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These notes are intended for an audience with a background in partial differential equations (PDE),
and only a basic familiarity with probability theory. In particular, no prior knowledge of nor expertise in
stochastic calculus are assumed from the reader. The goal is to present, in a concise and simple manner, the
main results on the long time behavior of some PDEs. They are not meant to replace a genuine course on the
topic, of which there are many. They are only giving a somewhat less traditional perspective on PDEs.

These notes are articulated as follows. We collect and recall in Section 1 some elementary notions of
stochastic calculus, in particular regarding Brownian motion and Itô’s formula, in order to explain how some
PDE can be linked to a stochastic differential equation (SDE), the definition of which will be given later. In
Section 2, we then describe how coupling methods work, and explain how the Wasserstein distance, closely
linked to the theory of Optimal Transport, can be understood as a coupling problem. While the first two
sections may seem unrelated to one another, and can thus be read independently, we explain in Section 3
how a probabilistic point of view using the underlying SDE and a coupling method may be be useful in
studying some PDEs.

Essentially, we only wish to convey a basic understanding of how a PDE can be seen as the evolution of
the probability distribution of a random process, and give a flavor of how things work. We will refer to more
complete courses for more details.

1 On the link between SDE and PDE

We denote by (Ω,F ,P) a probability space, that is, a triple composed of the set Ω of all possible outcomes,
F , a σ-algebra, the set of events (i.e set of "things" we can give the probability of), and P a measure. For a
random variable X , we write X ∼ µ if the probability density of X is µ. We denote by E(·) the expectation
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of a random variable with respect to P, and E(·|A) the conditional expectation of a random variable knowing
A.

Throughout these notes, we will be interested in stochastic processes, intuitively random variables evolv-
ing with time. Given two sets T and E (respectively representing the set of time and the set in which the
process lives), a random variable X : T × Ω 7→ E, and a point ω ∈ Ω, we will consider {X(t, ω) : t ∈ T}.
For any point ω ∈ Ω, the mapping X(·, ω) : T 7→ Rd is called a sample path. For simplicity, we will often
omit the variable ω.

One the most basic example of a stochastic process is the well-known (symmetrical) random walk in
dimension 1. In this case, let T = N, E = Z, and (ξi)i∈N be a sequence of independent identically
distributed (i.i.d) random variables such that P(ξ = 1) = P(ξ = −1) = 1

2 . The random walk is thus given
by Xn = X0 +

∑n
i=1 ξi. At each (discrete) time step, as if you were flipping a coin, the process either goes

left (-1) or right (+1) with probability 1/2 on the integer line.

1.1 A quick recap on Brownian motion

The specific stochastic process on which these notes rely is the Brownian motion. The notion was introduced
by the Scottish botanist Robert Brown in 1828 to describe the movement of minute particles ejected by
pollen grain suspended in water. Since then it has been widely used to model various irregular movements
in physics, biology, finance and other fields.

The purpose of this section is to introduce the Brownian motion, and give some of its main properties.
We start by the case of dimension 1 and with a quick reminder on the Gaussian distribution, which is crucial
to define the process.

Definition 1.1 (Gaussian distribution). We say a real-valued random variable X follows a Gaussian distri-
bution of expectation µ and standard deviation σ if its probability density function is

f(x) =
1

σ
√

2π
e−

1
2(x−µσ )

2

We denote X ∼ N (µ, σ2). In particular, for any measurable function g, we have

Eg(X) =

∫
R
g(x)f(x)dx.

We now give the main definition of this section, omitting for simplicity the considerations on measura-
bility.

Definition 1.2 (Brownian motion). Let B = {Bt, t ∈ R+} be a stochastic process on the probability space
(Ω,F ,P). B is a standard Brownian motion if

(i) B0 = 0 and the sample paths B.(ω) are continuous for a.e ω ∈ Ω,

(ii) B has independent increments : Bt −Bs is independent of σ (Bu, u ≤ s) for all t > s ≥ 0,

(iii) the distribution of Bt −Bs is N (0, t− s) for all t > s ≥ 0.

The notation σ (Bu, u ≤ s) refers to the σ-algebra generated by the random variables Bu for 0 ≤ u ≤ s.
Point (ii) thus describes the fact that the increment Bt −Bs is independent of the path of B before time s.

Notice how this definition is close to the one of the random walk in Z : when for the latter we choose
independent increments (ξi)i∈N, (ii) implies similar independent increments but in a continuous case. And
when for the random walk those increments are chosen to be either +1 or -1 with probability 1/2, in the
non-discrete setting of the Brownian motion we choose Gaussian increments (which is also a symmetrical
law). The Brownian motion could thus be understood as a sort of symmetrical random walk in R. Keeping
in mind those similarities, although it is not rigorous, might help intuitively understand some properties of
the Brownian motion.
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Figure 1: Approximation of 10 sample paths of Brownian motion.

Remark 1.1. We give a quick explanation on the numerical simulation of the Brownian motion (see for
instance Figure 1). We construct the Brownian motion as if we were constructing a random walk at discrete
times (tni )i∈{1,..n} through the Euler-Maruyama method B0 = 0 and

Btni −Btni−1
= Gni ,

where Gni ∼ N (0, tni − tni−1) is a simulated Gaussian variable. Thanks to results on the variance, we have

N (0, tni − tni−1)
law
=
√
tni − tni−1N (0, 1), i.e simulating a random variable according to N (0, tni − tni−1)

amounts to simulating a random variable according to N (0, 1) and then multiplying it by
√
tni − tni−1. This

implies (once again in a very formal way) that "dBt '
√
dt".

The fact that a Brownian motion exists is non trivial, and for the sake of conciseness we do not wish to
go down that rabbit hole. We admit its existence and refer to Jean-François Le Gall [LG18] for a rigorous
presentation on the matter. Let us however list some basic, yet important for what follows, properties that
are directly implied by the definition.

Lemma 1.1. Let B and B̃ be two independent Brownian motions, t0 > 0, c > 0 and let a, b ∈ R such that
a2 + b2 = 1. Then the following processes are also Brownian motions

• {−Bt, t ≥ 0} (symmetry),

• {c−1/2Bct, t ≥ 0} (scaling),

• {Bt0+t −Bt0 , t ≥ 0} (time translation),

• {Bt0−t −Bt0 , 0 ≤ t ≤ t0} (time reversal),

• {aBt + bB̃t, t ≥ 0} (rotation).

All these properties can be easily deduced from the definition of the Brownian motion. The symmetry,
time translation and time reversal properties are also true for the random walk, and the scaling property can
be understood using Remark 1.1.

We have been comparing the Brownian motion to the random walk in dimension 1, admittedly because
the comparison may help explaining various results. We however wish to quickly show that this compar-
ison is not that nonsensical. Denoting Sn a random walk, we consider a sequence of rescaled process
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Figure 2: Illustration of Lemma 1.1. Upper left corner : Approximation of a sample path of a Brownian
motion Bt. Upper right corner : Approximation of the path of −Bt (symmetry). Lower left corner :
Approximation of the path of B2t√

2
(scaling). Lower right corner : Approximation of the path of B1−t−B1

(time reversal)

W
(k)
t =

Sbktc√
k

(notice once again the scaling time / square root of time). A result known as Donsker’s theo-

rem ensures that the process W (k) converges in law to a Brownian motion (see Figure 3). It can be seen as
an extension of the central limit theorem. Donsker’s theorem holds no importance for the following of these
notes, but it remains an interesting and possibly enlightening result.

Maybe the most interesting property of the Brownian motion in the context of this document is the
following. By definition, for all t ≥ 0, the distribution of the random variable Bt is a N (0, t)

p(t, x)dx := P(Bt ∈ [x, x+ dx]) =
1√
2πt

e−
x2

2t dx.

An important observation is that this density function satisfies the heat equation, as

∂

∂t
p =

1

2

∂2

∂x2
p

Thus, we have a link between the Brownian motion and the heat equation : the former is a random process
whose probability density is the solution of the latter. Now imagine a cloud of particles all starting from 0 and
only under the influence of thermal agitation. From a PDE point of view, the shape of the cloud satisfies the
heat equation. From a probabilistic point of view, you consider each particle individually to be a Brownian
motion. Hence how we circle back to the initial motivation behind the Brownian motion to describe the
movement of pollen suspended in water, as for the first time we notice two points of view : the particle and
the density.

This duality between the PDE and the particle is, we believe, an idea someone with a background in PDE
might already be familiar with. Considering a function b, the transport equation

∂tp+ div(b p) = 0,

is linked through the method of characteristic to the ordinary differential equation

xt = x+

∫ t

0
b ds,
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Figure 3: Donsker’s theorem : Brownian motion as a limit of symmetrical random walk

which we will rewrite {
dxt = b dt
x0 = x.

The proof of this link will de done latter, as it will be the basis for an interesting result on SDE. Our goal
now is to prove that the transport-diffusion equation

∂tp+ div(b p) =
1

2
∆p,

is linked to what we will refer to as an SDE

Xt = x+

∫ t

0
b ds+Bt,

which we will rewrite {
dXt = b dt+ dBt
X0 = x.

This is the subject of this first part.
We conclude this section by extending the definition of Brownian motion to dimensions higher than 1

for the sake of completeness.

Definition 1.3 (Brownian motion in dimension d). LetB = {Bt, t ∈ R+} be a Rd-valued stochastic process
on the probability space (Ω,F ,P), and F a filtration. B is a F-standard Brownian motion if the components
Bi, i = 1, ..., d are independent F-standard Brownian motions.

Everything we have said so far holds true in dimensions higher than one, and in particular the density of
a Brownian motion in dimension d also satisfies the heat equation in dimension d.

1.2 Itô differential calculus

In this section, we give a brief explanation of the stochastic integral with respect to the Brownian motion,
and we mention an important tool in stochastic calculus : Itô’s formula. Once again, we will not give any
proof and refer to [LG18, Ber21] for more details.
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Figure 4: Simulation of the law of Brownian motion. On top : 100 sample paths of Brownian motion
between t = 0 and t = 2. Lower left corner : Empirical law of the Brownian motion for t = 0, using 10000
sample paths. Lower middle : Empirical law of the Brownian motion for t = 1, using 10000 sample paths,
and theoretical law in yellow. Lower right corner : Empirical law of the Brownian motion for t = 2, using
10000 sample paths, and theoretical law in yellow.

Integration with respect to the Brownian motion. The construction of the stochastic integral might be
a bit cumbersome. It is sufficient to understand, in the context of this document, that for the stochastic
processes σs considered here the quantity

∫ t
0 σsdBs exists (as an L2 limit of

∑n
i=1 σti(Bti+1 − Bti) for a

partition (ti)i≥1) and that

E
(∫ t

0
σsdBs

)
= 0.

Itô’s formula. The main result of this section is Itô’s formula, a crucial tool in stochastic calculus. Let B
be a Brownian motion in dimension n and X be a general Itô process with values in Rd

Xt := x+

∫ t

0
µsds+

∫ t

0
σsdBs, (1.1)

where x ∈ Rd, µ and σ are adapted processes with values respectively in Rd and Rd×n, and satisfying∫ T

0
|µs|2ds+

∫ T

0
|σs|2ds <∞ a.s.

The process (1.1) will often be denoted {
dXt = µtdt+ σtdBt,
X0 = x

(1.2)

with the very natural interpretation of : "small variation ofX" can be written as the sum of a "small variation
of t" and a "small variation of Brownian motion". Itô’s formula then gives us a mean to calculate the dynamic
of a function of such a process.
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Theorem 1.1 (Itô’s formula in dimension 1). Let X be a Itô process in dimension 1 defined by (1.2), and
f : R+ × R→ R be a function in C1,2([0, T ],R). Then almost surely we have

df(t,Xt) = ∂xf(t,Xt) · dXt +

(
∂tf(t,Xt) +

1

2
σ2
t ∂

2
xxf(t,Xt)

)
dt (1.3)

for every 0 ≤ t ≤ T .

When looking at the form (1.4) takes, the fact that the quantity ∂xf(t,Xt) · dXt + ∂tf(t,Xt)dt appears
in df(t,Xt) feels natural for anyone who has studied differential calculus at some point. Notice however the
term 1

2σ
2
t ∂

2
xxf(t,Xt)dt : it is what may be new and possibly off-putting. We do not wish to write down the

full proof, but still want to give an intuition on why this term appears. Let us very informally write, for B a
Brownian motion in dimension 1

f(t, Bt)− f(0, B0) '
∑
i

(f(ti, Bti)− f(ti−1, Bti)) +
∑
i

(
f(ti−1, Bti)− f(ti−1, Bti−1)

)
.

Then, using a Taylor expansion on the first part we have f(ti, Bti)− f(ti−1, Bti) ' ∂tf(t′i, Bti)(ti − ti−1).
Notice how this is a "deterministic" term, as it is only parametrized by a single random variable. However,
when we consider the Taylor expansion of the second term, we get

f(ti−1, Bti)− f(ti−1, Bti−1) ' ∂xf(ti−1, ξi)(Bti −Bti−1).

Recall from the definition of the Brownian motion Bti − Bti−1 ∼ N (0, dt) =
√
dtN (0, 1). We hence need

to go one term further in the Taylor expansion

f(ti−1, Bti)− f(ti−1, Bti−1) ' ∂xf(ti−1, Bti−1)(Bti −Bti−1) +
1

2
∂2
xxf(ti−1, ξi)(Bti −Bti−1)2.

The first part gives us ∂xf(ti−1, Bti−1)dBt, and we may use for the second part the fact that (Bti −Bti−1)2 ' ti − ti−1.
This theorem can be extended in dimensions higher than one with the same ideas.

Theorem 1.2 (Itô’s formula in any dimension). LetX be a Itô process defined by (1.2), and f : R+×Rd → R
be a function in C1,2([0, T ],Rd). Then almost surely we have

df(t,Xt) = ∇f(t,Xt) · dXt +

(
∂tf(t,Xt) +

1

2
Tr[σ∗t (HXf)σt]

)
dt (1.4)

for every 0 ≤ t ≤ T , where Tr(·) is the trace operator, σ∗t is the transpose matrix of σt andHXf =
(

∂2f
∂xi∂xj

)
1≤i,j≤d

is the Hessian matrix of f .

1.3 Some links

Heat equation. To understand the link between SDE and PDE, let us begin with a toy model as we come
back to the Brownian motion in dimension 1. In the next few lines, the calculations are very formal and only
serve to give a better understanding of the ideas that follow behind. Let Xt =

√
2Bt.

A direct application of Itô’s formula gives us, for f : R → R a sufficiently regular test function (for
instance f ∈ C2

c (R)).

f(Xt) =

∫ t

0
f ′(Xs)dXs +

∫ t

0

1

2
(
√

2)2f ′′(Xs)ds,

Ef(Xt) =E
(∫ t

0

√
2f ′(Xs)dBs

)
+ E

(∫ t

0
f ′′(Xs)

)
ds

=

∫ t

0
Ef ′′(Xs)ds,
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where the last equality is a consequence of the fact that the expectation of the stochastic integral is 0. Hence
why, denoting p(t, x) the probability density of Xt, we have

d

dt
Ef(Xt) =Ef ′′(Xt),

d

dt

∫
R
f(x)p(t, x)dx =

∫
R
f ′′(x)p(t, x)dx,∫

R
f(x)∂tp(t, x)dx =

∫
R
f(x)∂2

xp(t, x)dx,

and thus p satisfies the heat equation
∂tp(t, x) = ∂2

xp(t, x).

Fokker-Planck equation (or Kolmogorov forward). In a slightly more general setting, let b : R+×Rd →
Rd and σ : R+ × Rd → Rd×n be two measurable and locally bounded functions. We consider, for a n-
dimensional Brownian motion Bt, the stochastic differential equation{

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, t ∈ [0, T ],
X0 = x

(1.5)

for some T ∈ R. A strong solution of (1.5) is a process X such that∫ T

0

(
|b(t,Xt)|+ |σ(t,Xt)|2

)
dt <∞, a.s,

and

Xt = x+

∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dBs, t ∈ [0, T ].

We write that X is a solution of Ex(σ, b). Let, for u ∈ C2
c (R+ × Rd), t ∈ R+ and x ∈ Rd,

Lu(t, x) :=
1

2

d∑
i,j=1

(σσ∗)i,j(t, x)
∂2u

∂xi∂xj
(t, x) +

d∑
i=1

bi(t, x)
∂u

∂xi
(t, x),

where σ∗ is the transpose matrix of σ.

Theorem 1.3. If X is a solution of Ex(σ, b), and if we denote pt := p(t, ·) ∈ P(Rd) the law of Xt, then for
all φ ∈ C2

c (Rd), and every t ≥ 0∫
Rd
φ(x)pt(dx) =

∫
Rd
φ(x)p0(dx) +

∫ t

0

∫
Rd
Lφ(x)ps(dx)ds.

(pt)t≥0 is then said to be a weak solution of

∂tp = L∗p, (1.6)

with

L∗p(t, x) :=
1

2

d∑
i,j=1

∂2

∂xi∂xj
((σσ∗)i,jp) (t, x)−

d∑
i=1

∂

∂xi
(bi(t, x)p)(t, x).

Proof. Direct use of Itô’s formula and integration by parts.

Results on the uniqueness of solutions for (1.6) give us the converse theorem.
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A parabolic equation and method of characteristics. Let us consider a backward approach on the solu-
tion of a PDE. Suppose b and σ independent of time. We are interested in the following PDE{

∂u
∂t (t, x) = Lu(t, x), t > 0, x ∈ Rd
u(0, x) = f(x), x ∈ Rd, (1.7)

where f : Rd → Rd is given. Let us start by considering the case σ = 0. The PDE (1.7) can then be written{
∂u
∂t (t, x) = b(x) · ∇xu(t, x), t > 0, x ∈ Rd
u(0, x) = f(x), x ∈ Rd. (1.8)

To solve (1.8), we use the well-known method of characteristics. Let y ∈ Rd, and assume there is a solution
to the ordinary differential equation {

x′(t) = b(x(t)) t > 0
x(0) = y.

For φ ∈ C1
c (R+ × Rd)

d

dt
φ(t, x(t)) =∂tφ(t, x(t)) +

d∑
i=1

∂xkφ(t, x(t))
dxk
dt

=∂tφ(t, x(t)) +
d∑
i=1

bk(x(t))∂xkφ(t, x(t))

= (∂tφ+ b · ∇xφ) (t, x(t)).

Let t0 > 0 and apply the formula above to φ(t, x) = u(t0 − t, x), for 0 ≤ t ≤ t0,

d

dt
u(t0 − t, x(t)) = (−∂tu+ b · ∇xu) (t0 − t, x(t)) = 0.

This way

u(t0 − t, x(t)) = u(t0, x(0)),

and by taking t0 = t

u(t, y) = f(x(t)).

We thus get the expression of the solution of this transport PDE. This shows that, using the same notation
we have used so far, (1.8) is linked to the process defined by

dXt = b(Xt)dt t ∈ [0, T ],

i.e (Xt)t≥0 solution of Ey(0, b). Now, we use the same idea in a diffusive case σ 6= 0 and, by considering
the related SDE, we obtain a similar result "in average".

Theorem 1.4. If u ∈ C2
c (R+ × Rd) satisfies (1.7), then for x ∈ Rd and (Xt)t≥0 a solution of Ex(σ, b), we

have
u(t, x) = Ef(Xt), t ≥ 0.
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Proof. The proof is very similar to the method of characteristic, but we need to use Itô’s differential calculus.
If φ ∈ C2

c (R+ × Rd), thanks to Itô’s formula

φ(t,Xt) = φ(0, x) +

∫ t

0

[
∂φ

∂t
(s,Xs) + Lφ(s,Xs)

]
ds+

d∑
i=1

n∑
j=1

∫ t

0

∂φ

∂xi
(Xs)σi,j(s,Xs)dB

j
s .

Let t0 > 0. We apply the formula above for φ(t, x) = u(t0 − t, x), for 0 ≤ t ≤ t0,

u(t0 − t,Xt) = u(t0, x) +

∫ t

0

[
−∂u
∂t

(t0 − s,Xs) + Lu(t0 − s,Xs)

]
ds+Mt = u(t0, x) +Mt,

where Mt is a stochastic integral with expectation 0. Considering the expectation of the expression above

Eu(t0 − t,Xt) = u(t0, x).

We conclude by taking t0 = t

Remark 1.2. A direct consequence of the theorem above is the maximum principle : ||u||∞ ≤ ||f ||∞.

Dirichlet or Neumann boundary conditions. We end this section with two examples.

Figure 5: In blue, simulation of a Brownian motion. In red, simulation of the same Brownian motion reflected
at level H = 0.5.

Let Bt be a Brownian motion and denote Br
t its reflection at level H (see Figure 5). For any x ≤ H we

can write

P(Br
t ≤ x) =P(Bt ≤ x) + P(Bt ≥ 2H − x)

=Φ

(
x√
t

)
+ Φ

(
x− 2H√

t

)
,

where Φ(x) =
∫ x

0
1√
2π
e−y

2/2dy is the cumulative distribution function of the standard normal law. Taking
the derivative with respect to x above, we get the probability density of the reflected Brownian motion

pr(t, x) =
1√
2πt

(
e−

x2

2t + e−
(2H−x)2

2t

)
for x ≤ H,
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which solves {
∂tp

r(t, x) = 1
2∆pr(t, x) for x ≤ H,

∇pr(t,H) = 0,

that is, the heat equation with Neumann boundary conditions.

Figure 6: Simulation of Brownian motions killed at level H = 0.5

Next, let Bt be a Brownian motion and consider Bk
t a Brownian motion killed upon reaching level H ,

i.e, denoting τ = inf{t ≥ 0 : Bt ≥ H}, consider Bk
t = Bt for t ≤ τ and Bk

t = θ a cemetery state for t ≥ τ
(see Figure 6). We have for any x ≤ H

P(Bk
t ≤ x) = P(Bt ≤ x, t ≤ τ).

Thanks to the continuity of Brownian motion paths, we can write, for y ≥ H

P(Bt ≥ y) =P(Bt ≥ y, t ≥ τ)

=P(2H −Bt ≤ 2H − y, t ≥ τ).

One can easily see that the process defined by B∗t = Bt if t ≤ τ and B∗t = 2H − Bt if t ≥ τ is also a
Brownian motion. Thus

P(Bt ≥ y) = P(B∗t ≤ 2H − y, t ≥ τ) = P(Bt ≤ 2H − y, t ≥ τ).

Taking y = 2H − x, this yields

P(Bk
t ≤ x) = P(Bt ≤ x)− P(Bt ≤ x, t ≥ τ) = P(Bt ≤ x)− P(Bt ≥ 2H − x).

Derivating with respect to x, we get the following density for the killed Brownian motion

pk(t, x) =
1√
2πt

(
e−

x2

2t − e−
(2H−x)2

2t

)
for x ≤ H,

which solves {
∂tp

k(t, x) = 1
2∆pk(t, x) for x ≤ H,

pk(t,H) = 0,

that is, the heat equation with Dirichlet boundary conditions.
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2 Coupling and Wasserstein distance

So far, we studied the equivalence between the points of view PDE and SDE. We now see how there may
be a possibility of using probabilistic tools to study PDEs. In this section, we consider one of those tools,
namely coupling methods, and describe how it works.

2.1 Optimal transport as a coupling

Coupling. Let A and B be two sets. For p a probability density on A × B, we call µ and ν its marginal
distributions on A and B respectively if

µ(x) =

∫
B
p(x, dy) and ν(y) =

∫
A
p(dx, y).

For two random variables (or distributions) X and Y , there are in general several choices for a random
vector Z whose marginal distributions correspond to X and Y respectively. Making sure that X and Y are
thus related in a particularly interesting way is what we refer to as a coupling method.

First example. Imagine two people, named A and B, that don’t know each other, each asks you to toss a
coin in order for them to take a decision. The first solution would be for you to do two consecutive tosses,
give the first result to A and the second to B. But you could also choose to be lazier, and only throw the coin
once and give the same result to both. Or give the result to A and the opposite result to B. Neither would
notice, as from the perspective of A for instance, the probability of heads or tails would still be one half.
These three possibilities (two throws, same result or opposite results) each represents a coupling of the two
marginal distributions µ = ν = 1

2δH + 1
2δT . Choosing which suits you best can then provide you with some

interesting results. This is the topic of the next section.

On optimal transport. Before diving further into coupling arguments, let us explain how the theory of
optimal transport is related to what we are discussing here. Let µ and ν be two probability measures on a
space Ω. Our goal is to study the most effective way to transport mass from µ to ν. We denote U(µ, ν) the
set of admissible transport maps

U(µ, ν) := {P probability on Ω× Ω s.t. P(E × Ω) = µ(E),P(Ω× E) = ν(E) for all E ∈ F}.

We call P ∈ U(µ, ν) a transport map or a coupling of µ and ν without distinction. Intuitively, P(dx, dy) is
the amount of mass transported from point x to point y, and thus the marginals of P are µ and ν. We now
assume that moving this quantity has a cost, that depends on x and y according to a certain function c(x, y).
Finding the best way (the cheapest) to transport the mass amounts to the minimization problem

Wc(µ, ν) = inf
{∫

Ω2

c(x, y)P(dx, dy), s.t. P ∈ U(µ, ν)

}
. (2.1)

This way, optimal transport theory gives a natural metric between measures. How much would it cost to go
from µ to ν at best ? We consider on Pp(Rd), set of probability measures on Rd with finite p moments (i.e
such that E (| · |p) <∞), the Wasserstein distance

Wp(µ, ν) :=

(
inf

P∈U(µ,ν)

∫
|y − x|pP(dx, dy)

)1/p

where |x|p =
∑d

k=1 |xk|p is the Lp norm on Rd. Important results on optimal transport can be found in
Optimal Transport : Old and New of C. Villani [Vil08] or in Optimal Transport for Applied Mathematicians
of F. Santambrogio [San15].
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Figure 7: Example of a transport map (center) between the unifom distribution on [-1,1] (up) and the Gaus-
sian law N (0, 1) (right). Mass on dx is transported to dy.

We may write the Wasserstein distance between two probability measures µ and ν for an underlying
distance c using probabilistic notations

Wc(µ, ν) = inf
(X,Y )∼Γ∈U(µ,ν)

E (c(X,Y )) .

It is the minimum over all coupling Γ of µ and ν of E (c(X,Y )), where (X,Y ) is distributed according to
Γ. Any coupling then yields an upper bound on the Wasserstein distance.

2.2 A toy model

Let us show, on a toy model, how a coupling argument works. The following example is adapted from the
course "Mixing times of Markov chains" by Justin Salez.

We consider the space Z/nZ, for a given n ∈ N, and we consider the (lazy) random walk on this
space. This process is defined, given a sequence of i.i.d variables (ξi)i≥1 such that P(ξ = 0) = 1

2 and
P(ξ = 1) = P(ξ = −1) = 1

4 , by

Xn =

(
X0 +

n∑
i=1

ξi

)
mod n.

We wish to prove the following intuitive result : in the long run, it doesn’t matter where the walk started.
We start with the invariant distribution. Denote (Xt)t≥0 a random walk on Z/nZ (see Figure 8). From the
law of total probability we get

P(Xt = k) =P(Xt = k|Xt−1 = k + 1)P(Xt−1 = k + 1) + P(Xt = k|Xt−1 = k)P(Xt−1 = k)

+ P(Xt = k|Xt−1 = k − 1)P(Xt−1 = k − 1)

=
1

4
P(Xt−1 = k + 1) +

1

2
P(Xt−1 = k) +

1

4
P(Xt−1 = k − 1).

13



Figure 8: Illustration of the (lazy) random walk on the cycle Z/nZ.

Then p := (pk)k=1,..,n is an invariant measure if and only if

pk =
1

4
pk+1 +

1

2
pk +

1

4
pk−1

1

4
(pk − pk−1) =

1

4
(pk+1 − pk)

The increments (pk − pk−1)k=1,..,n are therefore constant. Since

0 = p0 − p0 = pn − p0 =
n∑
k=1

pk − pk−1 = n(p1 − p0),

we get that the invariant measure is the uniform distribution. Conversely we prove that the uniform distribu-
tion is invariant. We thus have existence and uniqueness of the invariant measure for this process. Results on
Markov chains then tell us that, given any initial distribution, the process will tend to this distribution. The
remaining question is : how quickly will it converge ?

Figure 9: Evolution of the probability density of the (lazy) random walk on the cycle Z/nZ starting in 0.

We consider on the cycle Z/nZ the norm ||x||c = min(|x|, n − |x|). Let µ and ν be two probability
measures on Z/nZ, we denote

Wc(µ, ν) = inf
(X,Y )∼Γ∈U(µ,ν)

E (||X − Y ||c) , (2.2)

the Wasserstein distance associated to the norm || · ||c. We may now prove the following result.

Theorem 2.1. Let x, y ∈ Z/nZ. Let µt (resp. νt) be the distribution of the (lazy) random walk Xt (resp. Yt)
on Z/nZ starting in X0 ∼ µ0 (resp. Y0 ∼ ν0) We have

Wc(µt, νt) ≤
n2

4t
Wc(µ0, ν0)

14



Proof. Recall the definition of the Wasserstein distance (2.2). Instead of considering the minimum over
all coupling of µt and νt, we will construct a specific one that will, hopefully, converge. To this end, we
may consider any vector (Xt, Yt) as long as it has the correct marginals. To prove the result, we are thus
looking for a coupling of Xt and Yt that would encourage the two walks to meet, i.e that would decrease
E (||X − Y ||c), which would give us a better bound onWc(µt, νt). Let Γ be any coupling of (µ0, ν0), and
(X0, Y0) ∼ Γ.

• First coupling : synchronous. We write Xt := X0 +
∑t

i=1 ξi. The first idea, as a coupling of µt and νt,
could be to give the same increments to both walks, and consider Yt := Y0 +

∑t
i=1 ξi. However, one

can easily see that for all t, the difference Xt − Yt would be constant, and then

∀t,E (||Xt − Yt||c) = E (||X0 − Y0||c) .

We cannot hope to use this coupling.

• Second coupling : mirror. To help both walks meet, it is natural to consider opposite increments, i.e
Xt := X0 +

∑t
i=1 ξi and Yt := Y0 −

∑t
i=1 ξi. Here, another problem arises, as when n is even, the

difference Xt − Yt keeps its parity, such that

∀t,E (||Xt − Yt||c) > 1,

when X0 − Y0 is odd.

• Third coupling : alternate. The solution to this issue of parity is to have one process jump when the other
doesn’t until they meet, and then use a synchronous coupling to have them stick together. Let

T := min{t ∈ N, Xt = Yt}.

Using this coupling

Wt := Xt − Yt =

{
X0 − Y0 +

∑t
i=1 ξ̃i, t < T

0, t ≥ T

where (ξ̃i)i∈N are i.i.d random variables satisfying P(ξ̃1 = −1) = P(ξ̃1 = 1) = 1
2 . In other words, Wt

is the usual symmetric random walk on Z/nZ. We can see T as the stopping time Wt either reaches 0
or n starting from X0 − Y0, and we have {Xt 6= Yt} = {T > t}. Using Markov’s inequality, we have
the very coarse upper bound on the expectation of the distance

E (||Xt − Yt||c) ≤
n

2
P(Xt 6= Yt) =

n

2
P(T > t) ≤ n

2

E(T )

t
.

E(T ) can then be calculated, using usual results on martingales, to show that

E(T ) = E ((n− |X0 − Y0|)|X0 − Y0|) ≤
n

2
E (||X0 − Y0||c) .

We now have

E (||Xt − Yt||c) ≤
n2

4t
E (||X0 − Y0||c) .

On one hand, by definition of the Wasserstein distanceWc(µt, νt) ≤ E (||Xt − Yt||c), and on the other
hand, the inequality above being true for all initial coupling Γ, we obtain

Wc(µt, νt) ≤
n2

4t
Wc(µ0, ν0).

Remark 2.1. One can notice that most of the inequalities above are far from being optimal. This theorem is
indeed not made to be used as a result, only to be shown as an example of coupling.
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3 Coupling methods for the study of the long time behavior of PDE

Let us tackle the main point of these notes. We have seen, in Section 1, how one can interpret some PDEs
as the evolution of the probability distribution of a random process. Then, in Section 2, we studied how
coupling methods may be used to prove convergence results for random processes. We now combine those
two ideas to prove convergence results for PDEs, and use various coupling to do so.

3.1 Synchronous coupling

Given a probability distribution µ0, consider the PDE{
∂tu = −∇ · (b(x)u) + ∆u, t ∈ [0, T ]
u(0, x) = µ0(x),

(3.1)

with the following assumption on b

Assumption 1. b is Lipschitz continuous and satisfies

∃c > 0, ∀x, y ∈ R, (b(x)− b(y)) · (x− y) ≤ −c|x− y|2

As you recall from Theorem 1.3, if you consider the following SDE{
dXt = b(Xt)dt+

√
2dBt

X0 ∼ µ0
(3.2)

whereBt is a Brownian motion, then the law ofX satisfies (3.1). Under the Lipschitz continuous assumption
on b, we have weak (and even strong) existence and uniqueness of the solution X of the SDE, that is, given
any two realizations B and B̃ of Brownian motion, the resulting processes X and X̃ have the same law. The
solution µ of (3.1) is therefore the law shared by all solutions of the SDE. We may now show the following
theorem.

Theorem 3.1. Consider two solutions µ1 and µ2 of (3.1) with initial conditions µ1
0 and µ2

0 respectively, then

W2(µ1
t , µ

2
t ) ≤ e−ctW2(µ1

0, µ
2
0)

Proof. Consider any coupling Γ of µ1
0 and µ2

0 and letX1 andX2 be two processes starting respectively from
(X1

0 , X
2
0 ) ∼ Γ. Suppose X1 and X2 satisfy{

dX1
t = b(X1

t )dt+
√

2dBt
dX2

t = b(X2
t )dt+

√
2dBt.

(3.3)

In other words, we couple X1 and X2 by using the same Brownian motion. The processes Xi
t have for law

µit, i = 1, 2, thanks to the weak uniqueness of the solutions of the SDE. We now calculate

d(X1
t −X2

t ) =(b(X1
t )− b(X2

t ))dt

d|X1
t −X2

t |2 =2(b(X1
t )− b(X2

t )) · (X1
t −X2

t )dt.

Under Assumption 1, we have

d

dt
E
(
|X1

t −X2
t |2
)
≤− 2cE

(
|X1

t −X2
t |2
)
,

and using Gronwall’s lemma, we get

W2(µ1
t , µ

2
t )

2 ≤ E
(
|X1

t −X2
t |2
)
≤e−2ctE

(
|X1

0 −X2
0 |2
)
.

This being true for all initial coupling Γ, we get

W2(µ1
t , µ

2
t )

2 ≤e−2ctW2(µ1
0, µ

2
0)2,

hence the result.
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We thus have shown that, provided the dynamic is naturally contracting, which is translated in Assump-
tion 1, a synchronous coupling has the difference satisfy an ODE that will also contract.

Remark 3.1. With the same proof, you show that, given the same initial condition and the same Brownian
motion, two processes satisfying (3.2) are indistinguishable, i.e there is strong uniqueness of the solution of
the SDE.

Remark 3.2. In these notes, we keep going back and forth between the PDE and the SDE. An interesting
possibility would be to consider the Fokker-Planck equation associated to (3.3). Applying Itô’s lemma to
calculate the dynamic of f(X1

t , X
2
t ) for a test function f , one may see that the law Γt of the couple (X1

t , X
2
t )

satisfies

∂tΓt(x, y) = −divx(b(x)Γt(x, y))− divy(b(y)Γt(x, y)) + ∆xΓt(x, y) + ∆yΓt(x, y) + 2∇x · ∇yΓt(x, y),
(3.4)

with any initial condition Γ0 coupling of µ1
0 and µ2

0. We can easily check that, by integrating the above
equation with respect to y, µt =

∫
Γt(·, y)dy satisfies (3.1) and by integrating with respect to x, νt =∫

Γt(x, ·)dx also satisfies (3.1). The solution Γt of (3.4) is therefore a coupling of µ1
t and µ2

t . If one does
not wish to use any result on stochastic calculus, and use a purely PDE approach, one can directly start from
(3.4), and prove the same result.

d

dt

∫ ∫
|x− y|2Γt(x, y)dxdy =−

∫ ∫
|x− y|2divx(b(x)Γt(x, y))−

∫ ∫
|x− y|2divy(b(y)Γt(x, y))

+

∫ ∫
|x− y|2∆xΓt(x, y) +

∫ ∫
|x− y|2∆yΓt(x, y)

+ 2

∫ ∫
|x− y|2∇x · ∇yΓt(x, y)

=2

∫ ∫
(x− y) · b(x)Γt(x, y)− 2

∫ ∫
(x− y) · b(y)Γt(x, y) + 2d+ 2d− 4d

=2

∫ ∫
(x− y) · (b(x)− b(y)Γt(x, y)

≤− 2c

∫ ∫
|x− y|2Γt(x, y)dxdy,

and thus the same result using Gronwall’s lemma. We refer to [FP19] for a more complete description
of coupling method using only such PDE approaches. By doing so, although it is indeed mathematically
correct, you lose the probabilistic interpretation (where does (3.4) come from ?), which is in itself both
interesting and useful, as shown in the next section.

3.2 Mirror coupling

Let us consider again (3.1), but with a new assumption on b

Assumption 2. We make the following assumptions on b

• There is L > 0 such that ∀x, y ∈ R, |b(x)− b(y)| ≤ L|x− y|.

• There are λ > 0 and A ≥ 0 such that ∀x ∈ R, x · b(x) ≤ A− λ
2 |x|

2

The first assumption ensures that b is Lipschitz continuous, and the second ensures that b tends to bring
back particles if they venture at infinity.
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Figure 10: Left : Synchronous coupling. Right : Mirror, or reflection, coupling.

Figure 11: Double well potential U given in Remark 3.1. The force b = −∇U satisfies Assumption 2.

Example 3.1. We consider U ∈ C1 given by

U (x) =

{ (
x2 − 1

)2 if |x| ≤ 1,

(|x| − 1)2 otherwise.

This defines a double-well potential, for which b = −∇U satisfies Assumption 2.

We begin by a small lemma that translates the fact that any particle that ventures at infinity tends to come
back. Let, for u ∈ C2(Rd)

Lu(x) = ∇u(x) · b(x) + ∆u(x)

Lemma 3.1. Let H(x) = |x|2
2 , we have

LH(x) ≤ d+A− λH(x),

which in particular implies

d

dt
EH(Xt) ≤ d+A− λEH(Xt),

18



Proof. We have

LH(x) = x · b(x) + d ≤ d+A− λH(x).

And using Itô’s formula, we have

dH(Xt) = LH(Xt)dt+
√

2x · dBt,

hence the result.

We will also use the fact that for all ε > 0, there is a constant R > 0 such that, for all x, v ∈ Rd such
that |x− v|2 ≥ R

|x|2 + |v|2 ≥ 8ε
A+ d

λ

We wish to prove the following result

Theorem 3.2. There is an explicit c > 0 such that, for any two solutions µ1 and µ2 of (3.1) with initial
conditions µ1

0 and µ2
0 respectively, there is an explicit constant C0 depending only on µ1

0 and µ2
0 such that

for all t ≥ 0

W2(µ1
t , µ

2
t ) ≤ C0e

−ct,

What will happen ? Before constructing our coupling argument, we need to understand how the process
will act. We identify two main behaviors. Either the particle ventures at infinity, in which case the assump-
tion ensuring that the potential is sufficiently convex outside a ball will bring back the particle, or the particle
moves within that compact ball. When we construct our coupling, we thus see that a synchronous coupling
would be sufficient outside the ball, as the dynamic will be naturally contracting, but within, we need another
form of coupling to bring the coupled particle closer together. Being inspired by what we did in Section 2.2,
we choose mirrored Brownian motions. We call it mirror or reflection coupling. See Figure 10 for a visual-
ization of the mirror coupling, or below in (3.5) for a mathematical definition. Doing so will maximise the
variance of the noise in the direction needed. But there is at this stage no reason for the noise to actually
bring the processes closer to one another, as we expect the noise to both contract and expand their distance
symmetrically. This is why we apply a concave function f to the quadratic distance |x−y|2 : the contraction
is produced by the fact that a random decrease in |x − y|2 has more effect on f(|x − y|2) than a random
increase of the same amount.

Creating a distance. Knowing that behavior, we construct a new semimetrics, i.e a quantity we consider
the dynamic of. Given two processes X1 and X2, we denote

rt = |X1
t −X2

t |2,

and we consider a concave, non-negative, increasing function f , such that f(0) = 0 and f is constant for
r ≥ R, where R is the radius of the ball we consider. To tackle the processes at infinity, we then use the
function H introduced in Lemma 3.1 and construct

Gt = 1 + εH(X1
t ) + εH(X2

t ).

We thus consider the semimetrics
ρt = f(rt)Gt.

It will be easy to prove that |X1
t −X2

t |2 . ρt, or in other words that ρt controls the L2 usual norm up to a
universal constant. At this point, f and ε are not yet specified. We keep studying the dynamic, and construct
these objects as we go.
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Coupling. Consider any coupling Γ of µ1
0 and µ2

0 and let X1 and X2 be two processes starting from
(X1

0 , X
2
0 ) ∼ Γ. Suppose X1 and X2 satisfy{

dX1
t = b(X1

t )dt+
√

2dBt
dX2

t = b(X2
t )dt+

√
2(Id− 2ete

∗
t )dBt,

(3.5)

where Bt is a Brownian motion, and

et =

{
X1
t−X2

t

|X1
t−X2

t |
if X1

t 6= X2
t ,

0 otherwise,

and e∗t is the transpose of et. Recall the last point of Lemma 1.1, which guarantees that any rotation of a
Brownian motion is a Brownian motion, and thus (Id−2ete

∗
t )Bt is indeed a Brownian motion. This way, the

law X2
t does satisfy the right PDE and, since the distribution of X2

0 is µ2
0, the law of X2

t is µ2
t . Furthermore,

the operation Id − 2ete
∗
t consists in taking a mirror coupling (see Figure 10) : it is −1 in the direction of

space given by the difference of the processes, and +1 in the perpendicular direction.

Remark 3.3. Similarly as Remark 3.2, we may write the coupling using only PDE tools. One can check that
the solution of

∂tΓt(x, y) =− divx(b(x)Γt(x, y))− divy(b(y)Γt(x, y)) + ∆xΓt(x, y) + ∆yΓt(x, y)

+ 2∇x · ∇yΓt(x, y)− 2∇y∇x : (ee∗Γt(x, y))− 2∇x∇y : (ee∗Γt(x, y)),

where e = x−y
|x−y| if x 6= y, 0 otherwise, is a coupling of µ1

t and µ2
t .

Here, we denote∇y∇x : A =
∑

α,β ∂yα∂xβAα,β .

We compute

drt =2(X1
t −X2

t ) · (b(X1
t )− b(X2

t ))dt+ 4
√

2(X1
t −X2

t ) · ete∗tdBt + 8dt,

df(rt) =2f ′(rt)(X
1
t −X2

t ) · (b(X1
t )− b(X2

t ))dt+ 8f ′(rt)dt+ 4
√

2f ′(rt)(X
1
t −X2

t ) · ete∗tdBt
+ 16f ′′(rt)dt,

and

dGt =ε
(
LH(X1

t ) + LH(X2
t )
)
dt+ ε

√
2
(
X1
t −X2

t

)
· ete∗tdBt + ε

√
2
(
X1
t +X2

t

)
· (Id− ete∗t ) dBt.

Then

f(rt)Gt =f(r0)G0 +At +Mt

where Mt is a stochastic integral and

dAt =Ktdt,

with Kt =2f ′(rt)Gt(X
1
t −X2

t ) · (b(X1
t )− b(X2

t )) + 8f ′(rt)Gt + 16f ′′(rt)Gt

+ ε
(
LH(X1

t ) + LH(X2
t )
)
f(rt) + 8ε|X1

t −X2
t |2f ′(rt).

At this point, when considering the expectation of f(rt)Gt, Mt will disappear and we will be left with At.
We thus need to control Kt. We consider this quantity in the various regions of space we identified, and thus
justify its construction.
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First region of space : r ≤ R. In this region, we use the construction of the function f to contract the
dynamic.

Kt ≤f ′(rt)Gt (2L+ 8ε) rt + 8f ′(rt)Gt + 16f ′′(rt)Gt + ε

(
2A+ 2d− λ

2
(|X1

t |2 + |X2
t |2)

)
f(rt)

≤
(
(2A+ 2d)εf(rt) + f ′(rt) (2L+ 8ε) rt + 8f ′(rt) + 16f ′′(rt)

)
Gt.

We construct f so as to have

f ′(rt) (2L+ 8ε) rt + 8f ′(rt) + 16f ′′(rt) ≤ (−c− 2Aε− 2dε)f(rt).

We hence consider, using the ideas of [Ebe16]

f(r) =

∫ min(r,R)

0
φ(s)g(s)ds

with φ(r) = exp(
1

16
(−(2L+ 8ε)r2 − 8r))

g(r) =1− c+ 2Aε+ 2dε

16

∫ min(r,R)

0

Φ(s)

φ(s)
ds

and Φ(r) =

∫ r

0
φ(s)ds.

To keep f increasing, we add the condition g(r) ≥ 1
2 . This way

f ′(rt) (2L+ 8ε) rt + 8f ′(rt) + 16f ′′(rt) =
(
φ(rt) (2L+ 8ε) rt + 8φ(rt) + 16φ′(rt)

)
g(rt) + 16φ(rt)g

′(rt)

=16φ(rt)g
′(rt)

≤− (c+ 2Aε+ 2dε)Φ(r) ≤ −(c+ 2Aε+ 2dε)f(r).

And thus

Kt ≤ −cf(rt)Gt.

Second region of space : r ≥ R. In this region, f ′(r) = f ′′(r) = 0.

Kt = ε

(
2A+ 2d− λ

2
(|X1

t |2 + |X2
t |2)

)
f(rt).

For r ≥ R, |X1
t |2 + |X2

t |2 ≥ 8εA+d
λ . We assume cε ≤ λ

2 . This way we have

c+ 2Aε+ 2dε+ (cε− λ

2
)(|X1

t |2 + |X2
t |2) ≤c

(
1 + 8ε2

A+ d

λ

)
− 2ε(A+ d),

and we choose c ≤ 2ελ(A+d)
λ+8ε2(A+d)

so that

ε

(
2A+ 2d− λ

2
(|X1

t |2 + |X2
t |2)

)
≤− cGt.

Hence

Kt ≤ −cf(rt)Gt.

21



Contraction. We have, in all region of space

Kt ≤ −cf(rt)Gt.

Taking the expectation in the dynamic,

d

dt
E(f(rt)Gt) ≤ −cE(f(rt)Gt).

We conclude using Gronwall’s lemma, and the fact that there is a constant C such that

ρt = f(rt)Gt ≥ C|X1
t −X2

t |.

Explicit parameters. We have accumulated the following conditions

1

2
=1− c+ 2Aε+ 2dε

16

∫ R

0

Φ(s)

φ(s)
ds, so as to have g ≥ 1

2
,

c ≤ λ
2ε
, in the second region,

c ≤ 2ελ(A+ d)

λ+ 8ε2(A+ d)
, also in the second region.

We accept that there are positive and explicit constants R, c and ε satisfying those conditions.

Conclusion. Even though we ignored some technical difficulties, our goal was to show how, when given
a PDE, we may construct a proof using coupling methods and our understanding of what should happen.
Furthermore, every quantity can be chosen explicitly. We thus obtain a quantitative and intuitive proof of
contraction. Obviously, there are cases where a purely PDE approach does work, but only wished to give an
alternative proof. This type of proof can be extended, with other tools, to more complicated dynamics.
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