Pierre Le Bris

I. Introduction

Motivation Propagation of chaos Results

II. Proof

Step one Step two Step three Step four Step five On the assumpti

Uniform in time propagation of chaos for the 2D vortex model and other singular stochastic systems.

Pierre Le Bris Joint work with : Arnaud Guillin (LMBP), Pierre Monmarché (LJLL)

LJLL, Sorbonne Université - Paris

Journées EFI 2021 13/10/2021

イロト イポト イヨト イヨト ヨー わくや

Pierre Le Bris

I. Introduction

Motivation Propagation of chaos Results

II. Proof

Step one Step two

Step three

Step four

Step five

otep inve

On the assumptions

I. Introduction

Pierre Le Bris

I. Introduction

Motivation

Propagation of chaos Results

II. Proof

Step one Step two Step three Step four Step five

Idea

In a system of N interacting particles, as N increases, two particles become more and more statistically independent.

Pierre Le Bris

I. Introduction

Motivation

Propagation of chao Results

II. Proof

Step one Step two Step three Step four Step five On the assump

Formal limit of SDE

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

N-particle system on the torus \mathbb{T}^d

$$dX_t^i = \sqrt{2}dB_t^i + \frac{1}{N}\sum_{j=1}^N K(X_t^j - X_t^j)dt.$$

Pierre Le Bris

I. Introduction

Motivation

Propagation of chao Results

II. Proof

Step one Step two Step three Step four Step five On the assumptio

Formal limit of SDE

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

N-particle system on the torus \mathbb{T}^d

$$dX_t^i = \sqrt{2}dB_t^i + \frac{1}{N}\sum_{j=1}^N K(X_t^j - X_t^j)dt.$$

Limit as N tends to infinity?

Pierre Le Bris

I. Introduction

Motivation

Propagation of chaos Results

II. Proof

Step one Step two Step three Step four Step five On the assumptio

N-particle system on the torus \mathbb{T}^d

 $dX_t^i = \sqrt{2}dB_t^i + K * \mu_t^N(X_t^i)dt,$ $\mu_t^N := \frac{1}{N} \sum_{i=1}^N \delta_{X_t^i}.$

Limit as N tends to infinity?

Formal limit of SDE

Pierre Le Bris

I. Introduction

Motivation

Propagation of chaos Results

II. Proof

Step one Step two Step three Step four Step five On the assumption

Formal limit of SDE

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

N-particle system on the torus \mathbb{T}^d

 $dX_t^i = \sqrt{2}dB_t^i + K * \mu_t^N(X_t^i)dt,$ $\mu_t^N := \frac{1}{N} \sum_{i=1}^N \delta_{X_t^i}.$

Limit as N tends to infinity? Formally

$$\begin{cases} d\bar{X}_t = \sqrt{2}dB_t + K * \bar{\rho}_t(\bar{X}_t)dt \\ \bar{\rho}_t = \text{Law}(\bar{X}_t). \end{cases}$$

Pierre Le Bris

I. Introduction

Motivation

Propagation of chao Results

II. Proof

Step one Step two Step three Step four Step five On the assumptio

Formal limit of SDE

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

N-particle system on the torus \mathbb{T}^d

$$dX_{t}^{i} = \sqrt{2}dB_{t}^{i} + \frac{1}{N}\sum_{j=1}^{N}K(X_{t}^{j} - X_{t}^{j})dt.$$
 (PS)

Limit as *N* tends to infinity? Formally

$$\begin{cases} d\bar{X}_t = \sqrt{2}dB_t + K * \bar{\rho}_t(\bar{X}_t)dt, \\ \bar{\rho}_t = \text{Law}(\bar{X}_t). \end{cases}$$
(NL)

Pierre Le Bris

I. Introduction

Motivation

Propagation of cha Results

II. Proof

Step one Step two Step three Step four Step five On the assumption

Liouville equations

For the particle system

$$dX_t^i = \sqrt{2}dB_t^i + \frac{1}{N}\sum_{j=1}^N K(X_t^j - X_t^j)dt$$

$$\partial_t \rho_t^N = -\sum_{i=1}^N \nabla_{x_i} \cdot \left(\left(\frac{1}{N} \sum_{j=1}^N \mathcal{K}(x_i - x_j) \right) \rho_t^N \right) + \sum_{i=1}^N \Delta_{x_i} \rho_t^N.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

For the non linear equation

 \leftrightarrow

$$\begin{cases} d\bar{X}_t = \sqrt{2}dB_t + K * \bar{\rho}_t(\bar{X}_t)dt, \\ \bar{\rho}_t = \mathsf{Law}(\bar{X}_t). \end{cases} \longleftrightarrow \quad \partial_t \bar{\rho}_t = -\nabla \cdot (\bar{\rho}_t(K * \bar{\rho}_t)) + \Delta \bar{\rho}_t.$$

Pierre Le Bris

I. Introduction

Motivation

Propagation of chao Results

II. Proof

Step one Step two

Step three

Step four

. Step five

On the assumptio

Main example : 2D vortex model

The Biot-Savart kernel, defined in \mathbb{R}^2 by

$$K(x) = rac{1}{2\pi} rac{x^{\perp}}{|x|^2} = rac{1}{2\pi} \left(-rac{x_2}{|x|^2}, rac{x_1}{|x|^2}
ight).$$

<ロト < 回 > < 三 > < 三 > < 三 > 三 の < で 6/30

Pierre Le Bris

I. Introduction

Motivation

Propagation of cha Results

II. Proof

Step one Step two Step three Step four Step five On the assumpt

Main example : 2D vortex model

The Biot-Savart kernel, defined in \mathbb{R}^2 by

$$K(x) = rac{1}{2\pi} rac{x^{\perp}}{|x|^2} = rac{1}{2\pi} \left(-rac{x_2}{|x|^2}, rac{x_1}{|x|^2}
ight).$$

Consider the 2D incompressible Navier-Stokes system on $u \in \mathbb{R}^2$

$$\partial_t u = - u \cdot \nabla u - \nabla p + \Delta u$$

 $\nabla \cdot u = 0,$

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < ⊙ 6/30

where *p* is the local pressure.

Pierre Le Bris

I. Introduction

Motivation

Propagation of cha Results

II. Proof

Step one Step two Step three Step four Step five On the assumpti

Main example : 2D vortex model

The Biot-Savart kernel, defined in \mathbb{R}^2 by

$$K(x) = rac{1}{2\pi} rac{x^{\perp}}{|x|^2} = rac{1}{2\pi} \left(-rac{x_2}{|x|^2}, rac{x_1}{|x|^2}
ight).$$

Consider the 2D incompressible Navier-Stokes system on $u \in \mathbb{R}^2$

$$\partial_t u = - u \cdot \nabla u - \nabla p + \Delta u$$

 $\nabla \cdot u = 0.$

where *p* is the local pressure. Taking the curl of the equation above, we get that $\omega(t, x) = \nabla \times u(t, x)$ satisfies

$$\partial_t \omega = -\nabla \cdot \left(\left(K \ast \omega \right) \omega \right) + \Delta \omega.$$

イロト イポト イヨト イヨト ヨー わくや

Pierre Le Bris

I. Introduction

Motivation

Propagation of cha Results

II. Proof

Step one Step two Step three Step four Step five On the assumpti

Main example : 2D vortex model

The Biot-Savart kernel, defined in \mathbb{R}^2 by

$$K(x) = \frac{1}{2\pi} \frac{x^{\perp}}{|x|^2} = \frac{1}{2\pi} \left(-\frac{x_2}{|x|^2}, \frac{x_1}{|x|^2} \right).$$

Consider the 2D incompressible Navier-Stokes system on $u \in \mathbb{R}^2$

$$\partial_t u = - u \cdot \nabla u - \nabla p + \Delta u$$

 $\nabla \cdot u = 0.$

where *p* is the local pressure. Taking the curl of the equation above, we get that $\omega(t, x) = \nabla \times u(t, x)$ satisfies

$$\partial_t \omega = -\nabla \cdot ((K \ast \omega) \omega) + \Delta \omega.$$

Goal : Obtain a limit " $\rho_t^N \to \bar{\rho}_t$ " as *N* tends to infinity for this Biot-Savart kernel.

Pierre Le Bris

I. Introduction

Motivation

Propagation of chaos

Results

II. Proof

Step one Step two Step three Step four Step five On the assum

Propagation of chaos

イロト イポト イヨト イヨト ヨー わくや

In a system of N interacting particles, as N increases, two particles become more and more statistically independent.

Pierre Le Bris

I. Introduction

Motivation

Propagation of chaos

Results

II. Proof

Step one Step two Step three Step four Step five On the assumm

Propagation of chaos

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

In a system of N interacting particles, as N increases, two particles become more and more statistically independent.

To quantify this "more and more", we compare the law of any subset of k particles within the N particles system to the law of k independent non-linear particles.

Pierre Le Bris

I. Introduction

Motivation

Propagation of chaos

Results

II. Proof

Step one Step two Step three Step four Step five

Propagation of chaos

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

In a system of N interacting particles, as N increases, two particles become more and more statistically independent.

To quantify this "more and more", we compare the law of any subset of k particles within the N particles system to the law of k independent non-linear particles.

We denote, for any $k \leq N$

$$\rho_t^{k,N}(x_1,..,x_k) = \int_{\mathbb{T}^{(N-k)d}} \rho_t^N(x_1,..,x_N) dx_{k+1}...dx_N$$
$$\bar{\rho}_t^k = \bar{\rho}_t^{\otimes k}$$

Pierre Le Bris

I. Introduction

Motivation

Propagation of chaos

Results

II. Proof

Step one Step two Step three Step four Step five On the assume

(Rescaled) relative entropy

Definition

Let μ and ν be two probability measures on \mathbb{T}^{dN} . We consider the rescaled relative entropy

$$\mathcal{H}_{N}(\nu,\mu) = \begin{cases} \frac{1}{N} \mathbb{E}_{\mu} \left(\frac{d\nu}{d\mu} \log \frac{d\nu}{d\mu} \right) & \text{if } \nu \ll \mu, \\ +\infty & \text{otherwise.} \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Pierre Le Bris

I. Introduction

Motivation Propagation of chaos Results

II. Proof

Step one Step two Step three Step four Step five On the assumption

Theorem (adapted from Jabin-Wang ('18))

Under some assumptions (satisfied by the Biot-Savart kernel) there are constants C_1 and C_2 such that for all $N \in \mathbb{N}$, all exchangeable probability density ρ_0^N and all $t \ge 0$

$$\mathcal{H}_{N}(\rho_{t}^{N},\bar{\rho}_{t}^{N}) \leq \boldsymbol{e}^{\mathcal{C}_{1}t}\left(\mathcal{H}_{N}(\rho_{0}^{N},\bar{\rho}_{0}^{N}) + \frac{\mathcal{C}_{2}}{N}\right)$$

Results

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Pierre Le Bris

. Introduction

Motivation Propagation of chaos Results

II. Proof

Step one Step two Step three Step four Step five On the assumption

Theorem (adapted from Jabin-Wang ('18))

Under some assumptions (satisfied by the Biot-Savart kernel) there are constants C_1 and C_2 such that for all $N \in \mathbb{N}$, all exchangeable probability density ρ_0^N and all $t \ge 0$

$$\mathcal{H}_{N}(\rho_{t}^{N},\bar{\rho}_{t}^{N}) \leq \boldsymbol{e}^{C_{1}t}\left(\mathcal{H}_{N}(\rho_{0}^{N},\bar{\rho}_{0}^{N}) + \frac{C_{2}}{N}\right)$$

Theorem (Guillin-LB-Monmarché ('21))

Under some assumptions (satisfied by the Biot-Savart kernel) there are constants C_1 , C_2 and C_3 such that for all $N \in \mathbb{N}$, all exchangeable probability density ρ_0^N and all $t \ge 0$

$$\mathcal{H}_{N}(\rho_{t}^{N},\bar{\rho}_{t}^{N}) \leq C_{1}e^{-C_{2}t}\mathcal{H}_{N}(\rho_{0}^{N},\bar{\rho}_{0}^{N}) + \frac{C_{3}}{N}$$

Results

Pierre Le Bris

I. Introduction

Motivation Propagation of chaos Results

II. Proof

Step one Step two Step three Step four Step five On the assumption

Various distances

<ロト < 回 ト < 三 ト < 三 ト 三 の < で 10/30

For $\mathbf{x} = (x_i)_{i \in [\![1,N]\!]} \in \mathbb{T}^{dN}$, we write $\pi(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} \delta_{x_i}$ the associated empirical measure.

Corollary

Under some assumptions (satisfied by the Biot-Savart kernel), assuming moreover that $\rho_0^N = \overline{\rho}_0^N$, there is a constant *C* such that for all $k \le N \in \mathbb{N}$ and all $t \ge 0$,

$$\|\rho_t^{k,N} - \bar{\rho}_t^k\|_{L^1} + \mathcal{W}_2\left(\rho_t^{k,N}, \bar{\rho}_t^k\right) \le C\left(\left\lfloor\frac{N}{k}\right\rfloor\right)^{-\frac{1}{2}}$$

and

$$\mathbb{E}_{\rho_t^N}\left(\mathcal{W}_2(\pi(\boldsymbol{X}),\bar{\rho}_t)\right)\leqslant \boldsymbol{C}\alpha(\boldsymbol{N})$$

where $\alpha(N) = N^{-1/2} \ln(1 + N)$ if d = 2 and $\alpha(N) = N^{-1/d}$ if d > 2.

Pierre Le Bris

I. Introduction

Motivation Propagation of chaos Results

II. Proof

Step one Step two Step three Step four

Step five

On the assumptions

II. Proof

< □ ▶ < 酉 ▶ < Ξ ▶ < Ξ ▶ Ξ · の < ℃ 11/30

Pierre Le Bris

I. Introduction

Motivation Propagation of chao Results

We write

II. Proof

Step one

Step two Step three Step four Step five

Step one : Time evolution of the relative entropy

$\mathcal{H}_{N}(t) = \mathcal{H}_{N}(\rho_{t}^{N}, \bar{\rho}_{t}^{N}), \quad \mathcal{I}_{N}(t) = \frac{1}{N} \sum_{i} \int_{\mathbb{T}^{dN}} \rho_{t}^{N} \left| \nabla_{x_{i}} \log \frac{\rho_{t}^{N}}{\bar{\rho}_{t}^{N}} \right|^{2} d\mathbf{X}^{N}.$

Pierre Le Bris

I. Introduction

Motivation Propagation of chao Results

II. Proof

Step one

Step two Step three Step four Step five

Step one : Time evolution of the relative entropy

We write

$$\mathcal{H}_{N}(t) = \mathcal{H}_{N}(\rho_{t}^{N}, \bar{\rho}_{t}^{N}), \quad \mathcal{I}_{N}(t) = \frac{1}{N} \sum_{i} \int_{\mathbb{T}^{dN}} \rho_{t}^{N} \left| \nabla_{\mathbf{x}_{i}} \log \frac{\rho_{t}^{N}}{\bar{\rho}_{t}^{N}} \right|^{2} d\mathbf{X}^{N}.$$

It has been shown, by Jabin-Wang, that

$$\begin{split} \frac{d}{dt} \mathcal{H}_{N}(t) &\leq -\mathcal{I}_{N}(t) \\ &- \frac{1}{N^{2}} \sum_{i,j} \int_{\mathbb{T}^{dN}} \rho_{t}^{N} \left(\mathcal{K}(x_{i} - x_{j}) - \mathcal{K} * \rho(x_{i}) \right) \cdot \nabla_{x_{i}} \log \bar{\rho}_{t}^{N} d\mathbf{X}^{N} \\ &- \frac{1}{N^{2}} \sum_{i,j} \int_{\mathbb{T}^{dN}} \rho_{t}^{N} \left(\operatorname{div} \, \mathcal{K}(x_{i} - x_{j}) - \operatorname{div} \, \mathcal{K} * \bar{\rho}_{t}(x_{i}) \right) d\mathbf{X}^{N}. \end{split}$$

Pierre Le Bris

I. Introduction

Motivation Propagation of chaos Results

II. Proof

Step one

Step two Step three Step four Step five On the assump

Assumptions?

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ の Q @ 13/30

Goal:
$$K(x) = \frac{1}{2\pi} \frac{x^{\perp}}{|x|^2} = \frac{1}{2\pi} \left(-\frac{x_2}{|x|^2}, \frac{x_1}{|x|^2} \right)$$

Justifying the calculations

•
$$\bar{\rho} \in \mathcal{C}^{\infty}(\mathbb{R}^+ \times \mathbb{T}^d)$$

Pierre Le Bris

I. Introduction

Motivation Propagation of chaos Results

II. Proof

Step one

Step two Step three Step four Step five On the assume

Assumptions?

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ 三 の Q @ 13/30

Goal:
$$K(x) = \frac{1}{2\pi} \frac{x^{\perp}}{|x|^2} = \frac{1}{2\pi} \left(-\frac{x_2}{|x|^2}, \frac{x_1}{|x|^2} \right)$$

Justifying the calculations

• $\bar{\rho} \in \mathcal{C}^{\infty}(\mathbb{R}^+ \times \mathbb{T}^d)$ and there is $\lambda > 1$, s.t $\frac{1}{\lambda} \leq \bar{\rho} \leq \lambda$

Pierre Le Bris

I. Introduction

Motivation Propagation of chaos Results

II. Proof

Step one

Step two Step three Step four Step five On the assume

Assumptions?

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ の Q @ 13/30

Goal:
$$K(x) = \frac{1}{2\pi} \frac{x^{\perp}}{|x|^2} = \frac{1}{2\pi} \left(-\frac{x_2}{|x|^2}, \frac{x_1}{|x|^2} \right)$$

Justifying the calculations

•
$$\bar{\rho} \in \mathcal{C}^{\infty}_{\lambda}(\mathbb{R}^+ \times \mathbb{T}^d)$$

Pierre Le Bris

I. Introduction

Motivation Propagation of chaos Results

II. Proof

Step one

Step two Step three Step four Step five

Assumptions?

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ 三 の Q @ 13/30

Goal:
$$K(x) = \frac{1}{2\pi} \frac{x^{\perp}}{|x|^2} = \frac{1}{2\pi} \left(-\frac{x_2}{|x|^2}, \frac{x_1}{|x|^2} \right)$$

Justifying the calculations

Pierre Le Bris

I. Introduction

Motivation Propagation of chaos Results

II. Proof

Step one

Step two Step three Step four Step five

Assumptions?

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ 三 の Q @ 13/30

Goal:
$$K(x) = \frac{1}{2\pi} \frac{x^{\perp}}{|x|^2} = \frac{1}{2\pi} \left(-\frac{x_2}{|x|^2}, \frac{x_1}{|x|^2} \right)$$

Justifying the calculations

• There is $\lambda > 1$ such that $\bar{\rho}_0 \in C^{\infty}_{\lambda}(\mathbb{T}^d)$ $\implies \bar{\rho} \in C^{\infty}_{\lambda}(\mathbb{R}^+ \times \mathbb{T}^d)$ (Ben-Artzi ('94))

•
$$ho^{\mathsf{N}} \in \mathcal{C}^{\infty}_{\lambda}(\mathbb{R}^+ imes \mathbb{T}^{\mathsf{Nd}})$$
 (???)

Pierre Le Bris

I. Introduction

Motivation Propagation of chaos Results

II. Proof

Step one

Step two Step three Step four Step five

Assumptions?

<ロト < 回 ト < 三 ト < 三 ト 三 の < で 13/30

Goal:
$$K(x) = \frac{1}{2\pi} \frac{x^{\perp}}{|x|^2} = \frac{1}{2\pi} \left(-\frac{x_2}{|x|^2}, \frac{x_1}{|x|^2} \right)$$

Justifying the calculations

There is λ > 1 such that ρ
₀ ∈ C[∞]_λ(T^d) ⇒ ρ
 ∈ C[∞]_λ(ℝ⁺ × T^d) (Ben-Artzi ('94))
 ρ^N ∈ C[∞]_λ(ℝ⁺ × TNd) (???)

Dealing with the terms

• In the sense of distributions, $\nabla \cdot K = 0$.

Pierre Le Bris

I. Introduction

Motivation Propagation of chao Results

II. Proof

Step one

Step two Step three Step four Step five

Step one : Time evolution of the relative entropy

We write

$$\mathcal{H}_{N}(t) = \mathcal{H}_{N}(\rho_{t}^{N}, \bar{\rho}_{t}^{N}), \quad \mathcal{I}_{N}(t) = \frac{1}{N} \sum_{i} \int_{\mathbb{T}^{dN}} \rho_{t}^{N} \left| \nabla_{x_{i}} \log \frac{\rho_{t}^{N}}{\bar{\rho}_{t}^{N}} \right|^{2} d\mathbf{X}^{N}.$$

It has been shown, by Jabin-Wang, that

$$\begin{split} \frac{d}{dt} \mathcal{H}_{N}(t) &\leq -\mathcal{I}_{N}(t) \\ &- \frac{1}{N^{2}} \sum_{i,j} \int_{\mathbb{T}^{dN}} \rho_{t}^{N} \left(\mathcal{K}(x_{i} - x_{j}) - \mathcal{K} * \rho(x_{i}) \right) \cdot \nabla_{x_{i}} \log \bar{\rho}_{t}^{N} d\mathbf{X}^{N} \\ &- \frac{1}{N^{2}} \sum_{i,j} \int_{\mathbb{T}^{dN}} \rho_{t}^{N} \left(\operatorname{div} \, \mathcal{K}(x_{i} - x_{j}) - \operatorname{div} \, \mathcal{K} * \bar{\rho}_{t}(x_{i}) \right) d\mathbf{X}^{N}. \end{split}$$

Pierre Le Bris

I. Introduction

Motivation Propagation of chao Results

II. Proof

Step one

Step two Step three Step four Step five

Step one : Time evolution of the relative entropy

We write

$$\mathcal{H}_{N}(t) = \mathcal{H}_{N}(\rho_{t}^{N}, \bar{\rho}_{t}^{N}), \quad \mathcal{I}_{N}(t) = \frac{1}{N} \sum_{i} \int_{\mathbb{T}^{dN}} \rho_{t}^{N} \left| \nabla_{x_{i}} \log \frac{\rho_{t}^{N}}{\bar{\rho}_{t}^{N}} \right|^{2} d\mathbf{X}^{N}.$$

It has been shown, by Jabin-Wang, that

$$\begin{split} \frac{d}{dt} \mathcal{H}_{N}(t) &\leq -\mathcal{I}_{N}(t) \\ &- \frac{1}{N^{2}} \sum_{i,j} \int_{\mathbb{T}^{dN}} \rho_{t}^{N} \left(\mathcal{K}(x_{i} - x_{j}) - \mathcal{K} * \rho(x_{i}) \right) \cdot \nabla_{x_{i}} \log \bar{\rho}_{t}^{N} d\mathbf{X}^{N} \\ &- \frac{1}{N^{2}} \sum_{i,j} \int_{\mathbb{T}^{dN}} \rho_{t}^{N} \left(\underline{\operatorname{div}} \, \mathcal{K}(x_{i} - \overline{x_{j}}) - \underline{\operatorname{div}} \, \mathcal{K} * \bar{p}_{t}(\overline{x_{i}}) \right) d\mathbf{X}^{N}. \end{split}$$

Pierre Le Bris

I. Introduction

Motivation Propagation of chao Results

II. Proof

Step one

Step two Step three Step four Step five

Step one : Time evolution of the relative entropy

We write

$$\mathcal{H}_{N}(t) = \mathcal{H}_{N}(\rho_{t}^{N}, \bar{\rho}_{t}^{N}), \quad \mathcal{I}_{N}(t) = \frac{1}{N} \sum_{i} \int_{\mathbb{T}^{dN}} \rho_{t}^{N} \left| \nabla_{\mathbf{x}_{i}} \log \frac{\rho_{t}^{N}}{\bar{\rho}_{t}^{N}} \right|^{2} d\mathbf{X}^{N}.$$

It has been shown, by Jabin-Wang, that

$$egin{aligned} rac{d}{dt}\mathcal{H}_{N}(t) &\leq -\mathcal{I}_{N}(t) \ &-rac{1}{N^{2}}\sum_{i,j}\int_{\mathbb{T}^{dN}}
ho_{l}^{N}\left(\mathcal{K}(x_{i}-x_{j})-\mathcal{K}*
ho(x_{i})
ight)\cdot
abla_{x_{i}}\logar{
ho}_{l}^{N}d\mathbf{X}^{N} \end{aligned}$$

Pierre Le Bris

I. Introduction

Motivation Propagation of chao Results

II. Proof

Step one

Step two

Step three Step four Step five

Step two : Integration by part

We are left with

 $egin{aligned} &rac{d}{dt}\mathcal{H}_{N}(t)\leq &-\mathcal{I}_{N}(t)\ &-rac{1}{N^{2}}\sum_{i,j}\int_{\mathbb{T}^{dN}}
ho_{t}^{N}\left(\mathcal{K}(x_{i}-x_{j})-\mathcal{K}*
ho(x_{i})
ight)\cdot
abla_{x_{i}}\logar{
ho}_{t}^{N}d\mathbf{X}^{N}. \end{aligned}$

<ロト < 回 ト < 三 ト < 三 ト 三 の < で 15/30

Idea : Use the regularity of $\bar{\rho}$ to deal with the singularity of K

Pierre Le Bris

Step two

Step four Step five

Step two : Integration by part

We are left with

d

$$egin{aligned} rac{d}{dt}\mathcal{H}_{N}(t) &\leq -\mathcal{I}_{N}(t) \ &-rac{1}{N^{2}}\sum_{i,j}\int_{\mathbb{T}^{dN}}
ho_{t}^{N}\left(\mathcal{K}(x_{i}-x_{j})-\mathcal{K}*
ho(x_{i})
ight)\cdot
abla_{x_{i}}\logar{
ho}_{t}^{N}d\mathbf{X}^{N}. \end{aligned}$$

Idea : Use the regularity of $\bar{\rho}$ to deal with the singularity of K **Remark :** Notice that, for the Biot-Savart kernel on the whole space \mathbb{R}^2

$$\tilde{K}(x)=\frac{1}{2\pi}\frac{x^{\perp}}{|x|^2},$$

we have $\tilde{K} = \nabla \cdot \tilde{V}$ with

$$ilde{V}(x) = rac{1}{2\pi} \left(egin{array}{c} -\arctan\left(rac{x_1}{x_2}
ight) & 0 \\ 0 & \arctan\left(rac{x_2}{x_1}
ight) \end{array}
ight).$$

<ロト < 回 ト < 三 ト < 三 ト 三 の < で 15/30

Pierre Le Bris

I. Introduction

Motivation Propagation of chaos Results

II. Proof

Step one

Step two

Step three Step four Step five

Assumptions?

Goal :
$$K(x) = \frac{1}{2\pi} \frac{x^{\perp}}{|x|^2} = \frac{1}{2\pi} \left(-\frac{x_2}{|x|^2}, \frac{x_1}{|x|^2} \right)$$

Justifying the calculations

• There is $\lambda > 1$ such that $\bar{\rho}_0 \in C^{\infty}_{\lambda}(\mathbb{T}^d)$ $\implies \bar{\rho} \in C^{\infty}_{\lambda}(\mathbb{R}^+ \times \mathbb{T}^d)$ (Ben-Artzi '94)

•
$$ho^{\sf N}\in \mathcal{C}^\infty_\lambda(\mathbb{R}^+ imes \mathbb{T}^{\sf Nd})$$
 (???

Dealing with the terms

- In the sense of distributions, $\nabla \cdot K = 0$.
- There is a matrix field $V \in L^{\infty}$ such that $K = \nabla \cdot V$, i.e for $1 \leq \alpha \leq d$, $K_{\alpha} = \sum_{\beta=1}^{d} \partial_{\beta} V_{\alpha,\beta}$ (Phuc-Torres '08).

<ロト < 回 ト < 三 ト < 三 ト 三 の < で 16/30

Pierre Le Bris

I. Introduction

Motivation Propagation of chaos Results

II. Proof

Step one

Step two

Step three Step four Step five

Step two : Integration by part

$$\frac{d}{dt}\mathcal{H}_N(t) \leq A_N(t) + \frac{1}{2}B_N(t) - \frac{1}{2}\mathcal{I}_N(t),$$

with

For all $t \ge 0$,

$$\begin{split} A_{N}(t) &:= \frac{1}{N^{2}} \sum_{i,j} \int_{\mathbb{T}^{dN}} \rho_{t}^{N} \left(V(x_{i} - x_{j}) - V * \bar{\rho}(x_{i}) \right) : \frac{\nabla_{x_{i}}^{2} \bar{\rho}_{t}^{N}}{\bar{\rho}_{t}^{N}} d\mathbf{X}^{N} \\ B_{N}(t) &:= \frac{1}{N} \sum_{i} \int_{\mathbb{T}^{dN}} \rho_{t}^{N} \frac{\left| \nabla_{x_{i}} \bar{\rho}_{t}^{N} \right|^{2}}{\left| \bar{\rho}_{t}^{N} \right|^{2}} \left| \frac{1}{N} \sum_{j} V(x_{i} - x_{j}) - V * \bar{\rho}(x_{i}) \right|^{2} d\mathbf{X}^{N}. \end{split}$$

Pierre Le Bris

I. Introduction

Motivation Propagation of chaos Results

II. Proof

Step one Step two

Step three

Step four Step five Step three : Change of reference measure and large deviation estimates

Lemma

For two probability densities μ and ν on a set Ω , and any $\Phi \in L^{\infty}(\Omega)$, $\eta > 0$ and $N \in \mathbb{N}$,

$$\mathbb{E}^{\mu} \Phi \leq \eta \mathcal{H}_{\mathsf{N}}(\mu,
u) + rac{\eta}{\mathsf{N}} \log \mathbb{E}^{
u} e^{\mathsf{N} \Phi / \eta}$$

<ロト < 回 ト < 三 ト < 三 ト 三 の < で 18/30

Pierre Le Bris

I. Introduction

Motivation Propagation of chaos Results

II. Proof

Step one Step two

Step three

Step four

On the assumptio

Large deviation estimates -1

Theorem (Jabin-Wang '18)

Consider any probability measure μ on \mathbb{T}^d , $\epsilon > 0$ and a scalar function $\psi \in L^{\infty}(\mathbb{T}^d \times \mathbb{T}^d)$ with $\|\psi\|_{L^{\infty}} < \frac{1}{2\epsilon}$ and such that for all $z \in \mathbb{T}^d$, $\int_{\mathbb{T}^d} \psi(z, x)\mu(dx) = 0$. Then there exists a constant C such that

$$\int_{\mathbb{T}^{dN}} \exp\Big(\frac{1}{N}\sum_{j_1,j_2=1}^N \psi(x_1,x_{j_1})\psi(x_1,x_{j_2})\Big)\mu^{\otimes N} d\mathbf{X}^N \leq C,$$

where C depends on

$$lpha = (\epsilon \|\psi\|_{L^{\infty}})^4 < 1$$
 , $\beta = \left(\sqrt{2\epsilon} \|\psi\|_{L^{\infty}}\right)^4 < 1$.

<ロト < 回 ト < 三 ト < 三 ト 三 の < で 19/30

Pierre Le Bris

I. Introduction

Motivation Propagation of chao Results

II. Proof

Step one Step two

Step three

Step four

Step five

On the assumptions

Large deviation estimates -2

Theorem (Jabin-Wang '18)

Consider any probability measure μ on \mathbb{T}^d and $\phi \in L^{\infty}(\mathbb{T}^d \times \mathbb{T}^d)$ with

$$\gamma := \left(1600^2 + 36e^4\right) \left(\sup_{p \ge 1} \frac{\|\sup_{z} |\phi(\cdot, z)|\|_{L^p(\mu))}}{p}\right)^2 < 1.$$

Assume that ϕ satisfies the following cancellations

$$\forall z \in \mathbb{T}^d, \quad \int_{\mathbb{T}^d} \phi(x, z) \mu(dx) = 0 = \int_{\mathbb{T}^d} \phi(z, x) \mu(dx).$$

Then, for all $N \in \mathbb{N}$,

$$\int_{\mathbb{T}^{dN}} \exp\Big(\frac{1}{N}\sum_{i,j=1}^{N}\phi(x_i,x_j)\Big)\mu^{\otimes N}d\boldsymbol{X}^N \leq \frac{2}{1-\gamma} < \infty.$$

Conclusion

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ の Q @ 21/30

Unif. in time Prop. of Chaos for the 2D vortex model

Pierre Le Bris

I. Introduction

Motivation Propagation of chaos Results

II. Proof

Step one

Step two

Step three

Step four Step five

On the assumpt

For all $t \ge 0$,

$$\frac{d}{dt}\mathcal{H}_N(t) \leq C\left(\mathcal{H}_N(t) + \frac{1}{N}\right) - \frac{1}{2}\mathcal{I}_N(t),$$

with

$$\boldsymbol{C} = \hat{\boldsymbol{C}}_1 \|\nabla^2 \bar{\rho}_t\|_{L^{\infty}} \|\boldsymbol{V}\|_{L^{\infty}} \lambda + \hat{\boldsymbol{C}}_2 \|\boldsymbol{V}\|_{L^{\infty}}^2 \lambda^2 \boldsymbol{d}^2 \|\nabla \bar{\rho}_t\|_{L^{\infty}}^2$$

where \hat{C}_1, \hat{C}_2 are universal constants.

Pierre Le Bris

I. Introduction

Motivation Propagation of chaos Results

II. Proof

Step one

Step two

Step four Step five

On the assumptions

Step four : Uniform bounds and logarithmic Sobolev inequality

Two goals :

• A logarithmic Sobolev inequality for $\bar{\rho}^N$: $\mathcal{H}_N(t) \leq C \mathcal{I}_N(t)$

Pierre Le Bris

I. Introduction

Motivation Propagation of chaos Results

II. Proof

Step one Step two

Stop throa

Step four Step five

On the assumptions

Step four : Uniform bounds and logarithmic Sobolev inequality

Two goals :

• A logarithmic Sobolev inequality for $\bar{\rho}^N$: $\mathcal{H}_N(t) \leq C \mathcal{I}_N(t)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ · · · ○ ○ 22/30

• Uniform in time bounds on $\|\nabla \bar{\rho}_t\|_{L^{\infty}}$ and $\|\nabla^2 \bar{\rho}_t\|_{L^{\infty}}$

Pierre Le Bris

I. Introduction

Motivation Propagation of chao Results

II. Proof

Step one Step two

Oten thur a

Step four

Step five

A logarithmic Sobolev inequality

Lemma (Tensorization)

If ν is a probability measure on \mathbb{T}^d satisfying a LSI with constant C_{ν}^{LS} , then for all $N \geq 0$, $\nu^{\otimes N}$ satisfies a LSI with constant C_{ν}^{LS}

<ロト < 回 ト < 三 ト < 三 ト 三 の < で 23/30

Pierre Le Bris

I. Introduction

Motivation Propagation of chac Results

II. Proof

Step one Step two Step three

Step four Step five

On the accumptions

A logarithmic Sobolev inequality

Lemma (Tensorization)

If ν is a probability measure on \mathbb{T}^d satisfying a LSI with constant C_{ν}^{LS} , then for all $N \ge 0$, $\nu^{\otimes N}$ satisfies a LSI with constant C_{ν}^{LS}

Lemma (Perturbation)

If ν is a probability measure on \mathbb{T}^d satisfying a LSI with constant C_{ν}^{LS} , and μ is a probability measure with density h with respect to ν such that, for some constant $\lambda > 0$, $\frac{1}{\lambda} \le h \le \lambda$, then μ satisfies a LSI with constant $C_{\mu}^{LS} = \lambda^2 C_{\nu}^{LS}$.

Pierre Le Bris

I. Introduction

Motivation Propagation of chao Results

II. Proof

Step one Step two Step three Step four Step five

A logarithmic Sobolev inequality

Lemma (Tensorization)

If ν is a probability measure on \mathbb{T}^d satisfying a LSI with constant C_{ν}^{LS} , then for all $N \geq 0$, $\nu^{\otimes N}$ satisfies a LSI with constant C_{ν}^{LS}

Lemma (Perturbation)

If ν is a probability measure on \mathbb{T}^d satisfying a LSI with constant C_{ν}^{LS} , and μ is a probability measure with density h with respect to ν such that, for some constant $\lambda > 0$, $\frac{1}{\lambda} \le h \le \lambda$, then μ satisfies a LSI with constant $C_{\mu}^{LS} = \lambda^2 C_{\nu}^{LS}$.

Lemma (LSI for the uniform distribution)

The uniform distribution u on \mathbb{T}^d satisfies a LSI with constant $\frac{1}{8\pi^2}$.

Pierre Le Bris

I. Introduction

Motivation Propagation of chao Results

II. Proof

Step one Step two Step three Step four Step five On the assump

A logarithmic Sobolev inequality

Lemma (Tensorization)

If ν is a probability measure on \mathbb{T}^d satisfying a LSI with constant C_{ν}^{LS} , then for all $N \ge 0$, $\nu^{\otimes N}$ satisfies a LSI with constant C_{ν}^{LS}

Lemma (Perturbation)

If ν is a probability measure on \mathbb{T}^d satisfying a LSI with constant C_{ν}^{LS} , and μ is a probability measure with density h with respect to ν such that, for some constant $\lambda > 0$, $\frac{1}{\lambda} \le h \le \lambda$, then μ satisfies a LSI with constant $C_{\mu}^{LS} = \lambda^2 C_{\nu}^{LS}$.

Lemma (LSI for the uniform distribution)

The uniform distribution u on \mathbb{T}^d satisfies a LSI with constant $\frac{1}{8\pi^2}$.

For all $N \in \mathbb{N}$, $t \ge 0$ and all probability density $\mu_N \in \mathcal{C}^{\infty}_{>0}(\mathbb{T}^{dN})$,

$$\mathcal{H}_{N}\left(\mu_{N}, \bar{\rho}_{t}^{N}\right) \leq \frac{\lambda^{2}}{8\pi^{2}} \frac{1}{N} \sum_{i=1}^{N} \int_{\mathbb{T}^{d}} \mu_{N} \left| \nabla_{x_{i}} \log \frac{\mu_{N}}{\bar{\rho}_{t}^{N}} \right|^{2} d\mathbf{X}^{N}$$

Pierre Le Bris

I. Introduction

Motivation Propagation of chaos Results

II. Proof

Step one Step two Step three Step four

Step five On the assumption

Uniform in time bounds on the derivatives

Lemma

For all $n \ge 1$ and $\alpha_1, ..., \alpha_n \in \llbracket 1, d \rrbracket$, there exist $C_n^u, C_n^\infty > 0$ such that for all $t \ge 0$,

$$\|\partial_{\alpha_1,\ldots,\alpha_n}\bar{\rho}_t\|_{L^{\infty}} \leq C_n^u \quad and \quad \int_0^t \|\partial_{\alpha_1,\ldots,\alpha_n}\bar{\rho}_s\|_{L^{\infty}}^2 ds \leq C_n^{\infty}$$

Pierre Le Bris

I. Introduction

Motivation Propagation of chaos Results

II. Proof

Step one Step two Step three Step four Step five

Uniform in time bounds on the derivatives

Lemma

For all $n \ge 1$ and $\alpha_1, ..., \alpha_n \in [\![1, d]\!]$, there exist $C_n^u, C_n^\infty > 0$ such that for all $t \ge 0$,

$$\|\partial_{\alpha_1,\ldots,\alpha_n}\bar{\rho}_t\|_{L^{\infty}} \leq C_n^u \quad \text{and} \quad \int_0^t \|\partial_{\alpha_1,\ldots,\alpha_n}\bar{\rho}_s\|_{L^{\infty}}^2 ds \leq C_n^{\infty}$$

Thanks to Morrey's inequality and Sobolev embeddings, it is sufficient to prove such bounds in the Sobolev space H^m for all *m*, i.e in L^2

Pierre Le Bris

I. Introduction

Motivation Propagation of char Results

II. Proof

Step one

Step two

Step three

Step four

Step five

Uniform in time bounds on the derivatives-2

By induction on the order of the derivative

$$\frac{1}{2}\frac{d}{dt}\|\bar{\rho}_t\|_{L^2}^2+\|\nabla\bar{\rho}_t\|_{L^2}^2=0,$$

Pierre Le Bris

I. Introduction

Motivation Propagation of char Results

II. Proof

Step one

Step two

Step three

Step four

Step five

On the assumptions

Uniform in time bounds on the derivatives-2

By induction on the order of the derivative

$$\frac{1}{2}\frac{d}{dt}\|\bar{\rho}_t\|_{L^2}^2+\|\nabla\bar{\rho}_t\|_{L^2}^2=0,$$

$$\frac{1}{2}\frac{d}{dt}\|\partial_{\alpha_1}\bar{\rho}_t\|_{L^2}^2 + \frac{1}{2}\sum_{\alpha_2}\|\partial_{\alpha_1,\alpha_2}\bar{\rho}_t\|_{L^2}^2 \leq \frac{1}{2}\|K\|_{L^1}^2\|\bar{\rho}_t\|_{L^\infty}^2\|\nabla\bar{\rho}_t\|_{L^2}^2,$$

Pierre Le Bris

I. Introduction

Motivation Propagation of chao Results

II. Proof

Step one

Step two Step three

Step four

Step five

On the assumptions

Uniform in time bounds on the derivatives-2

By induction on the order of the derivative

$$\frac{1}{2}\frac{d}{dt}\|\bar{\rho}_t\|_{L^2}^2+\|\nabla\bar{\rho}_t\|_{L^2}^2=0,$$

$$\frac{1}{2}\frac{d}{dt}\|\partial_{\alpha_1}\bar{\rho}_t\|_{L^2}^2 + \frac{1}{2}\sum_{\alpha_2}\|\partial_{\alpha_1,\alpha_2}\bar{\rho}_t\|_{L^2}^2 \le \frac{1}{2}\|K\|_{L^1}^2\|\bar{\rho}_t\|_{L^\infty}^2\|\nabla\bar{\rho}_t\|_{L^2}^2,$$

$$\frac{1}{2} \frac{d}{dt} \|\partial_{\alpha_1,\alpha_2} \bar{\rho}_t\|_{L^2}^2 + \frac{1}{2} \sum_{\alpha_3} \|\partial_{\alpha_1,\alpha_2,\alpha_3} \bar{\rho}_t\|_{L^2}^2 \le \|V\|_{L^\infty}^2 \|\partial_{\alpha_1} \nabla \bar{\rho}_t\|_{L^2}^2 \|\nabla \bar{\rho}_t\|_{L^2}^2 + \|K\|_{L^1}^2 \|\bar{\rho}_t\|_{L^\infty}^2 \|\partial_{\alpha_1} \nabla \bar{\rho}_t\|_{L^2}^2$$

Pierre Le Bris

I. Introduction

Motivation Propagation of chao Results

II. Proof

Step one

Step two Step three

Step four

Step five

On the assumptions

Uniform in time bounds on the derivatives-2

By induction on the order of the derivative

$$\frac{1}{2}\frac{d}{dt}\|\bar{\rho}_t\|_{L^2}^2+\|\nabla\bar{\rho}_t\|_{L^2}^2=0,$$

$$\frac{1}{2}\frac{d}{dt}\|\partial_{\alpha_1}\bar{\rho}_t\|_{L^2}^2 + \frac{1}{2}\sum_{\alpha_2}\|\partial_{\alpha_1,\alpha_2}\bar{\rho}_t\|_{L^2}^2 \le \frac{1}{2}\|K\|_{L^1}^2\|\bar{\rho}_t\|_{L^\infty}^2\|\nabla\bar{\rho}_t\|_{L^2}^2,$$

$$\begin{aligned} \frac{1}{2} \frac{d}{dt} \|\partial_{\alpha_1, \alpha_2} \bar{\rho}_t\|_{L^2}^2 + \frac{1}{2} \sum_{\alpha_3} \|\partial_{\alpha_1, \alpha_2, \alpha_3} \bar{\rho}_t\|_{L^2}^2 \leq \|V\|_{L^\infty}^2 \|\partial_{\alpha_1} \nabla \bar{\rho}_t\|_{L^2}^2 \|\nabla \bar{\rho}_t\|_{L^2}^2 \\ + \|K\|_{L^1}^2 \|\bar{\rho}_t\|_{L^\infty}^2 \|\partial_{\alpha_1} \nabla \bar{\rho}_t\|_{L^2}^2, \end{aligned}$$

Pierre Le Bris

I. Introduction

Motivation Propagation of chao Results

II. Proof

Step one Step two

Step thre

Step iour

On the assumptions

Assumptions?

Goal :
$$K(x) = rac{1}{2\pi} rac{x^{\perp}}{|x|^2} = rac{1}{2\pi} \left(-rac{x_2}{|x|^2}, rac{x_1}{|x|^2}
ight)$$

Justifying the calculations

1

There is λ > 1 such that ρ
₀ ∈ C[∞]_λ(T^d) ⇒ ρ
 ∈ C[∞]_λ(ℝ⁺ × T^d) (Ben-Artzi '94)
 ρ^N ∈ C[∞]_λ(ℝ⁺ × TNd) (???)

Dealing with the terms

- In the sense of distributions, $\nabla \cdot K = 0$.
- There is a matrix field $V \in L^{\infty}$ such that $K = \nabla \cdot V$, i.e for $1 \leq \alpha \leq d$, $K_{\alpha} = \sum_{\beta=1}^{d} \partial_{\beta} V_{\alpha,\beta}$ (Phuc-Torres '08).

Uniformity in time

- For all $n \geq 1, \ C_n^0 := \| \nabla^n \bar{\rho}_0 \|_{L^\infty} < \infty$
- $\|K\|_{L^1} < \infty$ (also used to show regularity).

Pierre Le Bris

I. Introduction

Motivation Propagation of chaos Results

II. Proof

Step one Step two Step three Step four

Step five

On the assumptions

Step five : Conclusion

<ロト < 回 ト < 三 ト < 三 ト 三 の < で 27/30

There are constants $C_1, C_2^{\infty}, C_3 > 0$ and a function $t \mapsto C_2(t) > 0$ with $\int_0^t C_2(s) ds \le C_2^{\infty}$ for all $t \ge 0$ such that for all $t \ge 0$

$$\frac{d}{dt}\mathcal{H}_N(t) \leq -(C_1 - C_2(t))\mathcal{H}_N(t) + \frac{C_3}{N}$$

Multiplying by $\exp(C_1 t - \int_0^t C_2(s) ds)$ and integrating in time we get

$$egin{aligned} \mathcal{H}_{N}(t) &\leq e^{-C_{1}t+\int_{0}^{t}C_{2}(s)ds}\mathcal{H}_{N}(0)+rac{C_{3}}{N}\int_{0}^{t}e^{C_{1}(s-t)+\int_{s}^{t}C_{2}(u)du}ds\ &\leq e^{C_{2}^{\infty}-C_{1}t}\mathcal{H}_{N}(t)+rac{C_{3}}{C_{1}N}e^{C_{2}^{\infty}}\,, \end{aligned}$$

which concludes.

Pierre Le Bris

I. Introduction

Motivation Propagation of chaos Results

II. Proof

Step one

Step two

Step three

Step four

Step five

On the assumptions

On $\rho^{\mathsf{N}} \in \mathcal{C}^{\infty}_{\lambda}(\mathbb{R}^+ \times \mathbb{T}^{\mathsf{Nd}})$

Everything works for regularized kernels K^{ϵ} , and the final result is independent of ϵ .

Pierre Le Bris

I. Introduction

Motivation Propagation of chaos Results

II. Proof

Step one Step two Step three Step four Step five

On the assumptions

On the initial condition

- There is $\lambda > 1$ such that $\bar{\rho}_0 \in \mathcal{C}^\infty_\lambda(\mathbb{T}^d)$
- For all $n \geq 1$, $C_n^0 := \|\nabla^n \bar{\rho}_0\|_{L^\infty} < \infty$

On the potential K

- $\|K\|_{L^1} < \infty$.
- In the sense of distributions, $\nabla \cdot K = 0$,
- There is a matrix field $V \in L^{\infty}$ such that $K = \nabla \cdot V$, i.e for $1 \leq \alpha \leq d$, $K_{\alpha} = \sum_{\beta=1}^{d} \partial_{\beta} V_{\alpha,\beta}$.

Assumptions

Pierre Le Bris

I. Introduction

Motivation Propagation of chaos Results

II. Proof

Step one

Step two

Step three

Step four

Step five

On the assumptions

Thank you

<ロト < 回 ト < 三 ト < 三 ト 三 の < で 30/30