needs a little extra (rigidity) argument indicated
in section 5.7.

1-Lipschitz Remark. As it is clear from the proof, the 1-Lipshitz condition
can be relaxed to the following one.

The radial component f[−π2 ,π2 ] ∶ X → [−π
2
, π

2
] of f , which corresponds to the

signed distance function from the equator in Sn ∖ {s,−s} is 1-Lipschitz and (the
exterior square of) the differential of the Sn−1 component fSn−1 ∶X → Sn−1 satisfies

dfSn−1 ∧
2 df(x) ≤ (sin f[−π2 ,

π
2
](x))

2
.

101If a log-concave function φ on the segment [−l, l] is positive for −l < t < l and it vanishes
at −l, then the logarithmic derivative of φ goes to ∞ for t→ −l; similarly,

φ′

φ
→
t→l

−∞,

if φ vanishes at t = l.
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correct to ???

∧
2dfSn−1(x) ≤

1

(cos f[−π2 ,
π
2
](x))

2
.

Non-Spin Remark. If n = 4, one can drop the spin condition, since µ-bubbles
Y ∈X, being 3-manifolds, are spin.

Similarly to ⊙Sn one shows the following.
⊙Rn. Let Let X be as above, let X be Rn with a point removed and let

f ∶X →X be a smooth 1-Lipschitz map of non-zero degree.
If Sc(X) ≥ n(n − 1) ≥ 0 and if X is an isometry at infinity, then
(A) Sc(X) = 0;
(B) the map f is an isometry.
⊙Hn. Let Let X be as above, let X be the hyperbolic space with a point

removed and let f ∶X →X be a smooth 1-Lipschitz map of non-zero degree.
If Sc(X) ≥ −n(n − 1) and if X is an isometry at infinity, then
(A) Sc(X) = −n(n − 1);
(B) the map f is an isometry.
Question. Let d0(x) = dist(x,x0) be the distance function in X (used in

⊙Rn and/or in ⊙Hn) to the point x0, which was removed from Rn or from
Hn, and let df(x) = d0(f(x)).

Can one relax the 1-Lipschitz condition in the propositions ⊙Rn and in ⊙Hn

by requiring that not f but only the function df(x) is 1-Lipschitz?

5.5 On Extremality of Warped Products of Manifolds with
Boundaries and with Corners.

We explained in section 4.4 how reflection+ smoothing allows an extension of the
Llarull and Goette-Semmelmann theorems from section 4.2 to manifolds with
smooth boundaries and to a class of manifolds with corners. This, combined with
the above, enlarges the class of manifolds with corners to which the conclusion
of the extremality p∠ij theorem applies.

Here is an example.
Let △n−1 ⊂ Sn−1 be the regular spherical simplex with flat faces and the

dihedral angles π
2
and let S∗∗△

n−1 ⊂ Sn ⊂ Sn−1 be the spherical suspension of
△n−1 and let X = Sba(△

n−1) ⊂ S∗∗△
n−1, a, b ∈ (−π

2
, π

2
), be the region of S∗∗△

n−1

between a pair of (n − 1)-spheres concentric to our equatorial Sn−1 ⊂ Sn.
Let X be an n-dimensional orientable Riemannin spin manifold with corners and

let f ∶X →X be a smooth 1-Lipschitz map which respects to the corner structure
and which has non-zero degree.

Spherical Sba(△)-Inequality. If Sc(X) ≥ Sc(X) = n(n−1), if all (n−1)-
faces Fi ⊂ ∂X have their mean curvatures bounded from below by those of the
corresponding faces in X, 102

mean.curv(Fi) ≥mean.curv(F i),

102All these but two have zero mean curvatures.
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and if all dihedral angle of X are bounded by the corresponding ones of X,

∠ij ≤∠ij
=
π

2
,

then
Sc(X) = n(n − 1),

mean.curv(Fi) =mean.curv(F i)

and
∠ij =

π

2
.

Exercise. Formulate and prove the Euclidean and the hyperbolic versions of
the Sba(△)-inequality.

Question. Do the counterparts to the Sba(△)-inequality hold for other sim-
plices and polyhedra?

5.6 Disconcerting Problem with Boundaries of non-Spin
Manifolds

Typically, µ-bubbles serve as well if not better than Dirac operators for mani-
folds with boundaries, but something goes wrong with a natural (naive?) ap-
proach to geometric bounds on Y = ∂X, where Sc(X) ≥ 0 and mean.curv(Y ) ≥

M > 0, via µ-bubbles for non-spin manifolds X.
Albeit the existence and regularity theorems from section 5.1 extend to man-

ifolds with boundaries, the second variation formula turns out a disappointment.
To see what happens, let X be a compact Riemannian manifold with a

boundary Y , let µ(y) be a continuous function µ ∶ Y → (−1,1) and let Z be the
set of cooriented hypersurfaces Z ⊂X with boundaries Ω = ∂Z ⊂ Y = ∂X, where
the (unit normal) field ν , which defines the coorientation is called the upward
field.

Then such a Z is called a µ-bubble (compare 5.1), if it is extremal for

Z ↦ vol
[−µ]
n−1 (Z) =def voln−1(Z) − ∫

Y−
µ(y)dy,

in the class Z, where Y− ⊂ Y the region in Y "below" Ω = ∂Z ⊂ Y and where
our direction/coorientation/sign/angle convention is dictated by the following.

Encouraging Example. Let X = Bn ⊂ Rn = Rn−1 × R be the unit ball,
Y = ∂Bn = Sn−1 and let Zθ = Zn−1

θ ⊂ Bn, θ ∈ (−π
2
, π

2
), where θ is the latitude

parameter on the sphere Y = Sn−1 ⊃ ∂Zθ, be the horizontal discs, that are the
intersections

Zθ = B
n ∩Rn−1 × {t}, t = sin θ ∈ (−1,1) ⊂ R

and where – this is a matter of convention– the latitude parameter θ ∈ (−π
2
, π

2
)

is related to the dihedral angle between the hypersurfaces Zθ and Y along their
intersection

Ωθ = ∂Zθ = Zθ ∩ Y, Y = ∂X = Sn−1, for X = Bn,
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by
∠θ =∠Ωθ(Zθ, Y ) = θ +

π

2
.

Next, let µ(y) for y = (x, t) ∈ Y ⊂ Rn−1 ×R be equal to the minus height t,
i.e. µ(x, θ) = −t = − sin θ.

Then the normal derivative ∂ν = d
dt

of the volume of Zt = Zsin θ is expressed
in terms of

∣Ωt∣ = voln−2(Ωt), t = sin θ, and the angle ∠θ ∈ (0, π)

as follows

∂νvoln−1(Zt) = −∣Ωt∣ tan θ = ∣Ωt∣ cot∠θ for θ = arcsin t,

while the derivative of the µ-measure of the region (Y−)t ⊂ Y below Zt for the
above µ(θ) = − sin θ = −t = cos∠θ is

∂νµ((Y−)t) =
∣Ωt∣µ(t)

sin∠θ
= ∣Ωt∣ cot∠θ.

Thus, the hypersurfaces Zθ ⊂ X serve as µ-bubbles for this µ, and since they
come in a "parallel" family they are locally minimizing ones.

Let us return to the general Riemannin manifold X with boundary Y = ∂X,
a hypersurface Z ⊂ X, such that Ω = ∂Z ⊂ Y = ∂X and a function µ(y) on Y
and observe the following.

First Variation Formula for vol[−µ]n−1 (Z). . Let ∠ω ∈ (0, π) denote the
angle between Z and Y at ω ∈ Ω = ∂Z = Z ∩ Y and let us use the following
abbreviations

cscω = 1
sin∠ω and cosω = cos∠ω.

Then

∂νvoln−1(Z) = ∫
Z
mean.curv(Z, z)dz + ∫

Ω
scsωcosωdω,

and
∂νµ(Y−) = ∫

Ω
cscω µ(ω)dω.

and, since vol[−µ]n−1 (Z) = voln−1(Z) − µ(Y−),

Z is a (stationary) µ-bubble, i.e. ∂ψνvol
[−µ]
n−1 (Z) = 0 for all smooth functions

ψ(z), if and only if

mean.curv(Z) = 0 and µ(ω) = cosω.

Second Variation Formula for vol[−µ]n−1 (Z). If Z is stationary then the ω
contribution to the second variation/derivative ∂2

ψνvol
[−µ]
n−1 (Z) is as follows

∂ψν ∫
Ω
ψ(ω)(scsωcosωdω−cscω µ(ω))dω = ∫

Ω
ψ2

(ω)(− cscω(%(ω)−∂νµ(ω)))dω,

where %(ω) is the curvature of Y ⊂ Z, i.e. the value of the second fundamental
form of Y ⊂X, on the unit tangent vector τ ∈ Tω(Y ) normal to Tω(Ω) ⊂ Tω(Y ).
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(Our sign convention is such that this % is positive for convex Y = ∂X and
negative for concave ones.)

Let MY (ω) =M(Ω ⊂ Y,ω) denote the mean curvature of Ω ⊂ Y and observe
that % equals the difference between the mean curvature of Y ⊂X and the values
of the mean curvature (second fundamental form) of Ω on the unit normal bundle
of Y ⊂X, denotes M(Ω, T ⊥(Y ⊂X)),

% =M(Y ⊂X) −M(Ω, T ⊥(Y ⊂X)),

and that

M(Ω, T ⊥(Y ⊂X)) = csc ⋅M(Ω ⊂ Z) + cos ⋅ csc ⋅M(Ω ⊂ Y ).

The essential problem, as I see it here, is that the mean curvatureM(Ω ⊂ Y =

∂X) may (may not?) be uncontrollably ±large and, unless µ = 0, the positivity
of the second variation operator doesn’t yield a significant information on the
intrinsic geometry of Z ⊂X at the boundary Ω = ∂Z. (Am I missing something
obvious?)

5.7 On Rigidity of Extremal Warped Products.
Let us explain, as a matter of example, that

doubly punctured sphere X = Sn ∖ {±s} is rigid.
This means (see (B) in ⊙Sn of section 5.4) that
if an oriented Riemannin spin n-manifold X with Sc(X) ≥ n(n−1) = Sc(X =

Sc(Sn) admits a smooth proper 1-Lipschitz map f ∶X →X such that deg(f) ≠ 0,
then, in fact, such an f is an isometry.

Proof. We know (see the the proof of ⊙Sn) that X contains a minimal
µ-bubble Y , which separates the two (union of) ends of X, where µ(x) is the
f -pullback of the mean curvature function of the concentric (n − 1)-spheres in
X = Sn ∖ {±s} between the two punctures and that this m-bubble must be
umbilic, where we assume at this point that Y is non-singular, e.g. n ≤ 7.

What we want to prove now is that these bubbles foliate all of X, namely
they come in a continuous family of mutually disjoint minimal µ-bubbles Yt,
t ∈ (−π

2
, π

2
), which together cover X.

Indeed, if the maximal such family Yt wouldn’t cover X, then the would
exists a small perturbation µ′(x) of µ(x) in the gap between two Yt in the
maximal family, such that ∣µ′∣ > ∣µ∣ in this gap, while ∣∣dµ′∣∣ = ∣∣dµ∣∣ in there and
such that there would exist a minimal µ′-bubble Y ′ in this gap.

But then, by calculation in section 5.4, the resulting warped product metric
on Y ′×S1 would be > n(n−1), thus proving "no gap property" by contradiction.

Therefore, X itself is the warped product, X = Y × (−π
2
, π

2
) with the metric

dt2 = (sin t)2gY , where Sc(gY ) = n(n−1) and which by Llarull’s rigidity theorem,
has constant sectional curvature. QED.

Remarks (a) On the positive side, this argument is quite robust, which makes
it compatible with approximation of bubble and metrics. For instance it nicely
works for n = 8 in conjunction with Smale’s generic regularity theorem and,
probably, for all n with Lohkamp’s smoothing theorem.

But it is not quite clear how to make this work for non-smooth limits of
smooth metrics.
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For instance (this was already formulated in section 3.2),
let gi be a sequence of Riemannian metrics on the torus Tn , such that

Sc(gi) ≥ −εi →
i→∞

0

and such that gi uniformly converge to a continuous metric g.
Is this g, say for n ≤ 7, Riemannian flat?
(The above argument shows that, given an indivisible (n−1)-homology class

in Tn, there exists a foliation of Tn by g-minimal submanifolds from this class.
But it is not immediately clear how to show that these submanifolds are totally
geodesic.)

6 Problems, Generalisations, Speculations.
The most tantalizing aspect of scalar curvature is that it serves as a meeting
point between two different branches of analysis: the index theory and the geo-
metric measure theory,

Each of the this theories, has its own domain of applicability to the scalar
curvature problems (summarized in the section 6.1 below) with a significant
overlaps and distinctions between the two domains.

This suggests, on the one hand,
a possible unification of these two theories

and, on the other hand,
a radical generalization, or several such generalizations,

of the concept of a space with the scalar curvature bounded from below.
This is a dream. In what follows, we indicate what seems realistic, something

lying within the reach of the currently used techniques and ideas.

6.1 Dirac Operators versus Minimal Hypersurfaces
Let us briefly outline the relative borders of the domains of applicability of the
two methods.

1. Spin/non-Spin. There is no single instance of topological obstruc-
tion for a metric with Sc > 0 on a closed manifold X, the universal coverings
X̃ of which is non-spin103 that is obtainable by the (known) Dirac operator
methods.104

But the minimal hypersurface method delivers such obstructions for a class
manifolds X, which admits continuous maps f to aspherical spaces X, such that
such an f doesn’t annihilate the fundamental class [X] ∈ Hn(X, n = dim(X),
i.e. where the image f∗[X] ∈ Hn(X doesn’t vanish. Example. The connected
sum X = Tn#Σ, where Σ is a simply connected non-spin manifold are instance
of such X with the universal coverings X̃ being non-spin.)

2. Homotopy/Smooth Invariants. The minimal hypersurface method
alone can only deliver homotopy theoretic obstructions for the existence of met-
rics with Sc > 0 on X.
103The condition "X is spin" can be weakened to "X̃ is spin" with (a version of) the Atiyah
L2-index theorem from [Atiyah(L2) 1976], as it is explained in §§9 1

9
,9 1

8
of [G(positive) 1996].

104Never mind Seiberg-Witten equation for n = 4
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But α̂(X), non-vanishing of which obstructs Sc > 0 according to the results
by Lichnerowicz and Hitchin proven with untwisted Dirac operators is not ho-
motopy invariant. (Non-vanishing of α̂ is the only obstruction for Sc > 0 for
simply connected manifolds of dimension ≥ 5, see section 3.4.)

Here, observe, the spin condition is essential, but when it comes to twisted
Dirac operators, those obstructions for the existence of metrics with Sc > 0,
which are essentially due to twisting are also homotopy invariant, and, for all
we know, the spin condition is redundant there.

Furthermore, minimal hypersurfaces can be applied together with that Dirac
operators.

For example the product manifold X = X1 × X2, where α̂(X1) ≠ 0 and
X2 = Tn#Σ, doesn’t carry metrics with Sc > −0 , which for dim(X) ≤ 8 follows
from Schoen-Yau’s [SY(structure) 1979] (with a use Nathan Smale’s generic
non-singularity theorem for n = 8), while the general case needs Lohkamp’s
[Loh(smoothing) 2018].

Notice that the twisted Dirac operator method also applies to these, X =

X1 ×X2, provided that Σ is spin, or at least, the universal covering Σ̃ is spin.

3. SYS-Manifolds. The most challenging for the Dirac operator meth-
ods is Schoen-Yau’s proof of non-existence of metrics with Sc > 0 on Schoen-Yau-
Schick manifolds (see section 2.7), where the known Dirac operator methods,
even in the spin case, don’t apply.

And as far as the topological non-existence theorems go, the minimal hyper-
surface method remains silent on the issue of metrics with Sc > 0 on quasisym-
plectic manifolds X as in section 2.7, (e.g. closed aspherical 4-manifolds X with
H2(X;Q) ≠ 0.) And we can’t rule out metrics with Sc > 0 on the connected
sums X#Σ with any one of the present day methods, if the universal coverings
Σ̃ are non-spin.

4. Area Inequalities. The main advantage of the twisted Dirac over
minimal hypersurfaces is that geometric application of the latter to Sc > 0
depend on lower bounds on the sizes of Riemannin manifolds X, where these
sizes are expressed in terms of the distance functions on X, while the twisted
Dirac relies on the area-wise lower bounds on X.

The simplest (very rough) result in this regard says that every (possibly
non-spin) smooth manifold X admits a Riemannin metric g0, such that every
complete105 metric g on X, for which

areag(S) ≥ areag0(S)

for all smooth surfaces S ⊂X, satisfies:

inf
x∈X

Sc(g, x) ≤ 0

(see section 11 in [G(101) 2017]). More interestingly, there are better, some of
them sharp, bounds on the area-wise size of manifolds with Sc ≥ σ > 0, as we
saw in section 4.

5. Scalar Curvature in Families. Individual index formulas typically
(always?) extends to families of operators and deliver harmonic spinors on
105"Complete" is essential as it is seen already for dim(X) = 2. But if areag(S) ≥ areag0(S)
is strengthened to g ≥ g0 one can drop "complete", where the available proof goes via minimal
hypersurfaces and where there is a realistic possibility of a Dirac operator proof as well.
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members of appropriate families. But there is no (apparent?) counterpart of
this for minimal hypersurfaces and/or for stable µ-bubbles.

Thus, for instance, the distance-kind inequalities indicated in section 4.2.1
as well topological and geometric obstruction for Sc > σ on foliations escape the
embrace of minimal hypersurfaces.

6. Non-Completeness and Boundaries. The major drawback of
the Dirac operator methods is its essential reliance on completeness of manifolds
X it applies to,106 while minimal hypersurfaces and especially stable µ-bubbles
in conjunction with twisted Dirac operators, fare well in non-complete manifolds
and/or in manifolds with boundaries as it is demonstrated in section 5 of this
paper.

7. Sc ≥ σ for σ < 0. Both methods have more limited applications here
than for σ ≥ 0, where the most impressive performance of the Dirac operator
is in the proof of the Ono-Davaux spectral inequality (stated in section 3. 10),
which also may be seen from a more geometric perspective of stable µ-bubbles,
as it is suggested by the Maz’ya-Cheeger inequality. j

6.2 Logic of Propositions about the Scalar Curvature
Propositions/properties PSc concerning the scalar curvatures of Riemannin
manifolds or related invariants, makes a kind of an "algebra" , where pairs
of PSc concerning X and Y , can be coupled to corresponding propositions, let
them be only conjectural, concerning

the Riemannian products X × Y .
Then these hybridised propositions can be developed/generalized to state-

ments on
fibrations over Y with X-like fibers

and then further to
foliations with X-leaves, where a properly understood (non-commutative?)
space of leaves is taken for Y .
Conjectural Example: Lichnerowicz × Llarull × Min-Oo. Let X be

the product of the the hyperbolic space by the unit sphere,

X = Hn
× Sn.

Let X be a complete orientable spin Riemannian manifold, such that Sc(X) ≥ 0.
Let f ∶X →X be a smooth proper map with the following two properties.

●Sn The Sn-component fSn ∶ X → Sn of f , that is the composition of f with
the projection X = Hn × Sn → Sn, is an area contracting, e.g. 1-Lipschitz map.

●Hn The Hn-component of f is a Riemannian submersion at infinity:
the map fHn ∶X →Hn is a submersion outside a compact subset in X, where

the differential dfHn ∶ T (X)→ T (Hn) is isometric on the orthogonal complement
to the kernel of dfHn .

Then either Sc(X) = 0, or the Â-genera of the pullbacks f−1(x) ⊂ X of
generic points x ∈X vanish.

In particular, if dim(X) = 2n and Sc(X,x0) > 0 at some x0 ∈ X, then
deg(f) = 0.
106We tried to alleviate this in section 4.6, but the situation remains unsatisfactory.
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Suggestion to the Reader. Hybridize in a similar way other theorems/inequalities
from the previous as well as of the following sections.

6.3 Almost flat Fibrations, K-waist and max-Scalar Cur-
vature

Let let P and Q be Riemannian manifolds, let F ∶ P → Q be a smooth fibration.
and let ∇ be the connection defined by the horizontal tangent (sub) bundle on
P that is the orthogonal complement to the vertical subbundle of T (P ), where
"vertical" means "tangent to the fibers" called Sq = F −1(q) ⊂ P , q ∈ Q.

Problem. Find relations between the K-waists2 and between max-scalar cur-
vatures of P , Q and the fibers F −1(q) for fibrations with "small" curvatures
∣curv∣(∇).107

We already know in this regard the following
(A) If P → Q is a unitary vector bundle with a non-trivial Chern number,

then, by its very definition, K-waist2(Q) is bounded from below by constn
∣curv∣(∇) .

(B) There is a fair bound on Scmax of product spaces P = Q×S, such as the
rectangular solids, for instance, as is shown by methods of minimal hypersurfaces
and of stable µ-bubbles in section 5.4.

In what follows, we say a few words about (A) for non-unitary bundles in the
next section and then turn to several extensions of (B) to non-trivial fibrations.

6.3.1 Unitarization of Flat and Almost Flat Bundles.

Let Q be a closed oriented manifold and start with the case where L→ Q is a flat
vector bundle with a structure group G, e.g. the orthogonal group O(N1,N2).

Let some characteristic number of L be non-zero, which means that the
classifying map f ∶ Q → B(G) sends the fundamental class [P ]Q to a non-zero
element in Hn(B(G);Q).108

Then X admits no metric with Sc > 0.
First Proof. Let Γ ⊂ G be the monodromy group of L and recall (see sec-

tion 4.1.2) that Γ properly and discretely acts on a product X of Bruhat-Tits
building. Since this X is CAT (0) and Sc(P ) > 0, the homology homomorphism
Hn(P ;Q) → Hn(B(Γ);Q) induced by the classifying map fΓ ∶ P → BΓ is zero
(see section 4.1.2).

Since the classifying map f ∶ Q→ B(G) factors through fΓ ∶ P → BΓ via the
embedding Γ↪ G, the homomorphism Hn(P ;Q)→Hn(B(G);Q) is zero as well
and the proof follows.

Second Proof? Let K ⊂ G be the maximal compact subgroup and let S be
the quotient space, S = G/K endowed with a G-invariant Riemannin metric.
107Recall that the K-waists2 defined in section 4.1.4 measure area-wise sizes of spaces, e.g.
K-waist2(S) = area(S) for simply connected surfaces and K-waist2(Sn) = 4π, while max-
scalar curvature of a metric space P defined in section 5.3.1 P is the supremum of scalar
curvatures of Riemannin manifolds X that are in a certain sense are greater than P .
108If G is compact, or if G = GLN (C), thenHn(B(G);Q), then the homology homomorphism
f∗ ∶ Hi(Q,Q) → Hi(B(G);Q), i > 0, for flat bundles L, but it is not so, for instance, if
G = O(N1,N2) with N1,N2 > 0.
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Let S∗ be the space of L2-spinors on S twisted with some bundle L∗ → S
associated with the tangent bundle of S and let S∗ → Q be the corresponding
Hilbert bundle over Q with the fiber S∗.

Apparently, an argument by Kasparov (see below) implies that, at least
under favorable conditions on G, a certain generalized index of the Dirac op-
erator on Q twisted with S∗ → Q is non-zero; hence, Q carries a non-zero
harmonic (possibly almost harmonic) spinor and the proof follows by revoking
the Schroedinger-Lichnerowicz-Weitzenboeck formula.

Kasparov KK-Construction. Let G be semisimple, and observe that the
quotient space S = G/K carries a G-invariant metric with non-positive sectional
curvature.

Take a point s0 ∈ S and let τ0(s) = τs0(s) be the gradient of the distance
function s↦ dist(s, s0) on S regularized at r0 by smoothly interpolating between
r ↦ dist(s, s0)

2 in a small ball around s0 with dist(s, s0) outside such a ball.
Let τ ●0 ∶ S∗ → S∗ be the Clifford multiplication by τ0(r), that is τ ●0 ∶ s ↦

τ0(r)●s, s ∈ S∗.
Discreetness Assumption. Let the monodromy subgroup Γ ⊂ G be discrete

and let us restrict the space S∗ and the operator τ ●0 to a Γ orbit Γ(s) ⊂ S for a
point r ∈ R different from r0

Then, according to an observation by Mishchenko [Mishch 1974] the resulting
operator on the space of spinors restricted to Γ(s),

τ ●s0,Γ = τ ●s0∣Γ(s) ∶ S∗∣Γ(s) → S∗∣Γ(s),

has the following properties:

(⋆) τ ●s0,Γ is Fredholm;

(⋆⋆) τ ●s0,Γ commutes with the action of Γ modulo compact operators in
the following sense: the operators

τ ●γ(s0),Γ − τ
●
s0,Γ ∶ S∗∣Γ(s) → S∗∣Γ(s)

are compact for all r ∉ Γ(s0) and all γ ∈ Γ.

These properties and the contractibility of S, show, by an elementary exten-
sion by skeleta argument [Mishch 1974], that

(⋆⋆⋆) the (graded) Hilbert bundle S∗∣Γ → Q admits a Fredholm endomor-
phism homotopically compatible with τ ●s0,Γ.

Finally, a K-theoretic index computation in [Kasp 1973], [Kasp 1975] and/or
in [[Mishch 1974] yields

(⋆ ⋆ ⋆⋆) non-vanishing of the index of the Dirac operator on Q twisted
with S∗∣Γ in relevant cases (which delivers non-zero harmonic spinors on Q and
the issuing Sc(Q) ≯) conclusion in our case). 109

109The properties (⋆) and (⋆⋆), however simple, establish the key link between geometry
and the index theory. These were discovered and used by Mishchenko in the ambience of the
Novikov higher signatures conjecture and the Hodge, rather than the Dirac operator, on
general manifolds with non-positive curvatures.

It seems, no essentially new geometry-analysis connection has be been discover since, while

(⋆ ⋆ ⋆⋆) grew into a fast field of the KK-theory of C∗-algebras in the realm of the
non-commutative geometry.
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Now, let us drop the discreetness assumption and make the above (Γ-equivariant)
construction(s) fully G-equivariant.

The (unrestricted to an orbit Γ(s) ⊂ S) operator τ ●0 ∶ S∗ → S∗ seems at the
first sight no good for tis purpose:

the properties (⋆) and (⋆⋆) fails to be true for it, since the space S∗ of
L2-spinors on S is too large and "flabby".

On the positive side, the space S∗ may contain a G-invariant subspace,
roughly as large as S∗∣Γ, namely the subspace of harmonic spinors in it. But
the operator τ ●0 doesn’t, not even approximately, keeps this space invariant.
However – this is an idea of Kasparov, I presume, – one can go around this
problem by invoking the full Dirac operator D ∶ S∗ → S∗, rather than its kernel
alone.

Namely, we add the following extra structure to S∗:
(A) the action of the Dirac operator D or rather of the technically more conve-

nient first order operator

E = D(1 −D2
)

1
2 ∶ S∗ → S∗

:
(B) the action of continuous functions φ with compact supports in S.
These functions φ(s) act on spinors by multiplication, where this action,

besides commuting with the action by G,
commute with E modulo compact operators.

Now, because of (A) and(B), a suitably generalized index theorem applies,
I guess, and, under suitable topological conditions, yields non-zero (almost)
harmonic spinors on Q.110

Problem. Does the above (assuming it is correct) generalises to non-flat bun-
dles L→ Q?

Namely,
is there a natural Hilbert bundle S → Q associated with L and having its

curvature bounded in terms of that of L and such that S carries an additional
structure, such as a (graded) Fredholm endomorphism, that would yield, under
some topological conditions, non-zero harmonic (or almost harmonic) S -twisted
spinors on Q via a suitable index theorem?111

Generalized Problem. Does the above generalizes further to fibrations with
variable fibers with nonpositive curvatures?

Namely, let F ∶ P → Q be a smooth fibrations between complete Riemannin
manifolds, where the fibers Sq = f−1(q) ⊂ P are simply connected and the
induced metrics in which have non-positive sectional curvatures.

Let a connection in this fibration be given by a horizontal subbundle Thor ⊂
T (P ), that is the orthogonal complement to the vertical bundle – the kernel of
the differential dF ∶ T (P )→ T (Q).
110I couldn’t find any explicit statement of this kind in the literature, but it must be buried
somewhere under several layers of KK-theoretic formalism, which fills pages of the books and
articles I looked into.

(In my article [G(positive) 1996]), §8 1
2
, I mistakenly use a simplified argument of composing

τ●0 with a projection on ker(D))
111"Almost flat" generalizations of the "flat" Lusztig signature theorem are given in §§8 3

4
,8 8

9
of [G(positive) 1996].
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Let [q, q′] ⊂ Q be a (short) geodesic segment between q, q′ ∈ Q and let
[p, p′]∼ ⊂ P be a horizontal lift of [q, q′].

We don’t assume that the holonomy transformations Sq → Rq′ are isometric
and let

(1) maxdilp(ε) be the supremum of the norm of the differentials of the
transformations Sq → Sq′ at p ∈ Sq for all horizontal path [p, p′]∼ ⊂ P of length
≤ ε issuing from p ∈ P ;
and

(2) maxholp(ε, δ) be the supremum of dist(p, p′) for all horizontal paths
[p, p′]∼ of length≤ ε, where p′ lies in the fiber of p, i.e. F (p′) = F (p) = q and
where there is a smooth surface S ⊂ P the boundary of which is contained in
the union of the path [p, p′]∼ and the fiber Fq which contains p and p′ and such
that area((S) ≤ δ2.

Can one bound infq Sc(Q, q), or, more generally, max-Sc(Q) in terms of bounds
on the functions logmaxdilp(ε) and maxholp(ε, δ), for all (small) ε, δ > 0 and all
p ∈ P?

6.3.2 Comparison between Hyperspherical Radii and K-waists of
Fibered Spaces.

A. The methods of minimal hypersurfaces and of stable µ-bubbles from section
5.3 that deliver fair bounds on Scmax of product spaces P , such as the rectangu-
lar solids, for instance, dramatically fail (unless I miss something obvious) for
fibrations with non-flat connections because of the following.

Distortion Phenomenon. What may happen, even for (the total spaces of)
unit m-sphere bundles P with orthogonal connections ∇ over closed Riemannin
manifolds Q, where the hyperspherical radius is large, and the curvature is small,
say

RadSn(Q) = 1, n = dim(Q), and ∣curv∣(∇) ≤ ε,

is that, at the same time,

RadSm+n(P ) ≤ δ, m + n = dim(P ),

where ε > 0 and δ > 0 can be arbitrarily small.112

This possibility is due to the fact that, in general, P admits no Lipschitz
controlled retractions to the spherical fibers of our fibration, even if the fibration
is topologically trivial and continuous retractions (with uncontrollably large
Lipschitz constants) do exits, where

non-triviality of monodromy, say at q ∈ Q can make the distance function distP
on the fiber Smq ⊂ P significantly smaller than the (intrinsic) spherical metric.

Example. Let Q be obtained from the unit sphere S2 by adding ε-small
handles at finitely many points which are together ε-dense in S2 and such that
Q goes to S2 by a 1-Lipshitz map of degree one.113

Let P → Q be a topologically trivial flat unit circle bundle, such that the
monodromy rotations α ∈ T1 of he fiber Sq = S1 around the loops at q ∈ Q of
length ≤ δ are δ-dense in the group T1 for all q ∈ Q.
112This doesn’t happen if the action of the structure group on the fiber of our fibration has
bounded displacement, see (2) in section 6.3.7.
113E.g. let the handles lie outside (the ball bounded by) the sphere S2 ⊂ R3 and let our map
be the normal projection Q→ S2.
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Then, clearly, RadS3(P ) ≤ 10δ, where δ can be made arbitrarily small for ε→
0, whilst the trivial fibration has large hyperspherical radius, namely, RadS3(Q×
S1) = 1.

B. Metric distortion of the fibers of the fibration P → Q has, however, little
effect on the K-waist of P , that can be used, instead of the hyperspherical radius,
as a measure of the size of P and that allows non-trivial bounds on Scmax(P )

for spin manifolds P with a use of twisted Dirac operators.
In practice, to make this work, one needs vector bundles with unitary con-

nections over the base Q and over the manifold S isometric to the fibers Sq ⊂ P ,
call these bundles LQ → Q and LS → S = Sq, where the following properties of
these bundles are essential.

●I Monodromy Invariance of LS . The bundle LS → S, where S is isometric
to the fibers Sq of the fibration P → Q, must be equivariant under the action of
the monodromy group G of the connection ∇ on the fibers Sq of the fibration
P → Q.

(Recall that an equivariance structure on a bundle L over a G space S is an
equivariant lift of the action of G on S to an action of G on L.)

If a bundle LS → L is G-equivariant, it extends fiberwise to a bundle over
P , call it L↕ → P .

(An archetypical example of this is the tangent bundle T (S) which extends
to what is called call the vertical tangent bundle for all fibration with S-fibers.
But, in general, actions of groups G on S do not lift to vector bundles L → S.
However, such lifts may become possible for suitably modified spaces S and/or
bundles over them.)

●II Homologically Substantiality of the two Vector Bundles. Some Chern
numbers. of the bundles LS and LQ must be non-zero.

●III Non-vanishing of F ∗[Q]○Q ∈ Hn(P ;Q). The image of the fundamental
cohomology class [Q]○ ∈ Hn(Q), n = dim(Q), under the rational cohomology
homomorphism induced by F ∶ P → Q doesn’t vanish,

F ∗
[Q]

○
≠ 0.

(This is satisfied, for instance, if the fibration P → Q admits a section Q→ P .)
Granted ●I-●II-●III, there exists a vector bundle L⋊ → P , which is equal

to a tensor product of exterior powers of the "vertical bundle" L↕ → P and
F ∗(LQ)→ P (that is F -pull back of LQ) and such that a suitable Chern number
of L⋊ doesn’t vanish.

Here "suitable" is what ensures non-vanishing of the index of the twisted
Dirac operators D⊗f∗(L⋊) on manifolds X mapped to P by maps f ∶ X → P

with non-zero degrees. (Compare with 5 1
4
in [G(positive) 2016].)

Then bounds on curvatures of the bundles LS and LQ together with such
a bound for ∇ and also a bound on parallel displacement of the G action on S
(see below) yield a bound on ∣curv∣(L⋊), which implies a bound on Scmax(P )

according to the twisted Schroedinger-Lichnerowicz-Weitzenboeck formula ap-
plied to the operators D⊗f∗(L⋊) on manifolds X mapped to P by (smoothed)
1-Lipschitz maps f ∶X → P , used in the definition of Scmax(P ).

Parallel Displacement. The geometry of a G-equivariant unitary bundle
L = (L,∇) over a Riemannian G-space S is characterized, besides the (norm
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of the) curvature of ∇, by the difference between the parallel transform and
transformations by small g ∈ G.

To define this, fix a norm in the Lie algebra of G and let ∣g∣, g ∈ G denote the
distance from g to the identity in the corresponding "left" invariant Riemannin
metric in G.

Then, given a transformation g ∶ S → S and a lift ĝ ∶ L → L of it to L,
compose it with the parallel translate of it back to L along shortest curves
(geodesics for complete S) between all pairs s, g(s) ∈ S. Denote by ĝ÷∇ ∶ L→ L
the resulting endomorphism and let

∣Ĝ ÷∇∣ = lim sup
∣g∣→0

∣∣(ĝ ÷∇) − 1∣∣

∣g∣
,

where 1 ∶ L → L is the identity endomorphism (operator) and ∣∣...∣∣ denotes the
operator norm.

Notice at this point that the curvature of the connection ∇ takes values in
the Lie algebra of G and the norm ∣curv∣(∇), similarly to the above "parallel
displacement", depends on a choice of the norm in this Lie algebra.

If S is compact, we agree to use the norm equal to the sup-norms of the
corresponding vector fields on S, but one must be careful in the case of non-
compact S. (Compare with (2) in section 6.3.1 and also see section 6.3.7.)

6.3.3 Scmax and Scmax
sp for Fibrations with Flat Connections

Let P and Q be closed orientable Riemannin manifolds and let us observe that
what happens to the non-spin and spin max-scalar curvatures and of the K-
waists114 of fibrations P → Q with flat connections, follows from what we know
for trivial fibrations over covering spaces Q̃→ Q. 115

(A) If the monodromy group of a flat fibration of) F ∶ P → Q is finite and
the map F is 1-Lipschitz, then

⋆waist2 Scmax
sp (P ) ≤ constm+n ⋅max(

1

K-waist2(Q)
,

1

K-wast2(S)
) ,

⋆Rad2 Scmax
(P ) ≤ const′m+n ⋅max(

1

Rad2
Sn(Q)

,
1

Rad2
Sm(S)

)

114K-waist2(P ) is the reciprocal of the infimum of the norms of the curvatures of unitary
bundles over P with non-zero Chern numbers (see section 4.1.4).
Scmax(P ) is the supremum of σ, such that P admits an equidimensional 1-Lipschitz map

with non-zero degree from a closed Riemannian manifold X with Sc ≥ σ, and where X in the
definition of Scmaxsp must be spin (see section 5.3.1).
The hyperspherical radius RadSN (P ), N = dimP , the supremum Rmax of radii of the

spheres SN (R), which receive 1-Lipshitz maps from P of non-zero degree, P → SN . (see
section 3.5).

It is (almost) 100% obvious that RadSN (SN ) = 1, it is not hard to show (see section 4.1.3)
that K-waist2(P ) is 4π, the equality Scmaxsp (SN ) = Sc(SN ) = N(N −1) follows from Llarull’s’
inequality for twisted Dirac operators and it remains unknown if Scmaxsp (SN ) = Sc(SN ) =
N(N − 1) for N ≥ 5 (see section 5.4 for N = 4).
115A flat structure (connection) in a fibration F ∶ P → Q with S-fibers is defined for arbitrary
topological spaces Q,S and P , as a Γ-equivariant splitting F̃ ∶ P̃ = Q̃ × S → Q̃ for some Γ-
covering Q̃→ Q and the induced covering P̃ → P .
In the present case we assume that our Q and S, hence P , are compact orientable pseudo-

manifolds with piecewise smooth Riemannin metrics, where P̃ = Q̃ ×S carries the (piecewise)
Riemannin product metric and the action of Γ on P̃ is isometric.
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and

⋆sp,Rad2 Scmax
sp (P ) ≤ (m + n)(m + n − 1) ⋅max(

1

Rad2
Sn(Q)

,
1

Rad2
Sm(S)

)

for n = dim(Q) and m = dim(S), where S is the fiber of our fibration P → Q.
In fact, these reduce to the corresponding inequalities for the product P̃ =

Q̃ × S for the finite(!) covering P̃ of P , induced from the monodromy covering
Q̃→ Q, where

● in the case ⋆waist2 , one uses the tensor product of the relevant vector
bundles over Q̃ and S and where the ⊗-product bundle can be pushed forward
from P̃ back to P , if one wishes so;

● in the case ⋆Rad2 , the (obvious) inequalities

RadSn+m(P̃ ) ≥ RadSn+m(P )

– the finiteness of monodromy is crucial in this one – and

RadSn+m(Q̃ × S) ≥min(RadSn(Q̃),RadSm(S))

allows a use of the "cubical bounds" from the previous section, which need
no spin condition, while the corresponding sharp inequality ⋆sp,Rad2 for spin
manifolds P follows from Llarull’s theorem.

(B) If the monodromy group Γ of the fibration P → Q is infinite, then the
above argument yields the following modifications of the inequalities ⋆sp,Rad2 ,
⋆sp,Rad2 and ⋆waist2 .
⋆∞Rad2 The two Rad2 inequalities ⋆Rad2 and ⋆sp,Rad2 for spin manifolds P

remain valid for infinite monodromy, if RadSn(Q) is replaced in these inequali-
ties by RadSn(Q̃) for a (now infinite) Γ-covering Q̃ of Q.

(The universal covering ofQ serves this purpose but the monodromy covering
gives an a priori sharper result.)

⋆∞waist2 One keeps ⋆waist2 valid for infinite ∇-monodromy by replacing K-
waist2(Q) by K-waist2(Q̃).116

Remarks. (a) Sharpening the of Constants. Our argument allows improve-
ments of the above inequalities as we shall see, at least for ⋆sp,Rad2 , in the
following sections.

(b) On Displacement and Distortion. None of the above inequalities contains
corrections terms for parallel displacement defined earlier in section 6.3, albeit
it may result in a decrease of the hyperspherical radii of P due to distortion of
the fibers S ⊂ P as the example in section 6.3.2 shows.

Notice at this point that the presence of large distortion is inevitable for
fibrations with non-compact fibers, where the monodromy along short loops
has unbounded displacement.

Example. Let Q be a surface and P → Q an R2-bundle with an orthogonal
connection, the curvature form of which doesn’t vanish, and let g be a Rieman-
nin metric on P which agrees with the Euclidean metrics in the R2-fibers and
such that the map P → Q is a Riemannin fibration, i.e. it is isometric on the
horizontal subbundle in T (P ) corresponding to the connection.
116It is known [BH 2009] that the hyperspherical radius can drastically decrease under infinite
coverings but the situation with K-waist2 remains unclear.
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The the Euclidean distance between points in the fibers,

p1, p2 ∈ R2
q ⊂ P , q ∈ Q

is related to the g-distance in P as follows

distR2(p1, p2) ∼ (distP (p1, p2))
2 for distR2(p1, p2)→∞.

(This is the same phenomenon as the distortion of central subgroups in two-
step nilpotent groups.)

6.3.4 Even and Odd Dimensional Sphere Bundles

Scmax
sp -Bound for Sphere Bundles. Let P andQ be closed orientable spin manifolds,

where P serves as the total space of a unit m-sphere bundle F ∶ P → Q with an
orthogonal connection ∇.

If the map F ∶ P → Q is 1-Lipschitz117 and if the cohomology class

F ∗[Q]○Q ∈Hn(P ;Q), n = dim(Q),

doesn’t vanish (as in ●III in section 6.3.2), then the spin max-scalar curvature
of P (defines with spin manifolds X mapped to P ) is bounded in terms of the
hyperspherical radius R = RadSn(Q) and of the norm of the curvature of ∇ as
follows:

[⋊Sm] Scmax
sp [P ] ≤ const ⋅ (1 + ε) ⋅ (Sc(Sn(R)) + Sc(Sm)) ,

where, recall, Sc(Sn(R)) =
n(n−1)
R2 , Sc(Sm) =m(m−1), where const = constm+n

is a universal constant (specified later) and where ε is a certain positive function
ε = εm+n(c), for c = ∣curv∣(∇), such that

εm+n(c)→ 0 for c→ 0.

Proof. Start by observing that if either m = 0 or n = 0, then [⋊Sm] with
const = 1 reduces to Llarull’s inequality (sections 3.5, 4.2) which says in these
terms, e.g. for Q, that

Scmax
(Q) ≤

n(n − 1)

Rad2
Sn(Q)

= Sc(Sn(R)).

What we need in the general case if we want const = 1 is a complex vector
bundle L → P with non-zero top Chern number and such that the normalised
curvature (defined in section 4.1.1.) satisfies

∣curv∣⊗S(L) ≤
Sc(Sn(R)) + Sc(Sm(1)

4
+ const′ ⋅ ε.

Now, let m = dim(S = Sm) and n = dim(Q) be even and observe that the
non-vanishing condition F ∗[Q]○Q ≠ 0 always holds for even dimensional sphere
bundles.
117The role of this "1-Lipschitz" is seen by looking at the trivial fibrations P = Q × S → Q
and also at Riemannian fibrations F ∶ P → Q (the differentials of) which are isometric on
the horizontal (sub)bundle. In general, when the metrics in the horizontal tangent spaces
may vary, estimates on Scmax(P ) should incorporate along with , besides curv(∇), (a certain
function of) these metrics. (Observe, that the scalar curvature of P itself is influenced by the
first and second "logarithmic derivatives" of these metrics.)
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Also observe that Sm and Q support bundles needed for our purpose, call
them LS and LQ, where LS is the positive spinor bundle S+(Sm)→ S = Sm and
LQ → Q is induced from the spinor bundle S+(Sn(R)) by a 1-Lipschitz map
Q→ Sn(R) with non-zero degree.

One knows that the top Chern numbers of these bundle don’t vanish and,
according to Llarull’s calculation,

∣curv∣⊗S(LS) =
1

4
Sc(Sm) =

1

4
m(m − 1)

and
∣curv∣⊗S(LQ) ≤

1

4
(Sc(Sn(R)) =

n(n − 1)

4R2
.

Since the (unitary) bundle LS → Sm is invariant under the action of the spin
group, that is the double covering of SO(m), 118 it defines a bundle L↕ → P ,
the curvature of which satisfies

∣curv∣(L↕) = ∣curv∣(LS) +O(ε).

Then all one needs to show is that the tensor product of

L = L⋊ = L↕ ⊗ F
∗
(LQ),

satisfies
∣curv∣⊗S(L) ≤

Sc(Sn(R)) + Sc(Sm(1)

4
+ const′ ⋅ ε.

This follows by a multilinear-algebraic computation similar to what goes on
in the paper by Llarull, where, I admit, I didn’t carefully check this computation.

But if one doesn’t care for sharpness of const, then a direct appeal to the
⊗ε-Twisting Principle formulated in section 3.11.1 suffices.

Remark. Even the non-sharp version of [⋊Sm], unlike how it is with a non-
sharp bound RadSn(X) ≤ constn(infx Sc(X,x))

− 1
2 , n = dim(X), can’t be proved

at the present moment without Dirac operators, which necessitate spin as well
as compactness (sometimes completeness) of our manifolds.

Odd Dimensions. If n = dim(Q) is odd, multiply P and Q by a long circle,
and then either of the three arguments, used in the odd case of Llarull’s theorem
which are mentioned in section 4.2 and referred to [Ll 1998], [List 2010 ] and
[G(inequalities) 2018], applies here.

Now let n be even and the dimensionm of the fiber be odd. Here we multiply
the fiber S, and thus P by R, and endow the new fiber, call it S′ = Sm ×R with
the bundle LS′ over it, which is induced by an O(m+1)-equivariant 1-Lipschitz
map Sm ×R → Sm+1, which is locally constant at infinity. Since the curvature
of the new fibration P ′ = P ×R → Q is equal to that of the original one of ∇ in
P → Q, the proof follows via the relative index theorem.

Remarks/Questions. (a) Is there an alternative argument, where, instead of
R, one multiplies the fiber S with the circle T, and uses, in the spirit of Lusztig’s
argument, the obvious T-family of flat connection in it.

666r
118This bundle is not SO(m) -invariant, but I am not certain if this is truly relevant.
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(b) Is there a version of the inequality [⋊Sm], which is sharp for ∣curv∣(∇)

far from zero?
(c) What are Scmax

sp of the Stiefel manifolds of orthonormal 2-frames in the
Euclidean Rn, Hermitian Cn and quaternion Hn?119

6.3.5 K-Waist and Scmax of Iterated Sphere Bundles, of Compact
Lie Groups and of Fibrations with Compact Fibers.

Classical compact Lie groups are equivariantly homeomorphic to iterated sphere
bundles.

For instance, U(k) is equal to the complex Stiefel manifold of Hermitian
orthonormal k-frames Stk(Ck), where Sti(Cn) fibers over Sti−1(Cn) with fibres
S2(k−i)−1 for all i = 1, ..., k.

Since the rational cohomology of U(k) is the same as of the product S1 ×

S3 × ... × S2k−1, these fibrations satisfy the above non-vanishing condition ●III,
which implies by the above [⋊Sm] that

the product U(k) ×Rk carries a U(k)-invariant bundle, which is trivialized
at infinity, such that the top Chern number of it is non-zero.

This, by the argument from the previous section, delivers
complex vector bundles with curvature controlled unitary connections and non-

vanishing top Chern classes over total spaces P of principal U(k)-fibrations F ∶

P → Q, provided F ∗[Q]○Q ≠ 0 (that is the above ●III).
This yields

a lower bound on the K-waist of P ×Tk,
which, in turn, implies, the following.
Corollary 1. Let F ∶ P → Q be a principal U(k)-fibration with a unitary

connection ∇, where the map F is 1-Lipschitz and F ∗[Q]○Q ≠ 0.120

Then

[⋊U(k)], Scmax
sp [P ] ≤ constm+k ⋅ (1 + ε) ⋅ (

n(n − 1)

RadSn(Q)2
+ constk) ,

where ε is a certain positive function ε = εk+n(c), for c = ∣curv∣(∇), such that

εk+n(c)→ 0 for c→ 0.

Now let us state and prove a similar inequality for topologically trivial fibra-
tions with arbitrary compact holonomy groups G.

Corollary 2. Let S and Q be compact connected orientable Riemannian mani-
folds of dimensions m = dim(S) and n = dim(Q) and let G be a compact isometry
group of S endowed with a biinvariant Riemannin metric.121

119Notice that St2(C2) = S3 and St2(H2) = S7, but not all invariant metrics on Stiefel
manifolds are symmetric.

Also notice that the corresponding (Hopf) fibrations F ∶ P = S3 → Q = S2 and F ∶ P =
S7 → Q = S4 have F ∗[Q]○ = 0 in disagreement with the above condition ●III; this makes one
wonder whether this condition is essential.
120For a principal fibration, this is a very strong condition, saying, in effect, that the fibration
is "rationally trivial".
121If G is disconnected "Riemannin" refers to the connected components of G.
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Let Fpr ∶ Ppr → Q be a principal G-fibration with a G-connection ∇ and with
a Riemannian metric on Ppr, which agrees with our metric on the G-fibers, for
which the action of G is isometric and for which the differential of the map Fpr is
isometric on the ∇-horisontal tangent bundle Thor(Ppr) ⊂ T (Ppr).

Let F ∶ P → Q be an associated S-fibration that is

P = (Ppr × S)/G

where the quotient is taken for the diagonal action of G.
Endow P with with the Riemannin quotient metric.
[⋊SG] Let Fpr ∶ Ppr → Q be a topologically (but not, in general geometrically)

trivial fibration (i.e. Ppr = Q ×G with the obvious action by G).
There exists a positive constant c0 and a function ε = εm+n(c), 0 ≤ c ≤ c0,

where ε → 0 for c → 0, and such that if ∣curv∣(∇) = c ≤ c0, then the spin max-
scalar curvature of P is bounded by

Scmax
sp [P ] ≤ const∗ ⋅ (1 + ε) ⋅ (

n(n − 1)

RadSn(Q)2
+

m(m − 1)

RadSm(S)2
+ constG) .122

Proof. Embed G to a unitary group U(k) and let FU ∶ PU → Q be the
fibration with the fiber U = U(k) associated to Fpr ∶ Ppr → Q.

Let PU → Q be the fibration with the fibers Sq ×Uq, q ∈ Q and observe that
this PU fibers over P with U -fibers and over PU with S-fibers, where the latter
is a trivial fibration.

To show this it is enough to consider the case, where P is the principal
fibration Ppr for which PU = Ppr × U and PU is the quotient space, PU =

(Ppr ×U)/G for the diagonal action of G.
Then the triviality of the principal G-fibration PU → PU is seen with the

map PU → U = U(k) for {Gq ×Uq}↦ Uq = U which sends the diagonal G-orbits
from all Gq ×Uq to G ⊂ U(k) = U .

Thus, assuming m = dim(S) is even (the odd case is handled by multiplying
by the circle as earlier) we obtain an upper bound on spin max-scalar curvature
of PU = PU × S in terms of the K-waist of PU and RadSm(S).

On the other hand, if the fibration P → Q has curvature bounded by c,
the same applies to the induced fibration PU → P with U -fibers, and since the
(biinvariant metric in the) unitary group U = U(k) has positive scalar curvature,
the max-scalar curvature of PU is bounded from below by one half of that for
P for all sufficiently small c and when c → 0 these estimate converge to what
happens to Riemannian product P = Q × S.

Confronting these upper and lower bounds yields a qualitative version of
[⋊SG], while completing the proof of the full quantitative statement is left to
the reader.

About the Constants. A Llarull’s kind of computation seems to show that
the above inequalities hold with constm+n = const∗ = 1.
122I apologise for the length of this statement that is due to so many, probably redundant,
conditions needed for the proof.
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6.4 K-Waist and Max-Scalar Curvature for Fibration with
Non-compact Fibers.

Let P → Q be a Riemannin fibration where the fiber S is a complete contractible
manifold with non-positive curvature and such that the monodromy of the nat-
ural connection ∇ in this fibration (defined by the horizontal tangent subbundle
Thor ⊂ T (P )) isometrically acts on S.

Problem. (Compare with "Generalized Problem" in section 6.3.1.) Is there
a lower bound on the K-waist2(P ) in terms of such a bound on K-waist2(Q) and
on an upper bound on the norm of the curvature of ∇ that can be represented by
the function maxholp(ε, δ) as in (2) of section 6.3.1?

6.4.1 Stable Harmonic Spinors and Index Theorems.

Our primarily interest in such a lower bound is that it would yield an upper
bound on the proper spin max-scalar curvature of P , 123 where, following recipes
●I, ●II, ●III, from B in section 6.3.2 one has to construct a (finite or infinite
dimensional graded) with a unitary connection vector bundle L→ S, which is

⋆I invariant (modulo compact operators?) under isometries of S (compare
with ●I in section 6.3.2

and
⋆II homologically substantial, where this substantiality must generalize that

of ●II by properly incorporating the action of the isometry group G of S. (An
inviting possibility is the above L⊗N .)

What one eventually needs is not such a bundle L → S per se, but rather
some Hilbert space of sections for a class of related bundles over P , where

(i) a suitable index theorem, e.g. in the spirit of our the second "proof" in
section 6.3.1 (with a Hilbert C∗-module H over the reduced C∗-algebra of the
group G being utilized),

and where
(ii) the Schroedinger-Lichnerowicz-Weitzenboeck formula applies to twisted

harmonic L2-spinors delivered by such a theorem and provides a bound on the
scalar curvature of P .

Who is Stable? Harmonic spinors delivered by index theorems (and also
spinors with a given asymptotic behaviour as in Witten’s and Min-Oo’s argu-
ments) are stable under certain deformations (and some discontinuous modifica-
tions, such as surgeries) of the metrics and bundles in questions, albeit the exact
range of these perturbation on non-compact manifolds is not fully understood.

But the Schroedinger-Lichnerowicz-Weitzenboeck formula doesn’t use, at
least not in a visible way, this stability, which is unlike how it is with stable
minimal hypersurfaces and stable µ-bubbles.

One wonders, however,
whether there is a common ground for these two stabilities in our context.

6.4.2 Euclidean Fibrations

Let us indicate an elementary approach to the above problem in the case where
the fiberes S of the fibration F ∶ P → Q are isometric to the Euclidean space.
123This "proper spin max-scalar" is defined via proper 1-Lipschitz maps of open spin mani-
folds X to P , see in section 5.3.1.

130



(1) Start with the case where the (isometric!) action of the (structure)
group G on the fiber S of the fibration P → Q has a fixed point, then assume
m = dim(S) is even and observe that radial maps S → Sm, which are constant
at infinity and have degrees one, induce homologically substantial G-invariant
bundles L = LS bundles on S.

Since S = Rm, such maps can be chosen with arbitrarily small Lipschitz
constants, thus making the curvatures of these bundles arbitrarily small, namely,
(this is obvious) with the supports in the R-balls Bs0(R) ⊂ S, around the fixed
point s0 ∈ S for the G-action and with curvatures of our (induced from S(Sm))
bundles LS = LS,s0,R → S bounded by 1

R2 .124

Then we see as earlier that in the limit for R → ∞, the curvature of the
bundle L↕ → P , which is on the fibers S = Sq ⊂ P is equal to LS → S, (see ●I

in B of section 6.3.2) will be bounded by the curvature of the connection ∇ on
P → Q, provided the map P → Q is 1-Lipschitz.125

Consequently,
the K-waist2 of P is bounded from below by the minimum of the K-waist2

of Q and the reciprocal of the curvature ∣curv∣(∇)

(2) Next, let us deal with the opposite case, where the structure group
G = Rm, i.e. the Euclidean space Rm acts on itself by parallel translations.

Then, topologically speaking, the fibration F ∶ P → Q is trivial, but the
above doesn’t, apply since this P → Q typically admits no parallel section.

But since the ∇-monodromy transformations, that are parallel translations
on the fiber S = Rm, have bounded displacements, there exists a continuous
trivialization map

G ∶ P → Q ×Rn,

which, assuming Q is compact, (obviously) has the following properties.
(i) The fibers Rmq ⊂ P are isometrically sent by G to Rm = {q}×Rm ⊂ Q×Rm

for all q ∈ Q.
(ii) The composition of G with the projection Q ×Rm → Rm, call it

GRm ∶ P → RM

is 1-Lipshitz on the large scale,

dist(GmR (q1, q2)) ≤ dist(q1, q2) = cost.

It follows by a standard Lipschitz extension argument, that, for an arbitrary
ε > 0, there exists a smooth map

G′
ε ∶ P → Q ×Rm, ε > 0,

which is properly homotopic to G and such that the corresponding map

G′
ε,Rm ∶ P → Rm

is λ-Lipschitz for λ ≤m + n + ε, where, recall, m + n = dim(P )

124It suffices to have the universal covering S̃ of S isometric to Rm, where radial bundles on
S̃ can be pushed forward to Fredholm bundles on S.
125The parallel displacement contribution to the curvature of L↕ (see B of section 6.3.2))
cancels away by an easy argument.
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Now, the concern expressed in A of section 6.3.2 notwithstanding, the µ-
bubble splitting argument from section 5.3 applies and shows that

(a) the stabilized max-scalar curvature of P (defined in section 5.3.1 via
products of P with flat tori) is bounded, up to a multiplicative constant, by that
of Q.

Besides, the existence of fiberwise contracting scalings of P , which fix a given
section Q→ P , show that

(b) if Q is compact and if m is even, then the K-waist2 of P is bounded
from below, by that of Q.

Notice here, that
unlike most previous occasions, neither a bound on the curvature of the fibration

P → Q is required, nor the manifold X in the definition of the max-scalar curvature
mapped to P need to be spin.

And besides dispensing of the spin condition, one may allow here
non-complete manifolds Q and X and/or manifolds in (a) and compact mani-

folds Q with boundaries in (b).
(3) Finally, let us turn to the general case where the structure group of a

fibration P → Q with the fiber S = Rm is the full isometry group G of the
Euclidean space Rm.

Recall that G is a the semidirect product, G = O(m) ⋊ Rm, let PG → Q be
the principal bundle with fiber G associated with P → Q and let PO → P be the
associated O(m) bundle. Let

PO ← PG → P

be the obvious fibrations.
Now, granted a bound on the Lipschitz constant of F ∶ P → Q and the

curvature of this fibration, we obtain
(i) a bound on the max-scalar curvature of the space PG in terms of such a

bound on P
In fact, the curvature of the fibration PG → P as well as its Lipschitz constant

are bounded by those of F ∶ P → Q and our bound (i) follows from non-negativity
of the scalar curvature of the fiber O(m) of this fibration by the (obvious)
argument used in section 6.3.5.

Then we look at the fibrations PG → PO → Q and observe that
(ii) the fibration PO → Q has O(m)-fibers and, thus the K-waist2(PO) is

bounded from below by that of Q as it was shown in section 6.3.5;
(iii) the fibration PG → PO has Rm-fibers and the structure group Rm and,

by the above (2), the K-waist2 of PG is bounded from below by that of Q; hence
K-waist2(PG) of PG is bounded by K-waist2(Q).
We recall at this point the basic bound on Scmspax(PG) by the reciprocal of

the K-waist2(PG), confront (i) with (iii) and conclude (similarly to how it was
done in section 6.3.5) to the final result of this section.

�� Let F ∶ P → Q be a smooth fibration between Riemannin manifolds with
fibers Sq = Rm and a connection ∇, the monodromy of which isometrically acts on
the fibers. If the map F is 1-Lipschitz, then

the proper spin max-scalar curvature of P is bounded in terms of the curva-
ture ∣curv∣(∇) and the reciprocal to K-waist2(Q).
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Corollary. Let Q admit a constant at infinity area decreasing map to Sn,
n = dim(Q), of non-zero degree.

Let the norm of the curvature of (the connection ∇ on) a bundle P → Q with
Rm-fibers is bounded by c.

Let a complete orientable Riemannian spin manifold X of dimension m + n
admit a proper area decreasing map to P .

Then
inf
x∈X

Sc(X,x) ≤ Ψ(c),

where, Ψ = Ψm+n is an effectively describable positive function; in fact, the above
proof of �� shows that one may take

Ψ(c) = (m + n)(m + n − 1) + constmc

and where, probably, (m + n)(m + n − 1) can be replaced by n(n − 1).

6.4.3 Spin Harmonic Area of Fibrations With Riemannian Symmet-
ric Fibers.

Let S be a complete Riemannian manifold with a transitive isometric action of
a group G which equivariantly lifts to a vector bundle LS → S with a unitary
connection, such that the L2-index of the twisted Dirac operator D⊗LS is non
zero.126

Example: Hyperbolic and Hermitian Symmetric spaces.
(a) If S = H2m

−1 then S = H2m
−1 and LS = S+(H2m

−1 ) (compare with section
4.6.5).

(b) If S is a Hernitian Symmetric space, e.g. a product of hyperbolic planes
or the quotient space of the symplectic group Sp(2k,R) by U(k) ⊂ Sp(2k,R),
then the canonical bundle (or, possibly, its tensorial power) can be taken for
LS .

Let F ∶ P → Q be a fibration with the fiber S and the structure group G, let
P be endowed with a complete Riemannin metric and let L↕ → P be the natural
extension of the (G-equivariant!) bundle LS to P (compare with section 6.3.2).

Let LQ → Q be a vector bundle with a unitary connection. and let

L⋊ = F
∗
(LQ)⊗L↕ → P

.
Conceivably there must exist (already exists) an index theorem for the Dirac

operator on P twisted with the bundle L⋊ that would ensure the existence of
non-zero twisted harmonic L2-spinors on P under favorable topological and
geometric conditions.

For instance, if Q is a complete Riemannian of even dimension n, if the
bundle LQ is induced from the spin bundle S+(Sn) by a smooth constant at
infinity map Q → Sn of positive degree, if P is spin and if the map F ∶ P → Q
is isometric on the horizontal subbundle in T (P ), then, conjecturally,
126As we have already mentioned in section 4.6.5, if S admits a free discrete cocomapct
isometric action of a group Γ, this is equivalent to the non-vanishing of the index of the
corresponding operator on S/Γ [Atiyah (L2) 1976]; in general, this index is defined by Connes
and Moscovici in [ConMos 1982].
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the manifold P supports a non-zero L⋊-twisted harmonic L2-spinor.
In fact this easy if the fibration is flat, e.g. if the fibration P = Q × S and,

if the curvature of this fibration is (very) small, then a trivial perturbation
argument as in section 4.6.5 yields almost harmonic spinors on large domains
PR ⊂ P .

But what we truly wish is the solutions of the following counterparts to (A)
and (B) from section 4.6.5.

Let F ∶ PR → QR be a submersion between compact Riemannin manifolds
with boundaries, where

R = sup
p∈P

dist(p, ∂P )

and where the local geometries of the fibers are δ-close (in a reasonable sense)
to the geometry of an above homogeneous S and let L⋊,R → PR be a vector
bundle, also δ-close (in a reasonable sense) to an above L⋊.

(AF ) When does PR support a ε-harmonic L⋊,R-twisted spinor which vanishes
on the boundary of P?

(BF ) When does a similar spinor exist on a manifold PR, which admits a map
to PR with non-zero degree and with a controlled metric distorsion.?

6.5 Scalar Curvature of Foliations
Let X be a smooth n-dimensional manifold and L a smooth foliation of X that
is a smooth partition of X into (n − k)-dimensional leaves, denoted L.

Let T (L ) ⊂ T (X) denote the tangent bundle of L and Recall that the
transversal (quotient) bundle T (X)/T (L ) carries a natural leaf-wise flat affine
connection denoted ∇⊥L, where the parallel transport is called monodromy.

This∇⊥L can be (obviously but non-uniquely) extended to an actual (non-flat)
connection on the bundle T (X)/T (L )→X, which is called Bott connection.

Two Examples (1) Let L admit a transversal k dimensional foliation, say K
and observe that the bundle T (X)/T (L ) → X is canonically (and obviously)
isomorphic to the tangent bundle T (K ).

Thus, every K -leaf-wise connection in the tangent bundle T (K ), e.g. the
Levi-Civita connection for a leaf-wise Riemannian metric in K , defines a K -
leaf-wise connection, say ∇K of T (X)/T (L )

Then there is a unique connection on the bundle T (X)/T (L ) → X, which
agrees with ∇⊥L on the L -leaves and with ∇K on the K -leaves, that is the Bott
connection.

(2) Let the bundle T (X)/T (L ) → X be topologically trivial and let ∂i ∶
X → T (X), i = 1, ..., k, be linearly independent vector fields transversal to L .
Then there exists a unique Bott connection, for which the projection of ∂i to
T (X)/T (L ) is parallel for the translations along the orbits of the field ∂i for
all i = 1, ..., k.

In what follows, we choose a Bott connection on the bundle T (X)/T (L )→

X and denote it ∇⊥X .
Also we choose a subbundle T ⊥ ⊂ T (X) complementary to T (L ), which,

observe, is canonically isomorphic to T (X)/T (L ), where this isomorphism is
implemented by the quotient homomorphism T ⊥ ⊂ T (X)→ T (X)/T (L ).
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With this isomorphism, we transport the connections ∇⊥L and ∇⊥X from
T (X)/T (L to ∇⊥X keeping the notations unchanged. (Hopefully, this will bring
no confusion.)

6.5.1 Blow-up of Transversal Metrics on Foliations

Let g = gL be a leaf-wise Riemannin metric on the foliation L , that is a positive
quadratic form on the bundle T (L ), let g⊥ be such a form on T ⊥ and observe
that the sum of the two g⊕ = g⊕ g⊥ makes a Riemannin metric on the manifold
X.

This metric itself doesn’t tell you much about our foliation L , but the family

g⊕e = g ⊕ e2g⊥, e > 0,

is more informative in this respect, especially for e→∞. For instance,
[a] if the metric g = gL has strictly positive scalar curvature, i.e. Scg(L) > 0

for all leaves L of L , and, this is essential, if the metric g⊥ is invariant under the
monodromy along the leaves L – foliations which comes with such a g⊥ are called
transversally Riemannian, – then, assuming X is compact,

Sc(g⊕e ) > 0

for all sufficiently large e > 0.
Proof of [a]. Let x0 ∈ X, let L0 = Lx0 ⊂ X be the leaf which contains

x0 and observe that the pairs pointed Riemannian manifolds (Xe,L0 ∋ x0) for
Xe = (X,g⊕e ) converge to the (total space of the) Euclidean vector bundle T ⊥

restricted to L0 with the metric

[⊕] glim = gL0 ⊕ g
⊥
Eu,

where gL = gL ∣L0, where g⊥Eu = g⊥Eu(l), l ∈ L0, is the a family of the Eu-
clidean metrics in the fibers of the bundle T ⊥∣L0 corresponding to g⊥ on L0, and
where "⊕" refers to the local splitting of this bundle via the (flat!) connection
∇⊥L ∣L0.127 The scalar curvature of the metric gL0 ⊕ g

⊥
Eu is determined by

the scalar curvature of the leaf L0 and the first and second (covariant)
logarithmic derivatives of g⊥Eu(l),

where g⊥Eu(l) is regarded as a function on L0 with values in the space of (positive)
quadratic forms on Rk, which in the case g⊥Eu(l) = ϕ(l)

2g0 reduces to the "higher
warped product formula" from section 2.4:

(⋆⋆L) Sc(ϕ(l)2g0)(l, r) = Sc(L0)(l) −
k(k − 1)

ϕ2(l)
∣∣∇ϕ(l)∣∣2 −

2k

ϕ(l)
∆ϕ(l),

where (l, r) ∈ L0 ×Rk and ∆ = ∑∇i,i is the Laplace operator on L0.
Since, in general, these "logarithmic derivatives" denoted g⊥Eu(l)

′/g⊥Eu(l) and
g⊥Eu(l)

′′/g⊥Eu(l) are the same as of the original (prelimit) metric g⊥(l), it follows,
that
(⋆⋆Sc)

Sc(gL0 ⊕ g
⊥
Eu) ≥ Sc(gL0) − constn (∣∣(g⊥(l)′/g⊥(l))2

∣∣ + ∣∣g⊥(l)′′/g⊥(l)∣∣) .

127The limit space (T ⊥, glim) can be regarded as the tangent cone of X at L0 ⊂ X, where
the characteristic feature of this cone is its scale invariance under multiplication of the metric
glim normally to L0 by constants.
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In particular, if g⊥ is constant with respect to ∇⊥L ∣L0, then the limit metric
glim locally is the Riemannian product (L , gL ) ×Rk with the scalar curvature
equal to that of L . QED.

However obvious, this immediately implies
[a1] vanishing of the Â-genus as well as of its products with the Pontryagin

classes of T ⊥ for transversally Riemannian foliations on closed spin manifolds X,
where the "product part" of this claim follows from the twisted Schroedinger-
Lichnerowicz-Weitzenboeck formula for the Dirac operator D⊗T ⊥ , since the cur-
vature of the (Bott connection in the) bundle T ⊥ → X converges to zero for
e→∞.

(This is not formally covered by Connes’ theorem stated in section 3.12,
where the spin condition must be satisfied by L rather than X itself as it is
required here; but it can be easily derived from Connes’ theorem.)

Another equally obvious corollary of [⊕] is as follows.
[a2] If Sc(L ) > n(n − 1) and if X is closed orientable spin, then X admits

no map f ∶X → Sn, such that deg(f) ≠ 0 and such that the restrictions of f to
the leaves of L are 1-Lipschitz.

But this is not fully satisfactory, since it it remains unclear
if one truly needs the inequality Sc(L ) > n(n − 1) or
Sc(L ) > (n − k)(n − k − 1) for n − k = dim(L ) will suffice?
Exercise. Show that Sc(L ) > 2 does suffice for 2-dimensional foliations.
Flags of Foliations. Let

L = L0 ≺ L1 ≺ ... ≺ Lj ,

where the relation Li−1 ≺ Li signifies that Li refines Li−1, which means the
inclusions between their leaves,

Li ⊂ Li−1,

and where L0 is the bottom foliation with a single leaf equal X.
Let T ⊥i = T ⊥i ⊂ T (Li−1), i = 1,2, ..., j be transversal subbundles isomorphic

to T (Li−1)/T (Li), let gj = gLj be a Lj-leaf-wise Riemannian metric, let g⊥i ,
i = 1...j,, be Riemannin metrics on T ⊥i and let

g⊕e1,...,ej = g0 ⊕ e
2
1g
⊥
1 ⊕ ...⊕ e

2
jg
⊥
j .

[b] If the metrics in the quotient bundles T (Li−1)/T (Li), i = 1, ..., j, which
corresponds to g⊥i , are invariant under holonomies along the leaves of Lj , if
ei →∞, then

Sc(g⊕e1,...,ej)→ Sc(gj),

where this convergence is uniform on compact subsets in X.
Proof. Since
the logarithmic derivatives of maps from Riemannian manifolds to the
Euclidean spaces tend to zero as the metrics in these manifolds are
scaled by constants →∞,
the above (⋆⋆Sc) implies the following.
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[blim] The pair of pointed Riemannian manifolds (Xe1,...,ej ,Lj ∋ xj), for all
leaves Lj of Lj and all xj ∈ Lj , converges to the (total space of the) flat Euclidean
vector bundle T ⊥1 ⊕ ... ⊕ T ⊥j → Lj , where the limit metric on (the total space of)
T ⊥1 ⊕ ...⊕ T ⊥j locally splits as

[⊕i⊥], glim = gLj ⊕ gEu ⊗ gEu,1(l),

where gEu is the Euclidean metric on Rk2+...ki+...+kj for ki = rank(T ⊥i ) and gEu,1(l),
l ∈ Lj is a family of Euclidean metrics in the fibers of the bundle T ⊥1 →X restricted
to Lj , where the logarithmic derivatives of these metrics are equal these for the
original (prelimit) metrics in the bundle T ⊥1 over Lj .

Now, we see, as earlier, that [blim] ⇒ [b] and the proof follows.
Thus, the above [a1] and [a2] generalize to transversally Riemannian flags

of foliations

6.5.2 Connes’ Fibration.

Let the "normal" bundle T ⊥ → X to a foliation L on X admits a smooth G-
structure for a subgroup G of the linear group GL(k), k = codim(L ), which
(essentially) means that the monodromy transformation for the above canonical
flat leaf-wise connection ∇⊥L are contained in G.

For instance, being Riemannian for a foliation is the same as to admit G =

O(k) and G = GL(k) serves all foliation.
Let G isometrically act on a Riemannin manifold S and let P → X be a

fibration associated to T ⊥ →X.
Then the monodromy of ∇⊥L is isometric on the fibers Sx ⊂ P .
Principal Example.[Con 1986] Let

G = GL(k) and S = GL(k)/O(k)

and let us identify the fiber Sx, for all x ∈ X, with the space of Euclidean
structures, i.e. of positive definite quadratic forms, in the linear space T ⊥x .

Clearly, this S canonically splits as

S = R ×R for R = SL(k)/SO(k),

where, observe, R carries a unique up to scaling SO(k)-invariant Riemannian
(symmetric) metrics with non-positive sectional curvature and where the R-
factor is the logarithm of the central multiplicative subgroup R×

+ ⊂ GL(k).
Thus, S = R ×R carries an invariant Riemannian product metric, call it gS ,

which is unique up-to scaling of the factors.
Next, observe that the tangent bundle T (P ) splits as usual

T (P ) = T vert ⊕ Thor

where T vert consists of the vectors tangent to the fibers Sx ⊂ P , x ∈ X, and
where Thor is the horizontal subbundle corresponding to the Bott connection,
and where the splitting T (X) = T (L )⊕ T ⊥ lifts to a splitting of Thor, denoted

Thor = T̃ (L )⊕ T̃ ⊥.
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Thus, the tangent bundle T (P ) splits into sum of three bundles,

T (P ) = T vert ⊕ T̃ (L )⊕ T̃ ⊥,

where, to keep track of things, recall that

rank(T̃ (L )) = dim(L ) = n − k, rank(T̃ ⊥) = codim(L ) = k

and
rank(T vert) = dim(GL(k)/O(k)) =

k(k + 1)

2
.

Let us record the essential features of these three bundles and their roles
in the geometry of the space P (see [Con 1986] and compare with §1 7

8
in

[G(positive) 1996]).
(1) Metric g̃⊥ in T̃ ⊥. The (sub)bundle T̃ ⊥ ⊂ T (P ) carries a tautological

metric call it g̃⊥, which, in the fiber T̃ ⊥p ⊂ T̃ ⊥ for p ∈ P over x ∈ X, is equal to
this very p ∈ Px regarded as a metric in T ⊥x ⊂ T ⊥ →X.

(2) Foliation L + of P . The leaves L+ ⊂ P of this foliations are the pullbacks
of the leaves L of L under the map P →X. These L+ have dimensions n − k +
k(k+1)

2
and the tangent bundle T (L +) is canonically isomorphic to T̃ (L )⊕T vert.

(3) Foliation L̃ of P . This is the natural lift of the original foliation L of
X:

the leaf L̃p of L̃ through a given point p ∈ P over an x ∈X is equal to the set
of the Euclidean metrics in the fibers T ⊥l ⊂ T ⊥ → X for all l ∈ Lx ⊂ X, which are
obtained from p, regarded as such a metric in T ⊥x ⊂ T ⊥ → X, by the monodromy
along the leaf Lx of the foliation L of X.

This foliation can be equivalently defined via its tangent (sub)bundle, that
is

T (L̃ ) = T̃ (L ) ⊂ T (P ).

Also observe that this L̃ refines L , written as L̃ ≻ L +, where, in fact, the
leaves of L + are products of the monodromy covers of the leaves of L by S.

(4) L̃ -Monodromy Invariance of the Metric g̃⊥. The bundle T̃ ⊥ ⊂ T (P ),
where the metric g̃⊥ resides, is naturally isomorphic to the "normal" bundle
T (P )/T (L +), but this metric is not invariant under the monodromy of the
foliation L +.

However, g̃⊥ is invariant under the monodromy of the sub-foliation L̃ ≻ L +

with the leaves L̃ ⊂ L+ as it follows from the above description of the leaves L̃p
of L̃ .

(5) L̃ -Monodromy Invariance of g̃S in the Bundle T vert. Since the fibration
P →X with the fiber S = GL(k)/O(k) is associated with T ⊥ →X, every GL(k)
metric gS on S gives rise to a monodromy invariant metric in this fibration
which we keep denoting gS .

Then the natural lift of gS to the bundle T vert == T (L +)/T (L̃), denoted g̃S ,
is, obviously, L̃ -monodromy invariant.

(6) Scalar Curvature under Blow-up of Metrics in T (P ). Let g = gL be a
Riemannin metric in the tangent bundle T (L ) ⊂ T (X) of a foliation L of X
as earlier and let g̃ be its lift to the bundle T̃ (L ) = T (L̃ ) ⊂ T (P ).
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Let g̃e+,e⊥ be the Riemannin metric on the manifold P that is the metric in
the bundle

T (P ) = T̃ (L )⊕ T vert ⊕ T̃ ⊥.

where our g̃e+,e⊥ is split into the sum of the metrics from th above (5) and (4).
which are taken here with (large) positive e-weights as follows.

g̃e+,e⊥ = g̃ ⊕ e
2
+g̃

+
R ⊕ e

2
⊥g̃
⊥.

Then it follows from the above [b], that if

e2
+, e

2
⊥ →∞,

then
[⇑Sc] the scalar curvature of the metric g̃ε+,ε⊥ at p ∈ P + over x ∈X converges

to that of g on the leaf Lx ∋ x at x, where this convergence is uniform on the
compact subsets in P +.128

Generalizations. Much of the above (1) - (6) applies to foliations with mon-
odromy groups G not necessarily equal to GL(k) and with fibrations with the
fibers that may be different from G/K, which we will approach in the following
section on the case-by-case basis.

6.5.3 Foliations with Abelian Monodromies

Let a foliation L of an orientable n-dimensional Riemannian manifold X admit a
smooth G-structure invariant under the monodromy, where the group G is Abelian
and let the scalar curvatures of the leaves with the indices Riemannin metrics are
bounded from below by σ > n(n − 1).
◻#. The hyperspherical radius of X is bounded by one,

RadSn(X) ≤ 1.

That is, if R > 1, then
X admits no 1-Lipschitz map to the sphere Sn(R), which is constant
at infinity and which has non-zero degree.
Prior to turning to the proof, that is an easy corollary of what we discussed

about Rk-fibration in section 6.4.2, we’ll clarify a couple of points.
1. We don’t assume here that the manifold X is compact or complete, nor

do we require it is being spin.
2. We don’t know if our Abelian assumption on G is essential. It is conceiv-

able that
◻# holds for all foliations, i.e. for G = GL(k), k = codim(L ), and, moreover,

with the bound Sc(L ) ≥ (n − k)(n − k − 1).
2. Examples of foliations with Abelian G, include:

128This convergence property is implicit in [Con 1986] and it is articulated explicitly in §1 7
8

of [G(positive) 1996], where it is additionally required that e2⊥/e2+ →∞. This, as I see it now,
only serves a psychological purpose: when it comes to applications one starts with scaling g̃+
with a large e+ and then let e2⊥ → ∞. Also this convergence appears in "adiabatic" terms in
Proposition 1.4 of [Zhang 2016].
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foliations with transversal conformal structure, e.g. (orientable) foliations of
codimension one, where G is the multiplicative group R×;

flags of codimension one foliations (where G = (R×)k) and/or of foliations with
transversal conformal structures.

Proof of ◻#. Let P → X be the principal fibration associated with the
bundle T (X)/T (L ) and by blowing up the metric of P transversally to the lift
L̃ to P as in the previous section, make the scalar curvature of P on a given
compact domain Pε ⊂ P greater than n(n − 1) − ε for a given ε > 0.

Also with this blow-up, make the Lipschitz constant of the map P → X as
small as you want.

(A possibility of this formally follows from the above (1) - (6) for foliations
of codimension one, while the proof in general case amounts to replaying (1) -
(6) word-for-word in the present case.)

Next, let G = Rm, observe as in (2) in section 6.4.2 that Pε admits a (1+ ε)-
Lipschitz map of degree one from P0 to X × [0, L]k for an arbitrary large L and
apply the maximality/extremality theorem for punctured spheres from sections
3.9 and 5.4.

This concludes the proof for G = Rm and the case of the general Abelian G
follows by passing to the quotient of G by the maximal compact subgroup.

To get an idea why one can control the geometry of the blow-up only on
compact subsets in P, look at the following.

Geometric Example. Let (Y, g) be a Riemannian manifold and let PY → Y
be the fibration, with the fibers Sy, y ∈ Y , equal to the spaces of quadratic forms
in the tangent spaces Ty(Y ) of the form c ⋅ gy, c > 0. Thus, PY = Y × R, for
R = logR×

+ with the metric e2rdy2 + dr2.
When r → +∞ and the curvature of e2rg tends to zero, then the metric

e2rdy2 + dr2 converges to the hyperbolic one with constant curvature −1, but
when r → −∞, then the curvatures of e2rg and of e2rdy2 + dr2 blow up at all
points y ∈ Y , where the curvature of g doesn’t vanish.

And if apply this to the fibration P = PY ×L→X = Y ×L with the same R-
fibers, then we see that the convergence of the scalar curvatures of the blown-up
P to those of L is by no means uniform.

6.5.4 Hermitian Connes’ Fibration

Let L be a foliation on X of codimension k as earlier with a transversal
(sub)bundle T ⊥ ⊂ T (X) and a Bott connection in it. Let T & be the sum of
T ⊥ with its dual bundle and endow T & with the natural, hence monodromy
invariant, symplectic structure.

Let Sx denote the space of Hermitian structures in the space T &x , for all
x ∈ X, and let P → X be the corresponding fibration, that is the fibration
associated with T &x with the fiber S = Sp(2k,R)/U(k).

Equivalently, this fibration P → X is associated to T ⊥ → X via the action
of GL(k) on S = Sp(2k,R)/U(k) for the natural embedding of the linear group
GL(k) to the symplectic Sp(2k,R)

Besides sharing the properties (1)-(6) of the original Connes’ bundle formu-
lated in section 6.5.2, this new P →X has, a lovely additional feature:

S is a Hermitian (irreducible) symmetric space, which implies (see section
6,4.3) non-vanishing of the index of some twisted Dirac operator on S that is
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invariant under the isometry group (that is Sp(2k,R)) of S.
Let us formulate several conjectures the (positive) solution of which besides

being interesting in its own right, might simplify the proof by Connes in [Con
1986] as well as the version of Connes’ proof from [Zhang 2016].

L et Y = (Y,ω) be a closed symplectic manifold of dimension 2k and let F ∶

PY → Y be the fibration associated with the tangent bundle T (Y ) with the fiber
S = Sp(2k,R)/U(k).

Observe that the quotient bundle T (PY )/T vert carries a tautological Hermitian
metric g&, and a granted Sp(2k,R)-connection in the tangent bundle T (Y ), that
is a horizontal subbundle Thor ⊂ T (PY ), one obtains a Riemannin metric gP in the
tangent bundle T (PY ) = T vert ⊗ Thor that is

gP = gS ⊗ +g&

where gS is a Sp(2k,R)-invariant Hermitian metric in S, which is unique up to
scaling.

Let the symplectic form ω be integer and thus serves as the curvature of a
unitary line bundle L→ Y .

Conjecture 1 The bundle of spinors on PY twisted with some tensorial
power of the bundle F ∗(L) → PY admits a non-zero harmonic L2-section on
PY .

Remarks and Examples. (a) The geometry of this P , unlike of what we met
in section 6.4.3, is as far from being a product as in PY from the geometric
example. in section 6.5.3.

(b) The simplest instance of Y is that of an even dimensional torus T2k with
an invariant symplectic form ω and trivial flat symplectic connection.

In this case, the universal covering P̃Y of the manifold PY is Riemannian
homogeneous; moreover, the (local) index integrant is homogeneous as well. It
is probable, that a version of the Connes-Moscovici theorem applies in this case
and yields twisted harmonic L2-spinors on P̃Y and, eventually, on PY .

(c) It would be most amusing if twisted Dirac operators on PY were non-
trivially influenced by the symplectic geometry of (Y,ω).

Let us generalize the above conjecture to make it applicable to foliations.
to be continued.

6.5.5 Scalar Curvature and Dynamics of Foliations

to be continued.

6.6 Moduli Spaces Everywhere
All topological and geometric constraints on metrics with Sc ≥ σ are
accompanied by non-trivial homotopy theoretic properties of spaces of
such metrics.

A manifestation of this principle is seen in how topological obstructions for
the existence of metrics with Sc > 0 on closed manifolds X of dimension n ≥ 5
give rise to

pairs (h0, h1) of metrics with Sc ≥ σ > 0 on closed hypersurfaces Y ⊂X which
can’t be joined by homotopies ht with Sc(ht) > 0.
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The elementary argument used for the proof of this (see section 3.15) also
shows that (known) constraints on geometry, not only on topology, of manifolds
with Sc ≥ σ play a similar role.

For instance, assuming for notational simplicity, σ = n(n − 1), and recalling
the 2π

n
-inequality from sections 3.7, 5.3, we see that

(a) if l ≥ 2π
n
, then the pairs of metrics h0 ⊕ dt

2 and h1 ⊕ dt
2 on the cylinder

Y × [−l, l], for the above Y and l ≥ 2π
n
, can’t be joined by homotopies of metrics

ht with Sc(ht) ≥ n(n − 1) and with distht(Y × {−l}, Y × {l}) ≥ 2π
n
.

This phenomenon is also observed for manifolds with controlled mean curva-
tures of their boundaries, e.g. for Riemannian bands X withmean.curv(∂∓X) ≥

µ∓ and with Sc(X) ≥ σ, whenever these inequalities imply that dist(∂−X,∂+X) ≤

d = d(n,σ,µ∓). (One may have σ < 0 here in some cases.)
Namely,
(b) certain sub-bands Y ⊂X of codimension one with ∂∓(Y ) ⊂ ∂∓(X) admit

pairs of metrics (h0, h1), such that mean.curvh0,h1(∂∓Y ) ≥ µ∓ and Sch0,h1(Y ) ≥

σ while disth0,h1(∂−, ∂+) ≥D for a givenD ≥ d. But these metrics can’t be joined
by homotopies ht , which would keep these inequalities on the scalar and on the
mean curvatures and have distht(∂−, ∂+) ≥ d for all t ∈ [0,1].

(c) This seems to persist (I haven’t carefully checked it) for manifolds with
corners, e.g. for cube-shaped manifolds X: these, apparently contain hyper-
surfaces Y ⊂ X, the boundaries of which ∂Y ⊂ ∂X inherit the corner structure
from that in X, and which admit pairs of "large" metrics h0, h1, which also
have "large" scalar curvatures, "large" mean curvatures of the codimension one
faces Fi in Y and "large" complementary (π − ∠ij) dihedral angles along the
codimension two faces Fij , but where these h0, h1 can’t be joint by homotopies
of metrics ht with comparable "largeness" properties.

It is unclear, in general, how to extend the π0-non-triviality (disconnected-
ness) of our spaces of metrics to the higher homotopy groups, since the tech-
niques currently used for this purpose rely entirely on the Dirac theoretic tech-
niques (see [EbR-W 2017] and references therein), which are poorly adapted to
manifolds with boundaries. But some of this is possible for closed manifolds.

For instance, let Y be a smooth closed spin manifold, and hp, p ∈ P , be
a homotopically non-trivial family of metrics with Sc(hp) ≥ σ > 0, where,
for instance, P can be a k-dimensional sphere and non-triviality means non-
contractibility.

Let Smσ (Sm × Y ) denote the space of pairs (g, f), where g is a Riemannian
metric on Sm × Y with Sc(g) ≥ σ and f ∶ (Sm × Y, g) → Sm is a distance
decreasing map homotopic to the projection fo ∶ Sm × Y → Sm.

If non-contractibility of the family hp follows from non-vanishing of the index
of some Dirac operator, then (the proof of) Llarull’s theorem suggests that the
corresponding family (hp + ds

2, fo) ∈ S
m
σ+(S

m × Y ) for σ+ = σ +m(m − 1) is non-
contractible in the space

S
m
m(m−1)(S

m
× Y ) ⊃ S

m
σ+(S

m
× Y ).

This is quite transparent in many cases, e.g. if hp = {h0, h1} is an above
kind of pair of metrics with Sc > 0, say an embedded codimension one sphere
in a Hitchin’s homotopy sphere.
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Remarks. (i) If "distance decreasing" of f is strengthened to "εn-Lipschitz"
for a sufficiently small εn > 0, then the above disconnectedness of the space of
pairs (g, f) follows for all X with a use of minimal hypersurfaces instead of
Dirac operators.

(ii) The above definition of the space Smσ makes sense for all manifolds X
instead of Sm × Y , where one may allow dim(X) <m as well as >m.

However, the following remains problematic in most cases.
For which closed manifolds X and numbers m, σ1 and σ2 > σ1 > 0 is the

inclusion Smσ2
(X) ≤ Smσ1

(X) homotopy equivalence?

Suggestion to the Reader. Browse through all theorems/inequalities
in the previous as well as in the following sections, formulate their possible
homotopy parametric versions and try to prove some of them.

6.7 Corners, Categories and Classifying Spaces.
It seems (I may be mistaken) that all known results concerning the homotopies
of spaces with metrics Sc > 0 are about the iterated (co)bordisms of manifolds
with Sc > 0 rather than about spaces of metrics per se.

To explain this, start with thinking of morphisms a → b in a category as
members of class of labeled (directed) edges/arrows [0,1] with the 0-ends labeled
by a and the 1-end labeled by b.

Then define a cubical category C (I guess there is a standard term but I
don’t know it) as a class of labeled combinatorial cubes of all dimensions, [0,1]i,
i = 1,2, ..., where all faces are labeled by members of some class and which
satisfied the obvious generalisations of the axioms of the ordinary categories:
associativity and the presence of the identity morphisms.

Example. Let C = A◻ consist of continuous maps from cubes to a topological
space A, e.g. to the space A = G+ = G+(X) of metrics with positive curvature
on a given manifold X, where these maps are regarded as labels on the cubes
they apply to.

If we glue all such cubes along faces with equal labels, we obtain a cubical
complex, call it ∣C∣, which is (weekly) homotopy equivalent to A, where possible
degeneration of cubes.e.g. gluing two faces of the same cube, is offset by possi-
bility of unlimited subdivision of cubes by means of cubical identity morphisms.

Next, given a smooth closed manifold X, consider "all" Riemannian mani-
folds of the form (X ×[0,1]i, g), i = 0,1,2, ..., such that Sc(g) > 0, and such that
the metrics g in small neighbourhoods of all "X-faces" X × Fj , where Fj is are
((i − 1)-cubical) codimension one faces in the cube [0,1]i), split as Riemannin
products: g = gX×Fj ⊗ dt

2. Denote the resulting cubical category by XG◻
+ and

observe that there is a natural cubical map

Ξ ∶ ∣G+(X)
◻
∣↪ ∣XG◻

+ ∣.

Now we can express the above "iterated cobordism" statement by saying
that the only part of the homotopy invariants of G+(X) (which is homotopy
equivalent to G+(X)), e.g of its homotopy groups, which is detectable by the
present methods is what remains non-zero in ∣XG◻

+ ∣ under Ξ.
Similarly one can enlarge other spaces of Riemannin metrics on non-closed

manifolds from the previous section with lower bounds on their curvatures and
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their sizes, where the latter can be expressed with maps f ∶ (X,g) → X, with
controlled Lipschitz constants with respect to g, or with respect to the Sc-
normalised metric Sc(X) ⋅ g defined as in section 4.2.

There is yet another way of enlarging the cubical category XG◻
+ , namely by

B∗G◻(D), where D is topological, e.g. metric space and where
●0 closed oriented Riemannian manifolds X of all dimensions n along with

continuous maps X → D stand for 0-cubes - "vertices",
●1 "edges" ; i.e 1-cubes are cobordismsWn+1 between X0,X1, with Rieman-

nin metrics split near their boundaries ∂Wn+1 =X0⊔−X1, and continuous maps
to D extending those from X0andX1,

●2 "squares", are (rectangularly cornered (n + 2)-dimensional) cobordisms
between W -cobordisms with maps to D, etc.

The actual cubical subcategory of B∗G◻(D), which is relevant for the study
of the space ∣XG◻

+ ∣ (that is, essentially, the space of metrics with Sc > 0 on
X) is where all manifolds in the picture are spin, the scalar curvatures of their
metrics are positive, D is the classifying space of a group Π and where one
may assume the fundamental groups of all X to be coherently (with inclusion
homomorphisms) to be isomorphic Π 129 (compare [EbR-W 2017], [HaSchSt
2014],

Question. What are possible generalizations of the above to manifolds with
corners, which are far from being either cubical or rectangular?

For instance, prior to speaking of spaces of metrics and of categories of
cobordisms, let X be an individual manifold with corners, say a (smoothly)
topological n-simplex or a dodecahedron, let (∞ < σ < ∞), let (∞ < µi < ∞)

be numbers assigned to the codimension one faces Fi of X and 0 < βij < π be
assigned to the codimension two faces of the kind Fi ∩ Fj .

When does X admit a Riemannian metric g such that

Scg ≥ σ, mean.curvg(Fi) ≥ µi and ∠g(F1, Fj) ≤ π − βij?

Let moreover, D ⊂ RN+ , where the N Euclidean coordinates are associated
with the faces Fi of X, be a closed convex subset, introduce the following addi-
tional condition on g:

the N - vector of distances {di(x) = distg(x,Fi)} is in D for all x ∈X.
We ask when does there exist a g with this additional condition and also

what is the homotopy type of the space of metrics g on X, such that

Scg ≥ σ, mean.curvg(Fi) ≥ µi, ∠g(F1, Fj) ≤ π − βij and {di(x)} ∈D?

(For instance, if X is a topological n-simplex, then an "interesting" D is
defined by ∑i di(x) ≥ const.)

One may also try to generalize the concept of cubical category by allowing
all kinds of combinatorial types of manifolds X with corners and of attachments
129This "assume" relies on the codimension two surgery of manifolds with Sc > 0, which is
possible for making the fundamental groups of n-manifolds isomorphic to Π if n ≥ 4 and where
more serious topological conclusions need n ≥ 5.
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of X to X ′ along isometric codimension one faces X ⊃ F ↔ F ′ ⊂ X ′, where the
isometries F ↔ F ′, must match the mean curvatures of the faces:

mean, curv(F ′) = −mean.curv(F ) which is equivalent to the natural metric
on

X ∪
F↔F ′

X

being C1-smooth.
Is there a coherent category-style theory along these lines of thought?

6.8 Limits and Singularities.
............... to be continued.
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